1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_sparc.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 void LIRItem::load_byte_item() {
  47   // byte loads use same registers as other loads
  48   load_item();
  49 }
  50 
  51 
  52 void LIRItem::load_nonconstant() {
  53   LIR_Opr r = value()->operand();
  54   if (_gen->can_inline_as_constant(value())) {
  55     if (!r->is_constant()) {
  56       r = LIR_OprFact::value_type(value()->type());
  57     }
  58     _result = r;
  59   } else {
  60     load_item();
  61   }
  62 }
  63 
  64 
  65 //--------------------------------------------------------------
  66 //               LIRGenerator
  67 //--------------------------------------------------------------
  68 
  69 LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::Oexception_opr;  }
  70 LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::Oissuing_pc_opr; }
  71 LIR_Opr LIRGenerator::syncTempOpr()                  { return new_register(T_OBJECT); }
  72 LIR_Opr LIRGenerator::getThreadTemp()                { return rlock_callee_saved(T_INT); }
  73 
  74 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  75   LIR_Opr opr;
  76   switch (type->tag()) {
  77   case intTag:     opr = callee ? FrameMap::I0_opr      : FrameMap::O0_opr;       break;
  78   case objectTag:  opr = callee ? FrameMap::I0_oop_opr  : FrameMap::O0_oop_opr;   break;
  79   case longTag:    opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
  80   case floatTag:   opr = FrameMap::F0_opr;                                        break;
  81   case doubleTag:  opr = FrameMap::F0_double_opr;                                 break;
  82 
  83   case addressTag:
  84   default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  85   }
  86 
  87   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  88   return opr;
  89 }
  90 
  91 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
  92   LIR_Opr reg = new_register(type);
  93   set_vreg_flag(reg, callee_saved);
  94   return reg;
  95 }
  96 
  97 
  98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  99   return new_register(T_INT);
 100 }
 101 
 102 
 103 
 104 
 105 
 106 //--------- loading items into registers --------------------------------
 107 
 108 // SPARC cannot inline all constants
 109 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 110   if (v->type()->as_IntConstant() != NULL) {
 111     return v->type()->as_IntConstant()->value() == 0;
 112   } else if (v->type()->as_LongConstant() != NULL) {
 113     return v->type()->as_LongConstant()->value() == 0L;
 114   } else if (v->type()->as_ObjectConstant() != NULL) {
 115     return v->type()->as_ObjectConstant()->value()->is_null_object();
 116   } else {
 117     return false;
 118   }
 119 }
 120 
 121 
 122 // only simm13 constants can be inlined
 123 bool LIRGenerator:: can_inline_as_constant(Value i) const {
 124   if (i->type()->as_IntConstant() != NULL) {
 125     return Assembler::is_simm13(i->type()->as_IntConstant()->value());
 126   } else {
 127     return can_store_as_constant(i, as_BasicType(i->type()));
 128   }
 129 }
 130 
 131 
 132 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
 133   if (c->type() == T_INT) {
 134     return Assembler::is_simm13(c->as_jint());
 135   }
 136   return false;
 137 }
 138 
 139 
 140 LIR_Opr LIRGenerator::safepoint_poll_register() {
 141   return new_register(T_INT);
 142 }
 143 
 144 
 145 
 146 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 147                                             int shift, int disp, BasicType type) {
 148   assert(base->is_register(), "must be");
 149 
 150   // accumulate fixed displacements
 151   if (index->is_constant()) {
 152     disp += index->as_constant_ptr()->as_jint() << shift;
 153     index = LIR_OprFact::illegalOpr;
 154   }
 155 
 156   if (index->is_register()) {
 157     // apply the shift and accumulate the displacement
 158     if (shift > 0) {
 159       LIR_Opr tmp = new_pointer_register();
 160       __ shift_left(index, shift, tmp);
 161       index = tmp;
 162     }
 163     if (disp != 0) {
 164       LIR_Opr tmp = new_pointer_register();
 165       if (Assembler::is_simm13(disp)) {
 166         __ add(tmp, LIR_OprFact::intptrConst(disp), tmp);
 167         index = tmp;
 168       } else {
 169         __ move(LIR_OprFact::intptrConst(disp), tmp);
 170         __ add(tmp, index, tmp);
 171         index = tmp;
 172       }
 173       disp = 0;
 174     }
 175   } else if (disp != 0 && !Assembler::is_simm13(disp)) {
 176     // index is illegal so replace it with the displacement loaded into a register
 177     index = new_pointer_register();
 178     __ move(LIR_OprFact::intptrConst(disp), index);
 179     disp = 0;
 180   }
 181 
 182   // at this point we either have base + index or base + displacement
 183   if (disp == 0) {
 184     return new LIR_Address(base, index, type);
 185   } else {
 186     assert(Assembler::is_simm13(disp), "must be");
 187     return new LIR_Address(base, disp, type);
 188   }
 189 }
 190 
 191 
 192 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 193                                               BasicType type, bool needs_card_mark) {
 194   int elem_size = type2aelembytes(type);
 195   int shift = exact_log2(elem_size);
 196 
 197   LIR_Opr base_opr;
 198   int offset = arrayOopDesc::base_offset_in_bytes(type);
 199 
 200   if (index_opr->is_constant()) {
 201     int i = index_opr->as_constant_ptr()->as_jint();
 202     int array_offset = i * elem_size;
 203     if (Assembler::is_simm13(array_offset + offset)) {
 204       base_opr = array_opr;
 205       offset = array_offset + offset;
 206     } else {
 207       base_opr = new_pointer_register();
 208       if (Assembler::is_simm13(array_offset)) {
 209         __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
 210       } else {
 211         __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
 212         __ add(base_opr, array_opr, base_opr);
 213       }
 214     }
 215   } else {
 216 #ifdef _LP64
 217     if (index_opr->type() == T_INT) {
 218       LIR_Opr tmp = new_register(T_LONG);
 219       __ convert(Bytecodes::_i2l, index_opr, tmp);
 220       index_opr = tmp;
 221     }
 222 #endif
 223 
 224     base_opr = new_pointer_register();
 225     assert (index_opr->is_register(), "Must be register");
 226     if (shift > 0) {
 227       __ shift_left(index_opr, shift, base_opr);
 228       __ add(base_opr, array_opr, base_opr);
 229     } else {
 230       __ add(index_opr, array_opr, base_opr);
 231     }
 232   }
 233   if (needs_card_mark) {
 234     LIR_Opr ptr = new_pointer_register();
 235     __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
 236     return new LIR_Address(ptr, type);
 237   } else {
 238     return new LIR_Address(base_opr, offset, type);
 239   }
 240 }
 241 
 242 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 243   LIR_Opr r;
 244   if (type == T_LONG) {
 245     r = LIR_OprFact::longConst(x);
 246   } else if (type == T_INT) {
 247     r = LIR_OprFact::intConst(x);
 248   } else {
 249     ShouldNotReachHere();
 250   }
 251   if (!Assembler::is_simm13(x)) {
 252     LIR_Opr tmp = new_register(type);
 253     __ move(r, tmp);
 254     return tmp;
 255   }
 256   return r;
 257 }
 258 
 259 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 260   LIR_Opr pointer = new_pointer_register();
 261   __ move(LIR_OprFact::intptrConst(counter), pointer);
 262   LIR_Address* addr = new LIR_Address(pointer, type);
 263   increment_counter(addr, step);
 264 }
 265 
 266 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 267   LIR_Opr temp = new_register(addr->type());
 268   __ move(addr, temp);
 269   __ add(temp, load_immediate(step, addr->type()), temp);
 270   __ move(temp, addr);
 271 }
 272 
 273 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 274   LIR_Opr o7opr = FrameMap::O7_opr;
 275   __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
 276   __ cmp(condition, o7opr, c);
 277 }
 278 
 279 
 280 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 281   LIR_Opr o7opr = FrameMap::O7_opr;
 282   __ load(new LIR_Address(base, disp, type), o7opr, info);
 283   __ cmp(condition, reg, o7opr);
 284 }
 285 
 286 
 287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 288   LIR_Opr o7opr = FrameMap::O7_opr;
 289   __ load(new LIR_Address(base, disp, type), o7opr, info);
 290   __ cmp(condition, reg, o7opr);
 291 }
 292 
 293 
 294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 295   assert(left != result, "should be different registers");
 296   if (is_power_of_2(c + 1)) {
 297     __ shift_left(left, log2_intptr(c + 1), result);
 298     __ sub(result, left, result);
 299     return true;
 300   } else if (is_power_of_2(c - 1)) {
 301     __ shift_left(left, log2_intptr(c - 1), result);
 302     __ add(result, left, result);
 303     return true;
 304   }
 305   return false;
 306 }
 307 
 308 
 309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 310   BasicType t = item->type();
 311   LIR_Opr sp_opr = FrameMap::SP_opr;
 312   if ((t == T_LONG || t == T_DOUBLE) &&
 313       ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
 314     __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
 315   } else {
 316     __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
 317   }
 318 }
 319 
 320 //----------------------------------------------------------------------
 321 //             visitor functions
 322 //----------------------------------------------------------------------
 323 
 324 
 325 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 326   assert(x->is_pinned(),"");
 327   bool needs_range_check = true;
 328   bool use_length = x->length() != NULL;
 329   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 330   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 331                                          !get_jobject_constant(x->value())->is_null_object() ||
 332                                          x->should_profile());
 333 
 334   LIRItem array(x->array(), this);
 335   LIRItem index(x->index(), this);
 336   LIRItem value(x->value(), this);
 337   LIRItem length(this);
 338 
 339   array.load_item();
 340   index.load_nonconstant();
 341 
 342   if (use_length) {
 343     needs_range_check = x->compute_needs_range_check();
 344     if (needs_range_check) {
 345       length.set_instruction(x->length());
 346       length.load_item();
 347     }
 348   }
 349   if (needs_store_check) {
 350     value.load_item();
 351   } else {
 352     value.load_for_store(x->elt_type());
 353   }
 354 
 355   set_no_result(x);
 356 
 357   // the CodeEmitInfo must be duplicated for each different
 358   // LIR-instruction because spilling can occur anywhere between two
 359   // instructions and so the debug information must be different
 360   CodeEmitInfo* range_check_info = state_for(x);
 361   CodeEmitInfo* null_check_info = NULL;
 362   if (x->needs_null_check()) {
 363     null_check_info = new CodeEmitInfo(range_check_info);
 364   }
 365 
 366   // emit array address setup early so it schedules better
 367   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 368 
 369   if (GenerateRangeChecks && needs_range_check) {
 370     if (use_length) {
 371       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 372       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 373     } else {
 374       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 375       // range_check also does the null check
 376       null_check_info = NULL;
 377     }
 378   }
 379 
 380   if (GenerateArrayStoreCheck && needs_store_check) {
 381     LIR_Opr tmp1 = FrameMap::G1_opr;
 382     LIR_Opr tmp2 = FrameMap::G3_opr;
 383     LIR_Opr tmp3 = FrameMap::G5_opr;
 384 
 385     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 386     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
 387   }
 388 
 389   if (obj_store) {
 390     // Needs GC write barriers.
 391     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
 392                 true /* do_load */, false /* patch */, NULL);
 393   }
 394   __ move(value.result(), array_addr, null_check_info);
 395   if (obj_store) {
 396     // Precise card mark
 397     post_barrier(LIR_OprFact::address(array_addr), value.result());
 398   }
 399 }
 400 
 401 
 402 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 403   assert(x->is_pinned(),"");
 404   LIRItem obj(x->obj(), this);
 405   obj.load_item();
 406 
 407   set_no_result(x);
 408 
 409   LIR_Opr lock    = FrameMap::G1_opr;
 410   LIR_Opr scratch = FrameMap::G3_opr;
 411   LIR_Opr hdr     = FrameMap::G4_opr;
 412 
 413   CodeEmitInfo* info_for_exception = NULL;
 414   if (x->needs_null_check()) {
 415     info_for_exception = state_for(x);
 416   }
 417 
 418   // this CodeEmitInfo must not have the xhandlers because here the
 419   // object is already locked (xhandlers expects object to be unlocked)
 420   CodeEmitInfo* info = state_for(x, x->state(), true);
 421   monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
 422 }
 423 
 424 
 425 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 426   assert(x->is_pinned(),"");
 427   LIRItem obj(x->obj(), this);
 428   obj.dont_load_item();
 429 
 430   set_no_result(x);
 431   LIR_Opr lock      = FrameMap::G1_opr;
 432   LIR_Opr hdr       = FrameMap::G3_opr;
 433   LIR_Opr obj_temp  = FrameMap::G4_opr;
 434   monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
 435 }
 436 
 437 
 438 // _ineg, _lneg, _fneg, _dneg
 439 void LIRGenerator::do_NegateOp(NegateOp* x) {
 440   LIRItem value(x->x(), this);
 441   value.load_item();
 442   LIR_Opr reg = rlock_result(x);
 443   __ negate(value.result(), reg);
 444 }
 445 
 446 
 447 
 448 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 449 //      _dadd, _dmul, _dsub, _ddiv, _drem
 450 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 451   switch (x->op()) {
 452   case Bytecodes::_fadd:
 453   case Bytecodes::_fmul:
 454   case Bytecodes::_fsub:
 455   case Bytecodes::_fdiv:
 456   case Bytecodes::_dadd:
 457   case Bytecodes::_dmul:
 458   case Bytecodes::_dsub:
 459   case Bytecodes::_ddiv: {
 460     LIRItem left(x->x(), this);
 461     LIRItem right(x->y(), this);
 462     left.load_item();
 463     right.load_item();
 464     rlock_result(x);
 465     arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
 466   }
 467   break;
 468 
 469   case Bytecodes::_frem:
 470   case Bytecodes::_drem: {
 471     address entry;
 472     switch (x->op()) {
 473     case Bytecodes::_frem:
 474       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 475       break;
 476     case Bytecodes::_drem:
 477       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 478       break;
 479     default:
 480       ShouldNotReachHere();
 481     }
 482     LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
 483     set_result(x, result);
 484   }
 485   break;
 486 
 487   default: ShouldNotReachHere();
 488   }
 489 }
 490 
 491 
 492 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 493 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 494   switch (x->op()) {
 495   case Bytecodes::_lrem:
 496   case Bytecodes::_lmul:
 497   case Bytecodes::_ldiv: {
 498 
 499     if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 500       LIRItem right(x->y(), this);
 501       right.load_item();
 502 
 503       CodeEmitInfo* info = state_for(x);
 504       LIR_Opr item = right.result();
 505       assert(item->is_register(), "must be");
 506       __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
 507       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 508     }
 509 
 510     address entry;
 511     switch (x->op()) {
 512     case Bytecodes::_lrem:
 513       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 514       break; // check if dividend is 0 is done elsewhere
 515     case Bytecodes::_ldiv:
 516       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 517       break; // check if dividend is 0 is done elsewhere
 518     case Bytecodes::_lmul:
 519       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 520       break;
 521     default:
 522       ShouldNotReachHere();
 523     }
 524 
 525     // order of arguments to runtime call is reversed.
 526     LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
 527     set_result(x, result);
 528     break;
 529   }
 530   case Bytecodes::_ladd:
 531   case Bytecodes::_lsub: {
 532     LIRItem left(x->x(), this);
 533     LIRItem right(x->y(), this);
 534     left.load_item();
 535     right.load_item();
 536     rlock_result(x);
 537 
 538     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 539     break;
 540   }
 541   default: ShouldNotReachHere();
 542   }
 543 }
 544 
 545 
 546 // Returns if item is an int constant that can be represented by a simm13
 547 static bool is_simm13(LIR_Opr item) {
 548   if (item->is_constant() && item->type() == T_INT) {
 549     return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
 550   } else {
 551     return false;
 552   }
 553 }
 554 
 555 
 556 // for: _iadd, _imul, _isub, _idiv, _irem
 557 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 558   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
 559   LIRItem left(x->x(), this);
 560   LIRItem right(x->y(), this);
 561   // missing test if instr is commutative and if we should swap
 562   right.load_nonconstant();
 563   assert(right.is_constant() || right.is_register(), "wrong state of right");
 564   left.load_item();
 565   rlock_result(x);
 566   if (is_div_rem) {
 567     CodeEmitInfo* info = state_for(x);
 568     LIR_Opr tmp = FrameMap::G1_opr;
 569     if (x->op() == Bytecodes::_irem) {
 570       __ irem(left.result(), right.result(), x->operand(), tmp, info);
 571     } else if (x->op() == Bytecodes::_idiv) {
 572       __ idiv(left.result(), right.result(), x->operand(), tmp, info);
 573     }
 574   } else {
 575     arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
 576   }
 577 }
 578 
 579 
 580 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 581   ValueTag tag = x->type()->tag();
 582   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 583   switch (tag) {
 584     case floatTag:
 585     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 586     case longTag:    do_ArithmeticOp_Long(x); return;
 587     case intTag:     do_ArithmeticOp_Int(x);  return;
 588   }
 589   ShouldNotReachHere();
 590 }
 591 
 592 
 593 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 594 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 595   LIRItem value(x->x(), this);
 596   LIRItem count(x->y(), this);
 597   // Long shift destroys count register
 598   if (value.type()->is_long()) {
 599     count.set_destroys_register();
 600   }
 601   value.load_item();
 602   // the old backend doesn't support this
 603   if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
 604     jint c = count.get_jint_constant() & 0x1f;
 605     assert(c >= 0 && c < 32, "should be small");
 606     count.dont_load_item();
 607   } else {
 608     count.load_item();
 609   }
 610   LIR_Opr reg = rlock_result(x);
 611   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 612 }
 613 
 614 
 615 // _iand, _land, _ior, _lor, _ixor, _lxor
 616 void LIRGenerator::do_LogicOp(LogicOp* x) {
 617   LIRItem left(x->x(), this);
 618   LIRItem right(x->y(), this);
 619 
 620   left.load_item();
 621   right.load_nonconstant();
 622   LIR_Opr reg = rlock_result(x);
 623 
 624   logic_op(x->op(), reg, left.result(), right.result());
 625 }
 626 
 627 
 628 
 629 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 630 void LIRGenerator::do_CompareOp(CompareOp* x) {
 631   LIRItem left(x->x(), this);
 632   LIRItem right(x->y(), this);
 633   left.load_item();
 634   right.load_item();
 635   LIR_Opr reg = rlock_result(x);
 636   if (x->x()->type()->is_float_kind()) {
 637     Bytecodes::Code code = x->op();
 638     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 639   } else if (x->x()->type()->tag() == longTag) {
 640     __ lcmp2int(left.result(), right.result(), reg);
 641   } else {
 642     Unimplemented();
 643   }
 644 }
 645 
 646 
 647 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
 648   assert(x->number_of_arguments() == 3, "wrong type");
 649   LIRItem obj       (x->argument_at(0), this);  // AtomicLong object
 650   LIRItem cmp_value (x->argument_at(1), this);  // value to compare with field
 651   LIRItem new_value (x->argument_at(2), this);  // replace field with new_value if it matches cmp_value
 652 
 653   obj.load_item();
 654   cmp_value.load_item();
 655   new_value.load_item();
 656 
 657   // generate compare-and-swap and produce zero condition if swap occurs
 658   int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
 659   LIR_Opr addr = FrameMap::O7_opr;
 660   __ add(obj.result(), LIR_OprFact::intConst(value_offset), addr);
 661   LIR_Opr t1 = FrameMap::G1_opr;  // temp for 64-bit value
 662   LIR_Opr t2 = FrameMap::G3_opr;  // temp for 64-bit value
 663   __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
 664 
 665   // generate conditional move of boolean result
 666   LIR_Opr result = rlock_result(x);
 667   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result, T_LONG);
 668 }
 669 
 670 
 671 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 672   assert(x->number_of_arguments() == 4, "wrong type");
 673   LIRItem obj   (x->argument_at(0), this);  // object
 674   LIRItem offset(x->argument_at(1), this);  // offset of field
 675   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 676   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 677 
 678   // Use temps to avoid kills
 679   LIR_Opr t1 = FrameMap::G1_opr;
 680   LIR_Opr t2 = FrameMap::G3_opr;
 681   LIR_Opr addr = new_pointer_register();
 682 
 683   // get address of field
 684   obj.load_item();
 685   offset.load_item();
 686   cmp.load_item();
 687   val.load_item();
 688 
 689   __ add(obj.result(), offset.result(), addr);
 690 
 691   if (type == objectType) {  // Write-barrier needed for Object fields.
 692     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
 693                 true /* do_load */, false /* patch */, NULL);
 694   }
 695 
 696   if (type == objectType)
 697     __ cas_obj(addr, cmp.result(), val.result(), t1, t2);
 698   else if (type == intType)
 699     __ cas_int(addr, cmp.result(), val.result(), t1, t2);
 700   else if (type == longType)
 701     __ cas_long(addr, cmp.result(), val.result(), t1, t2);
 702   else {
 703     ShouldNotReachHere();
 704   }
 705   // generate conditional move of boolean result
 706   LIR_Opr result = rlock_result(x);
 707   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 708            result, as_BasicType(type));
 709   if (type == objectType) {  // Write-barrier needed for Object fields.
 710     // Precise card mark since could either be object or array
 711     post_barrier(addr, val.result());
 712   }
 713 }
 714 
 715 
 716 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 717   switch (x->id()) {
 718     case vmIntrinsics::_dabs:
 719     case vmIntrinsics::_dsqrt: {
 720       assert(x->number_of_arguments() == 1, "wrong type");
 721       LIRItem value(x->argument_at(0), this);
 722       value.load_item();
 723       LIR_Opr dst = rlock_result(x);
 724 
 725       switch (x->id()) {
 726       case vmIntrinsics::_dsqrt: {
 727         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 728         break;
 729       }
 730       case vmIntrinsics::_dabs: {
 731         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 732         break;
 733       }
 734       }
 735       break;
 736     }
 737     case vmIntrinsics::_dlog10: // fall through
 738     case vmIntrinsics::_dlog: // fall through
 739     case vmIntrinsics::_dsin: // fall through
 740     case vmIntrinsics::_dtan: // fall through
 741     case vmIntrinsics::_dcos: // fall through
 742     case vmIntrinsics::_dexp: {
 743       assert(x->number_of_arguments() == 1, "wrong type");
 744 
 745       address runtime_entry = NULL;
 746       switch (x->id()) {
 747       case vmIntrinsics::_dsin:
 748         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 749         break;
 750       case vmIntrinsics::_dcos:
 751         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 752         break;
 753       case vmIntrinsics::_dtan:
 754         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 755         break;
 756       case vmIntrinsics::_dlog:
 757         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 758         break;
 759       case vmIntrinsics::_dlog10:
 760         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 761         break;
 762       case vmIntrinsics::_dexp:
 763         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 764         break;
 765       default:
 766         ShouldNotReachHere();
 767       }
 768 
 769       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
 770       set_result(x, result);
 771       break;
 772     }
 773     case vmIntrinsics::_dpow: {
 774       assert(x->number_of_arguments() == 2, "wrong type");
 775       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 776       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
 777       set_result(x, result);
 778       break;
 779     }
 780   }
 781 }
 782 
 783 
 784 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 785   assert(x->number_of_arguments() == 5, "wrong type");
 786 
 787   // Make all state_for calls early since they can emit code
 788   CodeEmitInfo* info = state_for(x, x->state());
 789 
 790   // Note: spill caller save before setting the item
 791   LIRItem src     (x->argument_at(0), this);
 792   LIRItem src_pos (x->argument_at(1), this);
 793   LIRItem dst     (x->argument_at(2), this);
 794   LIRItem dst_pos (x->argument_at(3), this);
 795   LIRItem length  (x->argument_at(4), this);
 796   // load all values in callee_save_registers, as this makes the
 797   // parameter passing to the fast case simpler
 798   src.load_item_force     (rlock_callee_saved(T_OBJECT));
 799   src_pos.load_item_force (rlock_callee_saved(T_INT));
 800   dst.load_item_force     (rlock_callee_saved(T_OBJECT));
 801   dst_pos.load_item_force (rlock_callee_saved(T_INT));
 802   length.load_item_force  (rlock_callee_saved(T_INT));
 803 
 804   int flags;
 805   ciArrayKlass* expected_type;
 806   arraycopy_helper(x, &flags, &expected_type);
 807 
 808   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
 809                length.result(), rlock_callee_saved(T_INT),
 810                expected_type, flags, info);
 811   set_no_result(x);
 812 }
 813 
 814 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
 815 // _i2b, _i2c, _i2s
 816 void LIRGenerator::do_Convert(Convert* x) {
 817 
 818   switch (x->op()) {
 819     case Bytecodes::_f2l:
 820     case Bytecodes::_d2l:
 821     case Bytecodes::_d2i:
 822     case Bytecodes::_l2f:
 823     case Bytecodes::_l2d: {
 824 
 825       address entry;
 826       switch (x->op()) {
 827       case Bytecodes::_l2f:
 828         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
 829         break;
 830       case Bytecodes::_l2d:
 831         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
 832         break;
 833       case Bytecodes::_f2l:
 834         entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
 835         break;
 836       case Bytecodes::_d2l:
 837         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
 838         break;
 839       case Bytecodes::_d2i:
 840         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
 841         break;
 842       default:
 843         ShouldNotReachHere();
 844       }
 845       LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
 846       set_result(x, result);
 847       break;
 848     }
 849 
 850     case Bytecodes::_i2f:
 851     case Bytecodes::_i2d: {
 852       LIRItem value(x->value(), this);
 853 
 854       LIR_Opr reg = rlock_result(x);
 855       // To convert an int to double, we need to load the 32-bit int
 856       // from memory into a single precision floating point register
 857       // (even numbered). Then the sparc fitod instruction takes care
 858       // of the conversion. This is a bit ugly, but is the best way to
 859       // get the int value in a single precision floating point register
 860       value.load_item();
 861       LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
 862       __ convert(x->op(), tmp, reg);
 863       break;
 864     }
 865     break;
 866 
 867     case Bytecodes::_i2l:
 868     case Bytecodes::_i2b:
 869     case Bytecodes::_i2c:
 870     case Bytecodes::_i2s:
 871     case Bytecodes::_l2i:
 872     case Bytecodes::_f2d:
 873     case Bytecodes::_d2f: { // inline code
 874       LIRItem value(x->value(), this);
 875 
 876       value.load_item();
 877       LIR_Opr reg = rlock_result(x);
 878       __ convert(x->op(), value.result(), reg, false);
 879     }
 880     break;
 881 
 882     case Bytecodes::_f2i: {
 883       LIRItem value (x->value(), this);
 884       value.set_destroys_register();
 885       value.load_item();
 886       LIR_Opr reg = rlock_result(x);
 887       set_vreg_flag(reg, must_start_in_memory);
 888       __ convert(x->op(), value.result(), reg, false);
 889     }
 890     break;
 891 
 892     default: ShouldNotReachHere();
 893   }
 894 }
 895 
 896 
 897 void LIRGenerator::do_NewInstance(NewInstance* x) {
 898   // This instruction can be deoptimized in the slow path : use
 899   // O0 as result register.
 900   const LIR_Opr reg = result_register_for(x->type());
 901 #ifndef PRODUCT
 902   if (PrintNotLoaded && !x->klass()->is_loaded()) {
 903     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
 904   }
 905 #endif
 906   CodeEmitInfo* info = state_for(x, x->state());
 907   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 908   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 909   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 910   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 911   LIR_Opr klass_reg = FrameMap::G5_oop_opr;
 912   new_instance(reg, x->klass(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
 913   LIR_Opr result = rlock_result(x);
 914   __ move(reg, result);
 915 }
 916 
 917 
 918 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
 919   // Evaluate state_for early since it may emit code
 920   CodeEmitInfo* info = state_for(x, x->state());
 921 
 922   LIRItem length(x->length(), this);
 923   length.load_item();
 924 
 925   LIR_Opr reg = result_register_for(x->type());
 926   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 927   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 928   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 929   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 930   LIR_Opr klass_reg = FrameMap::G5_oop_opr;
 931   LIR_Opr len = length.result();
 932   BasicType elem_type = x->elt_type();
 933 
 934   __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
 935 
 936   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
 937   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
 938 
 939   LIR_Opr result = rlock_result(x);
 940   __ move(reg, result);
 941 }
 942 
 943 
 944 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
 945   // Evaluate state_for early since it may emit code.
 946   CodeEmitInfo* info = state_for(x, x->state());
 947   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
 948   // and therefore provide the state before the parameters have been consumed
 949   CodeEmitInfo* patching_info = NULL;
 950   if (!x->klass()->is_loaded() || PatchALot) {
 951     patching_info = state_for(x, x->state_before());
 952   }
 953 
 954   LIRItem length(x->length(), this);
 955   length.load_item();
 956 
 957   const LIR_Opr reg = result_register_for(x->type());
 958   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 959   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 960   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 961   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 962   LIR_Opr klass_reg = FrameMap::G5_oop_opr;
 963   LIR_Opr len = length.result();
 964 
 965   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
 966   ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
 967   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
 968     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
 969   }
 970   jobject2reg_with_patching(klass_reg, obj, patching_info);
 971   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
 972 
 973   LIR_Opr result = rlock_result(x);
 974   __ move(reg, result);
 975 }
 976 
 977 
 978 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
 979   Values* dims = x->dims();
 980   int i = dims->length();
 981   LIRItemList* items = new LIRItemList(dims->length(), NULL);
 982   while (i-- > 0) {
 983     LIRItem* size = new LIRItem(dims->at(i), this);
 984     items->at_put(i, size);
 985   }
 986 
 987   // Evaluate state_for early since it may emit code.
 988   CodeEmitInfo* patching_info = NULL;
 989   if (!x->klass()->is_loaded() || PatchALot) {
 990     patching_info = state_for(x, x->state_before());
 991 
 992     // cannot re-use same xhandlers for multiple CodeEmitInfos, so
 993     // clone all handlers.  This is handled transparently in other
 994     // places by the CodeEmitInfo cloning logic but is handled
 995     // specially here because a stub isn't being used.
 996     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
 997   }
 998   CodeEmitInfo* info = state_for(x, x->state());
 999 
1000   i = dims->length();
1001   while (i-- > 0) {
1002     LIRItem* size = items->at(i);
1003     size->load_item();
1004     store_stack_parameter (size->result(),
1005                            in_ByteSize(STACK_BIAS +
1006                                        frame::memory_parameter_word_sp_offset * wordSize +
1007                                        i * sizeof(jint)));
1008   }
1009 
1010   // This instruction can be deoptimized in the slow path : use
1011   // O0 as result register.
1012   const LIR_Opr reg = result_register_for(x->type());
1013   jobject2reg_with_patching(reg, x->klass(), patching_info);
1014   LIR_Opr rank = FrameMap::O1_opr;
1015   __ move(LIR_OprFact::intConst(x->rank()), rank);
1016   LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
1017   int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
1018   __ add(FrameMap::SP_opr,
1019          LIR_OprFact::intptrConst(offset_from_sp),
1020          varargs);
1021   LIR_OprList* args = new LIR_OprList(3);
1022   args->append(reg);
1023   args->append(rank);
1024   args->append(varargs);
1025   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1026                   LIR_OprFact::illegalOpr,
1027                   reg, args, info);
1028 
1029   LIR_Opr result = rlock_result(x);
1030   __ move(reg, result);
1031 }
1032 
1033 
1034 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1035 }
1036 
1037 
1038 void LIRGenerator::do_CheckCast(CheckCast* x) {
1039   LIRItem obj(x->obj(), this);
1040   CodeEmitInfo* patching_info = NULL;
1041   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1042     // must do this before locking the destination register as an oop register,
1043     // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
1044     patching_info = state_for(x, x->state_before());
1045   }
1046   obj.load_item();
1047   LIR_Opr out_reg = rlock_result(x);
1048   CodeStub* stub;
1049   CodeEmitInfo* info_for_exception = state_for(x);
1050 
1051   if (x->is_incompatible_class_change_check()) {
1052     assert(patching_info == NULL, "can't patch this");
1053     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1054   } else {
1055     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1056   }
1057   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1058   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1059   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1060   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1061                x->direct_compare(), info_for_exception, patching_info, stub,
1062                x->profiled_method(), x->profiled_bci());
1063 }
1064 
1065 
1066 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1067   LIRItem obj(x->obj(), this);
1068   CodeEmitInfo* patching_info = NULL;
1069   if (!x->klass()->is_loaded() || PatchALot) {
1070     patching_info = state_for(x, x->state_before());
1071   }
1072   // ensure the result register is not the input register because the result is initialized before the patching safepoint
1073   obj.load_item();
1074   LIR_Opr out_reg = rlock_result(x);
1075   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1076   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1077   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1078   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1079                 x->direct_compare(), patching_info,
1080                 x->profiled_method(), x->profiled_bci());
1081 }
1082 
1083 
1084 void LIRGenerator::do_If(If* x) {
1085   assert(x->number_of_sux() == 2, "inconsistency");
1086   ValueTag tag = x->x()->type()->tag();
1087   LIRItem xitem(x->x(), this);
1088   LIRItem yitem(x->y(), this);
1089   LIRItem* xin = &xitem;
1090   LIRItem* yin = &yitem;
1091   If::Condition cond = x->cond();
1092 
1093   if (tag == longTag) {
1094     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1095     // mirror for other conditions
1096     if (cond == If::gtr || cond == If::leq) {
1097       // swap inputs
1098       cond = Instruction::mirror(cond);
1099       xin = &yitem;
1100       yin = &xitem;
1101     }
1102     xin->set_destroys_register();
1103   }
1104 
1105   LIR_Opr left = LIR_OprFact::illegalOpr;
1106   LIR_Opr right = LIR_OprFact::illegalOpr;
1107 
1108   xin->load_item();
1109   left = xin->result();
1110 
1111   if (is_simm13(yin->result())) {
1112     // inline int constants which are small enough to be immediate operands
1113     right = LIR_OprFact::value_type(yin->value()->type());
1114   } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1115              (cond == If::eql || cond == If::neq)) {
1116     // inline long zero
1117     right = LIR_OprFact::value_type(yin->value()->type());
1118   } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
1119     right = LIR_OprFact::value_type(yin->value()->type());
1120   } else {
1121     yin->load_item();
1122     right = yin->result();
1123   }
1124   set_no_result(x);
1125 
1126   // add safepoint before generating condition code so it can be recomputed
1127   if (x->is_safepoint()) {
1128     // increment backedge counter if needed
1129     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1130     __ safepoint(new_register(T_INT), state_for(x, x->state_before()));
1131   }
1132 
1133   __ cmp(lir_cond(cond), left, right);
1134   // Generate branch profiling. Profiling code doesn't kill flags.
1135   profile_branch(x, cond);
1136   move_to_phi(x->state());
1137   if (x->x()->type()->is_float_kind()) {
1138     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1139   } else {
1140     __ branch(lir_cond(cond), right->type(), x->tsux());
1141   }
1142   assert(x->default_sux() == x->fsux(), "wrong destination above");
1143   __ jump(x->default_sux());
1144 }
1145 
1146 
1147 LIR_Opr LIRGenerator::getThreadPointer() {
1148   return FrameMap::as_pointer_opr(G2);
1149 }
1150 
1151 
1152 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1153   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
1154   LIR_OprList* args = new LIR_OprList(1);
1155   args->append(FrameMap::O0_opr);
1156   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1157   __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
1158 }
1159 
1160 
1161 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1162                                         CodeEmitInfo* info) {
1163 #ifdef _LP64
1164   __ store(value, address, info);
1165 #else
1166   __ volatile_store_mem_reg(value, address, info);
1167 #endif
1168 }
1169 
1170 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1171                                        CodeEmitInfo* info) {
1172 #ifdef _LP64
1173   __ load(address, result, info);
1174 #else
1175   __ volatile_load_mem_reg(address, result, info);
1176 #endif
1177 }
1178 
1179 
1180 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1181                                      BasicType type, bool is_volatile) {
1182   LIR_Opr base_op = src;
1183   LIR_Opr index_op = offset;
1184 
1185   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1186 #ifndef _LP64
1187   if (is_volatile && type == T_LONG) {
1188     __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none);
1189   } else
1190 #endif
1191     {
1192       if (type == T_BOOLEAN) {
1193         type = T_BYTE;
1194       }
1195       LIR_Address* addr;
1196       if (type == T_ARRAY || type == T_OBJECT) {
1197         LIR_Opr tmp = new_pointer_register();
1198         __ add(base_op, index_op, tmp);
1199         addr = new LIR_Address(tmp, type);
1200       } else {
1201         addr = new LIR_Address(base_op, index_op, type);
1202       }
1203 
1204       if (is_obj) {
1205         pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1206                     true /* do_load */, false /* patch */, NULL);
1207         // _bs->c1_write_barrier_pre(this, LIR_OprFact::address(addr));
1208       }
1209       __ move(data, addr);
1210       if (is_obj) {
1211         // This address is precise
1212         post_barrier(LIR_OprFact::address(addr), data);
1213       }
1214     }
1215 }
1216 
1217 
1218 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1219                                      BasicType type, bool is_volatile) {
1220 #ifndef _LP64
1221   if (is_volatile && type == T_LONG) {
1222     __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none);
1223   } else
1224 #endif
1225     {
1226     LIR_Address* addr = new LIR_Address(src, offset, type);
1227     __ load(addr, dst);
1228   }
1229 }