1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/methodOop.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/top.hpp"
  41 #ifdef TARGET_OS_FAMILY_linux
  42 # include "thread_linux.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_FAMILY_solaris
  45 # include "thread_solaris.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_windows
  48 # include "thread_windows.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_FAMILY_bsd
  51 # include "thread_bsd.inline.hpp"
  52 #endif
  53 #ifdef COMPILER2
  54 #include "opto/runtime.hpp"
  55 #endif
  56 
  57 // Declaration and definition of StubGenerator (no .hpp file).
  58 // For a more detailed description of the stub routine structure
  59 // see the comment in stubRoutines.hpp
  60 
  61 #define __ _masm->
  62 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  63 #define a__ ((Assembler*)_masm)->
  64 
  65 #ifdef PRODUCT
  66 #define BLOCK_COMMENT(str) /* nothing */
  67 #else
  68 #define BLOCK_COMMENT(str) __ block_comment(str)
  69 #endif
  70 
  71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  72 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
  73 
  74 // Stub Code definitions
  75 
  76 static address handle_unsafe_access() {
  77   JavaThread* thread = JavaThread::current();
  78   address pc = thread->saved_exception_pc();
  79   // pc is the instruction which we must emulate
  80   // doing a no-op is fine:  return garbage from the load
  81   // therefore, compute npc
  82   address npc = Assembler::locate_next_instruction(pc);
  83 
  84   // request an async exception
  85   thread->set_pending_unsafe_access_error();
  86 
  87   // return address of next instruction to execute
  88   return npc;
  89 }
  90 
  91 class StubGenerator: public StubCodeGenerator {
  92  private:
  93 
  94 #ifdef PRODUCT
  95 #define inc_counter_np(counter) (0)
  96 #else
  97   void inc_counter_np_(int& counter) {
  98     // This can destroy rscratch1 if counter is far from the code cache
  99     __ incrementl(ExternalAddress((address)&counter));
 100   }
 101 #define inc_counter_np(counter) \
 102   BLOCK_COMMENT("inc_counter " #counter); \
 103   inc_counter_np_(counter);
 104 #endif
 105 
 106   // Call stubs are used to call Java from C
 107   //
 108   // Linux Arguments:
 109   //    c_rarg0:   call wrapper address                   address
 110   //    c_rarg1:   result                                 address
 111   //    c_rarg2:   result type                            BasicType
 112   //    c_rarg3:   method                                 methodOop
 113   //    c_rarg4:   (interpreter) entry point              address
 114   //    c_rarg5:   parameters                             intptr_t*
 115   //    16(rbp): parameter size (in words)              int
 116   //    24(rbp): thread                                 Thread*
 117   //
 118   //     [ return_from_Java     ] <--- rsp
 119   //     [ argument word n      ]
 120   //      ...
 121   // -12 [ argument word 1      ]
 122   // -11 [ saved r15            ] <--- rsp_after_call
 123   // -10 [ saved r14            ]
 124   //  -9 [ saved r13            ]
 125   //  -8 [ saved r12            ]
 126   //  -7 [ saved rbx            ]
 127   //  -6 [ call wrapper         ]
 128   //  -5 [ result               ]
 129   //  -4 [ result type          ]
 130   //  -3 [ method               ]
 131   //  -2 [ entry point          ]
 132   //  -1 [ parameters           ]
 133   //   0 [ saved rbp            ] <--- rbp
 134   //   1 [ return address       ]
 135   //   2 [ parameter size       ]
 136   //   3 [ thread               ]
 137   //
 138   // Windows Arguments:
 139   //    c_rarg0:   call wrapper address                   address
 140   //    c_rarg1:   result                                 address
 141   //    c_rarg2:   result type                            BasicType
 142   //    c_rarg3:   method                                 methodOop
 143   //    48(rbp): (interpreter) entry point              address
 144   //    56(rbp): parameters                             intptr_t*
 145   //    64(rbp): parameter size (in words)              int
 146   //    72(rbp): thread                                 Thread*
 147   //
 148   //     [ return_from_Java     ] <--- rsp
 149   //     [ argument word n      ]
 150   //      ...
 151   // -28 [ argument word 1      ]
 152   // -27 [ saved xmm15          ] <--- rsp_after_call
 153   //     [ saved xmm7-xmm14     ]
 154   //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 155   //  -7 [ saved r15            ]
 156   //  -6 [ saved r14            ]
 157   //  -5 [ saved r13            ]
 158   //  -4 [ saved r12            ]
 159   //  -3 [ saved rdi            ]
 160   //  -2 [ saved rsi            ]
 161   //  -1 [ saved rbx            ]
 162   //   0 [ saved rbp            ] <--- rbp
 163   //   1 [ return address       ]
 164   //   2 [ call wrapper         ]
 165   //   3 [ result               ]
 166   //   4 [ result type          ]
 167   //   5 [ method               ]
 168   //   6 [ entry point          ]
 169   //   7 [ parameters           ]
 170   //   8 [ parameter size       ]
 171   //   9 [ thread               ]
 172   //
 173   //    Windows reserves the callers stack space for arguments 1-4.
 174   //    We spill c_rarg0-c_rarg3 to this space.
 175 
 176   // Call stub stack layout word offsets from rbp
 177   enum call_stub_layout {
 178 #ifdef _WIN64
 179     xmm_save_first     = 6,  // save from xmm6
 180     xmm_save_last      = 15, // to xmm15
 181     xmm_save_base      = -9,
 182     rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 183     r15_off            = -7,
 184     r14_off            = -6,
 185     r13_off            = -5,
 186     r12_off            = -4,
 187     rdi_off            = -3,
 188     rsi_off            = -2,
 189     rbx_off            = -1,
 190     rbp_off            =  0,
 191     retaddr_off        =  1,
 192     call_wrapper_off   =  2,
 193     result_off         =  3,
 194     result_type_off    =  4,
 195     method_off         =  5,
 196     entry_point_off    =  6,
 197     parameters_off     =  7,
 198     parameter_size_off =  8,
 199     thread_off         =  9
 200 #else
 201     rsp_after_call_off = -12,
 202     mxcsr_off          = rsp_after_call_off,
 203     r15_off            = -11,
 204     r14_off            = -10,
 205     r13_off            = -9,
 206     r12_off            = -8,
 207     rbx_off            = -7,
 208     call_wrapper_off   = -6,
 209     result_off         = -5,
 210     result_type_off    = -4,
 211     method_off         = -3,
 212     entry_point_off    = -2,
 213     parameters_off     = -1,
 214     rbp_off            =  0,
 215     retaddr_off        =  1,
 216     parameter_size_off =  2,
 217     thread_off         =  3
 218 #endif
 219   };
 220 
 221 #ifdef _WIN64
 222   Address xmm_save(int reg) {
 223     assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 224     return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 225   }
 226 #endif
 227 
 228   address generate_call_stub(address& return_address) {
 229     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 230            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 231            "adjust this code");
 232     StubCodeMark mark(this, "StubRoutines", "call_stub");
 233     address start = __ pc();
 234 
 235     // same as in generate_catch_exception()!
 236     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 237 
 238     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 239     const Address result        (rbp, result_off         * wordSize);
 240     const Address result_type   (rbp, result_type_off    * wordSize);
 241     const Address method        (rbp, method_off         * wordSize);
 242     const Address entry_point   (rbp, entry_point_off    * wordSize);
 243     const Address parameters    (rbp, parameters_off     * wordSize);
 244     const Address parameter_size(rbp, parameter_size_off * wordSize);
 245 
 246     // same as in generate_catch_exception()!
 247     const Address thread        (rbp, thread_off         * wordSize);
 248 
 249     const Address r15_save(rbp, r15_off * wordSize);
 250     const Address r14_save(rbp, r14_off * wordSize);
 251     const Address r13_save(rbp, r13_off * wordSize);
 252     const Address r12_save(rbp, r12_off * wordSize);
 253     const Address rbx_save(rbp, rbx_off * wordSize);
 254 
 255     // stub code
 256     __ enter();
 257     __ subptr(rsp, -rsp_after_call_off * wordSize);
 258 
 259     // save register parameters
 260 #ifndef _WIN64
 261     __ movptr(parameters,   c_rarg5); // parameters
 262     __ movptr(entry_point,  c_rarg4); // entry_point
 263 #endif
 264 
 265     __ movptr(method,       c_rarg3); // method
 266     __ movl(result_type,  c_rarg2);   // result type
 267     __ movptr(result,       c_rarg1); // result
 268     __ movptr(call_wrapper, c_rarg0); // call wrapper
 269 
 270     // save regs belonging to calling function
 271     __ movptr(rbx_save, rbx);
 272     __ movptr(r12_save, r12);
 273     __ movptr(r13_save, r13);
 274     __ movptr(r14_save, r14);
 275     __ movptr(r15_save, r15);
 276 #ifdef _WIN64
 277     for (int i = 6; i <= 15; i++) {
 278       __ movdqu(xmm_save(i), as_XMMRegister(i));
 279     }
 280 
 281     const Address rdi_save(rbp, rdi_off * wordSize);
 282     const Address rsi_save(rbp, rsi_off * wordSize);
 283 
 284     __ movptr(rsi_save, rsi);
 285     __ movptr(rdi_save, rdi);
 286 #else
 287     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 288     {
 289       Label skip_ldmx;
 290       __ stmxcsr(mxcsr_save);
 291       __ movl(rax, mxcsr_save);
 292       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 293       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
 294       __ cmp32(rax, mxcsr_std);
 295       __ jcc(Assembler::equal, skip_ldmx);
 296       __ ldmxcsr(mxcsr_std);
 297       __ bind(skip_ldmx);
 298     }
 299 #endif
 300 
 301     // Load up thread register
 302     __ movptr(r15_thread, thread);
 303     __ reinit_heapbase();
 304 
 305 #ifdef ASSERT
 306     // make sure we have no pending exceptions
 307     {
 308       Label L;
 309       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 310       __ jcc(Assembler::equal, L);
 311       __ stop("StubRoutines::call_stub: entered with pending exception");
 312       __ bind(L);
 313     }
 314 #endif
 315 
 316     // pass parameters if any
 317     BLOCK_COMMENT("pass parameters if any");
 318     Label parameters_done;
 319     __ movl(c_rarg3, parameter_size);
 320     __ testl(c_rarg3, c_rarg3);
 321     __ jcc(Assembler::zero, parameters_done);
 322 
 323     Label loop;
 324     __ movptr(c_rarg2, parameters);       // parameter pointer
 325     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 326     __ BIND(loop);
 327     __ movptr(rax, Address(c_rarg2, 0));// get parameter
 328     __ addptr(c_rarg2, wordSize);       // advance to next parameter
 329     __ decrementl(c_rarg1);             // decrement counter
 330     __ push(rax);                       // pass parameter
 331     __ jcc(Assembler::notZero, loop);
 332 
 333     // call Java function
 334     __ BIND(parameters_done);
 335     __ movptr(rbx, method);             // get methodOop
 336     __ movptr(c_rarg1, entry_point);    // get entry_point
 337     __ mov(r13, rsp);                   // set sender sp
 338     BLOCK_COMMENT("call Java function");
 339     __ call(c_rarg1);
 340 
 341     BLOCK_COMMENT("call_stub_return_address:");
 342     return_address = __ pc();
 343 
 344     // store result depending on type (everything that is not
 345     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 346     __ movptr(c_rarg0, result);
 347     Label is_long, is_float, is_double, exit;
 348     __ movl(c_rarg1, result_type);
 349     __ cmpl(c_rarg1, T_OBJECT);
 350     __ jcc(Assembler::equal, is_long);
 351     __ cmpl(c_rarg1, T_LONG);
 352     __ jcc(Assembler::equal, is_long);
 353     __ cmpl(c_rarg1, T_FLOAT);
 354     __ jcc(Assembler::equal, is_float);
 355     __ cmpl(c_rarg1, T_DOUBLE);
 356     __ jcc(Assembler::equal, is_double);
 357 
 358     // handle T_INT case
 359     __ movl(Address(c_rarg0, 0), rax);
 360 
 361     __ BIND(exit);
 362 
 363     // pop parameters
 364     __ lea(rsp, rsp_after_call);
 365 
 366 #ifdef ASSERT
 367     // verify that threads correspond
 368     {
 369       Label L, S;
 370       __ cmpptr(r15_thread, thread);
 371       __ jcc(Assembler::notEqual, S);
 372       __ get_thread(rbx);
 373       __ cmpptr(r15_thread, rbx);
 374       __ jcc(Assembler::equal, L);
 375       __ bind(S);
 376       __ jcc(Assembler::equal, L);
 377       __ stop("StubRoutines::call_stub: threads must correspond");
 378       __ bind(L);
 379     }
 380 #endif
 381 
 382     // restore regs belonging to calling function
 383 #ifdef _WIN64
 384     for (int i = 15; i >= 6; i--) {
 385       __ movdqu(as_XMMRegister(i), xmm_save(i));
 386     }
 387 #endif
 388     __ movptr(r15, r15_save);
 389     __ movptr(r14, r14_save);
 390     __ movptr(r13, r13_save);
 391     __ movptr(r12, r12_save);
 392     __ movptr(rbx, rbx_save);
 393 
 394 #ifdef _WIN64
 395     __ movptr(rdi, rdi_save);
 396     __ movptr(rsi, rsi_save);
 397 #else
 398     __ ldmxcsr(mxcsr_save);
 399 #endif
 400 
 401     // restore rsp
 402     __ addptr(rsp, -rsp_after_call_off * wordSize);
 403 
 404     // return
 405     __ pop(rbp);
 406     __ ret(0);
 407 
 408     // handle return types different from T_INT
 409     __ BIND(is_long);
 410     __ movq(Address(c_rarg0, 0), rax);
 411     __ jmp(exit);
 412 
 413     __ BIND(is_float);
 414     __ movflt(Address(c_rarg0, 0), xmm0);
 415     __ jmp(exit);
 416 
 417     __ BIND(is_double);
 418     __ movdbl(Address(c_rarg0, 0), xmm0);
 419     __ jmp(exit);
 420 
 421     return start;
 422   }
 423 
 424   // Return point for a Java call if there's an exception thrown in
 425   // Java code.  The exception is caught and transformed into a
 426   // pending exception stored in JavaThread that can be tested from
 427   // within the VM.
 428   //
 429   // Note: Usually the parameters are removed by the callee. In case
 430   // of an exception crossing an activation frame boundary, that is
 431   // not the case if the callee is compiled code => need to setup the
 432   // rsp.
 433   //
 434   // rax: exception oop
 435 
 436   address generate_catch_exception() {
 437     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 438     address start = __ pc();
 439 
 440     // same as in generate_call_stub():
 441     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 442     const Address thread        (rbp, thread_off         * wordSize);
 443 
 444 #ifdef ASSERT
 445     // verify that threads correspond
 446     {
 447       Label L, S;
 448       __ cmpptr(r15_thread, thread);
 449       __ jcc(Assembler::notEqual, S);
 450       __ get_thread(rbx);
 451       __ cmpptr(r15_thread, rbx);
 452       __ jcc(Assembler::equal, L);
 453       __ bind(S);
 454       __ stop("StubRoutines::catch_exception: threads must correspond");
 455       __ bind(L);
 456     }
 457 #endif
 458 
 459     // set pending exception
 460     __ verify_oop(rax);
 461 
 462     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 463     __ lea(rscratch1, ExternalAddress((address)__FILE__));
 464     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 465     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 466 
 467     // complete return to VM
 468     assert(StubRoutines::_call_stub_return_address != NULL,
 469            "_call_stub_return_address must have been generated before");
 470     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 471 
 472     return start;
 473   }
 474 
 475   // Continuation point for runtime calls returning with a pending
 476   // exception.  The pending exception check happened in the runtime
 477   // or native call stub.  The pending exception in Thread is
 478   // converted into a Java-level exception.
 479   //
 480   // Contract with Java-level exception handlers:
 481   // rax: exception
 482   // rdx: throwing pc
 483   //
 484   // NOTE: At entry of this stub, exception-pc must be on stack !!
 485 
 486   address generate_forward_exception() {
 487     StubCodeMark mark(this, "StubRoutines", "forward exception");
 488     address start = __ pc();
 489 
 490     // Upon entry, the sp points to the return address returning into
 491     // Java (interpreted or compiled) code; i.e., the return address
 492     // becomes the throwing pc.
 493     //
 494     // Arguments pushed before the runtime call are still on the stack
 495     // but the exception handler will reset the stack pointer ->
 496     // ignore them.  A potential result in registers can be ignored as
 497     // well.
 498 
 499 #ifdef ASSERT
 500     // make sure this code is only executed if there is a pending exception
 501     {
 502       Label L;
 503       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
 504       __ jcc(Assembler::notEqual, L);
 505       __ stop("StubRoutines::forward exception: no pending exception (1)");
 506       __ bind(L);
 507     }
 508 #endif
 509 
 510     // compute exception handler into rbx
 511     __ movptr(c_rarg0, Address(rsp, 0));
 512     BLOCK_COMMENT("call exception_handler_for_return_address");
 513     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 514                          SharedRuntime::exception_handler_for_return_address),
 515                     r15_thread, c_rarg0);
 516     __ mov(rbx, rax);
 517 
 518     // setup rax & rdx, remove return address & clear pending exception
 519     __ pop(rdx);
 520     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 521     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 522 
 523 #ifdef ASSERT
 524     // make sure exception is set
 525     {
 526       Label L;
 527       __ testptr(rax, rax);
 528       __ jcc(Assembler::notEqual, L);
 529       __ stop("StubRoutines::forward exception: no pending exception (2)");
 530       __ bind(L);
 531     }
 532 #endif
 533 
 534     // continue at exception handler (return address removed)
 535     // rax: exception
 536     // rbx: exception handler
 537     // rdx: throwing pc
 538     __ verify_oop(rax);
 539     __ jmp(rbx);
 540 
 541     return start;
 542   }
 543 
 544   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
 545   //
 546   // Arguments :
 547   //    c_rarg0: exchange_value
 548   //    c_rarg0: dest
 549   //
 550   // Result:
 551   //    *dest <- ex, return (orig *dest)
 552   address generate_atomic_xchg() {
 553     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 554     address start = __ pc();
 555 
 556     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
 557     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
 558     __ ret(0);
 559 
 560     return start;
 561   }
 562 
 563   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
 564   //
 565   // Arguments :
 566   //    c_rarg0: exchange_value
 567   //    c_rarg1: dest
 568   //
 569   // Result:
 570   //    *dest <- ex, return (orig *dest)
 571   address generate_atomic_xchg_ptr() {
 572     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
 573     address start = __ pc();
 574 
 575     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 576     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
 577     __ ret(0);
 578 
 579     return start;
 580   }
 581 
 582   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
 583   //                                         jint compare_value)
 584   //
 585   // Arguments :
 586   //    c_rarg0: exchange_value
 587   //    c_rarg1: dest
 588   //    c_rarg2: compare_value
 589   //
 590   // Result:
 591   //    if ( compare_value == *dest ) {
 592   //       *dest = exchange_value
 593   //       return compare_value;
 594   //    else
 595   //       return *dest;
 596   address generate_atomic_cmpxchg() {
 597     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
 598     address start = __ pc();
 599 
 600     __ movl(rax, c_rarg2);
 601    if ( os::is_MP() ) __ lock();
 602     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
 603     __ ret(0);
 604 
 605     return start;
 606   }
 607 
 608   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
 609   //                                             volatile jlong* dest,
 610   //                                             jlong compare_value)
 611   // Arguments :
 612   //    c_rarg0: exchange_value
 613   //    c_rarg1: dest
 614   //    c_rarg2: compare_value
 615   //
 616   // Result:
 617   //    if ( compare_value == *dest ) {
 618   //       *dest = exchange_value
 619   //       return compare_value;
 620   //    else
 621   //       return *dest;
 622   address generate_atomic_cmpxchg_long() {
 623     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
 624     address start = __ pc();
 625 
 626     __ movq(rax, c_rarg2);
 627    if ( os::is_MP() ) __ lock();
 628     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
 629     __ ret(0);
 630 
 631     return start;
 632   }
 633 
 634   // Support for jint atomic::add(jint add_value, volatile jint* dest)
 635   //
 636   // Arguments :
 637   //    c_rarg0: add_value
 638   //    c_rarg1: dest
 639   //
 640   // Result:
 641   //    *dest += add_value
 642   //    return *dest;
 643   address generate_atomic_add() {
 644     StubCodeMark mark(this, "StubRoutines", "atomic_add");
 645     address start = __ pc();
 646 
 647     __ movl(rax, c_rarg0);
 648    if ( os::is_MP() ) __ lock();
 649     __ xaddl(Address(c_rarg1, 0), c_rarg0);
 650     __ addl(rax, c_rarg0);
 651     __ ret(0);
 652 
 653     return start;
 654   }
 655 
 656   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
 657   //
 658   // Arguments :
 659   //    c_rarg0: add_value
 660   //    c_rarg1: dest
 661   //
 662   // Result:
 663   //    *dest += add_value
 664   //    return *dest;
 665   address generate_atomic_add_ptr() {
 666     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
 667     address start = __ pc();
 668 
 669     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 670    if ( os::is_MP() ) __ lock();
 671     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
 672     __ addptr(rax, c_rarg0);
 673     __ ret(0);
 674 
 675     return start;
 676   }
 677 
 678   // Support for intptr_t OrderAccess::fence()
 679   //
 680   // Arguments :
 681   //
 682   // Result:
 683   address generate_orderaccess_fence() {
 684     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 685     address start = __ pc();
 686     __ membar(Assembler::StoreLoad);
 687     __ ret(0);
 688 
 689     return start;
 690   }
 691 
 692   // Support for intptr_t get_previous_fp()
 693   //
 694   // This routine is used to find the previous frame pointer for the
 695   // caller (current_frame_guess). This is used as part of debugging
 696   // ps() is seemingly lost trying to find frames.
 697   // This code assumes that caller current_frame_guess) has a frame.
 698   address generate_get_previous_fp() {
 699     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
 700     const Address old_fp(rbp, 0);
 701     const Address older_fp(rax, 0);
 702     address start = __ pc();
 703 
 704     __ enter();
 705     __ movptr(rax, old_fp); // callers fp
 706     __ movptr(rax, older_fp); // the frame for ps()
 707     __ pop(rbp);
 708     __ ret(0);
 709 
 710     return start;
 711   }
 712 
 713   // Support for intptr_t get_previous_sp()
 714   //
 715   // This routine is used to find the previous stack pointer for the
 716   // caller.
 717   address generate_get_previous_sp() {
 718     StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
 719     address start = __ pc();
 720 
 721     __ movptr(rax, rsp);
 722     __ addptr(rax, 8); // return address is at the top of the stack.
 723     __ ret(0);
 724 
 725     return start;
 726   }
 727 
 728   //----------------------------------------------------------------------------------------------------
 729   // Support for void verify_mxcsr()
 730   //
 731   // This routine is used with -Xcheck:jni to verify that native
 732   // JNI code does not return to Java code without restoring the
 733   // MXCSR register to our expected state.
 734 
 735   address generate_verify_mxcsr() {
 736     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 737     address start = __ pc();
 738 
 739     const Address mxcsr_save(rsp, 0);
 740 
 741     if (CheckJNICalls) {
 742       Label ok_ret;
 743       __ push(rax);
 744       __ subptr(rsp, wordSize);      // allocate a temp location
 745       __ stmxcsr(mxcsr_save);
 746       __ movl(rax, mxcsr_save);
 747       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 748       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
 749       __ jcc(Assembler::equal, ok_ret);
 750 
 751       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 752 
 753       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
 754 
 755       __ bind(ok_ret);
 756       __ addptr(rsp, wordSize);
 757       __ pop(rax);
 758     }
 759 
 760     __ ret(0);
 761 
 762     return start;
 763   }
 764 
 765   address generate_f2i_fixup() {
 766     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 767     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 768 
 769     address start = __ pc();
 770 
 771     Label L;
 772 
 773     __ push(rax);
 774     __ push(c_rarg3);
 775     __ push(c_rarg2);
 776     __ push(c_rarg1);
 777 
 778     __ movl(rax, 0x7f800000);
 779     __ xorl(c_rarg3, c_rarg3);
 780     __ movl(c_rarg2, inout);
 781     __ movl(c_rarg1, c_rarg2);
 782     __ andl(c_rarg1, 0x7fffffff);
 783     __ cmpl(rax, c_rarg1); // NaN? -> 0
 784     __ jcc(Assembler::negative, L);
 785     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 786     __ movl(c_rarg3, 0x80000000);
 787     __ movl(rax, 0x7fffffff);
 788     __ cmovl(Assembler::positive, c_rarg3, rax);
 789 
 790     __ bind(L);
 791     __ movptr(inout, c_rarg3);
 792 
 793     __ pop(c_rarg1);
 794     __ pop(c_rarg2);
 795     __ pop(c_rarg3);
 796     __ pop(rax);
 797 
 798     __ ret(0);
 799 
 800     return start;
 801   }
 802 
 803   address generate_f2l_fixup() {
 804     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 805     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 806     address start = __ pc();
 807 
 808     Label L;
 809 
 810     __ push(rax);
 811     __ push(c_rarg3);
 812     __ push(c_rarg2);
 813     __ push(c_rarg1);
 814 
 815     __ movl(rax, 0x7f800000);
 816     __ xorl(c_rarg3, c_rarg3);
 817     __ movl(c_rarg2, inout);
 818     __ movl(c_rarg1, c_rarg2);
 819     __ andl(c_rarg1, 0x7fffffff);
 820     __ cmpl(rax, c_rarg1); // NaN? -> 0
 821     __ jcc(Assembler::negative, L);
 822     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 823     __ mov64(c_rarg3, 0x8000000000000000);
 824     __ mov64(rax, 0x7fffffffffffffff);
 825     __ cmov(Assembler::positive, c_rarg3, rax);
 826 
 827     __ bind(L);
 828     __ movptr(inout, c_rarg3);
 829 
 830     __ pop(c_rarg1);
 831     __ pop(c_rarg2);
 832     __ pop(c_rarg3);
 833     __ pop(rax);
 834 
 835     __ ret(0);
 836 
 837     return start;
 838   }
 839 
 840   address generate_d2i_fixup() {
 841     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 842     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 843 
 844     address start = __ pc();
 845 
 846     Label L;
 847 
 848     __ push(rax);
 849     __ push(c_rarg3);
 850     __ push(c_rarg2);
 851     __ push(c_rarg1);
 852     __ push(c_rarg0);
 853 
 854     __ movl(rax, 0x7ff00000);
 855     __ movq(c_rarg2, inout);
 856     __ movl(c_rarg3, c_rarg2);
 857     __ mov(c_rarg1, c_rarg2);
 858     __ mov(c_rarg0, c_rarg2);
 859     __ negl(c_rarg3);
 860     __ shrptr(c_rarg1, 0x20);
 861     __ orl(c_rarg3, c_rarg2);
 862     __ andl(c_rarg1, 0x7fffffff);
 863     __ xorl(c_rarg2, c_rarg2);
 864     __ shrl(c_rarg3, 0x1f);
 865     __ orl(c_rarg1, c_rarg3);
 866     __ cmpl(rax, c_rarg1);
 867     __ jcc(Assembler::negative, L); // NaN -> 0
 868     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 869     __ movl(c_rarg2, 0x80000000);
 870     __ movl(rax, 0x7fffffff);
 871     __ cmov(Assembler::positive, c_rarg2, rax);
 872 
 873     __ bind(L);
 874     __ movptr(inout, c_rarg2);
 875 
 876     __ pop(c_rarg0);
 877     __ pop(c_rarg1);
 878     __ pop(c_rarg2);
 879     __ pop(c_rarg3);
 880     __ pop(rax);
 881 
 882     __ ret(0);
 883 
 884     return start;
 885   }
 886 
 887   address generate_d2l_fixup() {
 888     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 889     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 890 
 891     address start = __ pc();
 892 
 893     Label L;
 894 
 895     __ push(rax);
 896     __ push(c_rarg3);
 897     __ push(c_rarg2);
 898     __ push(c_rarg1);
 899     __ push(c_rarg0);
 900 
 901     __ movl(rax, 0x7ff00000);
 902     __ movq(c_rarg2, inout);
 903     __ movl(c_rarg3, c_rarg2);
 904     __ mov(c_rarg1, c_rarg2);
 905     __ mov(c_rarg0, c_rarg2);
 906     __ negl(c_rarg3);
 907     __ shrptr(c_rarg1, 0x20);
 908     __ orl(c_rarg3, c_rarg2);
 909     __ andl(c_rarg1, 0x7fffffff);
 910     __ xorl(c_rarg2, c_rarg2);
 911     __ shrl(c_rarg3, 0x1f);
 912     __ orl(c_rarg1, c_rarg3);
 913     __ cmpl(rax, c_rarg1);
 914     __ jcc(Assembler::negative, L); // NaN -> 0
 915     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 916     __ mov64(c_rarg2, 0x8000000000000000);
 917     __ mov64(rax, 0x7fffffffffffffff);
 918     __ cmovq(Assembler::positive, c_rarg2, rax);
 919 
 920     __ bind(L);
 921     __ movq(inout, c_rarg2);
 922 
 923     __ pop(c_rarg0);
 924     __ pop(c_rarg1);
 925     __ pop(c_rarg2);
 926     __ pop(c_rarg3);
 927     __ pop(rax);
 928 
 929     __ ret(0);
 930 
 931     return start;
 932   }
 933 
 934   address generate_fp_mask(const char *stub_name, int64_t mask) {
 935     __ align(CodeEntryAlignment);
 936     StubCodeMark mark(this, "StubRoutines", stub_name);
 937     address start = __ pc();
 938 
 939     __ emit_data64( mask, relocInfo::none );
 940     __ emit_data64( mask, relocInfo::none );
 941 
 942     return start;
 943   }
 944 
 945   // The following routine generates a subroutine to throw an
 946   // asynchronous UnknownError when an unsafe access gets a fault that
 947   // could not be reasonably prevented by the programmer.  (Example:
 948   // SIGBUS/OBJERR.)
 949   address generate_handler_for_unsafe_access() {
 950     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 951     address start = __ pc();
 952 
 953     __ push(0);                       // hole for return address-to-be
 954     __ pusha();                       // push registers
 955     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 956 
 957     // FIXME: this probably needs alignment logic
 958 
 959     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 960     BLOCK_COMMENT("call handle_unsafe_access");
 961     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 962     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 963 
 964     __ movptr(next_pc, rax);          // stuff next address
 965     __ popa();
 966     __ ret(0);                        // jump to next address
 967 
 968     return start;
 969   }
 970 
 971   // Non-destructive plausibility checks for oops
 972   //
 973   // Arguments:
 974   //    all args on stack!
 975   //
 976   // Stack after saving c_rarg3:
 977   //    [tos + 0]: saved c_rarg3
 978   //    [tos + 1]: saved c_rarg2
 979   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
 980   //    [tos + 3]: saved flags
 981   //    [tos + 4]: return address
 982   //  * [tos + 5]: error message (char*)
 983   //  * [tos + 6]: object to verify (oop)
 984   //  * [tos + 7]: saved rax - saved by caller and bashed
 985   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
 986   //  * = popped on exit
 987   address generate_verify_oop() {
 988     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 989     address start = __ pc();
 990 
 991     Label exit, error;
 992 
 993     __ pushf();
 994     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 995 
 996     __ push(r12);
 997 
 998     // save c_rarg2 and c_rarg3
 999     __ push(c_rarg2);
1000     __ push(c_rarg3);
1001 
1002     enum {
1003            // After previous pushes.
1004            oop_to_verify = 6 * wordSize,
1005            saved_rax     = 7 * wordSize,
1006            saved_r10     = 8 * wordSize,
1007 
1008            // Before the call to MacroAssembler::debug(), see below.
1009            return_addr   = 16 * wordSize,
1010            error_msg     = 17 * wordSize
1011     };
1012 
1013     // get object
1014     __ movptr(rax, Address(rsp, oop_to_verify));
1015 
1016     // make sure object is 'reasonable'
1017     __ testptr(rax, rax);
1018     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
1019     // Check if the oop is in the right area of memory
1020     __ movptr(c_rarg2, rax);
1021     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
1022     __ andptr(c_rarg2, c_rarg3);
1023     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
1024     __ cmpptr(c_rarg2, c_rarg3);
1025     __ jcc(Assembler::notZero, error);
1026 
1027     // set r12 to heapbase for load_klass()
1028     __ reinit_heapbase();
1029 
1030     // make sure klass is 'reasonable'
1031     __ load_klass(rax, rax);  // get klass
1032     __ testptr(rax, rax);
1033     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
1034     // Check if the klass is in the right area of memory
1035     __ mov(c_rarg2, rax);
1036     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
1037     __ andptr(c_rarg2, c_rarg3);
1038     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
1039     __ cmpptr(c_rarg2, c_rarg3);
1040     __ jcc(Assembler::notZero, error);
1041 
1042     // make sure klass' klass is 'reasonable'
1043     __ load_klass(rax, rax);
1044     __ testptr(rax, rax);
1045     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
1046     // Check if the klass' klass is in the right area of memory
1047     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
1048     __ andptr(rax, c_rarg3);
1049     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
1050     __ cmpptr(rax, c_rarg3);
1051     __ jcc(Assembler::notZero, error);
1052 
1053     // return if everything seems ok
1054     __ bind(exit);
1055     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1056     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1057     __ pop(c_rarg3);                             // restore c_rarg3
1058     __ pop(c_rarg2);                             // restore c_rarg2
1059     __ pop(r12);                                 // restore r12
1060     __ popf();                                   // restore flags
1061     __ ret(4 * wordSize);                        // pop caller saved stuff
1062 
1063     // handle errors
1064     __ bind(error);
1065     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1066     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1067     __ pop(c_rarg3);                             // get saved c_rarg3 back
1068     __ pop(c_rarg2);                             // get saved c_rarg2 back
1069     __ pop(r12);                                 // get saved r12 back
1070     __ popf();                                   // get saved flags off stack --
1071                                                  // will be ignored
1072 
1073     __ pusha();                                  // push registers
1074                                                  // (rip is already
1075                                                  // already pushed)
1076     // debug(char* msg, int64_t pc, int64_t regs[])
1077     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1078     // pushed all the registers, so now the stack looks like:
1079     //     [tos +  0] 16 saved registers
1080     //     [tos + 16] return address
1081     //   * [tos + 17] error message (char*)
1082     //   * [tos + 18] object to verify (oop)
1083     //   * [tos + 19] saved rax - saved by caller and bashed
1084     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1085     //   * = popped on exit
1086 
1087     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1088     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1089     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1090     __ mov(r12, rsp);                               // remember rsp
1091     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1092     __ andptr(rsp, -16);                            // align stack as required by ABI
1093     BLOCK_COMMENT("call MacroAssembler::debug");
1094     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1095     __ mov(rsp, r12);                               // restore rsp
1096     __ popa();                                      // pop registers (includes r12)
1097     __ ret(4 * wordSize);                           // pop caller saved stuff
1098 
1099     return start;
1100   }
1101 
1102   //
1103   // Verify that a register contains clean 32-bits positive value
1104   // (high 32-bits are 0) so it could be used in 64-bits shifts.
1105   //
1106   //  Input:
1107   //    Rint  -  32-bits value
1108   //    Rtmp  -  scratch
1109   //
1110   void assert_clean_int(Register Rint, Register Rtmp) {
1111 #ifdef ASSERT
1112     Label L;
1113     assert_different_registers(Rtmp, Rint);
1114     __ movslq(Rtmp, Rint);
1115     __ cmpq(Rtmp, Rint);
1116     __ jcc(Assembler::equal, L);
1117     __ stop("high 32-bits of int value are not 0");
1118     __ bind(L);
1119 #endif
1120   }
1121 
1122   //  Generate overlap test for array copy stubs
1123   //
1124   //  Input:
1125   //     c_rarg0 - from
1126   //     c_rarg1 - to
1127   //     c_rarg2 - element count
1128   //
1129   //  Output:
1130   //     rax   - &from[element count - 1]
1131   //
1132   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1133     assert(no_overlap_target != NULL, "must be generated");
1134     array_overlap_test(no_overlap_target, NULL, sf);
1135   }
1136   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1137     array_overlap_test(NULL, &L_no_overlap, sf);
1138   }
1139   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1140     const Register from     = c_rarg0;
1141     const Register to       = c_rarg1;
1142     const Register count    = c_rarg2;
1143     const Register end_from = rax;
1144 
1145     __ cmpptr(to, from);
1146     __ lea(end_from, Address(from, count, sf, 0));
1147     if (NOLp == NULL) {
1148       ExternalAddress no_overlap(no_overlap_target);
1149       __ jump_cc(Assembler::belowEqual, no_overlap);
1150       __ cmpptr(to, end_from);
1151       __ jump_cc(Assembler::aboveEqual, no_overlap);
1152     } else {
1153       __ jcc(Assembler::belowEqual, (*NOLp));
1154       __ cmpptr(to, end_from);
1155       __ jcc(Assembler::aboveEqual, (*NOLp));
1156     }
1157   }
1158 
1159   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1160   //
1161   // Outputs:
1162   //    rdi - rcx
1163   //    rsi - rdx
1164   //    rdx - r8
1165   //    rcx - r9
1166   //
1167   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1168   // are non-volatile.  r9 and r10 should not be used by the caller.
1169   //
1170   void setup_arg_regs(int nargs = 3) {
1171     const Register saved_rdi = r9;
1172     const Register saved_rsi = r10;
1173     assert(nargs == 3 || nargs == 4, "else fix");
1174 #ifdef _WIN64
1175     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1176            "unexpected argument registers");
1177     if (nargs >= 4)
1178       __ mov(rax, r9);  // r9 is also saved_rdi
1179     __ movptr(saved_rdi, rdi);
1180     __ movptr(saved_rsi, rsi);
1181     __ mov(rdi, rcx); // c_rarg0
1182     __ mov(rsi, rdx); // c_rarg1
1183     __ mov(rdx, r8);  // c_rarg2
1184     if (nargs >= 4)
1185       __ mov(rcx, rax); // c_rarg3 (via rax)
1186 #else
1187     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1188            "unexpected argument registers");
1189 #endif
1190   }
1191 
1192   void restore_arg_regs() {
1193     const Register saved_rdi = r9;
1194     const Register saved_rsi = r10;
1195 #ifdef _WIN64
1196     __ movptr(rdi, saved_rdi);
1197     __ movptr(rsi, saved_rsi);
1198 #endif
1199   }
1200 
1201   // Generate code for an array write pre barrier
1202   //
1203   //     addr    -  starting address
1204   //     count   -  element count
1205   //     tmp     - scratch register
1206   //
1207   //     Destroy no registers!
1208   //
1209   void  gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
1210     BarrierSet* bs = Universe::heap()->barrier_set();
1211     switch (bs->kind()) {
1212       case BarrierSet::G1SATBCT:
1213       case BarrierSet::G1SATBCTLogging:
1214         // With G1, don't generate the call if we statically know that the target in uninitialized
1215         if (!dest_uninitialized) {
1216            __ pusha();                      // push registers
1217            if (count == c_rarg0) {
1218              if (addr == c_rarg1) {
1219                // exactly backwards!!
1220                __ xchgptr(c_rarg1, c_rarg0);
1221              } else {
1222                __ movptr(c_rarg1, count);
1223                __ movptr(c_rarg0, addr);
1224              }
1225            } else {
1226              __ movptr(c_rarg0, addr);
1227              __ movptr(c_rarg1, count);
1228            }
1229            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
1230            __ popa();
1231         }
1232          break;
1233       case BarrierSet::CardTableModRef:
1234       case BarrierSet::CardTableExtension:
1235       case BarrierSet::ModRef:
1236         break;
1237       default:
1238         ShouldNotReachHere();
1239 
1240     }
1241   }
1242 
1243   //
1244   // Generate code for an array write post barrier
1245   //
1246   //  Input:
1247   //     start    - register containing starting address of destination array
1248   //     end      - register containing ending address of destination array
1249   //     scratch  - scratch register
1250   //
1251   //  The input registers are overwritten.
1252   //  The ending address is inclusive.
1253   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
1254     assert_different_registers(start, end, scratch);
1255     BarrierSet* bs = Universe::heap()->barrier_set();
1256     switch (bs->kind()) {
1257       case BarrierSet::G1SATBCT:
1258       case BarrierSet::G1SATBCTLogging:
1259 
1260         {
1261           __ pusha();                      // push registers (overkill)
1262           // must compute element count unless barrier set interface is changed (other platforms supply count)
1263           assert_different_registers(start, end, scratch);
1264           __ lea(scratch, Address(end, BytesPerHeapOop));
1265           __ subptr(scratch, start);               // subtract start to get #bytes
1266           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
1267           __ mov(c_rarg0, start);
1268           __ mov(c_rarg1, scratch);
1269           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
1270           __ popa();
1271         }
1272         break;
1273       case BarrierSet::CardTableModRef:
1274       case BarrierSet::CardTableExtension:
1275         {
1276           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1277           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1278 
1279           Label L_loop;
1280 
1281            __ shrptr(start, CardTableModRefBS::card_shift);
1282            __ addptr(end, BytesPerHeapOop);
1283            __ shrptr(end, CardTableModRefBS::card_shift);
1284            __ subptr(end, start); // number of bytes to copy
1285 
1286           intptr_t disp = (intptr_t) ct->byte_map_base;
1287           if (Assembler::is_simm32(disp)) {
1288             Address cardtable(noreg, noreg, Address::no_scale, disp);
1289             __ lea(scratch, cardtable);
1290           } else {
1291             ExternalAddress cardtable((address)disp);
1292             __ lea(scratch, cardtable);
1293           }
1294 
1295           const Register count = end; // 'end' register contains bytes count now
1296           __ addptr(start, scratch);
1297         __ BIND(L_loop);
1298           __ movb(Address(start, count, Address::times_1), 0);
1299           __ decrement(count);
1300           __ jcc(Assembler::greaterEqual, L_loop);
1301         }
1302         break;
1303       default:
1304         ShouldNotReachHere();
1305 
1306     }
1307   }
1308 
1309 
1310   // Copy big chunks forward
1311   //
1312   // Inputs:
1313   //   end_from     - source arrays end address
1314   //   end_to       - destination array end address
1315   //   qword_count  - 64-bits element count, negative
1316   //   to           - scratch
1317   //   L_copy_32_bytes - entry label
1318   //   L_copy_8_bytes  - exit  label
1319   //
1320   void copy_32_bytes_forward(Register end_from, Register end_to,
1321                              Register qword_count, Register to,
1322                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1323     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1324     Label L_loop;
1325     __ align(OptoLoopAlignment);
1326   __ BIND(L_loop);
1327     if(UseUnalignedLoadStores) {
1328       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1329       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1330       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
1331       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
1332 
1333     } else {
1334       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1335       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1336       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1337       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1338       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1339       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1340       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1341       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1342     }
1343   __ BIND(L_copy_32_bytes);
1344     __ addptr(qword_count, 4);
1345     __ jcc(Assembler::lessEqual, L_loop);
1346     __ subptr(qword_count, 4);
1347     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1348   }
1349 
1350 
1351   // Copy big chunks backward
1352   //
1353   // Inputs:
1354   //   from         - source arrays address
1355   //   dest         - destination array address
1356   //   qword_count  - 64-bits element count
1357   //   to           - scratch
1358   //   L_copy_32_bytes - entry label
1359   //   L_copy_8_bytes  - exit  label
1360   //
1361   void copy_32_bytes_backward(Register from, Register dest,
1362                               Register qword_count, Register to,
1363                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1364     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1365     Label L_loop;
1366     __ align(OptoLoopAlignment);
1367   __ BIND(L_loop);
1368     if(UseUnalignedLoadStores) {
1369       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
1370       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
1371       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1372       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1373 
1374     } else {
1375       __ movq(to, Address(from, qword_count, Address::times_8, 24));
1376       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1377       __ movq(to, Address(from, qword_count, Address::times_8, 16));
1378       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1379       __ movq(to, Address(from, qword_count, Address::times_8,  8));
1380       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1381       __ movq(to, Address(from, qword_count, Address::times_8,  0));
1382       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1383     }
1384   __ BIND(L_copy_32_bytes);
1385     __ subptr(qword_count, 4);
1386     __ jcc(Assembler::greaterEqual, L_loop);
1387     __ addptr(qword_count, 4);
1388     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1389   }
1390 
1391 
1392   // Arguments:
1393   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1394   //             ignored
1395   //   name    - stub name string
1396   //
1397   // Inputs:
1398   //   c_rarg0   - source array address
1399   //   c_rarg1   - destination array address
1400   //   c_rarg2   - element count, treated as ssize_t, can be zero
1401   //
1402   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1403   // we let the hardware handle it.  The one to eight bytes within words,
1404   // dwords or qwords that span cache line boundaries will still be loaded
1405   // and stored atomically.
1406   //
1407   // Side Effects:
1408   //   disjoint_byte_copy_entry is set to the no-overlap entry point
1409   //   used by generate_conjoint_byte_copy().
1410   //
1411   address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
1412     __ align(CodeEntryAlignment);
1413     StubCodeMark mark(this, "StubRoutines", name);
1414     address start = __ pc();
1415 
1416     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1417     Label L_copy_byte, L_exit;
1418     const Register from        = rdi;  // source array address
1419     const Register to          = rsi;  // destination array address
1420     const Register count       = rdx;  // elements count
1421     const Register byte_count  = rcx;
1422     const Register qword_count = count;
1423     const Register end_from    = from; // source array end address
1424     const Register end_to      = to;   // destination array end address
1425     // End pointers are inclusive, and if count is not zero they point
1426     // to the last unit copied:  end_to[0] := end_from[0]
1427 
1428     __ enter(); // required for proper stackwalking of RuntimeStub frame
1429     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1430 
1431     if (entry != NULL) {
1432       *entry = __ pc();
1433        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1434       BLOCK_COMMENT("Entry:");
1435     }
1436 
1437     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1438                       // r9 and r10 may be used to save non-volatile registers
1439 
1440     // 'from', 'to' and 'count' are now valid
1441     __ movptr(byte_count, count);
1442     __ shrptr(count, 3); // count => qword_count
1443 
1444     // Copy from low to high addresses.  Use 'to' as scratch.
1445     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1446     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1447     __ negptr(qword_count); // make the count negative
1448     __ jmp(L_copy_32_bytes);
1449 
1450     // Copy trailing qwords
1451   __ BIND(L_copy_8_bytes);
1452     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1453     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1454     __ increment(qword_count);
1455     __ jcc(Assembler::notZero, L_copy_8_bytes);
1456 
1457     // Check for and copy trailing dword
1458   __ BIND(L_copy_4_bytes);
1459     __ testl(byte_count, 4);
1460     __ jccb(Assembler::zero, L_copy_2_bytes);
1461     __ movl(rax, Address(end_from, 8));
1462     __ movl(Address(end_to, 8), rax);
1463 
1464     __ addptr(end_from, 4);
1465     __ addptr(end_to, 4);
1466 
1467     // Check for and copy trailing word
1468   __ BIND(L_copy_2_bytes);
1469     __ testl(byte_count, 2);
1470     __ jccb(Assembler::zero, L_copy_byte);
1471     __ movw(rax, Address(end_from, 8));
1472     __ movw(Address(end_to, 8), rax);
1473 
1474     __ addptr(end_from, 2);
1475     __ addptr(end_to, 2);
1476 
1477     // Check for and copy trailing byte
1478   __ BIND(L_copy_byte);
1479     __ testl(byte_count, 1);
1480     __ jccb(Assembler::zero, L_exit);
1481     __ movb(rax, Address(end_from, 8));
1482     __ movb(Address(end_to, 8), rax);
1483 
1484   __ BIND(L_exit);
1485     restore_arg_regs();
1486     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1487     __ xorptr(rax, rax); // return 0
1488     __ leave(); // required for proper stackwalking of RuntimeStub frame
1489     __ ret(0);
1490 
1491     // Copy in 32-bytes chunks
1492     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1493     __ jmp(L_copy_4_bytes);
1494 
1495     return start;
1496   }
1497 
1498   // Arguments:
1499   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1500   //             ignored
1501   //   name    - stub name string
1502   //
1503   // Inputs:
1504   //   c_rarg0   - source array address
1505   //   c_rarg1   - destination array address
1506   //   c_rarg2   - element count, treated as ssize_t, can be zero
1507   //
1508   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1509   // we let the hardware handle it.  The one to eight bytes within words,
1510   // dwords or qwords that span cache line boundaries will still be loaded
1511   // and stored atomically.
1512   //
1513   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
1514                                       address* entry, const char *name) {
1515     __ align(CodeEntryAlignment);
1516     StubCodeMark mark(this, "StubRoutines", name);
1517     address start = __ pc();
1518 
1519     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1520     const Register from        = rdi;  // source array address
1521     const Register to          = rsi;  // destination array address
1522     const Register count       = rdx;  // elements count
1523     const Register byte_count  = rcx;
1524     const Register qword_count = count;
1525 
1526     __ enter(); // required for proper stackwalking of RuntimeStub frame
1527     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1528 
1529     if (entry != NULL) {
1530       *entry = __ pc();
1531       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1532       BLOCK_COMMENT("Entry:");
1533     }
1534 
1535     array_overlap_test(nooverlap_target, Address::times_1);
1536     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1537                       // r9 and r10 may be used to save non-volatile registers
1538 
1539     // 'from', 'to' and 'count' are now valid
1540     __ movptr(byte_count, count);
1541     __ shrptr(count, 3);   // count => qword_count
1542 
1543     // Copy from high to low addresses.
1544 
1545     // Check for and copy trailing byte
1546     __ testl(byte_count, 1);
1547     __ jcc(Assembler::zero, L_copy_2_bytes);
1548     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1549     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1550     __ decrement(byte_count); // Adjust for possible trailing word
1551 
1552     // Check for and copy trailing word
1553   __ BIND(L_copy_2_bytes);
1554     __ testl(byte_count, 2);
1555     __ jcc(Assembler::zero, L_copy_4_bytes);
1556     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1557     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1558 
1559     // Check for and copy trailing dword
1560   __ BIND(L_copy_4_bytes);
1561     __ testl(byte_count, 4);
1562     __ jcc(Assembler::zero, L_copy_32_bytes);
1563     __ movl(rax, Address(from, qword_count, Address::times_8));
1564     __ movl(Address(to, qword_count, Address::times_8), rax);
1565     __ jmp(L_copy_32_bytes);
1566 
1567     // Copy trailing qwords
1568   __ BIND(L_copy_8_bytes);
1569     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1570     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1571     __ decrement(qword_count);
1572     __ jcc(Assembler::notZero, L_copy_8_bytes);
1573 
1574     restore_arg_regs();
1575     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1576     __ xorptr(rax, rax); // return 0
1577     __ leave(); // required for proper stackwalking of RuntimeStub frame
1578     __ ret(0);
1579 
1580     // Copy in 32-bytes chunks
1581     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1582 
1583     restore_arg_regs();
1584     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1585     __ xorptr(rax, rax); // return 0
1586     __ leave(); // required for proper stackwalking of RuntimeStub frame
1587     __ ret(0);
1588 
1589     return start;
1590   }
1591 
1592   // Arguments:
1593   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1594   //             ignored
1595   //   name    - stub name string
1596   //
1597   // Inputs:
1598   //   c_rarg0   - source array address
1599   //   c_rarg1   - destination array address
1600   //   c_rarg2   - element count, treated as ssize_t, can be zero
1601   //
1602   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1603   // let the hardware handle it.  The two or four words within dwords
1604   // or qwords that span cache line boundaries will still be loaded
1605   // and stored atomically.
1606   //
1607   // Side Effects:
1608   //   disjoint_short_copy_entry is set to the no-overlap entry point
1609   //   used by generate_conjoint_short_copy().
1610   //
1611   address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
1612     __ align(CodeEntryAlignment);
1613     StubCodeMark mark(this, "StubRoutines", name);
1614     address start = __ pc();
1615 
1616     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1617     const Register from        = rdi;  // source array address
1618     const Register to          = rsi;  // destination array address
1619     const Register count       = rdx;  // elements count
1620     const Register word_count  = rcx;
1621     const Register qword_count = count;
1622     const Register end_from    = from; // source array end address
1623     const Register end_to      = to;   // destination array end address
1624     // End pointers are inclusive, and if count is not zero they point
1625     // to the last unit copied:  end_to[0] := end_from[0]
1626 
1627     __ enter(); // required for proper stackwalking of RuntimeStub frame
1628     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1629 
1630     if (entry != NULL) {
1631       *entry = __ pc();
1632       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1633       BLOCK_COMMENT("Entry:");
1634     }
1635 
1636     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1637                       // r9 and r10 may be used to save non-volatile registers
1638 
1639     // 'from', 'to' and 'count' are now valid
1640     __ movptr(word_count, count);
1641     __ shrptr(count, 2); // count => qword_count
1642 
1643     // Copy from low to high addresses.  Use 'to' as scratch.
1644     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1645     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1646     __ negptr(qword_count);
1647     __ jmp(L_copy_32_bytes);
1648 
1649     // Copy trailing qwords
1650   __ BIND(L_copy_8_bytes);
1651     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1652     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1653     __ increment(qword_count);
1654     __ jcc(Assembler::notZero, L_copy_8_bytes);
1655 
1656     // Original 'dest' is trashed, so we can't use it as a
1657     // base register for a possible trailing word copy
1658 
1659     // Check for and copy trailing dword
1660   __ BIND(L_copy_4_bytes);
1661     __ testl(word_count, 2);
1662     __ jccb(Assembler::zero, L_copy_2_bytes);
1663     __ movl(rax, Address(end_from, 8));
1664     __ movl(Address(end_to, 8), rax);
1665 
1666     __ addptr(end_from, 4);
1667     __ addptr(end_to, 4);
1668 
1669     // Check for and copy trailing word
1670   __ BIND(L_copy_2_bytes);
1671     __ testl(word_count, 1);
1672     __ jccb(Assembler::zero, L_exit);
1673     __ movw(rax, Address(end_from, 8));
1674     __ movw(Address(end_to, 8), rax);
1675 
1676   __ BIND(L_exit);
1677     restore_arg_regs();
1678     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1679     __ xorptr(rax, rax); // return 0
1680     __ leave(); // required for proper stackwalking of RuntimeStub frame
1681     __ ret(0);
1682 
1683     // Copy in 32-bytes chunks
1684     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1685     __ jmp(L_copy_4_bytes);
1686 
1687     return start;
1688   }
1689 
1690   address generate_fill(BasicType t, bool aligned, const char *name) {
1691     __ align(CodeEntryAlignment);
1692     StubCodeMark mark(this, "StubRoutines", name);
1693     address start = __ pc();
1694 
1695     BLOCK_COMMENT("Entry:");
1696 
1697     const Register to       = c_rarg0;  // source array address
1698     const Register value    = c_rarg1;  // value
1699     const Register count    = c_rarg2;  // elements count
1700 
1701     __ enter(); // required for proper stackwalking of RuntimeStub frame
1702 
1703     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1704 
1705     __ leave(); // required for proper stackwalking of RuntimeStub frame
1706     __ ret(0);
1707     return start;
1708   }
1709 
1710   // Arguments:
1711   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1712   //             ignored
1713   //   name    - stub name string
1714   //
1715   // Inputs:
1716   //   c_rarg0   - source array address
1717   //   c_rarg1   - destination array address
1718   //   c_rarg2   - element count, treated as ssize_t, can be zero
1719   //
1720   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1721   // let the hardware handle it.  The two or four words within dwords
1722   // or qwords that span cache line boundaries will still be loaded
1723   // and stored atomically.
1724   //
1725   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
1726                                        address *entry, const char *name) {
1727     __ align(CodeEntryAlignment);
1728     StubCodeMark mark(this, "StubRoutines", name);
1729     address start = __ pc();
1730 
1731     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
1732     const Register from        = rdi;  // source array address
1733     const Register to          = rsi;  // destination array address
1734     const Register count       = rdx;  // elements count
1735     const Register word_count  = rcx;
1736     const Register qword_count = count;
1737 
1738     __ enter(); // required for proper stackwalking of RuntimeStub frame
1739     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1740 
1741     if (entry != NULL) {
1742       *entry = __ pc();
1743       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1744       BLOCK_COMMENT("Entry:");
1745     }
1746 
1747     array_overlap_test(nooverlap_target, Address::times_2);
1748     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1749                       // r9 and r10 may be used to save non-volatile registers
1750 
1751     // 'from', 'to' and 'count' are now valid
1752     __ movptr(word_count, count);
1753     __ shrptr(count, 2); // count => qword_count
1754 
1755     // Copy from high to low addresses.  Use 'to' as scratch.
1756 
1757     // Check for and copy trailing word
1758     __ testl(word_count, 1);
1759     __ jccb(Assembler::zero, L_copy_4_bytes);
1760     __ movw(rax, Address(from, word_count, Address::times_2, -2));
1761     __ movw(Address(to, word_count, Address::times_2, -2), rax);
1762 
1763     // Check for and copy trailing dword
1764   __ BIND(L_copy_4_bytes);
1765     __ testl(word_count, 2);
1766     __ jcc(Assembler::zero, L_copy_32_bytes);
1767     __ movl(rax, Address(from, qword_count, Address::times_8));
1768     __ movl(Address(to, qword_count, Address::times_8), rax);
1769     __ jmp(L_copy_32_bytes);
1770 
1771     // Copy trailing qwords
1772   __ BIND(L_copy_8_bytes);
1773     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1774     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1775     __ decrement(qword_count);
1776     __ jcc(Assembler::notZero, L_copy_8_bytes);
1777 
1778     restore_arg_regs();
1779     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1780     __ xorptr(rax, rax); // return 0
1781     __ leave(); // required for proper stackwalking of RuntimeStub frame
1782     __ ret(0);
1783 
1784     // Copy in 32-bytes chunks
1785     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1786 
1787     restore_arg_regs();
1788     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1789     __ xorptr(rax, rax); // return 0
1790     __ leave(); // required for proper stackwalking of RuntimeStub frame
1791     __ ret(0);
1792 
1793     return start;
1794   }
1795 
1796   // Arguments:
1797   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1798   //             ignored
1799   //   is_oop  - true => oop array, so generate store check code
1800   //   name    - stub name string
1801   //
1802   // Inputs:
1803   //   c_rarg0   - source array address
1804   //   c_rarg1   - destination array address
1805   //   c_rarg2   - element count, treated as ssize_t, can be zero
1806   //
1807   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1808   // the hardware handle it.  The two dwords within qwords that span
1809   // cache line boundaries will still be loaded and stored atomicly.
1810   //
1811   // Side Effects:
1812   //   disjoint_int_copy_entry is set to the no-overlap entry point
1813   //   used by generate_conjoint_int_oop_copy().
1814   //
1815   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
1816                                          const char *name, bool dest_uninitialized = false) {
1817     __ align(CodeEntryAlignment);
1818     StubCodeMark mark(this, "StubRoutines", name);
1819     address start = __ pc();
1820 
1821     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1822     const Register from        = rdi;  // source array address
1823     const Register to          = rsi;  // destination array address
1824     const Register count       = rdx;  // elements count
1825     const Register dword_count = rcx;
1826     const Register qword_count = count;
1827     const Register end_from    = from; // source array end address
1828     const Register end_to      = to;   // destination array end address
1829     const Register saved_to    = r11;  // saved destination array address
1830     // End pointers are inclusive, and if count is not zero they point
1831     // to the last unit copied:  end_to[0] := end_from[0]
1832 
1833     __ enter(); // required for proper stackwalking of RuntimeStub frame
1834     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1835 
1836     if (entry != NULL) {
1837       *entry = __ pc();
1838       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1839       BLOCK_COMMENT("Entry:");
1840     }
1841 
1842     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1843                       // r9 and r10 may be used to save non-volatile registers
1844     if (is_oop) {
1845       __ movq(saved_to, to);
1846       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1847     }
1848 
1849     // 'from', 'to' and 'count' are now valid
1850     __ movptr(dword_count, count);
1851     __ shrptr(count, 1); // count => qword_count
1852 
1853     // Copy from low to high addresses.  Use 'to' as scratch.
1854     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1855     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1856     __ negptr(qword_count);
1857     __ jmp(L_copy_32_bytes);
1858 
1859     // Copy trailing qwords
1860   __ BIND(L_copy_8_bytes);
1861     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1862     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1863     __ increment(qword_count);
1864     __ jcc(Assembler::notZero, L_copy_8_bytes);
1865 
1866     // Check for and copy trailing dword
1867   __ BIND(L_copy_4_bytes);
1868     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
1869     __ jccb(Assembler::zero, L_exit);
1870     __ movl(rax, Address(end_from, 8));
1871     __ movl(Address(end_to, 8), rax);
1872 
1873   __ BIND(L_exit);
1874     if (is_oop) {
1875       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
1876       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1877     }
1878     restore_arg_regs();
1879     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1880     __ xorptr(rax, rax); // return 0
1881     __ leave(); // required for proper stackwalking of RuntimeStub frame
1882     __ ret(0);
1883 
1884     // Copy 32-bytes chunks
1885     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1886     __ jmp(L_copy_4_bytes);
1887 
1888     return start;
1889   }
1890 
1891   // Arguments:
1892   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1893   //             ignored
1894   //   is_oop  - true => oop array, so generate store check code
1895   //   name    - stub name string
1896   //
1897   // Inputs:
1898   //   c_rarg0   - source array address
1899   //   c_rarg1   - destination array address
1900   //   c_rarg2   - element count, treated as ssize_t, can be zero
1901   //
1902   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1903   // the hardware handle it.  The two dwords within qwords that span
1904   // cache line boundaries will still be loaded and stored atomicly.
1905   //
1906   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
1907                                          address *entry, const char *name,
1908                                          bool dest_uninitialized = false) {
1909     __ align(CodeEntryAlignment);
1910     StubCodeMark mark(this, "StubRoutines", name);
1911     address start = __ pc();
1912 
1913     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1914     const Register from        = rdi;  // source array address
1915     const Register to          = rsi;  // destination array address
1916     const Register count       = rdx;  // elements count
1917     const Register dword_count = rcx;
1918     const Register qword_count = count;
1919 
1920     __ enter(); // required for proper stackwalking of RuntimeStub frame
1921     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1922 
1923     if (entry != NULL) {
1924       *entry = __ pc();
1925        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1926       BLOCK_COMMENT("Entry:");
1927     }
1928 
1929     array_overlap_test(nooverlap_target, Address::times_4);
1930     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1931                       // r9 and r10 may be used to save non-volatile registers
1932 
1933     if (is_oop) {
1934       // no registers are destroyed by this call
1935       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1936     }
1937 
1938     assert_clean_int(count, rax); // Make sure 'count' is clean int.
1939     // 'from', 'to' and 'count' are now valid
1940     __ movptr(dword_count, count);
1941     __ shrptr(count, 1); // count => qword_count
1942 
1943     // Copy from high to low addresses.  Use 'to' as scratch.
1944 
1945     // Check for and copy trailing dword
1946     __ testl(dword_count, 1);
1947     __ jcc(Assembler::zero, L_copy_32_bytes);
1948     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
1949     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1950     __ jmp(L_copy_32_bytes);
1951 
1952     // Copy trailing qwords
1953   __ BIND(L_copy_8_bytes);
1954     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1955     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1956     __ decrement(qword_count);
1957     __ jcc(Assembler::notZero, L_copy_8_bytes);
1958 
1959     if (is_oop) {
1960       __ jmp(L_exit);
1961     }
1962     restore_arg_regs();
1963     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1964     __ xorptr(rax, rax); // return 0
1965     __ leave(); // required for proper stackwalking of RuntimeStub frame
1966     __ ret(0);
1967 
1968     // Copy in 32-bytes chunks
1969     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1970 
1971    __ bind(L_exit);
1972      if (is_oop) {
1973        Register end_to = rdx;
1974        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
1975        gen_write_ref_array_post_barrier(to, end_to, rax);
1976      }
1977     restore_arg_regs();
1978     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1979     __ xorptr(rax, rax); // return 0
1980     __ leave(); // required for proper stackwalking of RuntimeStub frame
1981     __ ret(0);
1982 
1983     return start;
1984   }
1985 
1986   // Arguments:
1987   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1988   //             ignored
1989   //   is_oop  - true => oop array, so generate store check code
1990   //   name    - stub name string
1991   //
1992   // Inputs:
1993   //   c_rarg0   - source array address
1994   //   c_rarg1   - destination array address
1995   //   c_rarg2   - element count, treated as ssize_t, can be zero
1996   //
1997  // Side Effects:
1998   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
1999   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
2000   //
2001   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
2002                                           const char *name, bool dest_uninitialized = false) {
2003     __ align(CodeEntryAlignment);
2004     StubCodeMark mark(this, "StubRoutines", name);
2005     address start = __ pc();
2006 
2007     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
2008     const Register from        = rdi;  // source array address
2009     const Register to          = rsi;  // destination array address
2010     const Register qword_count = rdx;  // elements count
2011     const Register end_from    = from; // source array end address
2012     const Register end_to      = rcx;  // destination array end address
2013     const Register saved_to    = to;
2014     // End pointers are inclusive, and if count is not zero they point
2015     // to the last unit copied:  end_to[0] := end_from[0]
2016 
2017     __ enter(); // required for proper stackwalking of RuntimeStub frame
2018     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
2019     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2020 
2021     if (entry != NULL) {
2022       *entry = __ pc();
2023       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2024       BLOCK_COMMENT("Entry:");
2025     }
2026 
2027     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2028                       // r9 and r10 may be used to save non-volatile registers
2029     // 'from', 'to' and 'qword_count' are now valid
2030     if (is_oop) {
2031       // no registers are destroyed by this call
2032       gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
2033     }
2034 
2035     // Copy from low to high addresses.  Use 'to' as scratch.
2036     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
2037     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
2038     __ negptr(qword_count);
2039     __ jmp(L_copy_32_bytes);
2040 
2041     // Copy trailing qwords
2042   __ BIND(L_copy_8_bytes);
2043     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
2044     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
2045     __ increment(qword_count);
2046     __ jcc(Assembler::notZero, L_copy_8_bytes);
2047 
2048     if (is_oop) {
2049       __ jmp(L_exit);
2050     } else {
2051       restore_arg_regs();
2052       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2053       __ xorptr(rax, rax); // return 0
2054       __ leave(); // required for proper stackwalking of RuntimeStub frame
2055       __ ret(0);
2056     }
2057 
2058     // Copy 64-byte chunks
2059     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
2060 
2061     if (is_oop) {
2062     __ BIND(L_exit);
2063       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
2064     }
2065     restore_arg_regs();
2066     if (is_oop) {
2067       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2068     } else {
2069       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2070     }
2071     __ xorptr(rax, rax); // return 0
2072     __ leave(); // required for proper stackwalking of RuntimeStub frame
2073     __ ret(0);
2074 
2075     return start;
2076   }
2077 
2078   // Arguments:
2079   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
2080   //             ignored
2081   //   is_oop  - true => oop array, so generate store check code
2082   //   name    - stub name string
2083   //
2084   // Inputs:
2085   //   c_rarg0   - source array address
2086   //   c_rarg1   - destination array address
2087   //   c_rarg2   - element count, treated as ssize_t, can be zero
2088   //
2089   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
2090                                           address nooverlap_target, address *entry,
2091                                           const char *name, bool dest_uninitialized = false) {
2092     __ align(CodeEntryAlignment);
2093     StubCodeMark mark(this, "StubRoutines", name);
2094     address start = __ pc();
2095 
2096     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
2097     const Register from        = rdi;  // source array address
2098     const Register to          = rsi;  // destination array address
2099     const Register qword_count = rdx;  // elements count
2100     const Register saved_count = rcx;
2101 
2102     __ enter(); // required for proper stackwalking of RuntimeStub frame
2103     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2104 
2105     if (entry != NULL) {
2106       *entry = __ pc();
2107       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2108       BLOCK_COMMENT("Entry:");
2109     }
2110 
2111     array_overlap_test(nooverlap_target, Address::times_8);
2112     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2113                       // r9 and r10 may be used to save non-volatile registers
2114     // 'from', 'to' and 'qword_count' are now valid
2115     if (is_oop) {
2116       // Save to and count for store barrier
2117       __ movptr(saved_count, qword_count);
2118       // No registers are destroyed by this call
2119       gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
2120     }
2121 
2122     __ jmp(L_copy_32_bytes);
2123 
2124     // Copy trailing qwords
2125   __ BIND(L_copy_8_bytes);
2126     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2127     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2128     __ decrement(qword_count);
2129     __ jcc(Assembler::notZero, L_copy_8_bytes);
2130 
2131     if (is_oop) {
2132       __ jmp(L_exit);
2133     } else {
2134       restore_arg_regs();
2135       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2136       __ xorptr(rax, rax); // return 0
2137       __ leave(); // required for proper stackwalking of RuntimeStub frame
2138       __ ret(0);
2139     }
2140 
2141     // Copy in 32-bytes chunks
2142     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
2143 
2144     if (is_oop) {
2145     __ BIND(L_exit);
2146       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
2147       gen_write_ref_array_post_barrier(to, rcx, rax);
2148     }
2149     restore_arg_regs();
2150     if (is_oop) {
2151       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2152     } else {
2153       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2154     }
2155     __ xorptr(rax, rax); // return 0
2156     __ leave(); // required for proper stackwalking of RuntimeStub frame
2157     __ ret(0);
2158 
2159     return start;
2160   }
2161 
2162 
2163   // Helper for generating a dynamic type check.
2164   // Smashes no registers.
2165   void generate_type_check(Register sub_klass,
2166                            Register super_check_offset,
2167                            Register super_klass,
2168                            Label& L_success) {
2169     assert_different_registers(sub_klass, super_check_offset, super_klass);
2170 
2171     BLOCK_COMMENT("type_check:");
2172 
2173     Label L_miss;
2174 
2175     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
2176                                      super_check_offset);
2177     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
2178 
2179     // Fall through on failure!
2180     __ BIND(L_miss);
2181   }
2182 
2183   //
2184   //  Generate checkcasting array copy stub
2185   //
2186   //  Input:
2187   //    c_rarg0   - source array address
2188   //    c_rarg1   - destination array address
2189   //    c_rarg2   - element count, treated as ssize_t, can be zero
2190   //    c_rarg3   - size_t ckoff (super_check_offset)
2191   // not Win64
2192   //    c_rarg4   - oop ckval (super_klass)
2193   // Win64
2194   //    rsp+40    - oop ckval (super_klass)
2195   //
2196   //  Output:
2197   //    rax ==  0  -  success
2198   //    rax == -1^K - failure, where K is partial transfer count
2199   //
2200   address generate_checkcast_copy(const char *name, address *entry,
2201                                   bool dest_uninitialized = false) {
2202 
2203     Label L_load_element, L_store_element, L_do_card_marks, L_done;
2204 
2205     // Input registers (after setup_arg_regs)
2206     const Register from        = rdi;   // source array address
2207     const Register to          = rsi;   // destination array address
2208     const Register length      = rdx;   // elements count
2209     const Register ckoff       = rcx;   // super_check_offset
2210     const Register ckval       = r8;    // super_klass
2211 
2212     // Registers used as temps (r13, r14 are save-on-entry)
2213     const Register end_from    = from;  // source array end address
2214     const Register end_to      = r13;   // destination array end address
2215     const Register count       = rdx;   // -(count_remaining)
2216     const Register r14_length  = r14;   // saved copy of length
2217     // End pointers are inclusive, and if length is not zero they point
2218     // to the last unit copied:  end_to[0] := end_from[0]
2219 
2220     const Register rax_oop    = rax;    // actual oop copied
2221     const Register r11_klass  = r11;    // oop._klass
2222 
2223     //---------------------------------------------------------------
2224     // Assembler stub will be used for this call to arraycopy
2225     // if the two arrays are subtypes of Object[] but the
2226     // destination array type is not equal to or a supertype
2227     // of the source type.  Each element must be separately
2228     // checked.
2229 
2230     __ align(CodeEntryAlignment);
2231     StubCodeMark mark(this, "StubRoutines", name);
2232     address start = __ pc();
2233 
2234     __ enter(); // required for proper stackwalking of RuntimeStub frame
2235 
2236 #ifdef ASSERT
2237     // caller guarantees that the arrays really are different
2238     // otherwise, we would have to make conjoint checks
2239     { Label L;
2240       array_overlap_test(L, TIMES_OOP);
2241       __ stop("checkcast_copy within a single array");
2242       __ bind(L);
2243     }
2244 #endif //ASSERT
2245 
2246     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2247                        // ckoff => rcx, ckval => r8
2248                        // r9 and r10 may be used to save non-volatile registers
2249 #ifdef _WIN64
2250     // last argument (#4) is on stack on Win64
2251     __ movptr(ckval, Address(rsp, 6 * wordSize));
2252 #endif
2253 
2254     // Caller of this entry point must set up the argument registers.
2255     if (entry != NULL) {
2256       *entry = __ pc();
2257       BLOCK_COMMENT("Entry:");
2258     }
2259 
2260     // allocate spill slots for r13, r14
2261     enum {
2262       saved_r13_offset,
2263       saved_r14_offset,
2264       saved_rbp_offset
2265     };
2266     __ subptr(rsp, saved_rbp_offset * wordSize);
2267     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
2268     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
2269 
2270     // check that int operands are properly extended to size_t
2271     assert_clean_int(length, rax);
2272     assert_clean_int(ckoff, rax);
2273 
2274 #ifdef ASSERT
2275     BLOCK_COMMENT("assert consistent ckoff/ckval");
2276     // The ckoff and ckval must be mutually consistent,
2277     // even though caller generates both.
2278     { Label L;
2279       int sco_offset = in_bytes(Klass::super_check_offset_offset());
2280       __ cmpl(ckoff, Address(ckval, sco_offset));
2281       __ jcc(Assembler::equal, L);
2282       __ stop("super_check_offset inconsistent");
2283       __ bind(L);
2284     }
2285 #endif //ASSERT
2286 
2287     // Loop-invariant addresses.  They are exclusive end pointers.
2288     Address end_from_addr(from, length, TIMES_OOP, 0);
2289     Address   end_to_addr(to,   length, TIMES_OOP, 0);
2290     // Loop-variant addresses.  They assume post-incremented count < 0.
2291     Address from_element_addr(end_from, count, TIMES_OOP, 0);
2292     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2293 
2294     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
2295 
2296     // Copy from low to high addresses, indexed from the end of each array.
2297     __ lea(end_from, end_from_addr);
2298     __ lea(end_to,   end_to_addr);
2299     __ movptr(r14_length, length);        // save a copy of the length
2300     assert(length == count, "");          // else fix next line:
2301     __ negptr(count);                     // negate and test the length
2302     __ jcc(Assembler::notZero, L_load_element);
2303 
2304     // Empty array:  Nothing to do.
2305     __ xorptr(rax, rax);                  // return 0 on (trivial) success
2306     __ jmp(L_done);
2307 
2308     // ======== begin loop ========
2309     // (Loop is rotated; its entry is L_load_element.)
2310     // Loop control:
2311     //   for (count = -count; count != 0; count++)
2312     // Base pointers src, dst are biased by 8*(count-1),to last element.
2313     __ align(OptoLoopAlignment);
2314 
2315     __ BIND(L_store_element);
2316     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2317     __ increment(count);               // increment the count toward zero
2318     __ jcc(Assembler::zero, L_do_card_marks);
2319 
2320     // ======== loop entry is here ========
2321     __ BIND(L_load_element);
2322     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2323     __ testptr(rax_oop, rax_oop);
2324     __ jcc(Assembler::zero, L_store_element);
2325 
2326     __ load_klass(r11_klass, rax_oop);// query the object klass
2327     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2328     // ======== end loop ========
2329 
2330     // It was a real error; we must depend on the caller to finish the job.
2331     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2332     // Emit GC store barriers for the oops we have copied (r14 + rdx),
2333     // and report their number to the caller.
2334     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
2335     __ lea(end_to, to_element_addr);
2336     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
2337     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2338     __ movptr(rax, r14_length);           // original oops
2339     __ addptr(rax, count);                // K = (original - remaining) oops
2340     __ notptr(rax);                       // report (-1^K) to caller
2341     __ jmp(L_done);
2342 
2343     // Come here on success only.
2344     __ BIND(L_do_card_marks);
2345     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
2346     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2347     __ xorptr(rax, rax);                  // return 0 on success
2348 
2349     // Common exit point (success or failure).
2350     __ BIND(L_done);
2351     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
2352     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
2353     restore_arg_regs();
2354     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
2355     __ leave(); // required for proper stackwalking of RuntimeStub frame
2356     __ ret(0);
2357 
2358     return start;
2359   }
2360 
2361   //
2362   //  Generate 'unsafe' array copy stub
2363   //  Though just as safe as the other stubs, it takes an unscaled
2364   //  size_t argument instead of an element count.
2365   //
2366   //  Input:
2367   //    c_rarg0   - source array address
2368   //    c_rarg1   - destination array address
2369   //    c_rarg2   - byte count, treated as ssize_t, can be zero
2370   //
2371   // Examines the alignment of the operands and dispatches
2372   // to a long, int, short, or byte copy loop.
2373   //
2374   address generate_unsafe_copy(const char *name,
2375                                address byte_copy_entry, address short_copy_entry,
2376                                address int_copy_entry, address long_copy_entry) {
2377 
2378     Label L_long_aligned, L_int_aligned, L_short_aligned;
2379 
2380     // Input registers (before setup_arg_regs)
2381     const Register from        = c_rarg0;  // source array address
2382     const Register to          = c_rarg1;  // destination array address
2383     const Register size        = c_rarg2;  // byte count (size_t)
2384 
2385     // Register used as a temp
2386     const Register bits        = rax;      // test copy of low bits
2387 
2388     __ align(CodeEntryAlignment);
2389     StubCodeMark mark(this, "StubRoutines", name);
2390     address start = __ pc();
2391 
2392     __ enter(); // required for proper stackwalking of RuntimeStub frame
2393 
2394     // bump this on entry, not on exit:
2395     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2396 
2397     __ mov(bits, from);
2398     __ orptr(bits, to);
2399     __ orptr(bits, size);
2400 
2401     __ testb(bits, BytesPerLong-1);
2402     __ jccb(Assembler::zero, L_long_aligned);
2403 
2404     __ testb(bits, BytesPerInt-1);
2405     __ jccb(Assembler::zero, L_int_aligned);
2406 
2407     __ testb(bits, BytesPerShort-1);
2408     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2409 
2410     __ BIND(L_short_aligned);
2411     __ shrptr(size, LogBytesPerShort); // size => short_count
2412     __ jump(RuntimeAddress(short_copy_entry));
2413 
2414     __ BIND(L_int_aligned);
2415     __ shrptr(size, LogBytesPerInt); // size => int_count
2416     __ jump(RuntimeAddress(int_copy_entry));
2417 
2418     __ BIND(L_long_aligned);
2419     __ shrptr(size, LogBytesPerLong); // size => qword_count
2420     __ jump(RuntimeAddress(long_copy_entry));
2421 
2422     return start;
2423   }
2424 
2425   // Perform range checks on the proposed arraycopy.
2426   // Kills temp, but nothing else.
2427   // Also, clean the sign bits of src_pos and dst_pos.
2428   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2429                               Register src_pos, // source position (c_rarg1)
2430                               Register dst,     // destination array oo (c_rarg2)
2431                               Register dst_pos, // destination position (c_rarg3)
2432                               Register length,
2433                               Register temp,
2434                               Label& L_failed) {
2435     BLOCK_COMMENT("arraycopy_range_checks:");
2436 
2437     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2438     __ movl(temp, length);
2439     __ addl(temp, src_pos);             // src_pos + length
2440     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2441     __ jcc(Assembler::above, L_failed);
2442 
2443     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2444     __ movl(temp, length);
2445     __ addl(temp, dst_pos);             // dst_pos + length
2446     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2447     __ jcc(Assembler::above, L_failed);
2448 
2449     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2450     // Move with sign extension can be used since they are positive.
2451     __ movslq(src_pos, src_pos);
2452     __ movslq(dst_pos, dst_pos);
2453 
2454     BLOCK_COMMENT("arraycopy_range_checks done");
2455   }
2456 
2457   //
2458   //  Generate generic array copy stubs
2459   //
2460   //  Input:
2461   //    c_rarg0    -  src oop
2462   //    c_rarg1    -  src_pos (32-bits)
2463   //    c_rarg2    -  dst oop
2464   //    c_rarg3    -  dst_pos (32-bits)
2465   // not Win64
2466   //    c_rarg4    -  element count (32-bits)
2467   // Win64
2468   //    rsp+40     -  element count (32-bits)
2469   //
2470   //  Output:
2471   //    rax ==  0  -  success
2472   //    rax == -1^K - failure, where K is partial transfer count
2473   //
2474   address generate_generic_copy(const char *name,
2475                                 address byte_copy_entry, address short_copy_entry,
2476                                 address int_copy_entry, address oop_copy_entry,
2477                                 address long_copy_entry, address checkcast_copy_entry) {
2478 
2479     Label L_failed, L_failed_0, L_objArray;
2480     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2481 
2482     // Input registers
2483     const Register src        = c_rarg0;  // source array oop
2484     const Register src_pos    = c_rarg1;  // source position
2485     const Register dst        = c_rarg2;  // destination array oop
2486     const Register dst_pos    = c_rarg3;  // destination position
2487 #ifndef _WIN64
2488     const Register length     = c_rarg4;
2489 #else
2490     const Address  length(rsp, 6 * wordSize);  // elements count is on stack on Win64
2491 #endif
2492 
2493     { int modulus = CodeEntryAlignment;
2494       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2495       int advance = target - (__ offset() % modulus);
2496       if (advance < 0)  advance += modulus;
2497       if (advance > 0)  __ nop(advance);
2498     }
2499     StubCodeMark mark(this, "StubRoutines", name);
2500 
2501     // Short-hop target to L_failed.  Makes for denser prologue code.
2502     __ BIND(L_failed_0);
2503     __ jmp(L_failed);
2504     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2505 
2506     __ align(CodeEntryAlignment);
2507     address start = __ pc();
2508 
2509     __ enter(); // required for proper stackwalking of RuntimeStub frame
2510 
2511     // bump this on entry, not on exit:
2512     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2513 
2514     //-----------------------------------------------------------------------
2515     // Assembler stub will be used for this call to arraycopy
2516     // if the following conditions are met:
2517     //
2518     // (1) src and dst must not be null.
2519     // (2) src_pos must not be negative.
2520     // (3) dst_pos must not be negative.
2521     // (4) length  must not be negative.
2522     // (5) src klass and dst klass should be the same and not NULL.
2523     // (6) src and dst should be arrays.
2524     // (7) src_pos + length must not exceed length of src.
2525     // (8) dst_pos + length must not exceed length of dst.
2526     //
2527 
2528     //  if (src == NULL) return -1;
2529     __ testptr(src, src);         // src oop
2530     size_t j1off = __ offset();
2531     __ jccb(Assembler::zero, L_failed_0);
2532 
2533     //  if (src_pos < 0) return -1;
2534     __ testl(src_pos, src_pos); // src_pos (32-bits)
2535     __ jccb(Assembler::negative, L_failed_0);
2536 
2537     //  if (dst == NULL) return -1;
2538     __ testptr(dst, dst);         // dst oop
2539     __ jccb(Assembler::zero, L_failed_0);
2540 
2541     //  if (dst_pos < 0) return -1;
2542     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2543     size_t j4off = __ offset();
2544     __ jccb(Assembler::negative, L_failed_0);
2545 
2546     // The first four tests are very dense code,
2547     // but not quite dense enough to put four
2548     // jumps in a 16-byte instruction fetch buffer.
2549     // That's good, because some branch predicters
2550     // do not like jumps so close together.
2551     // Make sure of this.
2552     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2553 
2554     // registers used as temp
2555     const Register r11_length    = r11; // elements count to copy
2556     const Register r10_src_klass = r10; // array klass
2557 
2558     //  if (length < 0) return -1;
2559     __ movl(r11_length, length);        // length (elements count, 32-bits value)
2560     __ testl(r11_length, r11_length);
2561     __ jccb(Assembler::negative, L_failed_0);
2562 
2563     __ load_klass(r10_src_klass, src);
2564 #ifdef ASSERT
2565     //  assert(src->klass() != NULL);
2566     {
2567       BLOCK_COMMENT("assert klasses not null {");
2568       Label L1, L2;
2569       __ testptr(r10_src_klass, r10_src_klass);
2570       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2571       __ bind(L1);
2572       __ stop("broken null klass");
2573       __ bind(L2);
2574       __ load_klass(rax, dst);
2575       __ cmpq(rax, 0);
2576       __ jcc(Assembler::equal, L1);     // this would be broken also
2577       BLOCK_COMMENT("} assert klasses not null done");
2578     }
2579 #endif
2580 
2581     // Load layout helper (32-bits)
2582     //
2583     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2584     // 32        30    24            16              8     2                 0
2585     //
2586     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2587     //
2588 
2589     const int lh_offset = in_bytes(Klass::layout_helper_offset());
2590 
2591     // Handle objArrays completely differently...
2592     const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2593     __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
2594     __ jcc(Assembler::equal, L_objArray);
2595 
2596     //  if (src->klass() != dst->klass()) return -1;
2597     __ load_klass(rax, dst);
2598     __ cmpq(r10_src_klass, rax);
2599     __ jcc(Assembler::notEqual, L_failed);
2600 
2601     const Register rax_lh = rax;  // layout helper
2602     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2603 
2604     //  if (!src->is_Array()) return -1;
2605     __ cmpl(rax_lh, Klass::_lh_neutral_value);
2606     __ jcc(Assembler::greaterEqual, L_failed);
2607 
2608     // At this point, it is known to be a typeArray (array_tag 0x3).
2609 #ifdef ASSERT
2610     {
2611       BLOCK_COMMENT("assert primitive array {");
2612       Label L;
2613       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2614       __ jcc(Assembler::greaterEqual, L);
2615       __ stop("must be a primitive array");
2616       __ bind(L);
2617       BLOCK_COMMENT("} assert primitive array done");
2618     }
2619 #endif
2620 
2621     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2622                            r10, L_failed);
2623 
2624     // typeArrayKlass
2625     //
2626     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2627     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2628     //
2629 
2630     const Register r10_offset = r10;    // array offset
2631     const Register rax_elsize = rax_lh; // element size
2632 
2633     __ movl(r10_offset, rax_lh);
2634     __ shrl(r10_offset, Klass::_lh_header_size_shift);
2635     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2636     __ addptr(src, r10_offset);           // src array offset
2637     __ addptr(dst, r10_offset);           // dst array offset
2638     BLOCK_COMMENT("choose copy loop based on element size");
2639     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2640 
2641     // next registers should be set before the jump to corresponding stub
2642     const Register from     = c_rarg0;  // source array address
2643     const Register to       = c_rarg1;  // destination array address
2644     const Register count    = c_rarg2;  // elements count
2645 
2646     // 'from', 'to', 'count' registers should be set in such order
2647     // since they are the same as 'src', 'src_pos', 'dst'.
2648 
2649   __ BIND(L_copy_bytes);
2650     __ cmpl(rax_elsize, 0);
2651     __ jccb(Assembler::notEqual, L_copy_shorts);
2652     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2653     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2654     __ movl2ptr(count, r11_length); // length
2655     __ jump(RuntimeAddress(byte_copy_entry));
2656 
2657   __ BIND(L_copy_shorts);
2658     __ cmpl(rax_elsize, LogBytesPerShort);
2659     __ jccb(Assembler::notEqual, L_copy_ints);
2660     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2661     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2662     __ movl2ptr(count, r11_length); // length
2663     __ jump(RuntimeAddress(short_copy_entry));
2664 
2665   __ BIND(L_copy_ints);
2666     __ cmpl(rax_elsize, LogBytesPerInt);
2667     __ jccb(Assembler::notEqual, L_copy_longs);
2668     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2669     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2670     __ movl2ptr(count, r11_length); // length
2671     __ jump(RuntimeAddress(int_copy_entry));
2672 
2673   __ BIND(L_copy_longs);
2674 #ifdef ASSERT
2675     {
2676       BLOCK_COMMENT("assert long copy {");
2677       Label L;
2678       __ cmpl(rax_elsize, LogBytesPerLong);
2679       __ jcc(Assembler::equal, L);
2680       __ stop("must be long copy, but elsize is wrong");
2681       __ bind(L);
2682       BLOCK_COMMENT("} assert long copy done");
2683     }
2684 #endif
2685     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2686     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2687     __ movl2ptr(count, r11_length); // length
2688     __ jump(RuntimeAddress(long_copy_entry));
2689 
2690     // objArrayKlass
2691   __ BIND(L_objArray);
2692     // live at this point:  r10_src_klass, r11_length, src[_pos], dst[_pos]
2693 
2694     Label L_plain_copy, L_checkcast_copy;
2695     //  test array classes for subtyping
2696     __ load_klass(rax, dst);
2697     __ cmpq(r10_src_klass, rax); // usual case is exact equality
2698     __ jcc(Assembler::notEqual, L_checkcast_copy);
2699 
2700     // Identically typed arrays can be copied without element-wise checks.
2701     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2702                            r10, L_failed);
2703 
2704     __ lea(from, Address(src, src_pos, TIMES_OOP,
2705                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2706     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2707                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2708     __ movl2ptr(count, r11_length); // length
2709   __ BIND(L_plain_copy);
2710     __ jump(RuntimeAddress(oop_copy_entry));
2711 
2712   __ BIND(L_checkcast_copy);
2713     // live at this point:  r10_src_klass, r11_length, rax (dst_klass)
2714     {
2715       // Before looking at dst.length, make sure dst is also an objArray.
2716       __ cmpl(Address(rax, lh_offset), objArray_lh);
2717       __ jcc(Assembler::notEqual, L_failed);
2718 
2719       // It is safe to examine both src.length and dst.length.
2720       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2721                              rax, L_failed);
2722 
2723       const Register r11_dst_klass = r11;
2724       __ load_klass(r11_dst_klass, dst); // reload
2725 
2726       // Marshal the base address arguments now, freeing registers.
2727       __ lea(from, Address(src, src_pos, TIMES_OOP,
2728                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2729       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2730                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2731       __ movl(count, length);           // length (reloaded)
2732       Register sco_temp = c_rarg3;      // this register is free now
2733       assert_different_registers(from, to, count, sco_temp,
2734                                  r11_dst_klass, r10_src_klass);
2735       assert_clean_int(count, sco_temp);
2736 
2737       // Generate the type check.
2738       const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2739       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2740       assert_clean_int(sco_temp, rax);
2741       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2742 
2743       // Fetch destination element klass from the objArrayKlass header.
2744       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
2745       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2746       __ movl(  sco_temp,      Address(r11_dst_klass, sco_offset));
2747       assert_clean_int(sco_temp, rax);
2748 
2749       // the checkcast_copy loop needs two extra arguments:
2750       assert(c_rarg3 == sco_temp, "#3 already in place");
2751       // Set up arguments for checkcast_copy_entry.
2752       setup_arg_regs(4);
2753       __ movptr(r8, r11_dst_klass);  // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
2754       __ jump(RuntimeAddress(checkcast_copy_entry));
2755     }
2756 
2757   __ BIND(L_failed);
2758     __ xorptr(rax, rax);
2759     __ notptr(rax); // return -1
2760     __ leave();   // required for proper stackwalking of RuntimeStub frame
2761     __ ret(0);
2762 
2763     return start;
2764   }
2765 
2766   void generate_arraycopy_stubs() {
2767     address entry;
2768     address entry_jbyte_arraycopy;
2769     address entry_jshort_arraycopy;
2770     address entry_jint_arraycopy;
2771     address entry_oop_arraycopy;
2772     address entry_jlong_arraycopy;
2773     address entry_checkcast_arraycopy;
2774 
2775     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, &entry,
2776                                                                            "jbyte_disjoint_arraycopy");
2777     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
2778                                                                            "jbyte_arraycopy");
2779 
2780     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
2781                                                                             "jshort_disjoint_arraycopy");
2782     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
2783                                                                             "jshort_arraycopy");
2784 
2785     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, &entry,
2786                                                                               "jint_disjoint_arraycopy");
2787     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, entry,
2788                                                                               &entry_jint_arraycopy, "jint_arraycopy");
2789 
2790     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, &entry,
2791                                                                                "jlong_disjoint_arraycopy");
2792     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, entry,
2793                                                                                &entry_jlong_arraycopy, "jlong_arraycopy");
2794 
2795 
2796     if (UseCompressedOops) {
2797       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, &entry,
2798                                                                               "oop_disjoint_arraycopy");
2799       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, entry,
2800                                                                               &entry_oop_arraycopy, "oop_arraycopy");
2801       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_int_oop_copy(false, true, &entry,
2802                                                                                      "oop_disjoint_arraycopy_uninit",
2803                                                                                      /*dest_uninitialized*/true);
2804       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_int_oop_copy(false, true, entry,
2805                                                                                      NULL, "oop_arraycopy_uninit",
2806                                                                                      /*dest_uninitialized*/true);
2807     } else {
2808       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, &entry,
2809                                                                                "oop_disjoint_arraycopy");
2810       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, entry,
2811                                                                                &entry_oop_arraycopy, "oop_arraycopy");
2812       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_long_oop_copy(false, true, &entry,
2813                                                                                       "oop_disjoint_arraycopy_uninit",
2814                                                                                       /*dest_uninitialized*/true);
2815       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_long_oop_copy(false, true, entry,
2816                                                                                       NULL, "oop_arraycopy_uninit",
2817                                                                                       /*dest_uninitialized*/true);
2818     }
2819 
2820     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2821     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
2822                                                                         /*dest_uninitialized*/true);
2823 
2824     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
2825                                                               entry_jbyte_arraycopy,
2826                                                               entry_jshort_arraycopy,
2827                                                               entry_jint_arraycopy,
2828                                                               entry_jlong_arraycopy);
2829     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
2830                                                                entry_jbyte_arraycopy,
2831                                                                entry_jshort_arraycopy,
2832                                                                entry_jint_arraycopy,
2833                                                                entry_oop_arraycopy,
2834                                                                entry_jlong_arraycopy,
2835                                                                entry_checkcast_arraycopy);
2836 
2837     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2838     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2839     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2840     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2841     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2842     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2843 
2844     // We don't generate specialized code for HeapWord-aligned source
2845     // arrays, so just use the code we've already generated
2846     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2847     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2848 
2849     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2850     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2851 
2852     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2853     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2854 
2855     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2856     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2857 
2858     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2859     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2860 
2861     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit    = StubRoutines::_oop_disjoint_arraycopy_uninit;
2862     StubRoutines::_arrayof_oop_arraycopy_uninit             = StubRoutines::_oop_arraycopy_uninit;
2863   }
2864 
2865   void generate_math_stubs() {
2866     {
2867       StubCodeMark mark(this, "StubRoutines", "log");
2868       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2869 
2870       __ subq(rsp, 8);
2871       __ movdbl(Address(rsp, 0), xmm0);
2872       __ fld_d(Address(rsp, 0));
2873       __ flog();
2874       __ fstp_d(Address(rsp, 0));
2875       __ movdbl(xmm0, Address(rsp, 0));
2876       __ addq(rsp, 8);
2877       __ ret(0);
2878     }
2879     {
2880       StubCodeMark mark(this, "StubRoutines", "log10");
2881       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2882 
2883       __ subq(rsp, 8);
2884       __ movdbl(Address(rsp, 0), xmm0);
2885       __ fld_d(Address(rsp, 0));
2886       __ flog10();
2887       __ fstp_d(Address(rsp, 0));
2888       __ movdbl(xmm0, Address(rsp, 0));
2889       __ addq(rsp, 8);
2890       __ ret(0);
2891     }
2892     {
2893       StubCodeMark mark(this, "StubRoutines", "sin");
2894       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
2895 
2896       __ subq(rsp, 8);
2897       __ movdbl(Address(rsp, 0), xmm0);
2898       __ fld_d(Address(rsp, 0));
2899       __ trigfunc('s');
2900       __ fstp_d(Address(rsp, 0));
2901       __ movdbl(xmm0, Address(rsp, 0));
2902       __ addq(rsp, 8);
2903       __ ret(0);
2904     }
2905     {
2906       StubCodeMark mark(this, "StubRoutines", "cos");
2907       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2908 
2909       __ subq(rsp, 8);
2910       __ movdbl(Address(rsp, 0), xmm0);
2911       __ fld_d(Address(rsp, 0));
2912       __ trigfunc('c');
2913       __ fstp_d(Address(rsp, 0));
2914       __ movdbl(xmm0, Address(rsp, 0));
2915       __ addq(rsp, 8);
2916       __ ret(0);
2917     }
2918     {
2919       StubCodeMark mark(this, "StubRoutines", "tan");
2920       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2921 
2922       __ subq(rsp, 8);
2923       __ movdbl(Address(rsp, 0), xmm0);
2924       __ fld_d(Address(rsp, 0));
2925       __ trigfunc('t');
2926       __ fstp_d(Address(rsp, 0));
2927       __ movdbl(xmm0, Address(rsp, 0));
2928       __ addq(rsp, 8);
2929       __ ret(0);
2930     }
2931 
2932     // The intrinsic version of these seem to return the same value as
2933     // the strict version.
2934     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
2935     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
2936   }
2937 
2938 #undef __
2939 #define __ masm->
2940 
2941   // Continuation point for throwing of implicit exceptions that are
2942   // not handled in the current activation. Fabricates an exception
2943   // oop and initiates normal exception dispatching in this
2944   // frame. Since we need to preserve callee-saved values (currently
2945   // only for C2, but done for C1 as well) we need a callee-saved oop
2946   // map and therefore have to make these stubs into RuntimeStubs
2947   // rather than BufferBlobs.  If the compiler needs all registers to
2948   // be preserved between the fault point and the exception handler
2949   // then it must assume responsibility for that in
2950   // AbstractCompiler::continuation_for_implicit_null_exception or
2951   // continuation_for_implicit_division_by_zero_exception. All other
2952   // implicit exceptions (e.g., NullPointerException or
2953   // AbstractMethodError on entry) are either at call sites or
2954   // otherwise assume that stack unwinding will be initiated, so
2955   // caller saved registers were assumed volatile in the compiler.
2956   address generate_throw_exception(const char* name,
2957                                    address runtime_entry,
2958                                    Register arg1 = noreg,
2959                                    Register arg2 = noreg) {
2960     // Information about frame layout at time of blocking runtime call.
2961     // Note that we only have to preserve callee-saved registers since
2962     // the compilers are responsible for supplying a continuation point
2963     // if they expect all registers to be preserved.
2964     enum layout {
2965       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
2966       rbp_off2,
2967       return_off,
2968       return_off2,
2969       framesize // inclusive of return address
2970     };
2971 
2972     int insts_size = 512;
2973     int locs_size  = 64;
2974 
2975     CodeBuffer code(name, insts_size, locs_size);
2976     OopMapSet* oop_maps  = new OopMapSet();
2977     MacroAssembler* masm = new MacroAssembler(&code);
2978 
2979     address start = __ pc();
2980 
2981     // This is an inlined and slightly modified version of call_VM
2982     // which has the ability to fetch the return PC out of
2983     // thread-local storage and also sets up last_Java_sp slightly
2984     // differently than the real call_VM
2985 
2986     __ enter(); // required for proper stackwalking of RuntimeStub frame
2987 
2988     assert(is_even(framesize/2), "sp not 16-byte aligned");
2989 
2990     // return address and rbp are already in place
2991     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
2992 
2993     int frame_complete = __ pc() - start;
2994 
2995     // Set up last_Java_sp and last_Java_fp
2996     address the_pc = __ pc();
2997     __ set_last_Java_frame(rsp, rbp, the_pc);
2998     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
2999 
3000     // Call runtime
3001     if (arg1 != noreg) {
3002       assert(arg2 != c_rarg1, "clobbered");
3003       __ movptr(c_rarg1, arg1);
3004     }
3005     if (arg2 != noreg) {
3006       __ movptr(c_rarg2, arg2);
3007     }
3008     __ movptr(c_rarg0, r15_thread);
3009     BLOCK_COMMENT("call runtime_entry");
3010     __ call(RuntimeAddress(runtime_entry));
3011 
3012     // Generate oop map
3013     OopMap* map = new OopMap(framesize, 0);
3014 
3015     oop_maps->add_gc_map(the_pc - start, map);
3016 
3017     __ reset_last_Java_frame(true, true);
3018 
3019     __ leave(); // required for proper stackwalking of RuntimeStub frame
3020 
3021     // check for pending exceptions
3022 #ifdef ASSERT
3023     Label L;
3024     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
3025             (int32_t) NULL_WORD);
3026     __ jcc(Assembler::notEqual, L);
3027     __ should_not_reach_here();
3028     __ bind(L);
3029 #endif // ASSERT
3030     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3031 
3032 
3033     // codeBlob framesize is in words (not VMRegImpl::slot_size)
3034     RuntimeStub* stub =
3035       RuntimeStub::new_runtime_stub(name,
3036                                     &code,
3037                                     frame_complete,
3038                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3039                                     oop_maps, false);
3040     return stub->entry_point();
3041   }
3042 
3043   // Initialization
3044   void generate_initial() {
3045     // Generates all stubs and initializes the entry points
3046 
3047     // This platform-specific stub is needed by generate_call_stub()
3048     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
3049 
3050     // entry points that exist in all platforms Note: This is code
3051     // that could be shared among different platforms - however the
3052     // benefit seems to be smaller than the disadvantage of having a
3053     // much more complicated generator structure. See also comment in
3054     // stubRoutines.hpp.
3055 
3056     StubRoutines::_forward_exception_entry = generate_forward_exception();
3057 
3058     StubRoutines::_call_stub_entry =
3059       generate_call_stub(StubRoutines::_call_stub_return_address);
3060 
3061     // is referenced by megamorphic call
3062     StubRoutines::_catch_exception_entry = generate_catch_exception();
3063 
3064     // atomic calls
3065     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
3066     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
3067     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
3068     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
3069     StubRoutines::_atomic_add_entry          = generate_atomic_add();
3070     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
3071     StubRoutines::_fence_entry               = generate_orderaccess_fence();
3072 
3073     StubRoutines::_handler_for_unsafe_access_entry =
3074       generate_handler_for_unsafe_access();
3075 
3076     // platform dependent
3077     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
3078     StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
3079 
3080     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
3081 
3082     // Build this early so it's available for the interpreter.  Stub
3083     // expects the required and actual types as register arguments in
3084     // j_rarg0 and j_rarg1 respectively.
3085     StubRoutines::_throw_WrongMethodTypeException_entry =
3086       generate_throw_exception("WrongMethodTypeException throw_exception",
3087                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
3088                                rax, rcx);
3089 
3090     // Build this early so it's available for the interpreter.
3091     StubRoutines::_throw_StackOverflowError_entry =
3092       generate_throw_exception("StackOverflowError throw_exception",
3093                                CAST_FROM_FN_PTR(address,
3094                                                 SharedRuntime::
3095                                                 throw_StackOverflowError));
3096   }
3097 
3098   void generate_all() {
3099     // Generates all stubs and initializes the entry points
3100 
3101     // These entry points require SharedInfo::stack0 to be set up in
3102     // non-core builds and need to be relocatable, so they each
3103     // fabricate a RuntimeStub internally.
3104     StubRoutines::_throw_AbstractMethodError_entry =
3105       generate_throw_exception("AbstractMethodError throw_exception",
3106                                CAST_FROM_FN_PTR(address,
3107                                                 SharedRuntime::
3108                                                 throw_AbstractMethodError));
3109 
3110     StubRoutines::_throw_IncompatibleClassChangeError_entry =
3111       generate_throw_exception("IncompatibleClassChangeError throw_exception",
3112                                CAST_FROM_FN_PTR(address,
3113                                                 SharedRuntime::
3114                                                 throw_IncompatibleClassChangeError));
3115 
3116     StubRoutines::_throw_NullPointerException_at_call_entry =
3117       generate_throw_exception("NullPointerException at call throw_exception",
3118                                CAST_FROM_FN_PTR(address,
3119                                                 SharedRuntime::
3120                                                 throw_NullPointerException_at_call));
3121 
3122     // entry points that are platform specific
3123     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
3124     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
3125     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
3126     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
3127 
3128     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
3129     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
3130     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
3131     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
3132 
3133     // support for verify_oop (must happen after universe_init)
3134     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3135 
3136     // arraycopy stubs used by compilers
3137     generate_arraycopy_stubs();
3138 
3139     generate_math_stubs();
3140   }
3141 
3142  public:
3143   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3144     if (all) {
3145       generate_all();
3146     } else {
3147       generate_initial();
3148     }
3149   }
3150 }; // end class declaration
3151 
3152 void StubGenerator_generate(CodeBuffer* code, bool all) {
3153   StubGenerator g(code, all);
3154 }