/* * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // no precompiled headers #include "assembler_x86.inline.hpp" #include "classfile/classLoader.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "interpreter/interpreter.hpp" #include "jvm_linux.h" #include "memory/allocation.inline.hpp" #include "mutex_linux.inline.hpp" #include "nativeInst_x86.hpp" #include "os_share_linux.hpp" #include "prims/jniFastGetField.hpp" #include "prims/jvm.h" #include "prims/jvm_misc.hpp" #include "runtime/arguments.hpp" #include "runtime/extendedPC.hpp" #include "runtime/frame.inline.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/osThread.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/timer.hpp" #include "thread_linux.inline.hpp" #include "utilities/events.hpp" #include "utilities/vmError.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #endif #ifdef COMPILER2 #include "opto/runtime.hpp" #endif // put OS-includes here # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include #ifdef AMD64 #define REG_SP REG_RSP #define REG_PC REG_RIP #define REG_FP REG_RBP #define SPELL_REG_SP "rsp" #define SPELL_REG_FP "rbp" #else #define REG_SP REG_UESP #define REG_PC REG_EIP #define REG_FP REG_EBP #define SPELL_REG_SP "esp" #define SPELL_REG_FP "ebp" #endif // AMD64 address os::current_stack_pointer() { #ifdef SPARC_WORKS register void *esp; __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp)); return (address) ((char*)esp + sizeof(long)*2); #else register void *esp __asm__ (SPELL_REG_SP); return (address) esp; #endif } char* os::non_memory_address_word() { // Must never look like an address returned by reserve_memory, // even in its subfields (as defined by the CPU immediate fields, // if the CPU splits constants across multiple instructions). return (char*) -1; } void os::initialize_thread() { // Nothing to do. } address os::Linux::ucontext_get_pc(ucontext_t * uc) { return (address)uc->uc_mcontext.gregs[REG_PC]; } intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) { return (intptr_t*)uc->uc_mcontext.gregs[REG_SP]; } intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) { return (intptr_t*)uc->uc_mcontext.gregs[REG_FP]; } // For Forte Analyzer AsyncGetCallTrace profiling support - thread // is currently interrupted by SIGPROF. // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal // frames. Currently we don't do that on Linux, so it's the same as // os::fetch_frame_from_context(). ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread, ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) { assert(thread != NULL, "just checking"); assert(ret_sp != NULL, "just checking"); assert(ret_fp != NULL, "just checking"); return os::fetch_frame_from_context(uc, ret_sp, ret_fp); } ExtendedPC os::fetch_frame_from_context(void* ucVoid, intptr_t** ret_sp, intptr_t** ret_fp) { ExtendedPC epc; ucontext_t* uc = (ucontext_t*)ucVoid; if (uc != NULL) { epc = ExtendedPC(os::Linux::ucontext_get_pc(uc)); if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc); if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc); } else { // construct empty ExtendedPC for return value checking epc = ExtendedPC(NULL); if (ret_sp) *ret_sp = (intptr_t *)NULL; if (ret_fp) *ret_fp = (intptr_t *)NULL; } return epc; } frame os::fetch_frame_from_context(void* ucVoid) { intptr_t* sp; intptr_t* fp; ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp); return frame(sp, fp, epc.pc()); } // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get // turned off by -fomit-frame-pointer, frame os::get_sender_for_C_frame(frame* fr) { return frame(fr->sender_sp(), fr->link(), fr->sender_pc()); } intptr_t* _get_previous_fp() { #ifdef SPARC_WORKS register intptr_t **ebp; __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp)); #else register intptr_t **ebp __asm__ (SPELL_REG_FP); #endif return (intptr_t*) *ebp; // we want what it points to. } frame os::current_frame() { intptr_t* fp = _get_previous_fp(); frame myframe((intptr_t*)os::current_stack_pointer(), (intptr_t*)fp, CAST_FROM_FN_PTR(address, os::current_frame)); if (os::is_first_C_frame(&myframe)) { // stack is not walkable return frame(NULL, NULL, NULL); } else { return os::get_sender_for_C_frame(&myframe); } } // Utility functions // From IA32 System Programming Guide enum { trap_page_fault = 0xE }; extern "C" void Fetch32PFI () ; extern "C" void Fetch32Resume () ; #ifdef AMD64 extern "C" void FetchNPFI () ; extern "C" void FetchNResume () ; #endif // AMD64 extern "C" JNIEXPORT int JVM_handle_linux_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) { ucontext_t* uc = (ucontext_t*) ucVoid; Thread* t = ThreadLocalStorage::get_thread_slow(); SignalHandlerMark shm(t); // Note: it's not uncommon that JNI code uses signal/sigset to install // then restore certain signal handler (e.g. to temporarily block SIGPIPE, // or have a SIGILL handler when detecting CPU type). When that happens, // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To // avoid unnecessary crash when libjsig is not preloaded, try handle signals // that do not require siginfo/ucontext first. if (sig == SIGPIPE || sig == SIGXFSZ) { // allow chained handler to go first if (os::Linux::chained_handler(sig, info, ucVoid)) { return true; } else { if (PrintMiscellaneous && (WizardMode || Verbose)) { char buf[64]; warning("Ignoring %s - see bugs 4229104 or 646499219", os::exception_name(sig, buf, sizeof(buf))); } return true; } } JavaThread* thread = NULL; VMThread* vmthread = NULL; if (os::Linux::signal_handlers_are_installed) { if (t != NULL ){ if(t->is_Java_thread()) { thread = (JavaThread*)t; } else if(t->is_VM_thread()){ vmthread = (VMThread *)t; } } } /* NOTE: does not seem to work on linux. if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) { // can't decode this kind of signal info = NULL; } else { assert(sig == info->si_signo, "bad siginfo"); } */ // decide if this trap can be handled by a stub address stub = NULL; address pc = NULL; //%note os_trap_1 if (info != NULL && uc != NULL && thread != NULL) { pc = (address) os::Linux::ucontext_get_pc(uc); if (pc == (address) Fetch32PFI) { uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ; return 1 ; } #ifdef AMD64 if (pc == (address) FetchNPFI) { uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ; return 1 ; } #endif // AMD64 // Handle ALL stack overflow variations here if (sig == SIGSEGV) { address addr = (address) info->si_addr; // check if fault address is within thread stack if (addr < thread->stack_base() && addr >= thread->stack_base() - thread->stack_size()) { // stack overflow if (thread->in_stack_yellow_zone(addr)) { thread->disable_stack_yellow_zone(); if (thread->thread_state() == _thread_in_Java) { // Throw a stack overflow exception. Guard pages will be reenabled // while unwinding the stack. stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW); } else { // Thread was in the vm or native code. Return and try to finish. return 1; } } else if (thread->in_stack_red_zone(addr)) { // Fatal red zone violation. Disable the guard pages and fall through // to handle_unexpected_exception way down below. thread->disable_stack_red_zone(); tty->print_raw_cr("An irrecoverable stack overflow has occurred."); } else { // Accessing stack address below sp may cause SEGV if current // thread has MAP_GROWSDOWN stack. This should only happen when // current thread was created by user code with MAP_GROWSDOWN flag // and then attached to VM. See notes in os_linux.cpp. if (thread->osthread()->expanding_stack() == 0) { thread->osthread()->set_expanding_stack(); if (os::Linux::manually_expand_stack(thread, addr)) { thread->osthread()->clear_expanding_stack(); return 1; } thread->osthread()->clear_expanding_stack(); } else { fatal("recursive segv. expanding stack."); } } } } if (thread->thread_state() == _thread_in_Java) { // Java thread running in Java code => find exception handler if any // a fault inside compiled code, the interpreter, or a stub if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) { stub = SharedRuntime::get_poll_stub(pc); } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) { // BugId 4454115: A read from a MappedByteBuffer can fault // here if the underlying file has been truncated. // Do not crash the VM in such a case. CodeBlob* cb = CodeCache::find_blob_unsafe(pc); nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL; if (nm != NULL && nm->has_unsafe_access()) { stub = StubRoutines::handler_for_unsafe_access(); } } else #ifdef AMD64 if (sig == SIGFPE && (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) { stub = SharedRuntime:: continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO); #else if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) { // HACK: si_code does not work on linux 2.2.12-20!!! int op = pc[0]; if (op == 0xDB) { // FIST // TODO: The encoding of D2I in i486.ad can cause an exception // prior to the fist instruction if there was an invalid operation // pending. We want to dismiss that exception. From the win_32 // side it also seems that if it really was the fist causing // the exception that we do the d2i by hand with different // rounding. Seems kind of weird. // NOTE: that we take the exception at the NEXT floating point instruction. assert(pc[0] == 0xDB, "not a FIST opcode"); assert(pc[1] == 0x14, "not a FIST opcode"); assert(pc[2] == 0x24, "not a FIST opcode"); return true; } else if (op == 0xF7) { // IDIV stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO); } else { // TODO: handle more cases if we are using other x86 instructions // that can generate SIGFPE signal on linux. tty->print_cr("unknown opcode 0x%X with SIGFPE.", op); fatal("please update this code."); } #endif // AMD64 } else if (sig == SIGSEGV && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) { // Determination of interpreter/vtable stub/compiled code null exception stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL); } } else if (thread->thread_state() == _thread_in_vm && sig == SIGBUS && /* info->si_code == BUS_OBJERR && */ thread->doing_unsafe_access()) { stub = StubRoutines::handler_for_unsafe_access(); } // jni_fast_GetField can trap at certain pc's if a GC kicks in // and the heap gets shrunk before the field access. if ((sig == SIGSEGV) || (sig == SIGBUS)) { address addr = JNI_FastGetField::find_slowcase_pc(pc); if (addr != (address)-1) { stub = addr; } } // Check to see if we caught the safepoint code in the // process of write protecting the memory serialization page. // It write enables the page immediately after protecting it // so we can just return to retry the write. if ((sig == SIGSEGV) && os::is_memory_serialize_page(thread, (address) info->si_addr)) { // Block current thread until the memory serialize page permission restored. os::block_on_serialize_page_trap(); return true; } } #ifndef AMD64 // Execution protection violation // // This should be kept as the last step in the triage. We don't // have a dedicated trap number for a no-execute fault, so be // conservative and allow other handlers the first shot. // // Note: We don't test that info->si_code == SEGV_ACCERR here. // this si_code is so generic that it is almost meaningless; and // the si_code for this condition may change in the future. // Furthermore, a false-positive should be harmless. if (UnguardOnExecutionViolation > 0 && (sig == SIGSEGV || sig == SIGBUS) && uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) { int page_size = os::vm_page_size(); address addr = (address) info->si_addr; address pc = os::Linux::ucontext_get_pc(uc); // Make sure the pc and the faulting address are sane. // // If an instruction spans a page boundary, and the page containing // the beginning of the instruction is executable but the following // page is not, the pc and the faulting address might be slightly // different - we still want to unguard the 2nd page in this case. // // 15 bytes seems to be a (very) safe value for max instruction size. bool pc_is_near_addr = (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15); bool instr_spans_page_boundary = (align_size_down((intptr_t) pc ^ (intptr_t) addr, (intptr_t) page_size) > 0); if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) { static volatile address last_addr = (address) os::non_memory_address_word(); // In conservative mode, don't unguard unless the address is in the VM if (addr != last_addr && (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) { // Set memory to RWX and retry address page_start = (address) align_size_down((intptr_t) addr, (intptr_t) page_size); bool res = os::protect_memory((char*) page_start, page_size, os::MEM_PROT_RWX); if (PrintMiscellaneous && Verbose) { char buf[256]; jio_snprintf(buf, sizeof(buf), "Execution protection violation " "at " INTPTR_FORMAT ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr, page_start, (res ? "success" : "failed"), errno); tty->print_raw_cr(buf); } stub = pc; // Set last_addr so if we fault again at the same address, we don't end // up in an endless loop. // // There are two potential complications here. Two threads trapping at // the same address at the same time could cause one of the threads to // think it already unguarded, and abort the VM. Likely very rare. // // The other race involves two threads alternately trapping at // different addresses and failing to unguard the page, resulting in // an endless loop. This condition is probably even more unlikely than // the first. // // Although both cases could be avoided by using locks or thread local // last_addr, these solutions are unnecessary complication: this // handler is a best-effort safety net, not a complete solution. It is // disabled by default and should only be used as a workaround in case // we missed any no-execute-unsafe VM code. last_addr = addr; } } } #endif // !AMD64 if (stub != NULL) { // save all thread context in case we need to restore it if (thread != NULL) thread->set_saved_exception_pc(pc); uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub; return true; } // signal-chaining if (os::Linux::chained_handler(sig, info, ucVoid)) { return true; } if (!abort_if_unrecognized) { // caller wants another chance, so give it to him return false; } if (pc == NULL && uc != NULL) { pc = os::Linux::ucontext_get_pc(uc); } // unmask current signal sigset_t newset; sigemptyset(&newset); sigaddset(&newset, sig); sigprocmask(SIG_UNBLOCK, &newset, NULL); VMError err(t, sig, pc, info, ucVoid); err.report_and_die(); ShouldNotReachHere(); } void os::Linux::init_thread_fpu_state(void) { #ifndef AMD64 // set fpu to 53 bit precision set_fpu_control_word(0x27f); #endif // !AMD64 } int os::Linux::get_fpu_control_word(void) { #ifdef AMD64 return 0; #else int fpu_control; _FPU_GETCW(fpu_control); return fpu_control & 0xffff; #endif // AMD64 } void os::Linux::set_fpu_control_word(int fpu_control) { #ifndef AMD64 _FPU_SETCW(fpu_control); #endif // !AMD64 } // Check that the linux kernel version is 2.4 or higher since earlier // versions do not support SSE without patches. bool os::supports_sse() { #ifdef AMD64 return true; #else struct utsname uts; if( uname(&uts) != 0 ) return false; // uname fails? char *minor_string; int major = strtol(uts.release,&minor_string,10); int minor = strtol(minor_string+1,NULL,10); bool result = (major > 2 || (major==2 && minor >= 4)); #ifndef PRODUCT if (PrintMiscellaneous && Verbose) { tty->print("OS version is %d.%d, which %s support SSE/SSE2\n", major,minor, result ? "DOES" : "does NOT"); } #endif return result; #endif // AMD64 } bool os::is_allocatable(size_t bytes) { #ifdef AMD64 // unused on amd64? return true; #else if (bytes < 2 * G) { return true; } char* addr = reserve_memory(bytes, NULL); if (addr != NULL) { release_memory(addr, bytes); } return addr != NULL; #endif // AMD64 } //////////////////////////////////////////////////////////////////////////////// // thread stack #ifdef AMD64 size_t os::Linux::min_stack_allowed = 64 * K; // amd64: pthread on amd64 is always in floating stack mode bool os::Linux::supports_variable_stack_size() { return true; } #else size_t os::Linux::min_stack_allowed = (48 DEBUG_ONLY(+4))*K; #ifdef __GNUC__ #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;}) #endif // Test if pthread library can support variable thread stack size. LinuxThreads // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads // in floating stack mode and NPTL support variable stack size. bool os::Linux::supports_variable_stack_size() { if (os::Linux::is_NPTL()) { // NPTL, yes return true; } else { // Note: We can't control default stack size when creating a thread. // If we use non-default stack size (pthread_attr_setstacksize), both // floating stack and non-floating stack LinuxThreads will return the // same value. This makes it impossible to implement this function by // detecting thread stack size directly. // // An alternative approach is to check %gs. Fixed-stack LinuxThreads // do not use %gs, so its value is 0. Floating-stack LinuxThreads use // %gs (either as LDT selector or GDT selector, depending on kernel) // to access thread specific data. // // Note that %gs is a reserved glibc register since early 2001, so // applications are not allowed to change its value (Ulrich Drepper from // Redhat confirmed that all known offenders have been modified to use // either %fs or TSD). In the worst case scenario, when VM is embedded in // a native application that plays with %gs, we might see non-zero %gs // even LinuxThreads is running in fixed stack mode. As the result, we'll // return true and skip _thread_safety_check(), so we may not be able to // detect stack-heap collisions. But otherwise it's harmless. // #ifdef __GNUC__ return (GET_GS() != 0); #else return false; #endif } } #endif // AMD64 // return default stack size for thr_type size_t os::Linux::default_stack_size(os::ThreadType thr_type) { // default stack size (compiler thread needs larger stack) #ifdef AMD64 size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M); #else size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K); #endif // AMD64 return s; } size_t os::Linux::default_guard_size(os::ThreadType thr_type) { // Creating guard page is very expensive. Java thread has HotSpot // guard page, only enable glibc guard page for non-Java threads. return (thr_type == java_thread ? 0 : page_size()); } // Java thread: // // Low memory addresses // +------------------------+ // | |\ JavaThread created by VM does not have glibc // | glibc guard page | - guard, attached Java thread usually has // | |/ 1 page glibc guard. // P1 +------------------------+ Thread::stack_base() - Thread::stack_size() // | |\ // | HotSpot Guard Pages | - red and yellow pages // | |/ // +------------------------+ JavaThread::stack_yellow_zone_base() // | |\ // | Normal Stack | - // | |/ // P2 +------------------------+ Thread::stack_base() // // Non-Java thread: // // Low memory addresses // +------------------------+ // | |\ // | glibc guard page | - usually 1 page // | |/ // P1 +------------------------+ Thread::stack_base() - Thread::stack_size() // | |\ // | Normal Stack | - // | |/ // P2 +------------------------+ Thread::stack_base() // // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from // pthread_attr_getstack() static void current_stack_region(address * bottom, size_t * size) { if (os::Linux::is_initial_thread()) { // initial thread needs special handling because pthread_getattr_np() // may return bogus value. *bottom = os::Linux::initial_thread_stack_bottom(); *size = os::Linux::initial_thread_stack_size(); } else { pthread_attr_t attr; int rslt = pthread_getattr_np(pthread_self(), &attr); // JVM needs to know exact stack location, abort if it fails if (rslt != 0) { if (rslt == ENOMEM) { vm_exit_out_of_memory(0, "pthread_getattr_np"); } else { fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt)); } } if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) { fatal("Can not locate current stack attributes!"); } pthread_attr_destroy(&attr); } assert(os::current_stack_pointer() >= *bottom && os::current_stack_pointer() < *bottom + *size, "just checking"); } address os::current_stack_base() { address bottom; size_t size; current_stack_region(&bottom, &size); return (bottom + size); } size_t os::current_stack_size() { // stack size includes normal stack and HotSpot guard pages address bottom; size_t size; current_stack_region(&bottom, &size); return size; } ///////////////////////////////////////////////////////////////////////////// // helper functions for fatal error handler void os::print_context(outputStream *st, void *context) { if (context == NULL) return; ucontext_t *uc = (ucontext_t*)context; st->print_cr("Registers:"); #ifdef AMD64 st->print( "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]); st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]); st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]); st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]); st->cr(); st->print( "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]); st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]); st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]); st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]); st->cr(); st->print( "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]); st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]); st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]); st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]); st->cr(); st->print( "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]); st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]); st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]); st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]); st->cr(); st->print( "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]); st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]); st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]); st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]); st->cr(); st->print(" TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]); #else st->print( "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]); st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]); st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]); st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]); st->cr(); st->print( "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]); st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]); st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]); st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]); st->cr(); st->print( "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]); st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]); st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2); #endif // AMD64 st->cr(); st->cr(); intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc); st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp); print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t)); st->cr(); // Note: it may be unsafe to inspect memory near pc. For example, pc may // point to garbage if entry point in an nmethod is corrupted. Leave // this at the end, and hope for the best. address pc = os::Linux::ucontext_get_pc(uc); st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc); print_hex_dump(st, pc - 32, pc + 32, sizeof(char)); } void os::print_register_info(outputStream *st, void *context) { if (context == NULL) return; ucontext_t *uc = (ucontext_t*)context; st->print_cr("Register to memory mapping:"); st->cr(); // this is horrendously verbose but the layout of the registers in the // context does not match how we defined our abstract Register set, so // we can't just iterate through the gregs area // this is only for the "general purpose" registers #ifdef AMD64 st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]); st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]); st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]); st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]); st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]); st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]); st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]); st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]); st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]); st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]); st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]); st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]); st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]); st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]); st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]); st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]); #else st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]); st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]); st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]); st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]); st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]); st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]); st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]); st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]); #endif // AMD64 st->cr(); } void os::setup_fpu() { #ifndef AMD64 address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std(); __asm__ volatile ( "fldcw (%0)" : : "r" (fpu_cntrl) : "memory"); #endif // !AMD64 } #ifndef PRODUCT void os::verify_stack_alignment() { #ifdef AMD64 assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment"); #endif } #endif