1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_sparc.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 void LIRItem::load_byte_item() {
  47   // byte loads use same registers as other loads
  48   load_item();
  49 }
  50 
  51 
  52 void LIRItem::load_nonconstant() {
  53   LIR_Opr r = value()->operand();
  54   if (_gen->can_inline_as_constant(value())) {
  55     if (!r->is_constant()) {
  56       r = LIR_OprFact::value_type(value()->type());
  57     }
  58     _result = r;
  59   } else {
  60     load_item();
  61   }
  62 }
  63 
  64 
  65 //--------------------------------------------------------------
  66 //               LIRGenerator
  67 //--------------------------------------------------------------
  68 
  69 LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::Oexception_opr;  }
  70 LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::Oissuing_pc_opr; }
  71 LIR_Opr LIRGenerator::syncTempOpr()                  { return new_register(T_OBJECT); }
  72 LIR_Opr LIRGenerator::getThreadTemp()                { return rlock_callee_saved(T_INT); }
  73 
  74 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  75   LIR_Opr opr;
  76   switch (type->tag()) {
  77   case intTag:     opr = callee ? FrameMap::I0_opr      : FrameMap::O0_opr;       break;
  78   case objectTag:  opr = callee ? FrameMap::I0_oop_opr  : FrameMap::O0_oop_opr;   break;
  79   case longTag:    opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
  80   case floatTag:   opr = FrameMap::F0_opr;                                        break;
  81   case doubleTag:  opr = FrameMap::F0_double_opr;                                 break;
  82 
  83   case addressTag:
  84   default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  85   }
  86 
  87   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  88   return opr;
  89 }
  90 
  91 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
  92   LIR_Opr reg = new_register(type);
  93   set_vreg_flag(reg, callee_saved);
  94   return reg;
  95 }
  96 
  97 
  98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  99   return new_register(T_INT);
 100 }
 101 
 102 
 103 
 104 
 105 
 106 //--------- loading items into registers --------------------------------
 107 
 108 // SPARC cannot inline all constants
 109 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 110   if (v->type()->as_IntConstant() != NULL) {
 111     return v->type()->as_IntConstant()->value() == 0;
 112   } else if (v->type()->as_LongConstant() != NULL) {
 113     return v->type()->as_LongConstant()->value() == 0L;
 114   } else if (v->type()->as_ObjectConstant() != NULL) {
 115     return v->type()->as_ObjectConstant()->value()->is_null_object();
 116   } else {
 117     return false;
 118   }
 119 }
 120 
 121 
 122 // only simm13 constants can be inlined
 123 bool LIRGenerator:: can_inline_as_constant(Value i) const {
 124   if (i->type()->as_IntConstant() != NULL) {
 125     return Assembler::is_simm13(i->type()->as_IntConstant()->value());
 126   } else {
 127     return can_store_as_constant(i, as_BasicType(i->type()));
 128   }
 129 }
 130 
 131 
 132 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
 133   if (c->type() == T_INT) {
 134     return Assembler::is_simm13(c->as_jint());
 135   }
 136   return false;
 137 }
 138 
 139 
 140 LIR_Opr LIRGenerator::safepoint_poll_register() {
 141   return new_register(T_INT);
 142 }
 143 
 144 
 145 
 146 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 147                                             int shift, int disp, BasicType type) {
 148   assert(base->is_register(), "must be");
 149 
 150   // accumulate fixed displacements
 151   if (index->is_constant()) {
 152     disp += index->as_constant_ptr()->as_jint() << shift;
 153     index = LIR_OprFact::illegalOpr;
 154   }
 155 
 156   if (index->is_register()) {
 157     // apply the shift and accumulate the displacement
 158     if (shift > 0) {
 159       LIR_Opr tmp = new_pointer_register();
 160       __ shift_left(index, shift, tmp);
 161       index = tmp;
 162     }
 163     if (disp != 0) {
 164       LIR_Opr tmp = new_pointer_register();
 165       if (Assembler::is_simm13(disp)) {
 166         __ add(tmp, LIR_OprFact::intptrConst(disp), tmp);
 167         index = tmp;
 168       } else {
 169         __ move(LIR_OprFact::intptrConst(disp), tmp);
 170         __ add(tmp, index, tmp);
 171         index = tmp;
 172       }
 173       disp = 0;
 174     }
 175   } else if (disp != 0 && !Assembler::is_simm13(disp)) {
 176     // index is illegal so replace it with the displacement loaded into a register
 177     index = new_pointer_register();
 178     __ move(LIR_OprFact::intptrConst(disp), index);
 179     disp = 0;
 180   }
 181 
 182   // at this point we either have base + index or base + displacement
 183   if (disp == 0) {
 184     return new LIR_Address(base, index, type);
 185   } else {
 186     assert(Assembler::is_simm13(disp), "must be");
 187     return new LIR_Address(base, disp, type);
 188   }
 189 }
 190 
 191 
 192 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 193                                               BasicType type, bool needs_card_mark) {
 194   int elem_size = type2aelembytes(type);
 195   int shift = exact_log2(elem_size);
 196 
 197   LIR_Opr base_opr;
 198   int offset = arrayOopDesc::base_offset_in_bytes(type);
 199 
 200   if (index_opr->is_constant()) {
 201     int i = index_opr->as_constant_ptr()->as_jint();
 202     int array_offset = i * elem_size;
 203     if (Assembler::is_simm13(array_offset + offset)) {
 204       base_opr = array_opr;
 205       offset = array_offset + offset;
 206     } else {
 207       base_opr = new_pointer_register();
 208       if (Assembler::is_simm13(array_offset)) {
 209         __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
 210       } else {
 211         __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
 212         __ add(base_opr, array_opr, base_opr);
 213       }
 214     }
 215   } else {
 216 #ifdef _LP64
 217     if (index_opr->type() == T_INT) {
 218       LIR_Opr tmp = new_register(T_LONG);
 219       __ convert(Bytecodes::_i2l, index_opr, tmp);
 220       index_opr = tmp;
 221     }
 222 #endif
 223 
 224     base_opr = new_pointer_register();
 225     assert (index_opr->is_register(), "Must be register");
 226     if (shift > 0) {
 227       __ shift_left(index_opr, shift, base_opr);
 228       __ add(base_opr, array_opr, base_opr);
 229     } else {
 230       __ add(index_opr, array_opr, base_opr);
 231     }
 232   }
 233   if (needs_card_mark) {
 234     LIR_Opr ptr = new_pointer_register();
 235     __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
 236     return new LIR_Address(ptr, type);
 237   } else {
 238     return new LIR_Address(base_opr, offset, type);
 239   }
 240 }
 241 
 242 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 243   LIR_Opr r;
 244   if (type == T_LONG) {
 245     r = LIR_OprFact::longConst(x);
 246   } else if (type == T_INT) {
 247     r = LIR_OprFact::intConst(x);
 248   } else {
 249     ShouldNotReachHere();
 250   }
 251   if (!Assembler::is_simm13(x)) {
 252     LIR_Opr tmp = new_register(type);
 253     __ move(r, tmp);
 254     return tmp;
 255   }
 256   return r;
 257 }
 258 
 259 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 260   LIR_Opr pointer = new_pointer_register();
 261   __ move(LIR_OprFact::intptrConst(counter), pointer);
 262   LIR_Address* addr = new LIR_Address(pointer, type);
 263   increment_counter(addr, step);
 264 }
 265 
 266 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 267   LIR_Opr temp = new_register(addr->type());
 268   __ move(addr, temp);
 269   __ add(temp, load_immediate(step, addr->type()), temp);
 270   __ move(temp, addr);
 271 }
 272 
 273 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 274   LIR_Opr o7opr = FrameMap::O7_opr;
 275   __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
 276   __ cmp(condition, o7opr, c);
 277 }
 278 
 279 
 280 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 281   LIR_Opr o7opr = FrameMap::O7_opr;
 282   __ load(new LIR_Address(base, disp, type), o7opr, info);
 283   __ cmp(condition, reg, o7opr);
 284 }
 285 
 286 
 287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 288   LIR_Opr o7opr = FrameMap::O7_opr;
 289   __ load(new LIR_Address(base, disp, type), o7opr, info);
 290   __ cmp(condition, reg, o7opr);
 291 }
 292 
 293 
 294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 295   assert(left != result, "should be different registers");
 296   if (is_power_of_2(c + 1)) {
 297     __ shift_left(left, log2_intptr(c + 1), result);
 298     __ sub(result, left, result);
 299     return true;
 300   } else if (is_power_of_2(c - 1)) {
 301     __ shift_left(left, log2_intptr(c - 1), result);
 302     __ add(result, left, result);
 303     return true;
 304   }
 305   return false;
 306 }
 307 
 308 
 309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 310   BasicType t = item->type();
 311   LIR_Opr sp_opr = FrameMap::SP_opr;
 312   if ((t == T_LONG || t == T_DOUBLE) &&
 313       ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
 314     __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
 315   } else {
 316     __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
 317   }
 318 }
 319 
 320 //----------------------------------------------------------------------
 321 //             visitor functions
 322 //----------------------------------------------------------------------
 323 
 324 
 325 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 326   assert(x->is_pinned(),"");
 327   bool needs_range_check = true;
 328   bool use_length = x->length() != NULL;
 329   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 330   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 331                                          !get_jobject_constant(x->value())->is_null_object() ||
 332                                          x->should_profile());
 333 
 334   LIRItem array(x->array(), this);
 335   LIRItem index(x->index(), this);
 336   LIRItem value(x->value(), this);
 337   LIRItem length(this);
 338 
 339   array.load_item();
 340   index.load_nonconstant();
 341 
 342   if (use_length) {
 343     needs_range_check = x->compute_needs_range_check();
 344     if (needs_range_check) {
 345       length.set_instruction(x->length());
 346       length.load_item();
 347     }
 348   }
 349   if (needs_store_check) {
 350     value.load_item();
 351   } else {
 352     value.load_for_store(x->elt_type());
 353   }
 354 
 355   set_no_result(x);
 356 
 357   // the CodeEmitInfo must be duplicated for each different
 358   // LIR-instruction because spilling can occur anywhere between two
 359   // instructions and so the debug information must be different
 360   CodeEmitInfo* range_check_info = state_for(x);
 361   CodeEmitInfo* null_check_info = NULL;
 362   if (x->needs_null_check()) {
 363     null_check_info = new CodeEmitInfo(range_check_info);
 364   }
 365 
 366   // emit array address setup early so it schedules better
 367   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 368 
 369   if (GenerateRangeChecks && needs_range_check) {
 370     if (use_length) {
 371       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 372       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 373     } else {
 374       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 375       // range_check also does the null check
 376       null_check_info = NULL;
 377     }
 378   }
 379 
 380   if (GenerateArrayStoreCheck && needs_store_check) {
 381     LIR_Opr tmp1 = FrameMap::G1_opr;
 382     LIR_Opr tmp2 = FrameMap::G3_opr;
 383     LIR_Opr tmp3 = FrameMap::G5_opr;
 384 
 385     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 386     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
 387   }
 388 
 389   if (obj_store) {
 390     // Needs GC write barriers.
 391     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
 392                 true /* do_load */, false /* patch */, NULL);
 393   }
 394   __ move(value.result(), array_addr, null_check_info);
 395   if (obj_store) {
 396     // Precise card mark
 397     post_barrier(LIR_OprFact::address(array_addr), value.result());
 398   }
 399 }
 400 
 401 
 402 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 403   assert(x->is_pinned(),"");
 404   LIRItem obj(x->obj(), this);
 405   obj.load_item();
 406 
 407   set_no_result(x);
 408 
 409   LIR_Opr lock    = FrameMap::G1_opr;
 410   LIR_Opr scratch = FrameMap::G3_opr;
 411   LIR_Opr hdr     = FrameMap::G4_opr;
 412 
 413   CodeEmitInfo* info_for_exception = NULL;
 414   if (x->needs_null_check()) {
 415     info_for_exception = state_for(x);
 416   }
 417 
 418   // this CodeEmitInfo must not have the xhandlers because here the
 419   // object is already locked (xhandlers expects object to be unlocked)
 420   CodeEmitInfo* info = state_for(x, x->state(), true);
 421   monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
 422 }
 423 
 424 
 425 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 426   assert(x->is_pinned(),"");
 427   LIRItem obj(x->obj(), this);
 428   obj.dont_load_item();
 429 
 430   set_no_result(x);
 431   LIR_Opr lock      = FrameMap::G1_opr;
 432   LIR_Opr hdr       = FrameMap::G3_opr;
 433   LIR_Opr obj_temp  = FrameMap::G4_opr;
 434   monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
 435 }
 436 
 437 
 438 // _ineg, _lneg, _fneg, _dneg
 439 void LIRGenerator::do_NegateOp(NegateOp* x) {
 440   LIRItem value(x->x(), this);
 441   value.load_item();
 442   LIR_Opr reg = rlock_result(x);
 443   __ negate(value.result(), reg);
 444 }
 445 
 446 
 447 
 448 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 449 //      _dadd, _dmul, _dsub, _ddiv, _drem
 450 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 451   switch (x->op()) {
 452   case Bytecodes::_fadd:
 453   case Bytecodes::_fmul:
 454   case Bytecodes::_fsub:
 455   case Bytecodes::_fdiv:
 456   case Bytecodes::_dadd:
 457   case Bytecodes::_dmul:
 458   case Bytecodes::_dsub:
 459   case Bytecodes::_ddiv: {
 460     LIRItem left(x->x(), this);
 461     LIRItem right(x->y(), this);
 462     left.load_item();
 463     right.load_item();
 464     rlock_result(x);
 465     arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
 466   }
 467   break;
 468 
 469   case Bytecodes::_frem:
 470   case Bytecodes::_drem: {
 471     address entry;
 472     switch (x->op()) {
 473     case Bytecodes::_frem:
 474       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 475       break;
 476     case Bytecodes::_drem:
 477       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 478       break;
 479     default:
 480       ShouldNotReachHere();
 481     }
 482     LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
 483     set_result(x, result);
 484   }
 485   break;
 486 
 487   default: ShouldNotReachHere();
 488   }
 489 }
 490 
 491 
 492 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 493 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 494   switch (x->op()) {
 495   case Bytecodes::_lrem:
 496   case Bytecodes::_lmul:
 497   case Bytecodes::_ldiv: {
 498 
 499     if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 500       LIRItem right(x->y(), this);
 501       right.load_item();
 502 
 503       CodeEmitInfo* info = state_for(x);
 504       LIR_Opr item = right.result();
 505       assert(item->is_register(), "must be");
 506       __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
 507       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 508     }
 509 
 510     address entry;
 511     switch (x->op()) {
 512     case Bytecodes::_lrem:
 513       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 514       break; // check if dividend is 0 is done elsewhere
 515     case Bytecodes::_ldiv:
 516       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 517       break; // check if dividend is 0 is done elsewhere
 518     case Bytecodes::_lmul:
 519       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 520       break;
 521     default:
 522       ShouldNotReachHere();
 523     }
 524 
 525     // order of arguments to runtime call is reversed.
 526     LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
 527     set_result(x, result);
 528     break;
 529   }
 530   case Bytecodes::_ladd:
 531   case Bytecodes::_lsub: {
 532     LIRItem left(x->x(), this);
 533     LIRItem right(x->y(), this);
 534     left.load_item();
 535     right.load_item();
 536     rlock_result(x);
 537 
 538     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 539     break;
 540   }
 541   default: ShouldNotReachHere();
 542   }
 543 }
 544 
 545 
 546 // Returns if item is an int constant that can be represented by a simm13
 547 static bool is_simm13(LIR_Opr item) {
 548   if (item->is_constant() && item->type() == T_INT) {
 549     return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
 550   } else {
 551     return false;
 552   }
 553 }
 554 
 555 
 556 // for: _iadd, _imul, _isub, _idiv, _irem
 557 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 558   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
 559   LIRItem left(x->x(), this);
 560   LIRItem right(x->y(), this);
 561   // missing test if instr is commutative and if we should swap
 562   right.load_nonconstant();
 563   assert(right.is_constant() || right.is_register(), "wrong state of right");
 564   left.load_item();
 565   rlock_result(x);
 566   if (is_div_rem) {
 567     CodeEmitInfo* info = state_for(x);
 568     LIR_Opr tmp = FrameMap::G1_opr;
 569     if (x->op() == Bytecodes::_irem) {
 570       __ irem(left.result(), right.result(), x->operand(), tmp, info);
 571     } else if (x->op() == Bytecodes::_idiv) {
 572       __ idiv(left.result(), right.result(), x->operand(), tmp, info);
 573     }
 574   } else {
 575     arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
 576   }
 577 }
 578 
 579 
 580 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 581   ValueTag tag = x->type()->tag();
 582   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 583   switch (tag) {
 584     case floatTag:
 585     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 586     case longTag:    do_ArithmeticOp_Long(x); return;
 587     case intTag:     do_ArithmeticOp_Int(x);  return;
 588   }
 589   ShouldNotReachHere();
 590 }
 591 
 592 
 593 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 594 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 595   LIRItem value(x->x(), this);
 596   LIRItem count(x->y(), this);
 597   // Long shift destroys count register
 598   if (value.type()->is_long()) {
 599     count.set_destroys_register();
 600   }
 601   value.load_item();
 602   // the old backend doesn't support this
 603   if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
 604     jint c = count.get_jint_constant() & 0x1f;
 605     assert(c >= 0 && c < 32, "should be small");
 606     count.dont_load_item();
 607   } else {
 608     count.load_item();
 609   }
 610   LIR_Opr reg = rlock_result(x);
 611   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 612 }
 613 
 614 
 615 // _iand, _land, _ior, _lor, _ixor, _lxor
 616 void LIRGenerator::do_LogicOp(LogicOp* x) {
 617   LIRItem left(x->x(), this);
 618   LIRItem right(x->y(), this);
 619 
 620   left.load_item();
 621   right.load_nonconstant();
 622   LIR_Opr reg = rlock_result(x);
 623 
 624   logic_op(x->op(), reg, left.result(), right.result());
 625 }
 626 
 627 
 628 
 629 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 630 void LIRGenerator::do_CompareOp(CompareOp* x) {
 631   LIRItem left(x->x(), this);
 632   LIRItem right(x->y(), this);
 633   left.load_item();
 634   right.load_item();
 635   LIR_Opr reg = rlock_result(x);
 636   if (x->x()->type()->is_float_kind()) {
 637     Bytecodes::Code code = x->op();
 638     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 639   } else if (x->x()->type()->tag() == longTag) {
 640     __ lcmp2int(left.result(), right.result(), reg);
 641   } else {
 642     Unimplemented();
 643   }
 644 }
 645 
 646 
 647 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 648   assert(x->number_of_arguments() == 4, "wrong type");
 649   LIRItem obj   (x->argument_at(0), this);  // object
 650   LIRItem offset(x->argument_at(1), this);  // offset of field
 651   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 652   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 653 
 654   // Use temps to avoid kills
 655   LIR_Opr t1 = FrameMap::G1_opr;
 656   LIR_Opr t2 = FrameMap::G3_opr;
 657   LIR_Opr addr = new_pointer_register();
 658 
 659   // get address of field
 660   obj.load_item();
 661   offset.load_item();
 662   cmp.load_item();
 663   val.load_item();
 664 
 665   __ add(obj.result(), offset.result(), addr);
 666 
 667   if (type == objectType) {  // Write-barrier needed for Object fields.
 668     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
 669                 true /* do_load */, false /* patch */, NULL);
 670   }
 671 
 672   if (type == objectType)
 673     __ cas_obj(addr, cmp.result(), val.result(), t1, t2);
 674   else if (type == intType)
 675     __ cas_int(addr, cmp.result(), val.result(), t1, t2);
 676   else if (type == longType)
 677     __ cas_long(addr, cmp.result(), val.result(), t1, t2);
 678   else {
 679     ShouldNotReachHere();
 680   }
 681   // generate conditional move of boolean result
 682   LIR_Opr result = rlock_result(x);
 683   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 684            result, as_BasicType(type));
 685   if (type == objectType) {  // Write-barrier needed for Object fields.
 686     // Precise card mark since could either be object or array
 687     post_barrier(addr, val.result());
 688   }
 689 }
 690 
 691 
 692 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 693   switch (x->id()) {
 694     case vmIntrinsics::_dabs:
 695     case vmIntrinsics::_dsqrt: {
 696       assert(x->number_of_arguments() == 1, "wrong type");
 697       LIRItem value(x->argument_at(0), this);
 698       value.load_item();
 699       LIR_Opr dst = rlock_result(x);
 700 
 701       switch (x->id()) {
 702       case vmIntrinsics::_dsqrt: {
 703         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 704         break;
 705       }
 706       case vmIntrinsics::_dabs: {
 707         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 708         break;
 709       }
 710       }
 711       break;
 712     }
 713     case vmIntrinsics::_dlog10: // fall through
 714     case vmIntrinsics::_dlog: // fall through
 715     case vmIntrinsics::_dsin: // fall through
 716     case vmIntrinsics::_dtan: // fall through
 717     case vmIntrinsics::_dcos: // fall through
 718     case vmIntrinsics::_dexp: {
 719       assert(x->number_of_arguments() == 1, "wrong type");
 720 
 721       address runtime_entry = NULL;
 722       switch (x->id()) {
 723       case vmIntrinsics::_dsin:
 724         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 725         break;
 726       case vmIntrinsics::_dcos:
 727         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 728         break;
 729       case vmIntrinsics::_dtan:
 730         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 731         break;
 732       case vmIntrinsics::_dlog:
 733         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 734         break;
 735       case vmIntrinsics::_dlog10:
 736         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 737         break;
 738       case vmIntrinsics::_dexp:
 739         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 740         break;
 741       default:
 742         ShouldNotReachHere();
 743       }
 744 
 745       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
 746       set_result(x, result);
 747       break;
 748     }
 749     case vmIntrinsics::_dpow: {
 750       assert(x->number_of_arguments() == 2, "wrong type");
 751       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 752       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
 753       set_result(x, result);
 754       break;
 755     }
 756   }
 757 }
 758 
 759 
 760 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 761   assert(x->number_of_arguments() == 5, "wrong type");
 762 
 763   // Make all state_for calls early since they can emit code
 764   CodeEmitInfo* info = state_for(x, x->state());
 765 
 766   // Note: spill caller save before setting the item
 767   LIRItem src     (x->argument_at(0), this);
 768   LIRItem src_pos (x->argument_at(1), this);
 769   LIRItem dst     (x->argument_at(2), this);
 770   LIRItem dst_pos (x->argument_at(3), this);
 771   LIRItem length  (x->argument_at(4), this);
 772   // load all values in callee_save_registers, as this makes the
 773   // parameter passing to the fast case simpler
 774   src.load_item_force     (rlock_callee_saved(T_OBJECT));
 775   src_pos.load_item_force (rlock_callee_saved(T_INT));
 776   dst.load_item_force     (rlock_callee_saved(T_OBJECT));
 777   dst_pos.load_item_force (rlock_callee_saved(T_INT));
 778   length.load_item_force  (rlock_callee_saved(T_INT));
 779 
 780   int flags;
 781   ciArrayKlass* expected_type;
 782   arraycopy_helper(x, &flags, &expected_type);
 783 
 784   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
 785                length.result(), rlock_callee_saved(T_INT),
 786                expected_type, flags, info);
 787   set_no_result(x);
 788 }
 789 
 790 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
 791 // _i2b, _i2c, _i2s
 792 void LIRGenerator::do_Convert(Convert* x) {
 793 
 794   switch (x->op()) {
 795     case Bytecodes::_f2l:
 796     case Bytecodes::_d2l:
 797     case Bytecodes::_d2i:
 798     case Bytecodes::_l2f:
 799     case Bytecodes::_l2d: {
 800 
 801       address entry;
 802       switch (x->op()) {
 803       case Bytecodes::_l2f:
 804         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
 805         break;
 806       case Bytecodes::_l2d:
 807         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
 808         break;
 809       case Bytecodes::_f2l:
 810         entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
 811         break;
 812       case Bytecodes::_d2l:
 813         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
 814         break;
 815       case Bytecodes::_d2i:
 816         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
 817         break;
 818       default:
 819         ShouldNotReachHere();
 820       }
 821       LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
 822       set_result(x, result);
 823       break;
 824     }
 825 
 826     case Bytecodes::_i2f:
 827     case Bytecodes::_i2d: {
 828       LIRItem value(x->value(), this);
 829 
 830       LIR_Opr reg = rlock_result(x);
 831       // To convert an int to double, we need to load the 32-bit int
 832       // from memory into a single precision floating point register
 833       // (even numbered). Then the sparc fitod instruction takes care
 834       // of the conversion. This is a bit ugly, but is the best way to
 835       // get the int value in a single precision floating point register
 836       value.load_item();
 837       LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
 838       __ convert(x->op(), tmp, reg);
 839       break;
 840     }
 841     break;
 842 
 843     case Bytecodes::_i2l:
 844     case Bytecodes::_i2b:
 845     case Bytecodes::_i2c:
 846     case Bytecodes::_i2s:
 847     case Bytecodes::_l2i:
 848     case Bytecodes::_f2d:
 849     case Bytecodes::_d2f: { // inline code
 850       LIRItem value(x->value(), this);
 851 
 852       value.load_item();
 853       LIR_Opr reg = rlock_result(x);
 854       __ convert(x->op(), value.result(), reg, false);
 855     }
 856     break;
 857 
 858     case Bytecodes::_f2i: {
 859       LIRItem value (x->value(), this);
 860       value.set_destroys_register();
 861       value.load_item();
 862       LIR_Opr reg = rlock_result(x);
 863       set_vreg_flag(reg, must_start_in_memory);
 864       __ convert(x->op(), value.result(), reg, false);
 865     }
 866     break;
 867 
 868     default: ShouldNotReachHere();
 869   }
 870 }
 871 
 872 
 873 void LIRGenerator::do_NewInstance(NewInstance* x) {
 874   // This instruction can be deoptimized in the slow path : use
 875   // O0 as result register.
 876   const LIR_Opr reg = result_register_for(x->type());
 877 #ifndef PRODUCT
 878   if (PrintNotLoaded && !x->klass()->is_loaded()) {
 879     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
 880   }
 881 #endif
 882   CodeEmitInfo* info = state_for(x, x->state());
 883   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 884   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 885   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 886   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 887   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
 888   new_instance(reg, x->klass(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
 889   LIR_Opr result = rlock_result(x);
 890   __ move(reg, result);
 891 }
 892 
 893 
 894 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
 895   // Evaluate state_for early since it may emit code
 896   CodeEmitInfo* info = state_for(x, x->state());
 897 
 898   LIRItem length(x->length(), this);
 899   length.load_item();
 900 
 901   LIR_Opr reg = result_register_for(x->type());
 902   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 903   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 904   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 905   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 906   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
 907   LIR_Opr len = length.result();
 908   BasicType elem_type = x->elt_type();
 909 
 910   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
 911 
 912   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
 913   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
 914 
 915   LIR_Opr result = rlock_result(x);
 916   __ move(reg, result);
 917 }
 918 
 919 
 920 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
 921   // Evaluate state_for early since it may emit code.
 922   CodeEmitInfo* info = state_for(x, x->state());
 923   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
 924   // and therefore provide the state before the parameters have been consumed
 925   CodeEmitInfo* patching_info = NULL;
 926   if (!x->klass()->is_loaded() || PatchALot) {
 927     patching_info = state_for(x, x->state_before());
 928   }
 929 
 930   LIRItem length(x->length(), this);
 931   length.load_item();
 932 
 933   const LIR_Opr reg = result_register_for(x->type());
 934   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 935   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 936   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 937   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 938   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
 939   LIR_Opr len = length.result();
 940 
 941   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
 942   ciMetadata* obj = ciObjArrayKlass::make(x->klass());
 943   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
 944     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
 945   }
 946   klass2reg_with_patching(klass_reg, obj, patching_info);
 947   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
 948 
 949   LIR_Opr result = rlock_result(x);
 950   __ move(reg, result);
 951 }
 952 
 953 
 954 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
 955   Values* dims = x->dims();
 956   int i = dims->length();
 957   LIRItemList* items = new LIRItemList(dims->length(), NULL);
 958   while (i-- > 0) {
 959     LIRItem* size = new LIRItem(dims->at(i), this);
 960     items->at_put(i, size);
 961   }
 962 
 963   // Evaluate state_for early since it may emit code.
 964   CodeEmitInfo* patching_info = NULL;
 965   if (!x->klass()->is_loaded() || PatchALot) {
 966     patching_info = state_for(x, x->state_before());
 967 
 968     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
 969     // clone all handlers (NOTE: Usually this is handled transparently
 970     // by the CodeEmitInfo cloning logic in CodeStub constructors but
 971     // is done explicitly here because a stub isn't being used).
 972     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
 973   }
 974   CodeEmitInfo* info = state_for(x, x->state());
 975 
 976   i = dims->length();
 977   while (i-- > 0) {
 978     LIRItem* size = items->at(i);
 979     size->load_item();
 980     store_stack_parameter (size->result(),
 981                            in_ByteSize(STACK_BIAS +
 982                                        frame::memory_parameter_word_sp_offset * wordSize +
 983                                        i * sizeof(jint)));
 984   }
 985 
 986   // This instruction can be deoptimized in the slow path : use
 987   // O0 as result register.
 988   const LIR_Opr klass_reg = FrameMap::O0_metadata_opr;
 989   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
 990   LIR_Opr rank = FrameMap::O1_opr;
 991   __ move(LIR_OprFact::intConst(x->rank()), rank);
 992   LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
 993   int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
 994   __ add(FrameMap::SP_opr,
 995          LIR_OprFact::intptrConst(offset_from_sp),
 996          varargs);
 997   LIR_OprList* args = new LIR_OprList(3);
 998   args->append(klass_reg);
 999   args->append(rank);
1000   args->append(varargs);
1001   const LIR_Opr reg = result_register_for(x->type());
1002   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1003                   LIR_OprFact::illegalOpr,
1004                   reg, args, info);
1005 
1006   LIR_Opr result = rlock_result(x);
1007   __ move(reg, result);
1008 }
1009 
1010 
1011 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1012 }
1013 
1014 
1015 void LIRGenerator::do_CheckCast(CheckCast* x) {
1016   LIRItem obj(x->obj(), this);
1017   CodeEmitInfo* patching_info = NULL;
1018   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1019     // must do this before locking the destination register as an oop register,
1020     // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
1021     patching_info = state_for(x, x->state_before());
1022   }
1023   obj.load_item();
1024   LIR_Opr out_reg = rlock_result(x);
1025   CodeStub* stub;
1026   CodeEmitInfo* info_for_exception = state_for(x);
1027 
1028   if (x->is_incompatible_class_change_check()) {
1029     assert(patching_info == NULL, "can't patch this");
1030     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1031   } else {
1032     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1033   }
1034   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1035   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1036   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1037   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1038                x->direct_compare(), info_for_exception, patching_info, stub,
1039                x->profiled_method(), x->profiled_bci());
1040 }
1041 
1042 
1043 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1044   LIRItem obj(x->obj(), this);
1045   CodeEmitInfo* patching_info = NULL;
1046   if (!x->klass()->is_loaded() || PatchALot) {
1047     patching_info = state_for(x, x->state_before());
1048   }
1049   // ensure the result register is not the input register because the result is initialized before the patching safepoint
1050   obj.load_item();
1051   LIR_Opr out_reg = rlock_result(x);
1052   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1053   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1054   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1055   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1056                 x->direct_compare(), patching_info,
1057                 x->profiled_method(), x->profiled_bci());
1058 }
1059 
1060 
1061 void LIRGenerator::do_If(If* x) {
1062   assert(x->number_of_sux() == 2, "inconsistency");
1063   ValueTag tag = x->x()->type()->tag();
1064   LIRItem xitem(x->x(), this);
1065   LIRItem yitem(x->y(), this);
1066   LIRItem* xin = &xitem;
1067   LIRItem* yin = &yitem;
1068   If::Condition cond = x->cond();
1069 
1070   if (tag == longTag) {
1071     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1072     // mirror for other conditions
1073     if (cond == If::gtr || cond == If::leq) {
1074       // swap inputs
1075       cond = Instruction::mirror(cond);
1076       xin = &yitem;
1077       yin = &xitem;
1078     }
1079     xin->set_destroys_register();
1080   }
1081 
1082   LIR_Opr left = LIR_OprFact::illegalOpr;
1083   LIR_Opr right = LIR_OprFact::illegalOpr;
1084 
1085   xin->load_item();
1086   left = xin->result();
1087 
1088   if (is_simm13(yin->result())) {
1089     // inline int constants which are small enough to be immediate operands
1090     right = LIR_OprFact::value_type(yin->value()->type());
1091   } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1092              (cond == If::eql || cond == If::neq)) {
1093     // inline long zero
1094     right = LIR_OprFact::value_type(yin->value()->type());
1095   } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
1096     right = LIR_OprFact::value_type(yin->value()->type());
1097   } else {
1098     yin->load_item();
1099     right = yin->result();
1100   }
1101   set_no_result(x);
1102 
1103   // add safepoint before generating condition code so it can be recomputed
1104   if (x->is_safepoint()) {
1105     // increment backedge counter if needed
1106     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1107     __ safepoint(new_register(T_INT), state_for(x, x->state_before()));
1108   }
1109 
1110   __ cmp(lir_cond(cond), left, right);
1111   // Generate branch profiling. Profiling code doesn't kill flags.
1112   profile_branch(x, cond);
1113   move_to_phi(x->state());
1114   if (x->x()->type()->is_float_kind()) {
1115     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1116   } else {
1117     __ branch(lir_cond(cond), right->type(), x->tsux());
1118   }
1119   assert(x->default_sux() == x->fsux(), "wrong destination above");
1120   __ jump(x->default_sux());
1121 }
1122 
1123 
1124 LIR_Opr LIRGenerator::getThreadPointer() {
1125   return FrameMap::as_pointer_opr(G2);
1126 }
1127 
1128 
1129 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1130   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
1131   LIR_OprList* args = new LIR_OprList(1);
1132   args->append(FrameMap::O0_opr);
1133   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1134   __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
1135 }
1136 
1137 
1138 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1139                                         CodeEmitInfo* info) {
1140 #ifdef _LP64
1141   __ store(value, address, info);
1142 #else
1143   __ volatile_store_mem_reg(value, address, info);
1144 #endif
1145 }
1146 
1147 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1148                                        CodeEmitInfo* info) {
1149 #ifdef _LP64
1150   __ load(address, result, info);
1151 #else
1152   __ volatile_load_mem_reg(address, result, info);
1153 #endif
1154 }
1155 
1156 
1157 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1158                                      BasicType type, bool is_volatile) {
1159   LIR_Opr base_op = src;
1160   LIR_Opr index_op = offset;
1161 
1162   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1163 #ifndef _LP64
1164   if (is_volatile && type == T_LONG) {
1165     __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none);
1166   } else
1167 #endif
1168     {
1169       if (type == T_BOOLEAN) {
1170         type = T_BYTE;
1171       }
1172       LIR_Address* addr;
1173       if (type == T_ARRAY || type == T_OBJECT) {
1174         LIR_Opr tmp = new_pointer_register();
1175         __ add(base_op, index_op, tmp);
1176         addr = new LIR_Address(tmp, type);
1177       } else {
1178         addr = new LIR_Address(base_op, index_op, type);
1179       }
1180 
1181       if (is_obj) {
1182         pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1183                     true /* do_load */, false /* patch */, NULL);
1184         // _bs->c1_write_barrier_pre(this, LIR_OprFact::address(addr));
1185       }
1186       __ move(data, addr);
1187       if (is_obj) {
1188         // This address is precise
1189         post_barrier(LIR_OprFact::address(addr), data);
1190       }
1191     }
1192 }
1193 
1194 
1195 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1196                                      BasicType type, bool is_volatile) {
1197 #ifndef _LP64
1198   if (is_volatile && type == T_LONG) {
1199     __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none);
1200   } else
1201 #endif
1202     {
1203     LIR_Address* addr = new LIR_Address(src, offset, type);
1204     __ load(addr, dst);
1205   }
1206 }
1207 
1208 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1209   BasicType type = x->basic_type();
1210   LIRItem src(x->object(), this);
1211   LIRItem off(x->offset(), this);
1212   LIRItem value(x->value(), this);
1213 
1214   src.load_item();
1215   value.load_item();
1216   off.load_nonconstant();
1217 
1218   LIR_Opr dst = rlock_result(x, type);
1219   LIR_Opr data = value.result();
1220   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1221   LIR_Opr offset = off.result();
1222 
1223   if (data != dst) {
1224     __ move(data, dst);
1225     data = dst;
1226   }
1227 
1228   assert (!x->is_add() && (type == T_INT || (is_obj LP64_ONLY(&& UseCompressedOops))), "unexpected type");
1229   LIR_Address* addr;
1230   if (offset->is_constant()) {
1231 
1232 #ifdef _LP64
1233     jlong l = offset->as_jlong();
1234     assert((jlong)((jint)l) == l, "offset too large for constant");
1235     jint c = (jint)l;
1236 #else
1237     jint c = offset->as_jint();
1238 #endif
1239     addr = new LIR_Address(src.result(), c, type);
1240   } else {
1241     addr = new LIR_Address(src.result(), offset, type);
1242   }
1243 
1244   LIR_Opr tmp = LIR_OprFact::illegalOpr;
1245   LIR_Opr ptr = LIR_OprFact::illegalOpr;
1246 
1247   if (is_obj) {
1248     // Do the pre-write barrier, if any.
1249     // barriers on sparc don't work with a base + index address
1250     tmp = FrameMap::G3_opr;
1251     ptr = new_pointer_register();
1252     __ add(src.result(), off.result(), ptr);
1253     pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */,
1254                 true /* do_load */, false /* patch */, NULL);
1255   }
1256   __ xchg(LIR_OprFact::address(addr), data, dst, tmp);
1257   if (is_obj) {
1258     // Seems to be a precise address
1259     post_barrier(ptr, data);
1260   }
1261 }