1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_x86.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 // Item will be loaded into a byte register; Intel only
  47 void LIRItem::load_byte_item() {
  48   load_item();
  49   LIR_Opr res = result();
  50 
  51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
  52     // make sure that it is a byte register
  53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
  54            "can't load floats in byte register");
  55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
  56     __ move(res, reg);
  57 
  58     _result = reg;
  59   }
  60 }
  61 
  62 
  63 void LIRItem::load_nonconstant() {
  64   LIR_Opr r = value()->operand();
  65   if (r->is_constant()) {
  66     _result = r;
  67   } else {
  68     load_item();
  69   }
  70 }
  71 
  72 //--------------------------------------------------------------
  73 //               LIRGenerator
  74 //--------------------------------------------------------------
  75 
  76 
  77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
  78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
  79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
  80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
  81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
  82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
  83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
  84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  85 
  86 
  87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  88   LIR_Opr opr;
  89   switch (type->tag()) {
  90     case intTag:     opr = FrameMap::rax_opr;          break;
  91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
  92     case longTag:    opr = FrameMap::long0_opr;        break;
  93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
  94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
  95 
  96     case addressTag:
  97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  98   }
  99 
 100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
 101   return opr;
 102 }
 103 
 104 
 105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 106   LIR_Opr reg = new_register(T_INT);
 107   set_vreg_flag(reg, LIRGenerator::byte_reg);
 108   return reg;
 109 }
 110 
 111 
 112 //--------- loading items into registers --------------------------------
 113 
 114 
 115 // i486 instructions can inline constants
 116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 117   if (type == T_SHORT || type == T_CHAR) {
 118     // there is no immediate move of word values in asembler_i486.?pp
 119     return false;
 120   }
 121   Constant* c = v->as_Constant();
 122   if (c && c->state_before() == NULL) {
 123     // constants of any type can be stored directly, except for
 124     // unloaded object constants.
 125     return true;
 126   }
 127   return false;
 128 }
 129 
 130 
 131 bool LIRGenerator::can_inline_as_constant(Value v) const {
 132   if (v->type()->tag() == longTag) return false;
 133   return v->type()->tag() != objectTag ||
 134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
 135 }
 136 
 137 
 138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
 139   if (c->type() == T_LONG) return false;
 140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
 141 }
 142 
 143 
 144 LIR_Opr LIRGenerator::safepoint_poll_register() {
 145   return LIR_OprFact::illegalOpr;
 146 }
 147 
 148 
 149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 150                                             int shift, int disp, BasicType type) {
 151   assert(base->is_register(), "must be");
 152   if (index->is_constant()) {
 153     return new LIR_Address(base,
 154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
 155                            type);
 156   } else {
 157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
 158   }
 159 }
 160 
 161 
 162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 163                                               BasicType type, bool needs_card_mark) {
 164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 165 
 166   LIR_Address* addr;
 167   if (index_opr->is_constant()) {
 168     int elem_size = type2aelembytes(type);
 169     addr = new LIR_Address(array_opr,
 170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
 171   } else {
 172 #ifdef _LP64
 173     if (index_opr->type() == T_INT) {
 174       LIR_Opr tmp = new_register(T_LONG);
 175       __ convert(Bytecodes::_i2l, index_opr, tmp);
 176       index_opr = tmp;
 177     }
 178 #endif // _LP64
 179     addr =  new LIR_Address(array_opr,
 180                             index_opr,
 181                             LIR_Address::scale(type),
 182                             offset_in_bytes, type);
 183   }
 184   if (needs_card_mark) {
 185     // This store will need a precise card mark, so go ahead and
 186     // compute the full adddres instead of computing once for the
 187     // store and again for the card mark.
 188     LIR_Opr tmp = new_pointer_register();
 189     __ leal(LIR_OprFact::address(addr), tmp);
 190     return new LIR_Address(tmp, type);
 191   } else {
 192     return addr;
 193   }
 194 }
 195 
 196 
 197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 198   LIR_Opr r;
 199   if (type == T_LONG) {
 200     r = LIR_OprFact::longConst(x);
 201   } else if (type == T_INT) {
 202     r = LIR_OprFact::intConst(x);
 203   } else {
 204     ShouldNotReachHere();
 205   }
 206   return r;
 207 }
 208 
 209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 210   LIR_Opr pointer = new_pointer_register();
 211   __ move(LIR_OprFact::intptrConst(counter), pointer);
 212   LIR_Address* addr = new LIR_Address(pointer, type);
 213   increment_counter(addr, step);
 214 }
 215 
 216 
 217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
 219 }
 220 
 221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 222   __ cmp_mem_int(condition, base, disp, c, info);
 223 }
 224 
 225 
 226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 228 }
 229 
 230 
 231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 233 }
 234 
 235 
 236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 237   if (tmp->is_valid()) {
 238     if (is_power_of_2(c + 1)) {
 239       __ move(left, tmp);
 240       __ shift_left(left, log2_intptr(c + 1), left);
 241       __ sub(left, tmp, result);
 242       return true;
 243     } else if (is_power_of_2(c - 1)) {
 244       __ move(left, tmp);
 245       __ shift_left(left, log2_intptr(c - 1), left);
 246       __ add(left, tmp, result);
 247       return true;
 248     }
 249   }
 250   return false;
 251 }
 252 
 253 
 254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 255   BasicType type = item->type();
 256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
 257 }
 258 
 259 //----------------------------------------------------------------------
 260 //             visitor functions
 261 //----------------------------------------------------------------------
 262 
 263 
 264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 265   assert(x->is_pinned(),"");
 266   bool needs_range_check = x->compute_needs_range_check();
 267   bool use_length = x->length() != NULL;
 268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 270                                          !get_jobject_constant(x->value())->is_null_object() ||
 271                                          x->should_profile());
 272 
 273   LIRItem array(x->array(), this);
 274   LIRItem index(x->index(), this);
 275   LIRItem value(x->value(), this);
 276   LIRItem length(this);
 277 
 278   array.load_item();
 279   index.load_nonconstant();
 280 
 281   if (use_length && needs_range_check) {
 282     length.set_instruction(x->length());
 283     length.load_item();
 284 
 285   }
 286   if (needs_store_check) {
 287     value.load_item();
 288   } else {
 289     value.load_for_store(x->elt_type());
 290   }
 291 
 292   set_no_result(x);
 293 
 294   // the CodeEmitInfo must be duplicated for each different
 295   // LIR-instruction because spilling can occur anywhere between two
 296   // instructions and so the debug information must be different
 297   CodeEmitInfo* range_check_info = state_for(x);
 298   CodeEmitInfo* null_check_info = NULL;
 299   if (x->needs_null_check()) {
 300     null_check_info = new CodeEmitInfo(range_check_info);
 301   }
 302 
 303   // emit array address setup early so it schedules better
 304   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 305 
 306   if (GenerateRangeChecks && needs_range_check) {
 307     if (use_length) {
 308       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 309       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 310     } else {
 311       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 312       // range_check also does the null check
 313       null_check_info = NULL;
 314     }
 315   }
 316 
 317   if (GenerateArrayStoreCheck && needs_store_check) {
 318     LIR_Opr tmp1 = new_register(objectType);
 319     LIR_Opr tmp2 = new_register(objectType);
 320     LIR_Opr tmp3 = new_register(objectType);
 321 
 322     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 323     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
 324   }
 325 
 326   if (obj_store) {
 327     // Needs GC write barriers.
 328     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
 329                 true /* do_load */, false /* patch */, NULL);
 330     __ move(value.result(), array_addr, null_check_info);
 331     // Seems to be a precise
 332     post_barrier(LIR_OprFact::address(array_addr), value.result());
 333   } else {
 334     __ move(value.result(), array_addr, null_check_info);
 335   }
 336 }
 337 
 338 
 339 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 340   assert(x->is_pinned(),"");
 341   LIRItem obj(x->obj(), this);
 342   obj.load_item();
 343 
 344   set_no_result(x);
 345 
 346   // "lock" stores the address of the monitor stack slot, so this is not an oop
 347   LIR_Opr lock = new_register(T_INT);
 348   // Need a scratch register for biased locking on x86
 349   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 350   if (UseBiasedLocking) {
 351     scratch = new_register(T_INT);
 352   }
 353 
 354   CodeEmitInfo* info_for_exception = NULL;
 355   if (x->needs_null_check()) {
 356     info_for_exception = state_for(x);
 357   }
 358   // this CodeEmitInfo must not have the xhandlers because here the
 359   // object is already locked (xhandlers expect object to be unlocked)
 360   CodeEmitInfo* info = state_for(x, x->state(), true);
 361   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 362                         x->monitor_no(), info_for_exception, info);
 363 }
 364 
 365 
 366 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 367   assert(x->is_pinned(),"");
 368 
 369   LIRItem obj(x->obj(), this);
 370   obj.dont_load_item();
 371 
 372   LIR_Opr lock = new_register(T_INT);
 373   LIR_Opr obj_temp = new_register(T_INT);
 374   set_no_result(x);
 375   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 376 }
 377 
 378 
 379 // _ineg, _lneg, _fneg, _dneg
 380 void LIRGenerator::do_NegateOp(NegateOp* x) {
 381   LIRItem value(x->x(), this);
 382   value.set_destroys_register();
 383   value.load_item();
 384   LIR_Opr reg = rlock(x);
 385   __ negate(value.result(), reg);
 386 
 387   set_result(x, round_item(reg));
 388 }
 389 
 390 
 391 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 392 //      _dadd, _dmul, _dsub, _ddiv, _drem
 393 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 394   LIRItem left(x->x(),  this);
 395   LIRItem right(x->y(), this);
 396   LIRItem* left_arg  = &left;
 397   LIRItem* right_arg = &right;
 398   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
 399   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
 400   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
 401     left.load_item();
 402   } else {
 403     left.dont_load_item();
 404   }
 405 
 406   // do not load right operand if it is a constant.  only 0 and 1 are
 407   // loaded because there are special instructions for loading them
 408   // without memory access (not needed for SSE2 instructions)
 409   bool must_load_right = false;
 410   if (right.is_constant()) {
 411     LIR_Const* c = right.result()->as_constant_ptr();
 412     assert(c != NULL, "invalid constant");
 413     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
 414 
 415     if (c->type() == T_FLOAT) {
 416       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
 417     } else {
 418       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
 419     }
 420   }
 421 
 422   if (must_load_both) {
 423     // frem and drem destroy also right operand, so move it to a new register
 424     right.set_destroys_register();
 425     right.load_item();
 426   } else if (right.is_register() || must_load_right) {
 427     right.load_item();
 428   } else {
 429     right.dont_load_item();
 430   }
 431   LIR_Opr reg = rlock(x);
 432   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 433   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 434     tmp = new_register(T_DOUBLE);
 435   }
 436 
 437   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
 438     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
 439     LIR_Opr fpu0, fpu1;
 440     if (x->op() == Bytecodes::_frem) {
 441       fpu0 = LIR_OprFact::single_fpu(0);
 442       fpu1 = LIR_OprFact::single_fpu(1);
 443     } else {
 444       fpu0 = LIR_OprFact::double_fpu(0);
 445       fpu1 = LIR_OprFact::double_fpu(1);
 446     }
 447     __ move(right.result(), fpu1); // order of left and right operand is important!
 448     __ move(left.result(), fpu0);
 449     __ rem (fpu0, fpu1, fpu0);
 450     __ move(fpu0, reg);
 451 
 452   } else {
 453     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
 454   }
 455 
 456   set_result(x, round_item(reg));
 457 }
 458 
 459 
 460 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 461 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 462   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
 463     // long division is implemented as a direct call into the runtime
 464     LIRItem left(x->x(), this);
 465     LIRItem right(x->y(), this);
 466 
 467     // the check for division by zero destroys the right operand
 468     right.set_destroys_register();
 469 
 470     BasicTypeList signature(2);
 471     signature.append(T_LONG);
 472     signature.append(T_LONG);
 473     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 474 
 475     // check for division by zero (destroys registers of right operand!)
 476     CodeEmitInfo* info = state_for(x);
 477 
 478     const LIR_Opr result_reg = result_register_for(x->type());
 479     left.load_item_force(cc->at(1));
 480     right.load_item();
 481 
 482     __ move(right.result(), cc->at(0));
 483 
 484     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 485     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 486 
 487     address entry;
 488     switch (x->op()) {
 489     case Bytecodes::_lrem:
 490       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 491       break; // check if dividend is 0 is done elsewhere
 492     case Bytecodes::_ldiv:
 493       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 494       break; // check if dividend is 0 is done elsewhere
 495     case Bytecodes::_lmul:
 496       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 497       break;
 498     default:
 499       ShouldNotReachHere();
 500     }
 501 
 502     LIR_Opr result = rlock_result(x);
 503     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 504     __ move(result_reg, result);
 505   } else if (x->op() == Bytecodes::_lmul) {
 506     // missing test if instr is commutative and if we should swap
 507     LIRItem left(x->x(), this);
 508     LIRItem right(x->y(), this);
 509 
 510     // right register is destroyed by the long mul, so it must be
 511     // copied to a new register.
 512     right.set_destroys_register();
 513 
 514     left.load_item();
 515     right.load_item();
 516 
 517     LIR_Opr reg = FrameMap::long0_opr;
 518     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
 519     LIR_Opr result = rlock_result(x);
 520     __ move(reg, result);
 521   } else {
 522     // missing test if instr is commutative and if we should swap
 523     LIRItem left(x->x(), this);
 524     LIRItem right(x->y(), this);
 525 
 526     left.load_item();
 527     // don't load constants to save register
 528     right.load_nonconstant();
 529     rlock_result(x);
 530     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 531   }
 532 }
 533 
 534 
 535 
 536 // for: _iadd, _imul, _isub, _idiv, _irem
 537 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 538   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 539     // The requirements for division and modulo
 540     // input : rax,: dividend                         min_int
 541     //         reg: divisor   (may not be rax,/rdx)   -1
 542     //
 543     // output: rax,: quotient  (= rax, idiv reg)       min_int
 544     //         rdx: remainder (= rax, irem reg)       0
 545 
 546     // rax, and rdx will be destroyed
 547 
 548     // Note: does this invalidate the spec ???
 549     LIRItem right(x->y(), this);
 550     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
 551 
 552     // call state_for before load_item_force because state_for may
 553     // force the evaluation of other instructions that are needed for
 554     // correct debug info.  Otherwise the live range of the fix
 555     // register might be too long.
 556     CodeEmitInfo* info = state_for(x);
 557 
 558     left.load_item_force(divInOpr());
 559 
 560     right.load_item();
 561 
 562     LIR_Opr result = rlock_result(x);
 563     LIR_Opr result_reg;
 564     if (x->op() == Bytecodes::_idiv) {
 565       result_reg = divOutOpr();
 566     } else {
 567       result_reg = remOutOpr();
 568     }
 569 
 570     if (!ImplicitDiv0Checks) {
 571       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
 572       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 573     }
 574     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
 575     if (x->op() == Bytecodes::_irem) {
 576       __ irem(left.result(), right.result(), result_reg, tmp, info);
 577     } else if (x->op() == Bytecodes::_idiv) {
 578       __ idiv(left.result(), right.result(), result_reg, tmp, info);
 579     } else {
 580       ShouldNotReachHere();
 581     }
 582 
 583     __ move(result_reg, result);
 584   } else {
 585     // missing test if instr is commutative and if we should swap
 586     LIRItem left(x->x(),  this);
 587     LIRItem right(x->y(), this);
 588     LIRItem* left_arg = &left;
 589     LIRItem* right_arg = &right;
 590     if (x->is_commutative() && left.is_stack() && right.is_register()) {
 591       // swap them if left is real stack (or cached) and right is real register(not cached)
 592       left_arg = &right;
 593       right_arg = &left;
 594     }
 595 
 596     left_arg->load_item();
 597 
 598     // do not need to load right, as we can handle stack and constants
 599     if (x->op() == Bytecodes::_imul ) {
 600       // check if we can use shift instead
 601       bool use_constant = false;
 602       bool use_tmp = false;
 603       if (right_arg->is_constant()) {
 604         int iconst = right_arg->get_jint_constant();
 605         if (iconst > 0) {
 606           if (is_power_of_2(iconst)) {
 607             use_constant = true;
 608           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
 609             use_constant = true;
 610             use_tmp = true;
 611           }
 612         }
 613       }
 614       if (use_constant) {
 615         right_arg->dont_load_item();
 616       } else {
 617         right_arg->load_item();
 618       }
 619       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 620       if (use_tmp) {
 621         tmp = new_register(T_INT);
 622       }
 623       rlock_result(x);
 624 
 625       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 626     } else {
 627       right_arg->dont_load_item();
 628       rlock_result(x);
 629       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 630       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 631     }
 632   }
 633 }
 634 
 635 
 636 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 637   // when an operand with use count 1 is the left operand, then it is
 638   // likely that no move for 2-operand-LIR-form is necessary
 639   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 640     x->swap_operands();
 641   }
 642 
 643   ValueTag tag = x->type()->tag();
 644   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 645   switch (tag) {
 646     case floatTag:
 647     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 648     case longTag:    do_ArithmeticOp_Long(x); return;
 649     case intTag:     do_ArithmeticOp_Int(x);  return;
 650   }
 651   ShouldNotReachHere();
 652 }
 653 
 654 
 655 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 656 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 657   // count must always be in rcx
 658   LIRItem value(x->x(), this);
 659   LIRItem count(x->y(), this);
 660 
 661   ValueTag elemType = x->type()->tag();
 662   bool must_load_count = !count.is_constant() || elemType == longTag;
 663   if (must_load_count) {
 664     // count for long must be in register
 665     count.load_item_force(shiftCountOpr());
 666   } else {
 667     count.dont_load_item();
 668   }
 669   value.load_item();
 670   LIR_Opr reg = rlock_result(x);
 671 
 672   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 673 }
 674 
 675 
 676 // _iand, _land, _ior, _lor, _ixor, _lxor
 677 void LIRGenerator::do_LogicOp(LogicOp* x) {
 678   // when an operand with use count 1 is the left operand, then it is
 679   // likely that no move for 2-operand-LIR-form is necessary
 680   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 681     x->swap_operands();
 682   }
 683 
 684   LIRItem left(x->x(), this);
 685   LIRItem right(x->y(), this);
 686 
 687   left.load_item();
 688   right.load_nonconstant();
 689   LIR_Opr reg = rlock_result(x);
 690 
 691   logic_op(x->op(), reg, left.result(), right.result());
 692 }
 693 
 694 
 695 
 696 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 697 void LIRGenerator::do_CompareOp(CompareOp* x) {
 698   LIRItem left(x->x(), this);
 699   LIRItem right(x->y(), this);
 700   ValueTag tag = x->x()->type()->tag();
 701   if (tag == longTag) {
 702     left.set_destroys_register();
 703   }
 704   left.load_item();
 705   right.load_item();
 706   LIR_Opr reg = rlock_result(x);
 707 
 708   if (x->x()->type()->is_float_kind()) {
 709     Bytecodes::Code code = x->op();
 710     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 711   } else if (x->x()->type()->tag() == longTag) {
 712     __ lcmp2int(left.result(), right.result(), reg);
 713   } else {
 714     Unimplemented();
 715   }
 716 }
 717 
 718 
 719 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 720   assert(x->number_of_arguments() == 4, "wrong type");
 721   LIRItem obj   (x->argument_at(0), this);  // object
 722   LIRItem offset(x->argument_at(1), this);  // offset of field
 723   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 724   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 725 
 726   assert(obj.type()->tag() == objectTag, "invalid type");
 727 
 728   // In 64bit the type can be long, sparc doesn't have this assert
 729   // assert(offset.type()->tag() == intTag, "invalid type");
 730 
 731   assert(cmp.type()->tag() == type->tag(), "invalid type");
 732   assert(val.type()->tag() == type->tag(), "invalid type");
 733 
 734   // get address of field
 735   obj.load_item();
 736   offset.load_nonconstant();
 737 
 738   if (type == objectType) {
 739     cmp.load_item_force(FrameMap::rax_oop_opr);
 740     val.load_item();
 741   } else if (type == intType) {
 742     cmp.load_item_force(FrameMap::rax_opr);
 743     val.load_item();
 744   } else if (type == longType) {
 745     cmp.load_item_force(FrameMap::long0_opr);
 746     val.load_item_force(FrameMap::long1_opr);
 747   } else {
 748     ShouldNotReachHere();
 749   }
 750 
 751   LIR_Opr addr = new_pointer_register();
 752   LIR_Address* a;
 753   if(offset.result()->is_constant()) {
 754 #ifdef _LP64
 755     jlong c = offset.result()->as_jlong();
 756     if ((jlong)((jint)c) == c) {
 757       a = new LIR_Address(obj.result(),
 758                           (jint)c,
 759                           as_BasicType(type));
 760     } else {
 761       LIR_Opr tmp = new_register(T_LONG);
 762       __ move(offset.result(), tmp);
 763       a = new LIR_Address(obj.result(),
 764                           tmp,
 765                           as_BasicType(type));
 766     }
 767 #else
 768     a = new LIR_Address(obj.result(),
 769                         offset.result()->as_jint(),
 770                         as_BasicType(type));
 771 #endif
 772   } else {
 773     a = new LIR_Address(obj.result(),
 774                         offset.result(),
 775                         LIR_Address::times_1,
 776                         0,
 777                         as_BasicType(type));
 778   }
 779   __ leal(LIR_OprFact::address(a), addr);
 780 
 781   if (type == objectType) {  // Write-barrier needed for Object fields.
 782     // Do the pre-write barrier, if any.
 783     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
 784                 true /* do_load */, false /* patch */, NULL);
 785   }
 786 
 787   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 788   if (type == objectType)
 789     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
 790   else if (type == intType)
 791     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
 792   else if (type == longType)
 793     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
 794   else {
 795     ShouldNotReachHere();
 796   }
 797 
 798   // generate conditional move of boolean result
 799   LIR_Opr result = rlock_result(x);
 800   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 801            result, as_BasicType(type));
 802   if (type == objectType) {   // Write-barrier needed for Object fields.
 803     // Seems to be precise
 804     post_barrier(addr, val.result());
 805   }
 806 }
 807 
 808 
 809 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 810   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 811   LIRItem value(x->argument_at(0), this);
 812 
 813   bool use_fpu = false;
 814   if (UseSSE >= 2) {
 815     switch(x->id()) {
 816       case vmIntrinsics::_dsin:
 817       case vmIntrinsics::_dcos:
 818       case vmIntrinsics::_dtan:
 819       case vmIntrinsics::_dlog:
 820       case vmIntrinsics::_dlog10:
 821       case vmIntrinsics::_dexp:
 822       case vmIntrinsics::_dpow:
 823         use_fpu = true;
 824     }
 825   } else {
 826     value.set_destroys_register();
 827   }
 828 
 829   value.load_item();
 830 
 831   LIR_Opr calc_input = value.result();
 832   LIR_Opr calc_input2 = NULL;
 833   if (x->id() == vmIntrinsics::_dpow) {
 834     LIRItem extra_arg(x->argument_at(1), this);
 835     if (UseSSE < 2) {
 836       extra_arg.set_destroys_register();
 837     }
 838     extra_arg.load_item();
 839     calc_input2 = extra_arg.result();
 840   }
 841   LIR_Opr calc_result = rlock_result(x);
 842 
 843   // sin, cos, pow and exp need two free fpu stack slots, so register
 844   // two temporary operands
 845   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
 846   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
 847 
 848   if (use_fpu) {
 849     LIR_Opr tmp = FrameMap::fpu0_double_opr;
 850     int tmp_start = 1;
 851     if (calc_input2 != NULL) {
 852       __ move(calc_input2, tmp);
 853       tmp_start = 2;
 854       calc_input2 = tmp;
 855     }
 856     __ move(calc_input, tmp);
 857 
 858     calc_input = tmp;
 859     calc_result = tmp;
 860 
 861     tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
 862     tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
 863   }
 864 
 865   switch(x->id()) {
 866     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 867     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 868     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
 869     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
 870     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
 871     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
 872     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
 873     case vmIntrinsics::_dexp:   __ exp  (calc_input, calc_result,              tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
 874     case vmIntrinsics::_dpow:   __ pow  (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
 875     default:                    ShouldNotReachHere();
 876   }
 877 
 878   if (use_fpu) {
 879     __ move(calc_result, x->operand());
 880   }
 881 }
 882 
 883 
 884 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 885   assert(x->number_of_arguments() == 5, "wrong type");
 886 
 887   // Make all state_for calls early since they can emit code
 888   CodeEmitInfo* info = state_for(x, x->state());
 889 
 890   LIRItem src(x->argument_at(0), this);
 891   LIRItem src_pos(x->argument_at(1), this);
 892   LIRItem dst(x->argument_at(2), this);
 893   LIRItem dst_pos(x->argument_at(3), this);
 894   LIRItem length(x->argument_at(4), this);
 895 
 896   // operands for arraycopy must use fixed registers, otherwise
 897   // LinearScan will fail allocation (because arraycopy always needs a
 898   // call)
 899 
 900 #ifndef _LP64
 901   src.load_item_force     (FrameMap::rcx_oop_opr);
 902   src_pos.load_item_force (FrameMap::rdx_opr);
 903   dst.load_item_force     (FrameMap::rax_oop_opr);
 904   dst_pos.load_item_force (FrameMap::rbx_opr);
 905   length.load_item_force  (FrameMap::rdi_opr);
 906   LIR_Opr tmp =           (FrameMap::rsi_opr);
 907 #else
 908 
 909   // The java calling convention will give us enough registers
 910   // so that on the stub side the args will be perfect already.
 911   // On the other slow/special case side we call C and the arg
 912   // positions are not similar enough to pick one as the best.
 913   // Also because the java calling convention is a "shifted" version
 914   // of the C convention we can process the java args trivially into C
 915   // args without worry of overwriting during the xfer
 916 
 917   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 918   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 919   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 920   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 921   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 922 
 923   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 924 #endif // LP64
 925 
 926   set_no_result(x);
 927 
 928   int flags;
 929   ciArrayKlass* expected_type;
 930   arraycopy_helper(x, &flags, &expected_type);
 931 
 932   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 933 }
 934 
 935 
 936 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
 937 // _i2b, _i2c, _i2s
 938 LIR_Opr fixed_register_for(BasicType type) {
 939   switch (type) {
 940     case T_FLOAT:  return FrameMap::fpu0_float_opr;
 941     case T_DOUBLE: return FrameMap::fpu0_double_opr;
 942     case T_INT:    return FrameMap::rax_opr;
 943     case T_LONG:   return FrameMap::long0_opr;
 944     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
 945   }
 946 }
 947 
 948 void LIRGenerator::do_Convert(Convert* x) {
 949   // flags that vary for the different operations and different SSE-settings
 950   bool fixed_input, fixed_result, round_result, needs_stub;
 951 
 952   switch (x->op()) {
 953     case Bytecodes::_i2l: // fall through
 954     case Bytecodes::_l2i: // fall through
 955     case Bytecodes::_i2b: // fall through
 956     case Bytecodes::_i2c: // fall through
 957     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
 958 
 959     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
 960     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
 961     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
 962     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
 963     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
 964     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
 965     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
 966     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
 967     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
 968     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
 969     default: ShouldNotReachHere();
 970   }
 971 
 972   LIRItem value(x->value(), this);
 973   value.load_item();
 974   LIR_Opr input = value.result();
 975   LIR_Opr result = rlock(x);
 976 
 977   // arguments of lir_convert
 978   LIR_Opr conv_input = input;
 979   LIR_Opr conv_result = result;
 980   ConversionStub* stub = NULL;
 981 
 982   if (fixed_input) {
 983     conv_input = fixed_register_for(input->type());
 984     __ move(input, conv_input);
 985   }
 986 
 987   assert(fixed_result == false || round_result == false, "cannot set both");
 988   if (fixed_result) {
 989     conv_result = fixed_register_for(result->type());
 990   } else if (round_result) {
 991     result = new_register(result->type());
 992     set_vreg_flag(result, must_start_in_memory);
 993   }
 994 
 995   if (needs_stub) {
 996     stub = new ConversionStub(x->op(), conv_input, conv_result);
 997   }
 998 
 999   __ convert(x->op(), conv_input, conv_result, stub);
1000 
1001   if (result != conv_result) {
1002     __ move(conv_result, result);
1003   }
1004 
1005   assert(result->is_virtual(), "result must be virtual register");
1006   set_result(x, result);
1007 }
1008 
1009 
1010 void LIRGenerator::do_NewInstance(NewInstance* x) {
1011 #ifndef PRODUCT
1012   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1013     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1014   }
1015 #endif
1016   CodeEmitInfo* info = state_for(x, x->state());
1017   LIR_Opr reg = result_register_for(x->type());
1018   new_instance(reg, x->klass(),
1019                        FrameMap::rcx_oop_opr,
1020                        FrameMap::rdi_oop_opr,
1021                        FrameMap::rsi_oop_opr,
1022                        LIR_OprFact::illegalOpr,
1023                        FrameMap::rdx_metadata_opr, info);
1024   LIR_Opr result = rlock_result(x);
1025   __ move(reg, result);
1026 }
1027 
1028 
1029 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1030   CodeEmitInfo* info = state_for(x, x->state());
1031 
1032   LIRItem length(x->length(), this);
1033   length.load_item_force(FrameMap::rbx_opr);
1034 
1035   LIR_Opr reg = result_register_for(x->type());
1036   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1037   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1038   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1039   LIR_Opr tmp4 = reg;
1040   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1041   LIR_Opr len = length.result();
1042   BasicType elem_type = x->elt_type();
1043 
1044   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1045 
1046   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1047   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1048 
1049   LIR_Opr result = rlock_result(x);
1050   __ move(reg, result);
1051 }
1052 
1053 
1054 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1055   LIRItem length(x->length(), this);
1056   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1057   // and therefore provide the state before the parameters have been consumed
1058   CodeEmitInfo* patching_info = NULL;
1059   if (!x->klass()->is_loaded() || PatchALot) {
1060     patching_info =  state_for(x, x->state_before());
1061   }
1062 
1063   CodeEmitInfo* info = state_for(x, x->state());
1064 
1065   const LIR_Opr reg = result_register_for(x->type());
1066   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1067   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1068   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1069   LIR_Opr tmp4 = reg;
1070   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1071 
1072   length.load_item_force(FrameMap::rbx_opr);
1073   LIR_Opr len = length.result();
1074 
1075   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1076   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1077   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1078     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1079   }
1080   klass2reg_with_patching(klass_reg, obj, patching_info);
1081   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1082 
1083   LIR_Opr result = rlock_result(x);
1084   __ move(reg, result);
1085 }
1086 
1087 
1088 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1089   Values* dims = x->dims();
1090   int i = dims->length();
1091   LIRItemList* items = new LIRItemList(dims->length(), NULL);
1092   while (i-- > 0) {
1093     LIRItem* size = new LIRItem(dims->at(i), this);
1094     items->at_put(i, size);
1095   }
1096 
1097   // Evaluate state_for early since it may emit code.
1098   CodeEmitInfo* patching_info = NULL;
1099   if (!x->klass()->is_loaded() || PatchALot) {
1100     patching_info = state_for(x, x->state_before());
1101 
1102     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1103     // clone all handlers (NOTE: Usually this is handled transparently
1104     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1105     // is done explicitly here because a stub isn't being used).
1106     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1107   }
1108   CodeEmitInfo* info = state_for(x, x->state());
1109 
1110   i = dims->length();
1111   while (i-- > 0) {
1112     LIRItem* size = items->at(i);
1113     size->load_nonconstant();
1114 
1115     store_stack_parameter(size->result(), in_ByteSize(i*4));
1116   }
1117 
1118   LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
1119   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1120 
1121   LIR_Opr rank = FrameMap::rbx_opr;
1122   __ move(LIR_OprFact::intConst(x->rank()), rank);
1123   LIR_Opr varargs = FrameMap::rcx_opr;
1124   __ move(FrameMap::rsp_opr, varargs);
1125   LIR_OprList* args = new LIR_OprList(3);
1126   args->append(klass_reg);
1127   args->append(rank);
1128   args->append(varargs);
1129   LIR_Opr reg = result_register_for(x->type());
1130   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1131                   LIR_OprFact::illegalOpr,
1132                   reg, args, info);
1133 
1134   LIR_Opr result = rlock_result(x);
1135   __ move(reg, result);
1136 }
1137 
1138 
1139 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1140   // nothing to do for now
1141 }
1142 
1143 
1144 void LIRGenerator::do_CheckCast(CheckCast* x) {
1145   LIRItem obj(x->obj(), this);
1146 
1147   CodeEmitInfo* patching_info = NULL;
1148   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1149     // must do this before locking the destination register as an oop register,
1150     // and before the obj is loaded (the latter is for deoptimization)
1151     patching_info = state_for(x, x->state_before());
1152   }
1153   obj.load_item();
1154 
1155   // info for exceptions
1156   CodeEmitInfo* info_for_exception = state_for(x);
1157 
1158   CodeStub* stub;
1159   if (x->is_incompatible_class_change_check()) {
1160     assert(patching_info == NULL, "can't patch this");
1161     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1162   } else {
1163     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1164   }
1165   LIR_Opr reg = rlock_result(x);
1166   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1167   if (!x->klass()->is_loaded() || UseCompressedKlassPointers) {
1168     tmp3 = new_register(objectType);
1169   }
1170   __ checkcast(reg, obj.result(), x->klass(),
1171                new_register(objectType), new_register(objectType), tmp3,
1172                x->direct_compare(), info_for_exception, patching_info, stub,
1173                x->profiled_method(), x->profiled_bci());
1174 }
1175 
1176 
1177 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1178   LIRItem obj(x->obj(), this);
1179 
1180   // result and test object may not be in same register
1181   LIR_Opr reg = rlock_result(x);
1182   CodeEmitInfo* patching_info = NULL;
1183   if ((!x->klass()->is_loaded() || PatchALot)) {
1184     // must do this before locking the destination register as an oop register
1185     patching_info = state_for(x, x->state_before());
1186   }
1187   obj.load_item();
1188   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1189   if (!x->klass()->is_loaded() || UseCompressedKlassPointers) {
1190     tmp3 = new_register(objectType);
1191   }
1192   __ instanceof(reg, obj.result(), x->klass(),
1193                 new_register(objectType), new_register(objectType), tmp3,
1194                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1195 }
1196 
1197 
1198 void LIRGenerator::do_If(If* x) {
1199   assert(x->number_of_sux() == 2, "inconsistency");
1200   ValueTag tag = x->x()->type()->tag();
1201   bool is_safepoint = x->is_safepoint();
1202 
1203   If::Condition cond = x->cond();
1204 
1205   LIRItem xitem(x->x(), this);
1206   LIRItem yitem(x->y(), this);
1207   LIRItem* xin = &xitem;
1208   LIRItem* yin = &yitem;
1209 
1210   if (tag == longTag) {
1211     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1212     // mirror for other conditions
1213     if (cond == If::gtr || cond == If::leq) {
1214       cond = Instruction::mirror(cond);
1215       xin = &yitem;
1216       yin = &xitem;
1217     }
1218     xin->set_destroys_register();
1219   }
1220   xin->load_item();
1221   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1222     // inline long zero
1223     yin->dont_load_item();
1224   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1225     // longs cannot handle constants at right side
1226     yin->load_item();
1227   } else {
1228     yin->dont_load_item();
1229   }
1230 
1231   // add safepoint before generating condition code so it can be recomputed
1232   if (x->is_safepoint()) {
1233     // increment backedge counter if needed
1234     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1235     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1236   }
1237   set_no_result(x);
1238 
1239   LIR_Opr left = xin->result();
1240   LIR_Opr right = yin->result();
1241   __ cmp(lir_cond(cond), left, right);
1242   // Generate branch profiling. Profiling code doesn't kill flags.
1243   profile_branch(x, cond);
1244   move_to_phi(x->state());
1245   if (x->x()->type()->is_float_kind()) {
1246     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1247   } else {
1248     __ branch(lir_cond(cond), right->type(), x->tsux());
1249   }
1250   assert(x->default_sux() == x->fsux(), "wrong destination above");
1251   __ jump(x->default_sux());
1252 }
1253 
1254 
1255 LIR_Opr LIRGenerator::getThreadPointer() {
1256 #ifdef _LP64
1257   return FrameMap::as_pointer_opr(r15_thread);
1258 #else
1259   LIR_Opr result = new_register(T_INT);
1260   __ get_thread(result);
1261   return result;
1262 #endif //
1263 }
1264 
1265 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1266   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1267   LIR_OprList* args = new LIR_OprList();
1268   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1269   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1270 }
1271 
1272 
1273 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1274                                         CodeEmitInfo* info) {
1275   if (address->type() == T_LONG) {
1276     address = new LIR_Address(address->base(),
1277                               address->index(), address->scale(),
1278                               address->disp(), T_DOUBLE);
1279     // Transfer the value atomically by using FP moves.  This means
1280     // the value has to be moved between CPU and FPU registers.  It
1281     // always has to be moved through spill slot since there's no
1282     // quick way to pack the value into an SSE register.
1283     LIR_Opr temp_double = new_register(T_DOUBLE);
1284     LIR_Opr spill = new_register(T_LONG);
1285     set_vreg_flag(spill, must_start_in_memory);
1286     __ move(value, spill);
1287     __ volatile_move(spill, temp_double, T_LONG);
1288     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1289   } else {
1290     __ store(value, address, info);
1291   }
1292 }
1293 
1294 
1295 
1296 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1297                                        CodeEmitInfo* info) {
1298   if (address->type() == T_LONG) {
1299     address = new LIR_Address(address->base(),
1300                               address->index(), address->scale(),
1301                               address->disp(), T_DOUBLE);
1302     // Transfer the value atomically by using FP moves.  This means
1303     // the value has to be moved between CPU and FPU registers.  In
1304     // SSE0 and SSE1 mode it has to be moved through spill slot but in
1305     // SSE2+ mode it can be moved directly.
1306     LIR_Opr temp_double = new_register(T_DOUBLE);
1307     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1308     __ volatile_move(temp_double, result, T_LONG);
1309     if (UseSSE < 2) {
1310       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1311       set_vreg_flag(result, must_start_in_memory);
1312     }
1313   } else {
1314     __ load(address, result, info);
1315   }
1316 }
1317 
1318 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1319                                      BasicType type, bool is_volatile) {
1320   if (is_volatile && type == T_LONG) {
1321     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1322     LIR_Opr tmp = new_register(T_DOUBLE);
1323     __ load(addr, tmp);
1324     LIR_Opr spill = new_register(T_LONG);
1325     set_vreg_flag(spill, must_start_in_memory);
1326     __ move(tmp, spill);
1327     __ move(spill, dst);
1328   } else {
1329     LIR_Address* addr = new LIR_Address(src, offset, type);
1330     __ load(addr, dst);
1331   }
1332 }
1333 
1334 
1335 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1336                                      BasicType type, bool is_volatile) {
1337   if (is_volatile && type == T_LONG) {
1338     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1339     LIR_Opr tmp = new_register(T_DOUBLE);
1340     LIR_Opr spill = new_register(T_DOUBLE);
1341     set_vreg_flag(spill, must_start_in_memory);
1342     __ move(data, spill);
1343     __ move(spill, tmp);
1344     __ move(tmp, addr);
1345   } else {
1346     LIR_Address* addr = new LIR_Address(src, offset, type);
1347     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1348     if (is_obj) {
1349       // Do the pre-write barrier, if any.
1350       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1351                   true /* do_load */, false /* patch */, NULL);
1352       __ move(data, addr);
1353       assert(src->is_register(), "must be register");
1354       // Seems to be a precise address
1355       post_barrier(LIR_OprFact::address(addr), data);
1356     } else {
1357       __ move(data, addr);
1358     }
1359   }
1360 }
1361 
1362 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1363   BasicType type = x->basic_type();
1364   LIRItem src(x->object(), this);
1365   LIRItem off(x->offset(), this);
1366   LIRItem value(x->value(), this);
1367 
1368   src.load_item();
1369   value.load_item();
1370   off.load_nonconstant();
1371 
1372   LIR_Opr dst = rlock_result(x, type);
1373   LIR_Opr data = value.result();
1374   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1375   LIR_Opr offset = off.result();
1376 
1377   assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
1378   LIR_Address* addr;
1379   if (offset->is_constant()) {
1380 #ifdef _LP64
1381     jlong c = offset->as_jlong();
1382     if ((jlong)((jint)c) == c) {
1383       addr = new LIR_Address(src.result(), (jint)c, type);
1384     } else {
1385       LIR_Opr tmp = new_register(T_LONG);
1386       __ move(offset, tmp);
1387       addr = new LIR_Address(src.result(), tmp, type);
1388     }
1389 #else
1390     addr = new LIR_Address(src.result(), offset->as_jint(), type);
1391 #endif
1392   } else {
1393     addr = new LIR_Address(src.result(), offset, type);
1394   }
1395 
1396   if (data != dst) {
1397     __ move(data, dst);
1398     data = dst;
1399   }
1400   if (x->is_add()) {
1401     __ xadd(LIR_OprFact::address(addr), data, dst, LIR_OprFact::illegalOpr);
1402   } else {
1403     if (is_obj) {
1404       // Do the pre-write barrier, if any.
1405       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1406                   true /* do_load */, false /* patch */, NULL);
1407     }
1408     __ xchg(LIR_OprFact::address(addr), data, dst, LIR_OprFact::illegalOpr);
1409     if (is_obj) {
1410       // Seems to be a precise address
1411       post_barrier(LIR_OprFact::address(addr), data);
1412     }
1413   }
1414 }