1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_C1_C1_LIR_HPP
  26 #define SHARE_VM_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_ValueType.hpp"
  29 #include "oops/method.hpp"
  30 
  31 class BlockBegin;
  32 class BlockList;
  33 class LIR_Assembler;
  34 class CodeEmitInfo;
  35 class CodeStub;
  36 class CodeStubList;
  37 class ArrayCopyStub;
  38 class LIR_Op;
  39 class ciType;
  40 class ValueType;
  41 class LIR_OpVisitState;
  42 class FpuStackSim;
  43 
  44 //---------------------------------------------------------------------
  45 //                 LIR Operands
  46 //  LIR_OprDesc
  47 //    LIR_OprPtr
  48 //      LIR_Const
  49 //      LIR_Address
  50 //---------------------------------------------------------------------
  51 class LIR_OprDesc;
  52 class LIR_OprPtr;
  53 class LIR_Const;
  54 class LIR_Address;
  55 class LIR_OprVisitor;
  56 
  57 
  58 typedef LIR_OprDesc* LIR_Opr;
  59 typedef int          RegNr;
  60 
  61 define_array(LIR_OprArray, LIR_Opr)
  62 define_stack(LIR_OprList, LIR_OprArray)
  63 
  64 define_array(LIR_OprRefArray, LIR_Opr*)
  65 define_stack(LIR_OprRefList, LIR_OprRefArray)
  66 
  67 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  68 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  69 
  70 define_array(LIR_OpArray, LIR_Op*)
  71 define_stack(LIR_OpList, LIR_OpArray)
  72 
  73 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  74 class LIR_OprPtr: public CompilationResourceObj {
  75  public:
  76   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  77   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  78 
  79   virtual LIR_Const*  as_constant()              { return NULL; }
  80   virtual LIR_Address* as_address()              { return NULL; }
  81   virtual BasicType type() const                 = 0;
  82   virtual void print_value_on(outputStream* out) const = 0;
  83 };
  84 
  85 
  86 
  87 // LIR constants
  88 class LIR_Const: public LIR_OprPtr {
  89  private:
  90   JavaValue _value;
  91 
  92   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  93   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  94   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  95 
  96  public:
  97   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  98   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  99   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
 100   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
 101   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
 102   LIR_Const(void* p) {
 103 #ifdef _LP64
 104     assert(sizeof(jlong) >= sizeof(p), "too small");;
 105     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 106 #else
 107     assert(sizeof(jint) >= sizeof(p), "too small");;
 108     _value.set_type(T_INT);     _value.set_jint((jint)p);
 109 #endif
 110   }
 111   LIR_Const(Metadata* m) {
 112     _value.set_type(T_METADATA);
 113 #ifdef _LP64
 114     _value.set_jlong((jlong)m);
 115 #else
 116     _value.set_jint((jint)m);
 117 #endif // _LP64
 118   }
 119 
 120   virtual BasicType type()       const { return _value.get_type(); }
 121   virtual LIR_Const* as_constant()     { return this; }
 122 
 123   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 124   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 125   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 126   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 127   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 128   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 129   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 130 
 131 #ifdef _LP64
 132   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 133   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 134 #else
 135   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 136   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 137 #endif
 138 
 139 
 140   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 141   jint      as_jint_lo_bits() const    {
 142     if (type() == T_DOUBLE) {
 143       return low(jlong_cast(_value.get_jdouble()));
 144     } else {
 145       return as_jint_lo();
 146     }
 147   }
 148   jint      as_jint_hi_bits() const    {
 149     if (type() == T_DOUBLE) {
 150       return high(jlong_cast(_value.get_jdouble()));
 151     } else {
 152       return as_jint_hi();
 153     }
 154   }
 155   jlong      as_jlong_bits() const    {
 156     if (type() == T_DOUBLE) {
 157       return jlong_cast(_value.get_jdouble());
 158     } else {
 159       return as_jlong();
 160     }
 161   }
 162 
 163   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 164 
 165 
 166   bool is_zero_float() {
 167     jfloat f = as_jfloat();
 168     jfloat ok = 0.0f;
 169     return jint_cast(f) == jint_cast(ok);
 170   }
 171 
 172   bool is_one_float() {
 173     jfloat f = as_jfloat();
 174     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 175   }
 176 
 177   bool is_zero_double() {
 178     jdouble d = as_jdouble();
 179     jdouble ok = 0.0;
 180     return jlong_cast(d) == jlong_cast(ok);
 181   }
 182 
 183   bool is_one_double() {
 184     jdouble d = as_jdouble();
 185     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 186   }
 187 };
 188 
 189 
 190 //---------------------LIR Operand descriptor------------------------------------
 191 //
 192 // The class LIR_OprDesc represents a LIR instruction operand;
 193 // it can be a register (ALU/FPU), stack location or a constant;
 194 // Constants and addresses are represented as resource area allocated
 195 // structures (see above).
 196 // Registers and stack locations are inlined into the this pointer
 197 // (see value function).
 198 
 199 class LIR_OprDesc: public CompilationResourceObj {
 200  public:
 201   // value structure:
 202   //     data       opr-type opr-kind
 203   // +--------------+-------+-------+
 204   // [max...........|7 6 5 4|3 2 1 0]
 205   //                             ^
 206   //                    is_pointer bit
 207   //
 208   // lowest bit cleared, means it is a structure pointer
 209   // we need  4 bits to represent types
 210 
 211  private:
 212   friend class LIR_OprFact;
 213 
 214   // Conversion
 215   intptr_t value() const                         { return (intptr_t) this; }
 216 
 217   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 218     return (value() & mask) == masked_value;
 219   }
 220 
 221   enum OprKind {
 222       pointer_value      = 0
 223     , stack_value        = 1
 224     , cpu_register       = 3
 225     , fpu_register       = 5
 226     , illegal_value      = 7
 227   };
 228 
 229   enum OprBits {
 230       pointer_bits   = 1
 231     , kind_bits      = 3
 232     , type_bits      = 4
 233     , size_bits      = 2
 234     , destroys_bits  = 1
 235     , virtual_bits   = 1
 236     , is_xmm_bits    = 1
 237     , last_use_bits  = 1
 238     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 239     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 240                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 241     , data_bits      = BitsPerInt - non_data_bits
 242     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 243   };
 244 
 245   enum OprShift {
 246       kind_shift     = 0
 247     , type_shift     = kind_shift     + kind_bits
 248     , size_shift     = type_shift     + type_bits
 249     , destroys_shift = size_shift     + size_bits
 250     , last_use_shift = destroys_shift + destroys_bits
 251     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 252     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 253     , is_xmm_shift   = virtual_shift + virtual_bits
 254     , data_shift     = is_xmm_shift + is_xmm_bits
 255     , reg1_shift = data_shift
 256     , reg2_shift = data_shift + reg_bits
 257 
 258   };
 259 
 260   enum OprSize {
 261       single_size = 0 << size_shift
 262     , double_size = 1 << size_shift
 263   };
 264 
 265   enum OprMask {
 266       kind_mask      = right_n_bits(kind_bits)
 267     , type_mask      = right_n_bits(type_bits) << type_shift
 268     , size_mask      = right_n_bits(size_bits) << size_shift
 269     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 270     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 271     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 272     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 273     , pointer_mask   = right_n_bits(pointer_bits)
 274     , lower_reg_mask = right_n_bits(reg_bits)
 275     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 276   };
 277 
 278   uintptr_t data() const                         { return value() >> data_shift; }
 279   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 280   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 281   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 282   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 283 
 284   static char type_char(BasicType t);
 285 
 286  public:
 287   enum {
 288     vreg_base = ConcreteRegisterImpl::number_of_registers,
 289     vreg_max = (1 << data_bits) - 1
 290   };
 291 
 292   static inline LIR_Opr illegalOpr();
 293 
 294   enum OprType {
 295       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 296     , int_type      = 1 << type_shift
 297     , long_type     = 2 << type_shift
 298     , object_type   = 3 << type_shift
 299     , address_type  = 4 << type_shift
 300     , float_type    = 5 << type_shift
 301     , double_type   = 6 << type_shift
 302     , metadata_type = 7 << type_shift
 303   };
 304   friend OprType as_OprType(BasicType t);
 305   friend BasicType as_BasicType(OprType t);
 306 
 307   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 308   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 309 
 310   static OprSize size_for(BasicType t) {
 311     switch (t) {
 312       case T_LONG:
 313       case T_DOUBLE:
 314         return double_size;
 315         break;
 316 
 317       case T_FLOAT:
 318       case T_BOOLEAN:
 319       case T_CHAR:
 320       case T_BYTE:
 321       case T_SHORT:
 322       case T_INT:
 323       case T_ADDRESS:
 324       case T_OBJECT:
 325       case T_ARRAY:
 326       case T_METADATA:
 327         return single_size;
 328         break;
 329 
 330       default:
 331         ShouldNotReachHere();
 332         return single_size;
 333       }
 334   }
 335 
 336 
 337   void validate_type() const PRODUCT_RETURN;
 338 
 339   BasicType type() const {
 340     if (is_pointer()) {
 341       return pointer()->type();
 342     }
 343     return as_BasicType(type_field());
 344   }
 345 
 346 
 347   ValueType* value_type() const                  { return as_ValueType(type()); }
 348 
 349   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 350 
 351   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 352   // checks whether types are same
 353   bool is_same_type(LIR_Opr opr) const     {
 354     assert(type_field() != unknown_type &&
 355            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 356     return type_field() == opr->type_field();
 357   }
 358   bool is_same_register(LIR_Opr opr) {
 359     return (is_register() && opr->is_register() &&
 360             kind_field() == opr->kind_field() &&
 361             (value() & no_type_mask) == (opr->value() & no_type_mask));
 362   }
 363 
 364   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 365   bool is_illegal() const      { return kind_field() == illegal_value; }
 366   bool is_valid() const        { return kind_field() != illegal_value; }
 367 
 368   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 369   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 370 
 371   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 372   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 373 
 374   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 375   bool is_oop() const;
 376 
 377   // semantic for fpu- and xmm-registers:
 378   // * is_float and is_double return true for xmm_registers
 379   //   (so is_single_fpu and is_single_xmm are true)
 380   // * So you must always check for is_???_xmm prior to is_???_fpu to
 381   //   distinguish between fpu- and xmm-registers
 382 
 383   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 384   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 385   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 386 
 387   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 388   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 389   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 390   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 391   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 392 
 393   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 394   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 395   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 396   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 397   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 398 
 399   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 400   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 401   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 402 
 403   // fast accessor functions for special bits that do not work for pointers
 404   // (in this functions, the check for is_pointer() is omitted)
 405   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 406   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 407   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 408   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 409   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 410 
 411   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 412   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 413   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 414   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 415 
 416 
 417   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 418   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 419   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 420   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 421   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 422   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 423   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 424   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 425   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 426   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 427   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 428   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 429 
 430   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 431   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 432   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 433 
 434   Register as_register()    const;
 435   Register as_register_lo() const;
 436   Register as_register_hi() const;
 437 
 438   Register as_pointer_register() {
 439 #ifdef _LP64
 440     if (is_double_cpu()) {
 441       assert(as_register_lo() == as_register_hi(), "should be a single register");
 442       return as_register_lo();
 443     }
 444 #endif
 445     return as_register();
 446   }
 447 
 448 #ifdef X86
 449   XMMRegister as_xmm_float_reg() const;
 450   XMMRegister as_xmm_double_reg() const;
 451   // for compatibility with RInfo
 452   int fpu () const                                  { return lo_reg_half(); }
 453 #endif // X86
 454 #if defined(SPARC) || defined(ARM) || defined(PPC)
 455   FloatRegister as_float_reg   () const;
 456   FloatRegister as_double_reg  () const;
 457 #endif
 458 
 459   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 460   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 461   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 462   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 463   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 464 
 465   void print() const PRODUCT_RETURN;
 466   void print(outputStream* out) const PRODUCT_RETURN;
 467 };
 468 
 469 
 470 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 471   switch (type) {
 472   case T_INT:      return LIR_OprDesc::int_type;
 473   case T_LONG:     return LIR_OprDesc::long_type;
 474   case T_FLOAT:    return LIR_OprDesc::float_type;
 475   case T_DOUBLE:   return LIR_OprDesc::double_type;
 476   case T_OBJECT:
 477   case T_ARRAY:    return LIR_OprDesc::object_type;
 478   case T_ADDRESS:  return LIR_OprDesc::address_type;
 479   case T_METADATA: return LIR_OprDesc::metadata_type;
 480   case T_ILLEGAL:  // fall through
 481   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 482   }
 483 }
 484 
 485 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 486   switch (t) {
 487   case LIR_OprDesc::int_type:     return T_INT;
 488   case LIR_OprDesc::long_type:    return T_LONG;
 489   case LIR_OprDesc::float_type:   return T_FLOAT;
 490   case LIR_OprDesc::double_type:  return T_DOUBLE;
 491   case LIR_OprDesc::object_type:  return T_OBJECT;
 492   case LIR_OprDesc::address_type: return T_ADDRESS;
 493   case LIR_OprDesc::metadata_type:return T_METADATA;
 494   case LIR_OprDesc::unknown_type: // fall through
 495   default: ShouldNotReachHere();  return T_ILLEGAL;
 496   }
 497 }
 498 
 499 
 500 // LIR_Address
 501 class LIR_Address: public LIR_OprPtr {
 502  friend class LIR_OpVisitState;
 503 
 504  public:
 505   // NOTE: currently these must be the log2 of the scale factor (and
 506   // must also be equivalent to the ScaleFactor enum in
 507   // assembler_i486.hpp)
 508   enum Scale {
 509     times_1  =  0,
 510     times_2  =  1,
 511     times_4  =  2,
 512     times_8  =  3
 513   };
 514 
 515  private:
 516   LIR_Opr   _base;
 517   LIR_Opr   _index;
 518   Scale     _scale;
 519   intx      _disp;
 520   BasicType _type;
 521 
 522  public:
 523   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 524        _base(base)
 525      , _index(index)
 526      , _scale(times_1)
 527      , _type(type)
 528      , _disp(0) { verify(); }
 529 
 530   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 531        _base(base)
 532      , _index(LIR_OprDesc::illegalOpr())
 533      , _scale(times_1)
 534      , _type(type)
 535      , _disp(disp) { verify(); }
 536 
 537   LIR_Address(LIR_Opr base, BasicType type):
 538        _base(base)
 539      , _index(LIR_OprDesc::illegalOpr())
 540      , _scale(times_1)
 541      , _type(type)
 542      , _disp(0) { verify(); }
 543 
 544 #if defined(X86) || defined(ARM)
 545   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 546        _base(base)
 547      , _index(index)
 548      , _scale(scale)
 549      , _type(type)
 550      , _disp(disp) { verify(); }
 551 #endif // X86 || ARM
 552 
 553   LIR_Opr base()  const                          { return _base;  }
 554   LIR_Opr index() const                          { return _index; }
 555   Scale   scale() const                          { return _scale; }
 556   intx    disp()  const                          { return _disp;  }
 557 
 558   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 559 
 560   virtual LIR_Address* as_address()              { return this;   }
 561   virtual BasicType type() const                 { return _type; }
 562   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 563 
 564   void verify() const PRODUCT_RETURN;
 565 
 566   static Scale scale(BasicType type);
 567 };
 568 
 569 
 570 // operand factory
 571 class LIR_OprFact: public AllStatic {
 572  public:
 573 
 574   static LIR_Opr illegalOpr;
 575 
 576   static LIR_Opr single_cpu(int reg) {
 577     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 578                                LIR_OprDesc::int_type             |
 579                                LIR_OprDesc::cpu_register         |
 580                                LIR_OprDesc::single_size);
 581   }
 582   static LIR_Opr single_cpu_oop(int reg) {
 583     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 584                                LIR_OprDesc::object_type          |
 585                                LIR_OprDesc::cpu_register         |
 586                                LIR_OprDesc::single_size);
 587   }
 588   static LIR_Opr single_cpu_address(int reg) {
 589     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 590                                LIR_OprDesc::address_type         |
 591                                LIR_OprDesc::cpu_register         |
 592                                LIR_OprDesc::single_size);
 593   }
 594   static LIR_Opr single_cpu_metadata(int reg) {
 595     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 596                                LIR_OprDesc::metadata_type        |
 597                                LIR_OprDesc::cpu_register         |
 598                                LIR_OprDesc::single_size);
 599   }
 600   static LIR_Opr double_cpu(int reg1, int reg2) {
 601     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 602     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 603                                (reg2 << LIR_OprDesc::reg2_shift) |
 604                                LIR_OprDesc::long_type            |
 605                                LIR_OprDesc::cpu_register         |
 606                                LIR_OprDesc::double_size);
 607   }
 608 
 609   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 610                                                                              LIR_OprDesc::float_type           |
 611                                                                              LIR_OprDesc::fpu_register         |
 612                                                                              LIR_OprDesc::single_size); }
 613 #if defined(ARM)
 614   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
 615   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 616   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
 617 #endif
 618 #ifdef SPARC
 619   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 620                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 621                                                                              LIR_OprDesc::double_type          |
 622                                                                              LIR_OprDesc::fpu_register         |
 623                                                                              LIR_OprDesc::double_size); }
 624 #endif
 625 #ifdef X86
 626   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 627                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 628                                                                              LIR_OprDesc::double_type          |
 629                                                                              LIR_OprDesc::fpu_register         |
 630                                                                              LIR_OprDesc::double_size); }
 631 
 632   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 633                                                                              LIR_OprDesc::float_type           |
 634                                                                              LIR_OprDesc::fpu_register         |
 635                                                                              LIR_OprDesc::single_size          |
 636                                                                              LIR_OprDesc::is_xmm_mask); }
 637   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 638                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 639                                                                              LIR_OprDesc::double_type          |
 640                                                                              LIR_OprDesc::fpu_register         |
 641                                                                              LIR_OprDesc::double_size          |
 642                                                                              LIR_OprDesc::is_xmm_mask); }
 643 #endif // X86
 644 #ifdef PPC
 645   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 646                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 647                                                                              LIR_OprDesc::double_type          |
 648                                                                              LIR_OprDesc::fpu_register         |
 649                                                                              LIR_OprDesc::double_size); }
 650   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
 651                                                                              LIR_OprDesc::float_type           |
 652                                                                              LIR_OprDesc::cpu_register         |
 653                                                                              LIR_OprDesc::single_size); }
 654   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
 655                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
 656                                                                              LIR_OprDesc::double_type          |
 657                                                                              LIR_OprDesc::cpu_register         |
 658                                                                              LIR_OprDesc::double_size); }
 659 #endif // PPC
 660 
 661   static LIR_Opr virtual_register(int index, BasicType type) {
 662     LIR_Opr res;
 663     switch (type) {
 664       case T_OBJECT: // fall through
 665       case T_ARRAY:
 666         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 667                                             LIR_OprDesc::object_type  |
 668                                             LIR_OprDesc::cpu_register |
 669                                             LIR_OprDesc::single_size  |
 670                                             LIR_OprDesc::virtual_mask);
 671         break;
 672 
 673       case T_METADATA:
 674         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 675                                             LIR_OprDesc::metadata_type|
 676                                             LIR_OprDesc::cpu_register |
 677                                             LIR_OprDesc::single_size  |
 678                                             LIR_OprDesc::virtual_mask);
 679         break;
 680 
 681       case T_INT:
 682         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 683                                   LIR_OprDesc::int_type              |
 684                                   LIR_OprDesc::cpu_register          |
 685                                   LIR_OprDesc::single_size           |
 686                                   LIR_OprDesc::virtual_mask);
 687         break;
 688 
 689       case T_ADDRESS:
 690         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 691                                   LIR_OprDesc::address_type          |
 692                                   LIR_OprDesc::cpu_register          |
 693                                   LIR_OprDesc::single_size           |
 694                                   LIR_OprDesc::virtual_mask);
 695         break;
 696 
 697       case T_LONG:
 698         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 699                                   LIR_OprDesc::long_type             |
 700                                   LIR_OprDesc::cpu_register          |
 701                                   LIR_OprDesc::double_size           |
 702                                   LIR_OprDesc::virtual_mask);
 703         break;
 704 
 705 #ifdef __SOFTFP__
 706       case T_FLOAT:
 707         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 708                                   LIR_OprDesc::float_type  |
 709                                   LIR_OprDesc::cpu_register |
 710                                   LIR_OprDesc::single_size |
 711                                   LIR_OprDesc::virtual_mask);
 712         break;
 713       case T_DOUBLE:
 714         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 715                                   LIR_OprDesc::double_type |
 716                                   LIR_OprDesc::cpu_register |
 717                                   LIR_OprDesc::double_size |
 718                                   LIR_OprDesc::virtual_mask);
 719         break;
 720 #else // __SOFTFP__
 721       case T_FLOAT:
 722         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 723                                   LIR_OprDesc::float_type           |
 724                                   LIR_OprDesc::fpu_register         |
 725                                   LIR_OprDesc::single_size          |
 726                                   LIR_OprDesc::virtual_mask);
 727         break;
 728 
 729       case
 730         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 731                                             LIR_OprDesc::double_type           |
 732                                             LIR_OprDesc::fpu_register          |
 733                                             LIR_OprDesc::double_size           |
 734                                             LIR_OprDesc::virtual_mask);
 735         break;
 736 #endif // __SOFTFP__
 737       default:       ShouldNotReachHere(); res = illegalOpr;
 738     }
 739 
 740 #ifdef ASSERT
 741     res->validate_type();
 742     assert(res->vreg_number() == index, "conversion check");
 743     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 744     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 745 
 746     // old-style calculation; check if old and new method are equal
 747     LIR_OprDesc::OprType t = as_OprType(type);
 748 #ifdef __SOFTFP__
 749     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 750                                t |
 751                                LIR_OprDesc::cpu_register |
 752                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 753 #else // __SOFTFP__
 754     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 755                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 756                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 757     assert(res == old_res, "old and new method not equal");
 758 #endif // __SOFTFP__
 759 #endif // ASSERT
 760 
 761     return res;
 762   }
 763 
 764   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 765   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 766   // index 2.
 767   static LIR_Opr stack(int index, BasicType type) {
 768     LIR_Opr res;
 769     switch (type) {
 770       case T_OBJECT: // fall through
 771       case T_ARRAY:
 772         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 773                                   LIR_OprDesc::object_type           |
 774                                   LIR_OprDesc::stack_value           |
 775                                   LIR_OprDesc::single_size);
 776         break;
 777 
 778       case T_METADATA:
 779         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 780                                   LIR_OprDesc::metadata_type         |
 781                                   LIR_OprDesc::stack_value           |
 782                                   LIR_OprDesc::single_size);
 783         break;
 784       case T_INT:
 785         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 786                                   LIR_OprDesc::int_type              |
 787                                   LIR_OprDesc::stack_value           |
 788                                   LIR_OprDesc::single_size);
 789         break;
 790 
 791       case T_ADDRESS:
 792         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 793                                   LIR_OprDesc::address_type          |
 794                                   LIR_OprDesc::stack_value           |
 795                                   LIR_OprDesc::single_size);
 796         break;
 797 
 798       case T_LONG:
 799         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 800                                   LIR_OprDesc::long_type             |
 801                                   LIR_OprDesc::stack_value           |
 802                                   LIR_OprDesc::double_size);
 803         break;
 804 
 805       case T_FLOAT:
 806         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 807                                   LIR_OprDesc::float_type            |
 808                                   LIR_OprDesc::stack_value           |
 809                                   LIR_OprDesc::single_size);
 810         break;
 811       case T_DOUBLE:
 812         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 813                                   LIR_OprDesc::double_type           |
 814                                   LIR_OprDesc::stack_value           |
 815                                   LIR_OprDesc::double_size);
 816         break;
 817 
 818       default:       ShouldNotReachHere(); res = illegalOpr;
 819     }
 820 
 821 #ifdef ASSERT
 822     assert(index >= 0, "index must be positive");
 823     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 824 
 825     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 826                                           LIR_OprDesc::stack_value           |
 827                                           as_OprType(type)                   |
 828                                           LIR_OprDesc::size_for(type));
 829     assert(res == old_res, "old and new method not equal");
 830 #endif
 831 
 832     return res;
 833   }
 834 
 835   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 836   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 837   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 838   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 839   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 840   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 841   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 842   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 843   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 844   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 845   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 846 
 847   static LIR_Opr value_type(ValueType* type);
 848   static LIR_Opr dummy_value_type(ValueType* type);
 849 };
 850 
 851 
 852 //-------------------------------------------------------------------------------
 853 //                   LIR Instructions
 854 //-------------------------------------------------------------------------------
 855 //
 856 // Note:
 857 //  - every instruction has a result operand
 858 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 859 //  - every instruction has a LIR_OpCode operand
 860 //  - LIR_OpN, means an instruction that has N input operands
 861 //
 862 // class hierarchy:
 863 //
 864 class  LIR_Op;
 865 class    LIR_Op0;
 866 class      LIR_OpLabel;
 867 class    LIR_Op1;
 868 class      LIR_OpBranch;
 869 class      LIR_OpConvert;
 870 class      LIR_OpAllocObj;
 871 class      LIR_OpRoundFP;
 872 class    LIR_Op2;
 873 class    LIR_OpDelay;
 874 class    LIR_Op3;
 875 class      LIR_OpAllocArray;
 876 class    LIR_OpCall;
 877 class      LIR_OpJavaCall;
 878 class      LIR_OpRTCall;
 879 class    LIR_OpArrayCopy;
 880 class    LIR_OpLock;
 881 class    LIR_OpTypeCheck;
 882 class    LIR_OpCompareAndSwap;
 883 class    LIR_OpProfileCall;
 884 
 885 
 886 // LIR operation codes
 887 enum LIR_Code {
 888     lir_none
 889   , begin_op0
 890       , lir_word_align
 891       , lir_label
 892       , lir_nop
 893       , lir_backwardbranch_target
 894       , lir_std_entry
 895       , lir_osr_entry
 896       , lir_build_frame
 897       , lir_fpop_raw
 898       , lir_24bit_FPU
 899       , lir_reset_FPU
 900       , lir_breakpoint
 901       , lir_rtcall
 902       , lir_membar
 903       , lir_membar_acquire
 904       , lir_membar_release
 905       , lir_membar_loadload
 906       , lir_membar_storestore
 907       , lir_membar_loadstore
 908       , lir_membar_storeload
 909       , lir_get_thread
 910   , end_op0
 911   , begin_op1
 912       , lir_fxch
 913       , lir_fld
 914       , lir_ffree
 915       , lir_push
 916       , lir_pop
 917       , lir_null_check
 918       , lir_return
 919       , lir_leal
 920       , lir_neg
 921       , lir_branch
 922       , lir_cond_float_branch
 923       , lir_move
 924       , lir_prefetchr
 925       , lir_prefetchw
 926       , lir_convert
 927       , lir_alloc_object
 928       , lir_monaddr
 929       , lir_roundfp
 930       , lir_safepoint
 931       , lir_pack64
 932       , lir_unpack64
 933       , lir_unwind
 934   , end_op1
 935   , begin_op2
 936       , lir_cmp
 937       , lir_cmp_l2i
 938       , lir_ucmp_fd2i
 939       , lir_cmp_fd2i
 940       , lir_cmove
 941       , lir_add
 942       , lir_sub
 943       , lir_mul
 944       , lir_mul_strictfp
 945       , lir_div
 946       , lir_div_strictfp
 947       , lir_rem
 948       , lir_sqrt
 949       , lir_abs
 950       , lir_sin
 951       , lir_cos
 952       , lir_tan
 953       , lir_log
 954       , lir_log10
 955       , lir_exp
 956       , lir_pow
 957       , lir_logic_and
 958       , lir_logic_or
 959       , lir_logic_xor
 960       , lir_shl
 961       , lir_shr
 962       , lir_ushr
 963       , lir_alloc_array
 964       , lir_throw
 965       , lir_compare_to
 966       , lir_xadd
 967       , lir_xchg
 968   , end_op2
 969   , begin_op3
 970       , lir_idiv
 971       , lir_irem
 972   , end_op3
 973   , begin_opJavaCall
 974       , lir_static_call
 975       , lir_optvirtual_call
 976       , lir_icvirtual_call
 977       , lir_virtual_call
 978       , lir_dynamic_call
 979   , end_opJavaCall
 980   , begin_opArrayCopy
 981       , lir_arraycopy
 982   , end_opArrayCopy
 983   , begin_opLock
 984     , lir_lock
 985     , lir_unlock
 986   , end_opLock
 987   , begin_delay_slot
 988     , lir_delay_slot
 989   , end_delay_slot
 990   , begin_opTypeCheck
 991     , lir_instanceof
 992     , lir_checkcast
 993     , lir_store_check
 994   , end_opTypeCheck
 995   , begin_opCompareAndSwap
 996     , lir_cas_long
 997     , lir_cas_obj
 998     , lir_cas_int
 999   , end_opCompareAndSwap
1000   , begin_opMDOProfile
1001     , lir_profile_call
1002   , end_opMDOProfile
1003 };
1004 
1005 
1006 enum LIR_Condition {
1007     lir_cond_equal
1008   , lir_cond_notEqual
1009   , lir_cond_less
1010   , lir_cond_lessEqual
1011   , lir_cond_greaterEqual
1012   , lir_cond_greater
1013   , lir_cond_belowEqual
1014   , lir_cond_aboveEqual
1015   , lir_cond_always
1016   , lir_cond_unknown = -1
1017 };
1018 
1019 
1020 enum LIR_PatchCode {
1021   lir_patch_none,
1022   lir_patch_low,
1023   lir_patch_high,
1024   lir_patch_normal
1025 };
1026 
1027 
1028 enum LIR_MoveKind {
1029   lir_move_normal,
1030   lir_move_volatile,
1031   lir_move_unaligned,
1032   lir_move_wide,
1033   lir_move_max_flag
1034 };
1035 
1036 
1037 // --------------------------------------------------
1038 // LIR_Op
1039 // --------------------------------------------------
1040 class LIR_Op: public CompilationResourceObj {
1041  friend class LIR_OpVisitState;
1042 
1043 #ifdef ASSERT
1044  private:
1045   const char *  _file;
1046   int           _line;
1047 #endif
1048 
1049  protected:
1050   LIR_Opr       _result;
1051   unsigned short _code;
1052   unsigned short _flags;
1053   CodeEmitInfo* _info;
1054   int           _id;     // value id for register allocation
1055   int           _fpu_pop_count;
1056   Instruction*  _source; // for debugging
1057 
1058   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1059 
1060  protected:
1061   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1062 
1063  public:
1064   LIR_Op()
1065     : _result(LIR_OprFact::illegalOpr)
1066     , _code(lir_none)
1067     , _flags(0)
1068     , _info(NULL)
1069 #ifdef ASSERT
1070     , _file(NULL)
1071     , _line(0)
1072 #endif
1073     , _fpu_pop_count(0)
1074     , _source(NULL)
1075     , _id(-1)                             {}
1076 
1077   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1078     : _result(result)
1079     , _code(code)
1080     , _flags(0)
1081     , _info(info)
1082 #ifdef ASSERT
1083     , _file(NULL)
1084     , _line(0)
1085 #endif
1086     , _fpu_pop_count(0)
1087     , _source(NULL)
1088     , _id(-1)                             {}
1089 
1090   CodeEmitInfo* info() const                  { return _info;   }
1091   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1092   LIR_Opr result_opr() const                  { return _result; }
1093   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1094 
1095 #ifdef ASSERT
1096   void set_file_and_line(const char * file, int line) {
1097     _file = file;
1098     _line = line;
1099   }
1100 #endif
1101 
1102   virtual const char * name() const PRODUCT_RETURN0;
1103 
1104   int id()             const                  { return _id;     }
1105   void set_id(int id)                         { _id = id; }
1106 
1107   // FPU stack simulation helpers -- only used on Intel
1108   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1109   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1110   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1111 
1112   Instruction* source() const                 { return _source; }
1113   void set_source(Instruction* ins)           { _source = ins; }
1114 
1115   virtual void emit_code(LIR_Assembler* masm) = 0;
1116   virtual void print_instr(outputStream* out) const   = 0;
1117   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1118 
1119   virtual LIR_OpCall* as_OpCall() { return NULL; }
1120   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1121   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1122   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1123   virtual LIR_OpLock* as_OpLock() { return NULL; }
1124   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1125   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1126   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1127   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1128   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1129   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1130   virtual LIR_Op0* as_Op0() { return NULL; }
1131   virtual LIR_Op1* as_Op1() { return NULL; }
1132   virtual LIR_Op2* as_Op2() { return NULL; }
1133   virtual LIR_Op3* as_Op3() { return NULL; }
1134   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1135   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1136   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1137   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1138 
1139   virtual void verify() const {}
1140 };
1141 
1142 // for calls
1143 class LIR_OpCall: public LIR_Op {
1144  friend class LIR_OpVisitState;
1145 
1146  protected:
1147   address      _addr;
1148   LIR_OprList* _arguments;
1149  protected:
1150   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1151              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1152     : LIR_Op(code, result, info)
1153     , _arguments(arguments)
1154     , _addr(addr) {}
1155 
1156  public:
1157   address addr() const                           { return _addr; }
1158   const LIR_OprList* arguments() const           { return _arguments; }
1159   virtual LIR_OpCall* as_OpCall()                { return this; }
1160 };
1161 
1162 
1163 // --------------------------------------------------
1164 // LIR_OpJavaCall
1165 // --------------------------------------------------
1166 class LIR_OpJavaCall: public LIR_OpCall {
1167  friend class LIR_OpVisitState;
1168 
1169  private:
1170   ciMethod* _method;
1171   LIR_Opr   _receiver;
1172   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1173 
1174  public:
1175   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1176                  LIR_Opr receiver, LIR_Opr result,
1177                  address addr, LIR_OprList* arguments,
1178                  CodeEmitInfo* info)
1179   : LIR_OpCall(code, addr, result, arguments, info)
1180   , _receiver(receiver)
1181   , _method(method)
1182   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1183   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1184 
1185   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1186                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1187                  LIR_OprList* arguments, CodeEmitInfo* info)
1188   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1189   , _receiver(receiver)
1190   , _method(method)
1191   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1192   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1193 
1194   LIR_Opr receiver() const                       { return _receiver; }
1195   ciMethod* method() const                       { return _method;   }
1196 
1197   // JSR 292 support.
1198   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1199   bool is_method_handle_invoke() const {
1200     return
1201       is_invokedynamic()  // An invokedynamic is always a MethodHandle call site.
1202       ||
1203       method()->is_compiled_lambda_form()  // Java-generated adapter
1204       ||
1205       method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1206   }
1207 
1208   intptr_t vtable_offset() const {
1209     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1210     return (intptr_t) addr();
1211   }
1212 
1213   virtual void emit_code(LIR_Assembler* masm);
1214   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1215   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1216 };
1217 
1218 // --------------------------------------------------
1219 // LIR_OpLabel
1220 // --------------------------------------------------
1221 // Location where a branch can continue
1222 class LIR_OpLabel: public LIR_Op {
1223  friend class LIR_OpVisitState;
1224 
1225  private:
1226   Label* _label;
1227  public:
1228   LIR_OpLabel(Label* lbl)
1229    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1230    , _label(lbl)                                 {}
1231   Label* label() const                           { return _label; }
1232 
1233   virtual void emit_code(LIR_Assembler* masm);
1234   virtual LIR_OpLabel* as_OpLabel() { return this; }
1235   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1236 };
1237 
1238 // LIR_OpArrayCopy
1239 class LIR_OpArrayCopy: public LIR_Op {
1240  friend class LIR_OpVisitState;
1241 
1242  private:
1243   ArrayCopyStub*  _stub;
1244   LIR_Opr   _src;
1245   LIR_Opr   _src_pos;
1246   LIR_Opr   _dst;
1247   LIR_Opr   _dst_pos;
1248   LIR_Opr   _length;
1249   LIR_Opr   _tmp;
1250   ciArrayKlass* _expected_type;
1251   int       _flags;
1252 
1253 public:
1254   enum Flags {
1255     src_null_check         = 1 << 0,
1256     dst_null_check         = 1 << 1,
1257     src_pos_positive_check = 1 << 2,
1258     dst_pos_positive_check = 1 << 3,
1259     length_positive_check  = 1 << 4,
1260     src_range_check        = 1 << 5,
1261     dst_range_check        = 1 << 6,
1262     type_check             = 1 << 7,
1263     overlapping            = 1 << 8,
1264     unaligned              = 1 << 9,
1265     src_objarray           = 1 << 10,
1266     dst_objarray           = 1 << 11,
1267     all_flags              = (1 << 12) - 1
1268   };
1269 
1270   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1271                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1272 
1273   LIR_Opr src() const                            { return _src; }
1274   LIR_Opr src_pos() const                        { return _src_pos; }
1275   LIR_Opr dst() const                            { return _dst; }
1276   LIR_Opr dst_pos() const                        { return _dst_pos; }
1277   LIR_Opr length() const                         { return _length; }
1278   LIR_Opr tmp() const                            { return _tmp; }
1279   int flags() const                              { return _flags; }
1280   ciArrayKlass* expected_type() const            { return _expected_type; }
1281   ArrayCopyStub* stub() const                    { return _stub; }
1282 
1283   virtual void emit_code(LIR_Assembler* masm);
1284   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1285   void print_instr(outputStream* out) const PRODUCT_RETURN;
1286 };
1287 
1288 
1289 // --------------------------------------------------
1290 // LIR_Op0
1291 // --------------------------------------------------
1292 class LIR_Op0: public LIR_Op {
1293  friend class LIR_OpVisitState;
1294 
1295  public:
1296   LIR_Op0(LIR_Code code)
1297    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1298   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1299    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1300 
1301   virtual void emit_code(LIR_Assembler* masm);
1302   virtual LIR_Op0* as_Op0() { return this; }
1303   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1304 };
1305 
1306 
1307 // --------------------------------------------------
1308 // LIR_Op1
1309 // --------------------------------------------------
1310 
1311 class LIR_Op1: public LIR_Op {
1312  friend class LIR_OpVisitState;
1313 
1314  protected:
1315   LIR_Opr         _opr;   // input operand
1316   BasicType       _type;  // Operand types
1317   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1318 
1319   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1320 
1321   void set_kind(LIR_MoveKind kind) {
1322     assert(code() == lir_move, "must be");
1323     _flags = kind;
1324   }
1325 
1326  public:
1327   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1328     : LIR_Op(code, result, info)
1329     , _opr(opr)
1330     , _patch(patch)
1331     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1332 
1333   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1334     : LIR_Op(code, result, info)
1335     , _opr(opr)
1336     , _patch(patch)
1337     , _type(type)                      {
1338     assert(code == lir_move, "must be");
1339     set_kind(kind);
1340   }
1341 
1342   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1343     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1344     , _opr(opr)
1345     , _patch(lir_patch_none)
1346     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1347 
1348   LIR_Opr in_opr()           const               { return _opr;   }
1349   LIR_PatchCode patch_code() const               { return _patch; }
1350   BasicType type()           const               { return _type;  }
1351 
1352   LIR_MoveKind move_kind() const {
1353     assert(code() == lir_move, "must be");
1354     return (LIR_MoveKind)_flags;
1355   }
1356 
1357   virtual void emit_code(LIR_Assembler* masm);
1358   virtual LIR_Op1* as_Op1() { return this; }
1359   virtual const char * name() const PRODUCT_RETURN0;
1360 
1361   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1362 
1363   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1364   virtual void verify() const;
1365 };
1366 
1367 
1368 // for runtime calls
1369 class LIR_OpRTCall: public LIR_OpCall {
1370  friend class LIR_OpVisitState;
1371 
1372  private:
1373   LIR_Opr _tmp;
1374  public:
1375   LIR_OpRTCall(address addr, LIR_Opr tmp,
1376                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1377     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1378     , _tmp(tmp) {}
1379 
1380   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1381   virtual void emit_code(LIR_Assembler* masm);
1382   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1383 
1384   LIR_Opr tmp() const                            { return _tmp; }
1385 
1386   virtual void verify() const;
1387 };
1388 
1389 
1390 class LIR_OpBranch: public LIR_Op {
1391  friend class LIR_OpVisitState;
1392 
1393  private:
1394   LIR_Condition _cond;
1395   BasicType     _type;
1396   Label*        _label;
1397   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1398   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1399   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1400 
1401  public:
1402   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1403     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1404     , _cond(cond)
1405     , _type(type)
1406     , _label(lbl)
1407     , _block(NULL)
1408     , _ublock(NULL)
1409     , _stub(NULL) { }
1410 
1411   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1412   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1413 
1414   // for unordered comparisons
1415   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1416 
1417   LIR_Condition cond()        const              { return _cond;        }
1418   BasicType     type()        const              { return _type;        }
1419   Label*        label()       const              { return _label;       }
1420   BlockBegin*   block()       const              { return _block;       }
1421   BlockBegin*   ublock()      const              { return _ublock;      }
1422   CodeStub*     stub()        const              { return _stub;       }
1423 
1424   void          change_block(BlockBegin* b);
1425   void          change_ublock(BlockBegin* b);
1426   void          negate_cond();
1427 
1428   virtual void emit_code(LIR_Assembler* masm);
1429   virtual LIR_OpBranch* as_OpBranch() { return this; }
1430   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1431 };
1432 
1433 
1434 class ConversionStub;
1435 
1436 class LIR_OpConvert: public LIR_Op1 {
1437  friend class LIR_OpVisitState;
1438 
1439  private:
1440    Bytecodes::Code _bytecode;
1441    ConversionStub* _stub;
1442 #ifdef PPC
1443   LIR_Opr _tmp1;
1444   LIR_Opr _tmp2;
1445 #endif
1446 
1447  public:
1448    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1449      : LIR_Op1(lir_convert, opr, result)
1450      , _stub(stub)
1451 #ifdef PPC
1452      , _tmp1(LIR_OprDesc::illegalOpr())
1453      , _tmp2(LIR_OprDesc::illegalOpr())
1454 #endif
1455      , _bytecode(code)                           {}
1456 
1457 #ifdef PPC
1458    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1459                  ,LIR_Opr tmp1, LIR_Opr tmp2)
1460      : LIR_Op1(lir_convert, opr, result)
1461      , _stub(stub)
1462      , _tmp1(tmp1)
1463      , _tmp2(tmp2)
1464      , _bytecode(code)                           {}
1465 #endif
1466 
1467   Bytecodes::Code bytecode() const               { return _bytecode; }
1468   ConversionStub* stub() const                   { return _stub; }
1469 #ifdef PPC
1470   LIR_Opr tmp1() const                           { return _tmp1; }
1471   LIR_Opr tmp2() const                           { return _tmp2; }
1472 #endif
1473 
1474   virtual void emit_code(LIR_Assembler* masm);
1475   virtual LIR_OpConvert* as_OpConvert() { return this; }
1476   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1477 
1478   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1479 };
1480 
1481 
1482 // LIR_OpAllocObj
1483 class LIR_OpAllocObj : public LIR_Op1 {
1484  friend class LIR_OpVisitState;
1485 
1486  private:
1487   LIR_Opr _tmp1;
1488   LIR_Opr _tmp2;
1489   LIR_Opr _tmp3;
1490   LIR_Opr _tmp4;
1491   int     _hdr_size;
1492   int     _obj_size;
1493   CodeStub* _stub;
1494   bool    _init_check;
1495 
1496  public:
1497   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1498                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1499                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1500     : LIR_Op1(lir_alloc_object, klass, result)
1501     , _tmp1(t1)
1502     , _tmp2(t2)
1503     , _tmp3(t3)
1504     , _tmp4(t4)
1505     , _hdr_size(hdr_size)
1506     , _obj_size(obj_size)
1507     , _init_check(init_check)
1508     , _stub(stub)                                { }
1509 
1510   LIR_Opr klass()        const                   { return in_opr();     }
1511   LIR_Opr obj()          const                   { return result_opr(); }
1512   LIR_Opr tmp1()         const                   { return _tmp1;        }
1513   LIR_Opr tmp2()         const                   { return _tmp2;        }
1514   LIR_Opr tmp3()         const                   { return _tmp3;        }
1515   LIR_Opr tmp4()         const                   { return _tmp4;        }
1516   int     header_size()  const                   { return _hdr_size;    }
1517   int     object_size()  const                   { return _obj_size;    }
1518   bool    init_check()   const                   { return _init_check;  }
1519   CodeStub* stub()       const                   { return _stub;        }
1520 
1521   virtual void emit_code(LIR_Assembler* masm);
1522   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1523   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1524 };
1525 
1526 
1527 // LIR_OpRoundFP
1528 class LIR_OpRoundFP : public LIR_Op1 {
1529  friend class LIR_OpVisitState;
1530 
1531  private:
1532   LIR_Opr _tmp;
1533 
1534  public:
1535   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1536     : LIR_Op1(lir_roundfp, reg, result)
1537     , _tmp(stack_loc_temp) {}
1538 
1539   LIR_Opr tmp() const                            { return _tmp; }
1540   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1541   void print_instr(outputStream* out) const PRODUCT_RETURN;
1542 };
1543 
1544 // LIR_OpTypeCheck
1545 class LIR_OpTypeCheck: public LIR_Op {
1546  friend class LIR_OpVisitState;
1547 
1548  private:
1549   LIR_Opr       _object;
1550   LIR_Opr       _array;
1551   ciKlass*      _klass;
1552   LIR_Opr       _tmp1;
1553   LIR_Opr       _tmp2;
1554   LIR_Opr       _tmp3;
1555   bool          _fast_check;
1556   CodeEmitInfo* _info_for_patch;
1557   CodeEmitInfo* _info_for_exception;
1558   CodeStub*     _stub;
1559   ciMethod*     _profiled_method;
1560   int           _profiled_bci;
1561   bool          _should_profile;
1562 
1563 public:
1564   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1565                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1566                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1567   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1568                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1569 
1570   LIR_Opr object() const                         { return _object;         }
1571   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1572   LIR_Opr tmp1() const                           { return _tmp1;           }
1573   LIR_Opr tmp2() const                           { return _tmp2;           }
1574   LIR_Opr tmp3() const                           { return _tmp3;           }
1575   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1576   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1577   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1578   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1579   CodeStub* stub() const                         { return _stub;           }
1580 
1581   // MethodData* profiling
1582   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1583   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1584   void set_should_profile(bool b)                { _should_profile = b;       }
1585   ciMethod* profiled_method() const              { return _profiled_method;   }
1586   int       profiled_bci() const                 { return _profiled_bci;      }
1587   bool      should_profile() const               { return _should_profile;    }
1588 
1589   virtual void emit_code(LIR_Assembler* masm);
1590   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1591   void print_instr(outputStream* out) const PRODUCT_RETURN;
1592 };
1593 
1594 // LIR_Op2
1595 class LIR_Op2: public LIR_Op {
1596  friend class LIR_OpVisitState;
1597 
1598   int  _fpu_stack_size; // for sin/cos implementation on Intel
1599 
1600  protected:
1601   LIR_Opr   _opr1;
1602   LIR_Opr   _opr2;
1603   BasicType _type;
1604   LIR_Opr   _tmp1;
1605   LIR_Opr   _tmp2;
1606   LIR_Opr   _tmp3;
1607   LIR_Opr   _tmp4;
1608   LIR_Opr   _tmp5;
1609   LIR_Condition _condition;
1610 
1611   void verify() const;
1612 
1613  public:
1614   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1615     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1616     , _opr1(opr1)
1617     , _opr2(opr2)
1618     , _type(T_ILLEGAL)
1619     , _condition(condition)
1620     , _fpu_stack_size(0)
1621     , _tmp1(LIR_OprFact::illegalOpr)
1622     , _tmp2(LIR_OprFact::illegalOpr)
1623     , _tmp3(LIR_OprFact::illegalOpr)
1624     , _tmp4(LIR_OprFact::illegalOpr)
1625     , _tmp5(LIR_OprFact::illegalOpr) {
1626     assert(code == lir_cmp, "code check");
1627   }
1628 
1629   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1630     : LIR_Op(code, result, NULL)
1631     , _opr1(opr1)
1632     , _opr2(opr2)
1633     , _type(type)
1634     , _condition(condition)
1635     , _fpu_stack_size(0)
1636     , _tmp1(LIR_OprFact::illegalOpr)
1637     , _tmp2(LIR_OprFact::illegalOpr)
1638     , _tmp3(LIR_OprFact::illegalOpr)
1639     , _tmp4(LIR_OprFact::illegalOpr)
1640     , _tmp5(LIR_OprFact::illegalOpr) {
1641     assert(code == lir_cmove, "code check");
1642     assert(type != T_ILLEGAL, "cmove should have type");
1643   }
1644 
1645   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1646           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1647     : LIR_Op(code, result, info)
1648     , _opr1(opr1)
1649     , _opr2(opr2)
1650     , _type(type)
1651     , _condition(lir_cond_unknown)
1652     , _fpu_stack_size(0)
1653     , _tmp1(LIR_OprFact::illegalOpr)
1654     , _tmp2(LIR_OprFact::illegalOpr)
1655     , _tmp3(LIR_OprFact::illegalOpr)
1656     , _tmp4(LIR_OprFact::illegalOpr)
1657     , _tmp5(LIR_OprFact::illegalOpr) {
1658     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1659   }
1660 
1661   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1662           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1663     : LIR_Op(code, result, NULL)
1664     , _opr1(opr1)
1665     , _opr2(opr2)
1666     , _type(T_ILLEGAL)
1667     , _condition(lir_cond_unknown)
1668     , _fpu_stack_size(0)
1669     , _tmp1(tmp1)
1670     , _tmp2(tmp2)
1671     , _tmp3(tmp3)
1672     , _tmp4(tmp4)
1673     , _tmp5(tmp5) {
1674     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1675   }
1676 
1677   LIR_Opr in_opr1() const                        { return _opr1; }
1678   LIR_Opr in_opr2() const                        { return _opr2; }
1679   BasicType type()  const                        { return _type; }
1680   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1681   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1682   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1683   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1684   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1685   LIR_Condition condition() const  {
1686     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
1687   }
1688   void set_condition(LIR_Condition condition) {
1689     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1690   }
1691 
1692   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1693   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1694 
1695   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1696   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1697 
1698   virtual void emit_code(LIR_Assembler* masm);
1699   virtual LIR_Op2* as_Op2() { return this; }
1700   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1701 };
1702 
1703 class LIR_OpAllocArray : public LIR_Op {
1704  friend class LIR_OpVisitState;
1705 
1706  private:
1707   LIR_Opr   _klass;
1708   LIR_Opr   _len;
1709   LIR_Opr   _tmp1;
1710   LIR_Opr   _tmp2;
1711   LIR_Opr   _tmp3;
1712   LIR_Opr   _tmp4;
1713   BasicType _type;
1714   CodeStub* _stub;
1715 
1716  public:
1717   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1718     : LIR_Op(lir_alloc_array, result, NULL)
1719     , _klass(klass)
1720     , _len(len)
1721     , _tmp1(t1)
1722     , _tmp2(t2)
1723     , _tmp3(t3)
1724     , _tmp4(t4)
1725     , _type(type)
1726     , _stub(stub) {}
1727 
1728   LIR_Opr   klass()   const                      { return _klass;       }
1729   LIR_Opr   len()     const                      { return _len;         }
1730   LIR_Opr   obj()     const                      { return result_opr(); }
1731   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1732   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1733   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1734   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1735   BasicType type()    const                      { return _type;        }
1736   CodeStub* stub()    const                      { return _stub;        }
1737 
1738   virtual void emit_code(LIR_Assembler* masm);
1739   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1740   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1741 };
1742 
1743 
1744 class LIR_Op3: public LIR_Op {
1745  friend class LIR_OpVisitState;
1746 
1747  private:
1748   LIR_Opr _opr1;
1749   LIR_Opr _opr2;
1750   LIR_Opr _opr3;
1751  public:
1752   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1753     : LIR_Op(code, result, info)
1754     , _opr1(opr1)
1755     , _opr2(opr2)
1756     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1757   LIR_Opr in_opr1() const                        { return _opr1; }
1758   LIR_Opr in_opr2() const                        { return _opr2; }
1759   LIR_Opr in_opr3() const                        { return _opr3; }
1760 
1761   virtual void emit_code(LIR_Assembler* masm);
1762   virtual LIR_Op3* as_Op3() { return this; }
1763   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1764 };
1765 
1766 
1767 //--------------------------------
1768 class LabelObj: public CompilationResourceObj {
1769  private:
1770   Label _label;
1771  public:
1772   LabelObj()                                     {}
1773   Label* label()                                 { return &_label; }
1774 };
1775 
1776 
1777 class LIR_OpLock: public LIR_Op {
1778  friend class LIR_OpVisitState;
1779 
1780  private:
1781   LIR_Opr _hdr;
1782   LIR_Opr _obj;
1783   LIR_Opr _lock;
1784   LIR_Opr _scratch;
1785   CodeStub* _stub;
1786  public:
1787   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1788     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1789     , _hdr(hdr)
1790     , _obj(obj)
1791     , _lock(lock)
1792     , _scratch(scratch)
1793     , _stub(stub)                      {}
1794 
1795   LIR_Opr hdr_opr() const                        { return _hdr; }
1796   LIR_Opr obj_opr() const                        { return _obj; }
1797   LIR_Opr lock_opr() const                       { return _lock; }
1798   LIR_Opr scratch_opr() const                    { return _scratch; }
1799   CodeStub* stub() const                         { return _stub; }
1800 
1801   virtual void emit_code(LIR_Assembler* masm);
1802   virtual LIR_OpLock* as_OpLock() { return this; }
1803   void print_instr(outputStream* out) const PRODUCT_RETURN;
1804 };
1805 
1806 
1807 class LIR_OpDelay: public LIR_Op {
1808  friend class LIR_OpVisitState;
1809 
1810  private:
1811   LIR_Op* _op;
1812 
1813  public:
1814   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1815     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1816     _op(op) {
1817     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1818   }
1819   virtual void emit_code(LIR_Assembler* masm);
1820   virtual LIR_OpDelay* as_OpDelay() { return this; }
1821   void print_instr(outputStream* out) const PRODUCT_RETURN;
1822   LIR_Op* delay_op() const { return _op; }
1823   CodeEmitInfo* call_info() const { return info(); }
1824 };
1825 
1826 
1827 // LIR_OpCompareAndSwap
1828 class LIR_OpCompareAndSwap : public LIR_Op {
1829  friend class LIR_OpVisitState;
1830 
1831  private:
1832   LIR_Opr _addr;
1833   LIR_Opr _cmp_value;
1834   LIR_Opr _new_value;
1835   LIR_Opr _tmp1;
1836   LIR_Opr _tmp2;
1837 
1838  public:
1839   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1840                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1841     : LIR_Op(code, result, NULL)  // no result, no info
1842     , _addr(addr)
1843     , _cmp_value(cmp_value)
1844     , _new_value(new_value)
1845     , _tmp1(t1)
1846     , _tmp2(t2)                                  { }
1847 
1848   LIR_Opr addr()        const                    { return _addr;  }
1849   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1850   LIR_Opr new_value()   const                    { return _new_value; }
1851   LIR_Opr tmp1()        const                    { return _tmp1;      }
1852   LIR_Opr tmp2()        const                    { return _tmp2;      }
1853 
1854   virtual void emit_code(LIR_Assembler* masm);
1855   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1856   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1857 };
1858 
1859 // LIR_OpProfileCall
1860 class LIR_OpProfileCall : public LIR_Op {
1861  friend class LIR_OpVisitState;
1862 
1863  private:
1864   ciMethod* _profiled_method;
1865   int       _profiled_bci;
1866   ciMethod* _profiled_callee;
1867   LIR_Opr   _mdo;
1868   LIR_Opr   _recv;
1869   LIR_Opr   _tmp1;
1870   ciKlass*  _known_holder;
1871 
1872  public:
1873   // Destroys recv
1874   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1875     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1876     , _profiled_method(profiled_method)
1877     , _profiled_bci(profiled_bci)
1878     , _profiled_callee(profiled_callee)
1879     , _mdo(mdo)
1880     , _recv(recv)
1881     , _tmp1(t1)
1882     , _known_holder(known_holder)                { }
1883 
1884   ciMethod* profiled_method() const              { return _profiled_method;  }
1885   int       profiled_bci()    const              { return _profiled_bci;     }
1886   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1887   LIR_Opr   mdo()             const              { return _mdo;              }
1888   LIR_Opr   recv()            const              { return _recv;             }
1889   LIR_Opr   tmp1()            const              { return _tmp1;             }
1890   ciKlass*  known_holder()    const              { return _known_holder;     }
1891 
1892   virtual void emit_code(LIR_Assembler* masm);
1893   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1894   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1895 };
1896 
1897 class LIR_InsertionBuffer;
1898 
1899 //--------------------------------LIR_List---------------------------------------------------
1900 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1901 // The LIR instructions are appended by the LIR_List class itself;
1902 //
1903 // Notes:
1904 // - all offsets are(should be) in bytes
1905 // - local positions are specified with an offset, with offset 0 being local 0
1906 
1907 class LIR_List: public CompilationResourceObj {
1908  private:
1909   LIR_OpList  _operations;
1910 
1911   Compilation*  _compilation;
1912 #ifndef PRODUCT
1913   BlockBegin*   _block;
1914 #endif
1915 #ifdef ASSERT
1916   const char *  _file;
1917   int           _line;
1918 #endif
1919 
1920   void append(LIR_Op* op) {
1921     if (op->source() == NULL)
1922       op->set_source(_compilation->current_instruction());
1923 #ifndef PRODUCT
1924     if (PrintIRWithLIR) {
1925       _compilation->maybe_print_current_instruction();
1926       op->print(); tty->cr();
1927     }
1928 #endif // PRODUCT
1929 
1930     _operations.append(op);
1931 
1932 #ifdef ASSERT
1933     op->verify();
1934     op->set_file_and_line(_file, _line);
1935     _file = NULL;
1936     _line = 0;
1937 #endif
1938   }
1939 
1940  public:
1941   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
1942 
1943 #ifdef ASSERT
1944   void set_file_and_line(const char * file, int line);
1945 #endif
1946 
1947   //---------- accessors ---------------
1948   LIR_OpList* instructions_list()                { return &_operations; }
1949   int         length() const                     { return _operations.length(); }
1950   LIR_Op*     at(int i) const                    { return _operations.at(i); }
1951 
1952   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
1953 
1954   // insert LIR_Ops in buffer to right places in LIR_List
1955   void append(LIR_InsertionBuffer* buffer);
1956 
1957   //---------- mutators ---------------
1958   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
1959   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
1960   void remove_at(int i)                          { _operations.remove_at(i); }
1961 
1962   //---------- printing -------------
1963   void print_instructions() PRODUCT_RETURN;
1964 
1965 
1966   //---------- instructions -------------
1967   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1968                         address dest, LIR_OprList* arguments,
1969                         CodeEmitInfo* info) {
1970     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
1971   }
1972   void call_static(ciMethod* method, LIR_Opr result,
1973                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1974     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
1975   }
1976   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1977                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1978     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
1979   }
1980   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1981                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
1982     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
1983   }
1984   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1985                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1986     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
1987   }
1988 
1989   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
1990   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
1991   void membar()                                  { append(new LIR_Op0(lir_membar)); }
1992   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
1993   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
1994   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
1995   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
1996   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
1997   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
1998 
1999   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2000   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2001 
2002   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2003   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2004 
2005   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2006 
2007   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2008   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
2009 
2010   // result is a stack location for old backend and vreg for UseLinearScan
2011   // stack_loc_temp is an illegal register for old backend
2012   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2013   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2014   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2015   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2016   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2017   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2018   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2019   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2020     if (UseCompressedOops) {
2021       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2022     } else {
2023       move(src, dst, info);
2024     }
2025   }
2026   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2027     if (UseCompressedOops) {
2028       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2029     } else {
2030       move(src, dst, info);
2031     }
2032   }
2033   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2034 
2035   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2036   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2037 
2038   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2039   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2040 
2041   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2042 
2043   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2044 
2045 #ifdef PPC
2046   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
2047 #endif
2048   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2049 
2050   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2051   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2052   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2053 
2054   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2055   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2056 
2057   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
2058   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2059     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2060   }
2061   void unwind_exception(LIR_Opr exceptionOop) {
2062     append(new LIR_Op1(lir_unwind, exceptionOop));
2063   }
2064 
2065   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2066     append(new LIR_Op2(lir_compare_to,  left, right, dst));
2067   }
2068 
2069   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2070   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2071 
2072   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2073     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2074   }
2075   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2076     cmp(condition, left, LIR_OprFact::intConst(right), info);
2077   }
2078 
2079   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2080   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2081 
2082   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2083     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2084   }
2085 
2086   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2087                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2088   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2089                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2090   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2091                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2092 
2093   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2094   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2095   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
2096   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2097   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
2098   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
2099   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2100   void exp (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5)                { append(new LIR_Op2(lir_exp , from, tmp1, to, tmp2, tmp3, tmp4, tmp5)); }
2101   void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
2102 
2103   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2104   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2105   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2106   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2107   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2108   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2109   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2110 
2111   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2112   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2113 
2114   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2115 
2116   void prefetch(LIR_Address* addr, bool is_store);
2117 
2118   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2119   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2120   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2121   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2122   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2123 
2124   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2125   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2126   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2127   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2128 
2129   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2130   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2131 
2132   // jump is an unconditional branch
2133   void jump(BlockBegin* block) {
2134     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2135   }
2136   void jump(CodeStub* stub) {
2137     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2138   }
2139   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2140   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2141     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2142     append(new LIR_OpBranch(cond, type, block));
2143   }
2144   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2145     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2146     append(new LIR_OpBranch(cond, type, stub));
2147   }
2148   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2149     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2150     append(new LIR_OpBranch(cond, type, block, unordered));
2151   }
2152 
2153   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2154   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2155   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2156 
2157   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2158   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2159   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2160 
2161   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2162   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2163 
2164   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2165     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2166   }
2167 
2168   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2169                     LIR_OprList* arguments, CodeEmitInfo* info) {
2170     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2171   }
2172 
2173   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2174   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2175   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2176 
2177   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2178   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2179   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2180 
2181   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2182 
2183   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2184 
2185   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2186   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2187 
2188   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2189                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2190                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2191                   ciMethod* profiled_method, int profiled_bci);
2192   // MethodData* profiling
2193   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2194     append(new LIR_OpProfileCall(lir_profile_call, method, bci, callee, mdo, recv, t1, cha_klass));
2195   }
2196 
2197   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2198   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2199 };
2200 
2201 void print_LIR(BlockList* blocks);
2202 
2203 class LIR_InsertionBuffer : public CompilationResourceObj {
2204  private:
2205   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2206 
2207   // list of insertion points. index and count are stored alternately:
2208   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2209   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2210   intStack    _index_and_count;
2211 
2212   // the LIR_Ops to be inserted
2213   LIR_OpList  _ops;
2214 
2215   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2216   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2217   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2218 
2219 #ifdef ASSERT
2220   void verify();
2221 #endif
2222  public:
2223   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2224 
2225   // must be called before using the insertion buffer
2226   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2227   bool initialized() const  { return _lir != NULL; }
2228   // called automatically when the buffer is appended to the LIR_List
2229   void finish()             { _lir = NULL; }
2230 
2231   // accessors
2232   LIR_List*  lir_list() const             { return _lir; }
2233   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2234   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2235   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2236 
2237   int number_of_ops() const               { return _ops.length(); }
2238   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2239 
2240   // append an instruction to the buffer
2241   void append(int index, LIR_Op* op);
2242 
2243   // instruction
2244   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2245 };
2246 
2247 
2248 //
2249 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2250 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2251 // information about the input, output and temporaries used by the
2252 // op to be recorded.  It also records whether the op has call semantics
2253 // and also records all the CodeEmitInfos used by this op.
2254 //
2255 
2256 
2257 class LIR_OpVisitState: public StackObj {
2258  public:
2259   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2260 
2261   enum {
2262     maxNumberOfOperands = 20,
2263     maxNumberOfInfos = 4
2264   };
2265 
2266  private:
2267   LIR_Op*          _op;
2268 
2269   // optimization: the operands and infos are not stored in a variable-length
2270   //               list, but in a fixed-size array to save time of size checks and resizing
2271   int              _oprs_len[numModes];
2272   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2273   int _info_len;
2274   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2275 
2276   bool             _has_call;
2277   bool             _has_slow_case;
2278 
2279 
2280   // only include register operands
2281   // addresses are decomposed to the base and index registers
2282   // constants and stack operands are ignored
2283   void append(LIR_Opr& opr, OprMode mode) {
2284     assert(opr->is_valid(), "should not call this otherwise");
2285     assert(mode >= 0 && mode < numModes, "bad mode");
2286 
2287     if (opr->is_register()) {
2288        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2289       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2290 
2291     } else if (opr->is_pointer()) {
2292       LIR_Address* address = opr->as_address_ptr();
2293       if (address != NULL) {
2294         // special handling for addresses: add base and index register of the address
2295         // both are always input operands or temp if we want to extend
2296         // their liveness!
2297         if (mode == outputMode) {
2298           mode = inputMode;
2299         }
2300         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2301         if (address->_base->is_valid()) {
2302           assert(address->_base->is_register(), "must be");
2303           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2304           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2305         }
2306         if (address->_index->is_valid()) {
2307           assert(address->_index->is_register(), "must be");
2308           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2309           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2310         }
2311 
2312       } else {
2313         assert(opr->is_constant(), "constant operands are not processed");
2314       }
2315     } else {
2316       assert(opr->is_stack(), "stack operands are not processed");
2317     }
2318   }
2319 
2320   void append(CodeEmitInfo* info) {
2321     assert(info != NULL, "should not call this otherwise");
2322     assert(_info_len < maxNumberOfInfos, "array overflow");
2323     _info_new[_info_len++] = info;
2324   }
2325 
2326  public:
2327   LIR_OpVisitState()         { reset(); }
2328 
2329   LIR_Op* op() const         { return _op; }
2330   void set_op(LIR_Op* op)    { reset(); _op = op; }
2331 
2332   bool has_call() const      { return _has_call; }
2333   bool has_slow_case() const { return _has_slow_case; }
2334 
2335   void reset() {
2336     _op = NULL;
2337     _has_call = false;
2338     _has_slow_case = false;
2339 
2340     _oprs_len[inputMode] = 0;
2341     _oprs_len[tempMode] = 0;
2342     _oprs_len[outputMode] = 0;
2343     _info_len = 0;
2344   }
2345 
2346 
2347   int opr_count(OprMode mode) const {
2348     assert(mode >= 0 && mode < numModes, "bad mode");
2349     return _oprs_len[mode];
2350   }
2351 
2352   LIR_Opr opr_at(OprMode mode, int index) const {
2353     assert(mode >= 0 && mode < numModes, "bad mode");
2354     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2355     return *_oprs_new[mode][index];
2356   }
2357 
2358   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2359     assert(mode >= 0 && mode < numModes, "bad mode");
2360     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2361     *_oprs_new[mode][index] = opr;
2362   }
2363 
2364   int info_count() const {
2365     return _info_len;
2366   }
2367 
2368   CodeEmitInfo* info_at(int index) const {
2369     assert(index < _info_len, "index out of bounds");
2370     return _info_new[index];
2371   }
2372 
2373   XHandlers* all_xhandler();
2374 
2375   // collects all register operands of the instruction
2376   void visit(LIR_Op* op);
2377 
2378 #if ASSERT
2379   // check that an operation has no operands
2380   bool no_operands(LIR_Op* op);
2381 #endif
2382 
2383   // LIR_Op visitor functions use these to fill in the state
2384   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2385   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2386   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2387   void do_info(CodeEmitInfo* info)        { append(info); }
2388 
2389   void do_stub(CodeStub* stub);
2390   void do_call()                          { _has_call = true; }
2391   void do_slow_case()                     { _has_slow_case = true; }
2392   void do_slow_case(CodeEmitInfo* info) {
2393     _has_slow_case = true;
2394     append(info);
2395   }
2396 };
2397 
2398 
2399 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2400 
2401 #endif // SHARE_VM_C1_C1_LIR_HPP