1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_C1_C1_LIR_HPP
  26 #define SHARE_VM_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_ValueType.hpp"
  29 #include "oops/method.hpp"
  30 
  31 class BlockBegin;
  32 class BlockList;
  33 class LIR_Assembler;
  34 class CodeEmitInfo;
  35 class CodeStub;
  36 class CodeStubList;
  37 class ArrayCopyStub;
  38 class LIR_Op;
  39 class ciType;
  40 class ValueType;
  41 class LIR_OpVisitState;
  42 class FpuStackSim;
  43 
  44 //---------------------------------------------------------------------
  45 //                 LIR Operands
  46 //  LIR_OprDesc
  47 //    LIR_OprPtr
  48 //      LIR_Const
  49 //      LIR_Address
  50 //---------------------------------------------------------------------
  51 class LIR_OprDesc;
  52 class LIR_OprPtr;
  53 class LIR_Const;
  54 class LIR_Address;
  55 class LIR_OprVisitor;
  56 
  57 
  58 typedef LIR_OprDesc* LIR_Opr;
  59 typedef int          RegNr;
  60 
  61 define_array(LIR_OprArray, LIR_Opr)
  62 define_stack(LIR_OprList, LIR_OprArray)
  63 
  64 define_array(LIR_OprRefArray, LIR_Opr*)
  65 define_stack(LIR_OprRefList, LIR_OprRefArray)
  66 
  67 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  68 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  69 
  70 define_array(LIR_OpArray, LIR_Op*)
  71 define_stack(LIR_OpList, LIR_OpArray)
  72 
  73 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  74 class LIR_OprPtr: public CompilationResourceObj {
  75  public:
  76   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  77   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  78 
  79   virtual LIR_Const*  as_constant()              { return NULL; }
  80   virtual LIR_Address* as_address()              { return NULL; }
  81   virtual BasicType type() const                 = 0;
  82   virtual void print_value_on(outputStream* out) const = 0;
  83 };
  84 
  85 
  86 
  87 // LIR constants
  88 class LIR_Const: public LIR_OprPtr {
  89  private:
  90   JavaValue _value;
  91 
  92   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  93   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  94   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  95 
  96  public:
  97   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  98   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  99   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
 100   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
 101   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
 102   LIR_Const(void* p) {
 103 #ifdef _LP64
 104     assert(sizeof(jlong) >= sizeof(p), "too small");;
 105     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 106 #else
 107     assert(sizeof(jint) >= sizeof(p), "too small");;
 108     _value.set_type(T_INT);     _value.set_jint((jint)p);
 109 #endif
 110   }
 111   LIR_Const(Metadata* m) {
 112     _value.set_type(T_METADATA);
 113 #ifdef _LP64
 114     _value.set_jlong((jlong)m);
 115 #else
 116     _value.set_jint((jint)m);
 117 #endif // _LP64
 118   }
 119 
 120   virtual BasicType type()       const { return _value.get_type(); }
 121   virtual LIR_Const* as_constant()     { return this; }
 122 
 123   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 124   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 125   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 126   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 127   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 128   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 129   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 130 
 131 #ifdef _LP64
 132   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 133   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 134 #else
 135   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 136   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 137 #endif
 138 
 139 
 140   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 141   jint      as_jint_lo_bits() const    {
 142     if (type() == T_DOUBLE) {
 143       return low(jlong_cast(_value.get_jdouble()));
 144     } else {
 145       return as_jint_lo();
 146     }
 147   }
 148   jint      as_jint_hi_bits() const    {
 149     if (type() == T_DOUBLE) {
 150       return high(jlong_cast(_value.get_jdouble()));
 151     } else {
 152       return as_jint_hi();
 153     }
 154   }
 155   jlong      as_jlong_bits() const    {
 156     if (type() == T_DOUBLE) {
 157       return jlong_cast(_value.get_jdouble());
 158     } else {
 159       return as_jlong();
 160     }
 161   }
 162 
 163   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 164 
 165 
 166   bool is_zero_float() {
 167     jfloat f = as_jfloat();
 168     jfloat ok = 0.0f;
 169     return jint_cast(f) == jint_cast(ok);
 170   }
 171 
 172   bool is_one_float() {
 173     jfloat f = as_jfloat();
 174     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 175   }
 176 
 177   bool is_zero_double() {
 178     jdouble d = as_jdouble();
 179     jdouble ok = 0.0;
 180     return jlong_cast(d) == jlong_cast(ok);
 181   }
 182 
 183   bool is_one_double() {
 184     jdouble d = as_jdouble();
 185     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 186   }
 187 };
 188 
 189 
 190 //---------------------LIR Operand descriptor------------------------------------
 191 //
 192 // The class LIR_OprDesc represents a LIR instruction operand;
 193 // it can be a register (ALU/FPU), stack location or a constant;
 194 // Constants and addresses are represented as resource area allocated
 195 // structures (see above).
 196 // Registers and stack locations are inlined into the this pointer
 197 // (see value function).
 198 
 199 class LIR_OprDesc: public CompilationResourceObj {
 200  public:
 201   // value structure:
 202   //     data       opr-type opr-kind
 203   // +--------------+-------+-------+
 204   // [max...........|7 6 5 4|3 2 1 0]
 205   //                             ^
 206   //                    is_pointer bit
 207   //
 208   // lowest bit cleared, means it is a structure pointer
 209   // we need  4 bits to represent types
 210 
 211  private:
 212   friend class LIR_OprFact;
 213 
 214   // Conversion
 215   intptr_t value() const                         { return (intptr_t) this; }
 216 
 217   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 218     return (value() & mask) == masked_value;
 219   }
 220 
 221   enum OprKind {
 222       pointer_value      = 0
 223     , stack_value        = 1
 224     , cpu_register       = 3
 225     , fpu_register       = 5
 226     , illegal_value      = 7
 227   };
 228 
 229   enum OprBits {
 230       pointer_bits   = 1
 231     , kind_bits      = 3
 232     , type_bits      = 4
 233     , size_bits      = 2
 234     , destroys_bits  = 1
 235     , virtual_bits   = 1
 236     , is_xmm_bits    = 1
 237     , last_use_bits  = 1
 238     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 239     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 240                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 241     , data_bits      = BitsPerInt - non_data_bits
 242     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 243   };
 244 
 245   enum OprShift {
 246       kind_shift     = 0
 247     , type_shift     = kind_shift     + kind_bits
 248     , size_shift     = type_shift     + type_bits
 249     , destroys_shift = size_shift     + size_bits
 250     , last_use_shift = destroys_shift + destroys_bits
 251     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 252     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 253     , is_xmm_shift   = virtual_shift + virtual_bits
 254     , data_shift     = is_xmm_shift + is_xmm_bits
 255     , reg1_shift = data_shift
 256     , reg2_shift = data_shift + reg_bits
 257 
 258   };
 259 
 260   enum OprSize {
 261       single_size = 0 << size_shift
 262     , double_size = 1 << size_shift
 263   };
 264 
 265   enum OprMask {
 266       kind_mask      = right_n_bits(kind_bits)
 267     , type_mask      = right_n_bits(type_bits) << type_shift
 268     , size_mask      = right_n_bits(size_bits) << size_shift
 269     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 270     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 271     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 272     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 273     , pointer_mask   = right_n_bits(pointer_bits)
 274     , lower_reg_mask = right_n_bits(reg_bits)
 275     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 276   };
 277 
 278   uintptr_t data() const                         { return value() >> data_shift; }
 279   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 280   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 281   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 282   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 283 
 284   static char type_char(BasicType t);
 285 
 286  public:
 287   enum {
 288     vreg_base = ConcreteRegisterImpl::number_of_registers,
 289     vreg_max = (1 << data_bits) - 1
 290   };
 291 
 292   static inline LIR_Opr illegalOpr();
 293 
 294   enum OprType {
 295       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 296     , int_type      = 1 << type_shift
 297     , long_type     = 2 << type_shift
 298     , object_type   = 3 << type_shift
 299     , address_type  = 4 << type_shift
 300     , float_type    = 5 << type_shift
 301     , double_type   = 6 << type_shift
 302     , metadata_type = 7 << type_shift
 303   };
 304   friend OprType as_OprType(BasicType t);
 305   friend BasicType as_BasicType(OprType t);
 306 
 307   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 308   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 309 
 310   static OprSize size_for(BasicType t) {
 311     switch (t) {
 312       case T_LONG:
 313       case T_DOUBLE:
 314         return double_size;
 315         break;
 316 
 317       case T_FLOAT:
 318       case T_BOOLEAN:
 319       case T_CHAR:
 320       case T_BYTE:
 321       case T_SHORT:
 322       case T_INT:
 323       case T_ADDRESS:
 324       case T_OBJECT:
 325       case T_ARRAY:
 326       case T_METADATA:
 327         return single_size;
 328         break;
 329 
 330       default:
 331         ShouldNotReachHere();
 332         return single_size;
 333       }
 334   }
 335 
 336 
 337   void validate_type() const PRODUCT_RETURN;
 338 
 339   BasicType type() const {
 340     if (is_pointer()) {
 341       return pointer()->type();
 342     }
 343     return as_BasicType(type_field());
 344   }
 345 
 346 
 347   ValueType* value_type() const                  { return as_ValueType(type()); }
 348 
 349   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 350 
 351   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 352   // checks whether types are same
 353   bool is_same_type(LIR_Opr opr) const     {
 354     assert(type_field() != unknown_type &&
 355            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 356     return type_field() == opr->type_field();
 357   }
 358   bool is_same_register(LIR_Opr opr) {
 359     return (is_register() && opr->is_register() &&
 360             kind_field() == opr->kind_field() &&
 361             (value() & no_type_mask) == (opr->value() & no_type_mask));
 362   }
 363 
 364   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 365   bool is_illegal() const      { return kind_field() == illegal_value; }
 366   bool is_valid() const        { return kind_field() != illegal_value; }
 367 
 368   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 369   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 370 
 371   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 372   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 373 
 374   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 375   bool is_oop() const;
 376 
 377   // semantic for fpu- and xmm-registers:
 378   // * is_float and is_double return true for xmm_registers
 379   //   (so is_single_fpu and is_single_xmm are true)
 380   // * So you must always check for is_???_xmm prior to is_???_fpu to
 381   //   distinguish between fpu- and xmm-registers
 382 
 383   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 384   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 385   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 386 
 387   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 388   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 389   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 390   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 391   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 392 
 393   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 394   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 395   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 396   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 397   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 398 
 399   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 400   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 401   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 402 
 403   // fast accessor functions for special bits that do not work for pointers
 404   // (in this functions, the check for is_pointer() is omitted)
 405   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 406   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 407   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 408   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 409   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 410 
 411   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 412   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 413   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 414   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 415 
 416 
 417   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 418   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 419   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 420   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 421   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 422   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 423   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 424   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 425   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 426   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 427   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 428   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 429 
 430   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 431   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 432   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 433 
 434   Register as_register()    const;
 435   Register as_register_lo() const;
 436   Register as_register_hi() const;
 437 
 438   Register as_pointer_register() {
 439 #ifdef _LP64
 440     if (is_double_cpu()) {
 441       assert(as_register_lo() == as_register_hi(), "should be a single register");
 442       return as_register_lo();
 443     }
 444 #endif
 445     return as_register();
 446   }
 447 
 448 #ifdef X86
 449   XMMRegister as_xmm_float_reg() const;
 450   XMMRegister as_xmm_double_reg() const;
 451   // for compatibility with RInfo
 452   int fpu () const                                  { return lo_reg_half(); }
 453 #endif // X86
 454 #if defined(SPARC) || defined(ARM) || defined(PPC)
 455   FloatRegister as_float_reg   () const;
 456   FloatRegister as_double_reg  () const;
 457 #endif
 458 
 459   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 460   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 461   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 462   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 463   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 464 
 465   void print() const PRODUCT_RETURN;
 466   void print(outputStream* out) const PRODUCT_RETURN;
 467 };
 468 
 469 
 470 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 471   switch (type) {
 472   case T_INT:      return LIR_OprDesc::int_type;
 473   case T_LONG:     return LIR_OprDesc::long_type;
 474   case T_FLOAT:    return LIR_OprDesc::float_type;
 475   case T_DOUBLE:   return LIR_OprDesc::double_type;
 476   case T_OBJECT:
 477   case T_ARRAY:    return LIR_OprDesc::object_type;
 478   case T_ADDRESS:  return LIR_OprDesc::address_type;
 479   case T_METADATA: return LIR_OprDesc::metadata_type;
 480   case T_ILLEGAL:  // fall through
 481   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 482   }
 483 }
 484 
 485 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 486   switch (t) {
 487   case LIR_OprDesc::int_type:     return T_INT;
 488   case LIR_OprDesc::long_type:    return T_LONG;
 489   case LIR_OprDesc::float_type:   return T_FLOAT;
 490   case LIR_OprDesc::double_type:  return T_DOUBLE;
 491   case LIR_OprDesc::object_type:  return T_OBJECT;
 492   case LIR_OprDesc::address_type: return T_ADDRESS;
 493   case LIR_OprDesc::metadata_type:return T_METADATA;
 494   case LIR_OprDesc::unknown_type: // fall through
 495   default: ShouldNotReachHere();  return T_ILLEGAL;
 496   }
 497 }
 498 
 499 
 500 // LIR_Address
 501 class LIR_Address: public LIR_OprPtr {
 502  friend class LIR_OpVisitState;
 503 
 504  public:
 505   // NOTE: currently these must be the log2 of the scale factor (and
 506   // must also be equivalent to the ScaleFactor enum in
 507   // assembler_i486.hpp)
 508   enum Scale {
 509     times_1  =  0,
 510     times_2  =  1,
 511     times_4  =  2,
 512     times_8  =  3
 513   };
 514 
 515  private:
 516   LIR_Opr   _base;
 517   LIR_Opr   _index;
 518   Scale     _scale;
 519   intx      _disp;
 520   BasicType _type;
 521 
 522  public:
 523   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 524        _base(base)
 525      , _index(index)
 526      , _scale(times_1)
 527      , _type(type)
 528      , _disp(0) { verify(); }
 529 
 530   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 531        _base(base)
 532      , _index(LIR_OprDesc::illegalOpr())
 533      , _scale(times_1)
 534      , _type(type)
 535      , _disp(disp) { verify(); }
 536 
 537   LIR_Address(LIR_Opr base, BasicType type):
 538        _base(base)
 539      , _index(LIR_OprDesc::illegalOpr())
 540      , _scale(times_1)
 541      , _type(type)
 542      , _disp(0) { verify(); }
 543 
 544 #if defined(X86) || defined(ARM)
 545   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 546        _base(base)
 547      , _index(index)
 548      , _scale(scale)
 549      , _type(type)
 550      , _disp(disp) { verify(); }
 551 #endif // X86 || ARM
 552 
 553   LIR_Opr base()  const                          { return _base;  }
 554   LIR_Opr index() const                          { return _index; }
 555   Scale   scale() const                          { return _scale; }
 556   intx    disp()  const                          { return _disp;  }
 557 
 558   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 559 
 560   virtual LIR_Address* as_address()              { return this;   }
 561   virtual BasicType type() const                 { return _type; }
 562   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 563 
 564   void verify() const PRODUCT_RETURN;
 565 
 566   static Scale scale(BasicType type);
 567 };
 568 
 569 
 570 // operand factory
 571 class LIR_OprFact: public AllStatic {
 572  public:
 573 
 574   static LIR_Opr illegalOpr;
 575 
 576   static LIR_Opr single_cpu(int reg) {
 577     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 578                                LIR_OprDesc::int_type             |
 579                                LIR_OprDesc::cpu_register         |
 580                                LIR_OprDesc::single_size);
 581   }
 582   static LIR_Opr single_cpu_oop(int reg) {
 583     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 584                                LIR_OprDesc::object_type          |
 585                                LIR_OprDesc::cpu_register         |
 586                                LIR_OprDesc::single_size);
 587   }
 588   static LIR_Opr single_cpu_address(int reg) {
 589     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 590                                LIR_OprDesc::address_type         |
 591                                LIR_OprDesc::cpu_register         |
 592                                LIR_OprDesc::single_size);
 593   }
 594   static LIR_Opr single_cpu_metadata(int reg) {
 595     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 596                                LIR_OprDesc::metadata_type        |
 597                                LIR_OprDesc::cpu_register         |
 598                                LIR_OprDesc::single_size);
 599   }
 600   static LIR_Opr double_cpu(int reg1, int reg2) {
 601     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 602     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 603                                (reg2 << LIR_OprDesc::reg2_shift) |
 604                                LIR_OprDesc::long_type            |
 605                                LIR_OprDesc::cpu_register         |
 606                                LIR_OprDesc::double_size);
 607   }
 608 
 609   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 610                                                                              LIR_OprDesc::float_type           |
 611                                                                              LIR_OprDesc::fpu_register         |
 612                                                                              LIR_OprDesc::single_size); }
 613 #if defined(ARM)
 614   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
 615   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 616   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
 617 #endif
 618 #ifdef SPARC
 619   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 620                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 621                                                                              LIR_OprDesc::double_type          |
 622                                                                              LIR_OprDesc::fpu_register         |
 623                                                                              LIR_OprDesc::double_size); }
 624 #endif
 625 #ifdef X86
 626   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 627                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 628                                                                              LIR_OprDesc::double_type          |
 629                                                                              LIR_OprDesc::fpu_register         |
 630                                                                              LIR_OprDesc::double_size); }
 631 
 632   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 633                                                                              LIR_OprDesc::float_type           |
 634                                                                              LIR_OprDesc::fpu_register         |
 635                                                                              LIR_OprDesc::single_size          |
 636                                                                              LIR_OprDesc::is_xmm_mask); }
 637   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 638                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 639                                                                              LIR_OprDesc::double_type          |
 640                                                                              LIR_OprDesc::fpu_register         |
 641                                                                              LIR_OprDesc::double_size          |
 642                                                                              LIR_OprDesc::is_xmm_mask); }
 643 #endif // X86
 644 #ifdef PPC
 645   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 646                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 647                                                                              LIR_OprDesc::double_type          |
 648                                                                              LIR_OprDesc::fpu_register         |
 649                                                                              LIR_OprDesc::double_size); }
 650   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
 651                                                                              LIR_OprDesc::float_type           |
 652                                                                              LIR_OprDesc::cpu_register         |
 653                                                                              LIR_OprDesc::single_size); }
 654   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
 655                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
 656                                                                              LIR_OprDesc::double_type          |
 657                                                                              LIR_OprDesc::cpu_register         |
 658                                                                              LIR_OprDesc::double_size); }
 659 #endif // PPC
 660 
 661   static LIR_Opr virtual_register(int index, BasicType type) {
 662     LIR_Opr res;
 663     switch (type) {
 664       case T_OBJECT: // fall through
 665       case T_ARRAY:
 666         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 667                                             LIR_OprDesc::object_type  |
 668                                             LIR_OprDesc::cpu_register |
 669                                             LIR_OprDesc::single_size  |
 670                                             LIR_OprDesc::virtual_mask);
 671         break;
 672 
 673       case T_METADATA:
 674         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 675                                             LIR_OprDesc::metadata_type|
 676                                             LIR_OprDesc::cpu_register |
 677                                             LIR_OprDesc::single_size  |
 678                                             LIR_OprDesc::virtual_mask);
 679         break;
 680 
 681       case T_INT:
 682         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 683                                   LIR_OprDesc::int_type              |
 684                                   LIR_OprDesc::cpu_register          |
 685                                   LIR_OprDesc::single_size           |
 686                                   LIR_OprDesc::virtual_mask);
 687         break;
 688 
 689       case T_ADDRESS:
 690         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 691                                   LIR_OprDesc::address_type          |
 692                                   LIR_OprDesc::cpu_register          |
 693                                   LIR_OprDesc::single_size           |
 694                                   LIR_OprDesc::virtual_mask);
 695         break;
 696 
 697       case T_LONG:
 698         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 699                                   LIR_OprDesc::long_type             |
 700                                   LIR_OprDesc::cpu_register          |
 701                                   LIR_OprDesc::double_size           |
 702                                   LIR_OprDesc::virtual_mask);
 703         break;
 704 
 705 #ifdef __SOFTFP__
 706       case T_FLOAT:
 707         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 708                                   LIR_OprDesc::float_type  |
 709                                   LIR_OprDesc::cpu_register |
 710                                   LIR_OprDesc::single_size |
 711                                   LIR_OprDesc::virtual_mask);
 712         break;
 713       case T_DOUBLE:
 714         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 715                                   LIR_OprDesc::double_type |
 716                                   LIR_OprDesc::cpu_register |
 717                                   LIR_OprDesc::double_size |
 718                                   LIR_OprDesc::virtual_mask);
 719         break;
 720 #else // __SOFTFP__
 721       case T_FLOAT:
 722         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 723                                   LIR_OprDesc::float_type           |
 724                                   LIR_OprDesc::fpu_register         |
 725                                   LIR_OprDesc::single_size          |
 726                                   LIR_OprDesc::virtual_mask);
 727         break;
 728 
 729       case
 730         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 731                                             LIR_OprDesc::double_type           |
 732                                             LIR_OprDesc::fpu_register          |
 733                                             LIR_OprDesc::double_size           |
 734                                             LIR_OprDesc::virtual_mask);
 735         break;
 736 #endif // __SOFTFP__
 737       default:       ShouldNotReachHere(); res = illegalOpr;
 738     }
 739 
 740 #ifdef ASSERT
 741     res->validate_type();
 742     assert(res->vreg_number() == index, "conversion check");
 743     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 744     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 745 
 746     // old-style calculation; check if old and new method are equal
 747     LIR_OprDesc::OprType t = as_OprType(type);
 748 #ifdef __SOFTFP__
 749     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 750                                t |
 751                                LIR_OprDesc::cpu_register |
 752                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 753 #else // __SOFTFP__
 754     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 755                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 756                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 757     assert(res == old_res, "old and new method not equal");
 758 #endif // __SOFTFP__
 759 #endif // ASSERT
 760 
 761     return res;
 762   }
 763 
 764   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 765   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 766   // index 2.
 767   static LIR_Opr stack(int index, BasicType type) {
 768     LIR_Opr res;
 769     switch (type) {
 770       case T_OBJECT: // fall through
 771       case T_ARRAY:
 772         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 773                                   LIR_OprDesc::object_type           |
 774                                   LIR_OprDesc::stack_value           |
 775                                   LIR_OprDesc::single_size);
 776         break;
 777 
 778       case T_METADATA:
 779         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 780                                   LIR_OprDesc::metadata_type         |
 781                                   LIR_OprDesc::stack_value           |
 782                                   LIR_OprDesc::single_size);
 783         break;
 784       case T_INT:
 785         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 786                                   LIR_OprDesc::int_type              |
 787                                   LIR_OprDesc::stack_value           |
 788                                   LIR_OprDesc::single_size);
 789         break;
 790 
 791       case T_ADDRESS:
 792         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 793                                   LIR_OprDesc::address_type          |
 794                                   LIR_OprDesc::stack_value           |
 795                                   LIR_OprDesc::single_size);
 796         break;
 797 
 798       case T_LONG:
 799         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 800                                   LIR_OprDesc::long_type             |
 801                                   LIR_OprDesc::stack_value           |
 802                                   LIR_OprDesc::double_size);
 803         break;
 804 
 805       case T_FLOAT:
 806         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 807                                   LIR_OprDesc::float_type            |
 808                                   LIR_OprDesc::stack_value           |
 809                                   LIR_OprDesc::single_size);
 810         break;
 811       case T_DOUBLE:
 812         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 813                                   LIR_OprDesc::double_type           |
 814                                   LIR_OprDesc::stack_value           |
 815                                   LIR_OprDesc::double_size);
 816         break;
 817 
 818       default:       ShouldNotReachHere(); res = illegalOpr;
 819     }
 820 
 821 #ifdef ASSERT
 822     assert(index >= 0, "index must be positive");
 823     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 824 
 825     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 826                                           LIR_OprDesc::stack_value           |
 827                                           as_OprType(type)                   |
 828                                           LIR_OprDesc::size_for(type));
 829     assert(res == old_res, "old and new method not equal");
 830 #endif
 831 
 832     return res;
 833   }
 834 
 835   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 836   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 837   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 838   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 839   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 840   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 841   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 842   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 843   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 844   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 845   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 846 
 847   static LIR_Opr value_type(ValueType* type);
 848   static LIR_Opr dummy_value_type(ValueType* type);
 849 };
 850 
 851 
 852 //-------------------------------------------------------------------------------
 853 //                   LIR Instructions
 854 //-------------------------------------------------------------------------------
 855 //
 856 // Note:
 857 //  - every instruction has a result operand
 858 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 859 //  - every instruction has a LIR_OpCode operand
 860 //  - LIR_OpN, means an instruction that has N input operands
 861 //
 862 // class hierarchy:
 863 //
 864 class  LIR_Op;
 865 class    LIR_Op0;
 866 class      LIR_OpLabel;
 867 class    LIR_Op1;
 868 class      LIR_OpBranch;
 869 class      LIR_OpConvert;
 870 class      LIR_OpAllocObj;
 871 class      LIR_OpRoundFP;
 872 class    LIR_Op2;
 873 class    LIR_OpDelay;
 874 class    LIR_Op3;
 875 class      LIR_OpAllocArray;
 876 class    LIR_OpCall;
 877 class      LIR_OpJavaCall;
 878 class      LIR_OpRTCall;
 879 class    LIR_OpArrayCopy;
 880 class    LIR_OpLock;
 881 class    LIR_OpTypeCheck;
 882 class    LIR_OpCompareAndSwap;
 883 class    LIR_OpProfileCall;
 884 class    LIR_OpAssert;
 885 
 886 
 887 // LIR operation codes
 888 enum LIR_Code {
 889     lir_none
 890   , begin_op0
 891       , lir_word_align
 892       , lir_label
 893       , lir_nop
 894       , lir_backwardbranch_target
 895       , lir_std_entry
 896       , lir_osr_entry
 897       , lir_build_frame
 898       , lir_fpop_raw
 899       , lir_24bit_FPU
 900       , lir_reset_FPU
 901       , lir_breakpoint
 902       , lir_rtcall
 903       , lir_membar
 904       , lir_membar_acquire
 905       , lir_membar_release
 906       , lir_membar_loadload
 907       , lir_membar_storestore
 908       , lir_membar_loadstore
 909       , lir_membar_storeload
 910       , lir_get_thread
 911   , end_op0
 912   , begin_op1
 913       , lir_fxch
 914       , lir_fld
 915       , lir_ffree
 916       , lir_push
 917       , lir_pop
 918       , lir_null_check
 919       , lir_return
 920       , lir_leal
 921       , lir_neg
 922       , lir_branch
 923       , lir_cond_float_branch
 924       , lir_move
 925       , lir_prefetchr
 926       , lir_prefetchw
 927       , lir_convert
 928       , lir_alloc_object
 929       , lir_monaddr
 930       , lir_roundfp
 931       , lir_safepoint
 932       , lir_pack64
 933       , lir_unpack64
 934       , lir_unwind
 935   , end_op1
 936   , begin_op2
 937       , lir_cmp
 938       , lir_cmp_l2i
 939       , lir_ucmp_fd2i
 940       , lir_cmp_fd2i
 941       , lir_cmove
 942       , lir_add
 943       , lir_sub
 944       , lir_mul
 945       , lir_mul_strictfp
 946       , lir_div
 947       , lir_div_strictfp
 948       , lir_rem
 949       , lir_sqrt
 950       , lir_abs
 951       , lir_sin
 952       , lir_cos
 953       , lir_tan
 954       , lir_log
 955       , lir_log10
 956       , lir_exp
 957       , lir_pow
 958       , lir_logic_and
 959       , lir_logic_or
 960       , lir_logic_xor
 961       , lir_shl
 962       , lir_shr
 963       , lir_ushr
 964       , lir_alloc_array
 965       , lir_throw
 966       , lir_compare_to
 967       , lir_xadd
 968       , lir_xchg
 969   , end_op2
 970   , begin_op3
 971       , lir_idiv
 972       , lir_irem
 973   , end_op3
 974   , begin_opJavaCall
 975       , lir_static_call
 976       , lir_optvirtual_call
 977       , lir_icvirtual_call
 978       , lir_virtual_call
 979       , lir_dynamic_call
 980   , end_opJavaCall
 981   , begin_opArrayCopy
 982       , lir_arraycopy
 983   , end_opArrayCopy
 984   , begin_opLock
 985     , lir_lock
 986     , lir_unlock
 987   , end_opLock
 988   , begin_delay_slot
 989     , lir_delay_slot
 990   , end_delay_slot
 991   , begin_opTypeCheck
 992     , lir_instanceof
 993     , lir_checkcast
 994     , lir_store_check
 995   , end_opTypeCheck
 996   , begin_opCompareAndSwap
 997     , lir_cas_long
 998     , lir_cas_obj
 999     , lir_cas_int
1000   , end_opCompareAndSwap
1001   , begin_opMDOProfile
1002     , lir_profile_call
1003   , end_opMDOProfile
1004   , begin_opAssert
1005     , lir_assert
1006   , end_opAssert
1007 };
1008 
1009 
1010 enum LIR_Condition {
1011     lir_cond_equal
1012   , lir_cond_notEqual
1013   , lir_cond_less
1014   , lir_cond_lessEqual
1015   , lir_cond_greaterEqual
1016   , lir_cond_greater
1017   , lir_cond_belowEqual
1018   , lir_cond_aboveEqual
1019   , lir_cond_always
1020   , lir_cond_unknown = -1
1021 };
1022 
1023 
1024 enum LIR_PatchCode {
1025   lir_patch_none,
1026   lir_patch_low,
1027   lir_patch_high,
1028   lir_patch_normal
1029 };
1030 
1031 
1032 enum LIR_MoveKind {
1033   lir_move_normal,
1034   lir_move_volatile,
1035   lir_move_unaligned,
1036   lir_move_wide,
1037   lir_move_max_flag
1038 };
1039 
1040 
1041 // --------------------------------------------------
1042 // LIR_Op
1043 // --------------------------------------------------
1044 class LIR_Op: public CompilationResourceObj {
1045  friend class LIR_OpVisitState;
1046 
1047 #ifdef ASSERT
1048  private:
1049   const char *  _file;
1050   int           _line;
1051 #endif
1052 
1053  protected:
1054   LIR_Opr       _result;
1055   unsigned short _code;
1056   unsigned short _flags;
1057   CodeEmitInfo* _info;
1058   int           _id;     // value id for register allocation
1059   int           _fpu_pop_count;
1060   Instruction*  _source; // for debugging
1061 
1062   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1063 
1064  protected:
1065   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1066 
1067  public:
1068   LIR_Op()
1069     : _result(LIR_OprFact::illegalOpr)
1070     , _code(lir_none)
1071     , _flags(0)
1072     , _info(NULL)
1073 #ifdef ASSERT
1074     , _file(NULL)
1075     , _line(0)
1076 #endif
1077     , _fpu_pop_count(0)
1078     , _source(NULL)
1079     , _id(-1)                             {}
1080 
1081   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1082     : _result(result)
1083     , _code(code)
1084     , _flags(0)
1085     , _info(info)
1086 #ifdef ASSERT
1087     , _file(NULL)
1088     , _line(0)
1089 #endif
1090     , _fpu_pop_count(0)
1091     , _source(NULL)
1092     , _id(-1)                             {}
1093 
1094   CodeEmitInfo* info() const                  { return _info;   }
1095   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1096   LIR_Opr result_opr() const                  { return _result; }
1097   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1098 
1099 #ifdef ASSERT
1100   void set_file_and_line(const char * file, int line) {
1101     _file = file;
1102     _line = line;
1103   }
1104 #endif
1105 
1106   virtual const char * name() const PRODUCT_RETURN0;
1107 
1108   int id()             const                  { return _id;     }
1109   void set_id(int id)                         { _id = id; }
1110 
1111   // FPU stack simulation helpers -- only used on Intel
1112   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1113   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1114   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1115 
1116   Instruction* source() const                 { return _source; }
1117   void set_source(Instruction* ins)           { _source = ins; }
1118 
1119   virtual void emit_code(LIR_Assembler* masm) = 0;
1120   virtual void print_instr(outputStream* out) const   = 0;
1121   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1122 
1123   virtual LIR_OpCall* as_OpCall() { return NULL; }
1124   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1125   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1126   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1127   virtual LIR_OpLock* as_OpLock() { return NULL; }
1128   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1129   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1130   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1131   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1132   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1133   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1134   virtual LIR_Op0* as_Op0() { return NULL; }
1135   virtual LIR_Op1* as_Op1() { return NULL; }
1136   virtual LIR_Op2* as_Op2() { return NULL; }
1137   virtual LIR_Op3* as_Op3() { return NULL; }
1138   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1139   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1140   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1141   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1142   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1143 
1144   virtual void verify() const {}
1145 };
1146 
1147 // for calls
1148 class LIR_OpCall: public LIR_Op {
1149  friend class LIR_OpVisitState;
1150 
1151  protected:
1152   address      _addr;
1153   LIR_OprList* _arguments;
1154  protected:
1155   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1156              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1157     : LIR_Op(code, result, info)
1158     , _arguments(arguments)
1159     , _addr(addr) {}
1160 
1161  public:
1162   address addr() const                           { return _addr; }
1163   const LIR_OprList* arguments() const           { return _arguments; }
1164   virtual LIR_OpCall* as_OpCall()                { return this; }
1165 };
1166 
1167 
1168 // --------------------------------------------------
1169 // LIR_OpJavaCall
1170 // --------------------------------------------------
1171 class LIR_OpJavaCall: public LIR_OpCall {
1172  friend class LIR_OpVisitState;
1173 
1174  private:
1175   ciMethod* _method;
1176   LIR_Opr   _receiver;
1177   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1178 
1179  public:
1180   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1181                  LIR_Opr receiver, LIR_Opr result,
1182                  address addr, LIR_OprList* arguments,
1183                  CodeEmitInfo* info)
1184   : LIR_OpCall(code, addr, result, arguments, info)
1185   , _receiver(receiver)
1186   , _method(method)
1187   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1188   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1189 
1190   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1191                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1192                  LIR_OprList* arguments, CodeEmitInfo* info)
1193   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1194   , _receiver(receiver)
1195   , _method(method)
1196   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1197   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1198 
1199   LIR_Opr receiver() const                       { return _receiver; }
1200   ciMethod* method() const                       { return _method;   }
1201 
1202   // JSR 292 support.
1203   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1204   bool is_method_handle_invoke() const {
1205     return
1206       is_invokedynamic()  // An invokedynamic is always a MethodHandle call site.
1207       ||
1208       method()->is_compiled_lambda_form()  // Java-generated adapter
1209       ||
1210       method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1211   }
1212 
1213   intptr_t vtable_offset() const {
1214     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1215     return (intptr_t) addr();
1216   }
1217 
1218   virtual void emit_code(LIR_Assembler* masm);
1219   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1220   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1221 };
1222 
1223 // --------------------------------------------------
1224 // LIR_OpLabel
1225 // --------------------------------------------------
1226 // Location where a branch can continue
1227 class LIR_OpLabel: public LIR_Op {
1228  friend class LIR_OpVisitState;
1229 
1230  private:
1231   Label* _label;
1232  public:
1233   LIR_OpLabel(Label* lbl)
1234    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1235    , _label(lbl)                                 {}
1236   Label* label() const                           { return _label; }
1237 
1238   virtual void emit_code(LIR_Assembler* masm);
1239   virtual LIR_OpLabel* as_OpLabel() { return this; }
1240   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1241 };
1242 
1243 // LIR_OpArrayCopy
1244 class LIR_OpArrayCopy: public LIR_Op {
1245  friend class LIR_OpVisitState;
1246 
1247  private:
1248   ArrayCopyStub*  _stub;
1249   LIR_Opr   _src;
1250   LIR_Opr   _src_pos;
1251   LIR_Opr   _dst;
1252   LIR_Opr   _dst_pos;
1253   LIR_Opr   _length;
1254   LIR_Opr   _tmp;
1255   ciArrayKlass* _expected_type;
1256   int       _flags;
1257 
1258 public:
1259   enum Flags {
1260     src_null_check         = 1 << 0,
1261     dst_null_check         = 1 << 1,
1262     src_pos_positive_check = 1 << 2,
1263     dst_pos_positive_check = 1 << 3,
1264     length_positive_check  = 1 << 4,
1265     src_range_check        = 1 << 5,
1266     dst_range_check        = 1 << 6,
1267     type_check             = 1 << 7,
1268     overlapping            = 1 << 8,
1269     unaligned              = 1 << 9,
1270     src_objarray           = 1 << 10,
1271     dst_objarray           = 1 << 11,
1272     all_flags              = (1 << 12) - 1
1273   };
1274 
1275   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1276                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1277 
1278   LIR_Opr src() const                            { return _src; }
1279   LIR_Opr src_pos() const                        { return _src_pos; }
1280   LIR_Opr dst() const                            { return _dst; }
1281   LIR_Opr dst_pos() const                        { return _dst_pos; }
1282   LIR_Opr length() const                         { return _length; }
1283   LIR_Opr tmp() const                            { return _tmp; }
1284   int flags() const                              { return _flags; }
1285   ciArrayKlass* expected_type() const            { return _expected_type; }
1286   ArrayCopyStub* stub() const                    { return _stub; }
1287 
1288   virtual void emit_code(LIR_Assembler* masm);
1289   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1290   void print_instr(outputStream* out) const PRODUCT_RETURN;
1291 };
1292 
1293 
1294 // --------------------------------------------------
1295 // LIR_Op0
1296 // --------------------------------------------------
1297 class LIR_Op0: public LIR_Op {
1298  friend class LIR_OpVisitState;
1299 
1300  public:
1301   LIR_Op0(LIR_Code code)
1302    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1303   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1304    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1305 
1306   virtual void emit_code(LIR_Assembler* masm);
1307   virtual LIR_Op0* as_Op0() { return this; }
1308   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1309 };
1310 
1311 
1312 // --------------------------------------------------
1313 // LIR_Op1
1314 // --------------------------------------------------
1315 
1316 class LIR_Op1: public LIR_Op {
1317  friend class LIR_OpVisitState;
1318 
1319  protected:
1320   LIR_Opr         _opr;   // input operand
1321   BasicType       _type;  // Operand types
1322   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1323 
1324   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1325 
1326   void set_kind(LIR_MoveKind kind) {
1327     assert(code() == lir_move, "must be");
1328     _flags = kind;
1329   }
1330 
1331  public:
1332   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1333     : LIR_Op(code, result, info)
1334     , _opr(opr)
1335     , _patch(patch)
1336     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1337 
1338   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1339     : LIR_Op(code, result, info)
1340     , _opr(opr)
1341     , _patch(patch)
1342     , _type(type)                      {
1343     assert(code == lir_move, "must be");
1344     set_kind(kind);
1345   }
1346 
1347   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1348     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1349     , _opr(opr)
1350     , _patch(lir_patch_none)
1351     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1352 
1353   LIR_Opr in_opr()           const               { return _opr;   }
1354   LIR_PatchCode patch_code() const               { return _patch; }
1355   BasicType type()           const               { return _type;  }
1356 
1357   LIR_MoveKind move_kind() const {
1358     assert(code() == lir_move, "must be");
1359     return (LIR_MoveKind)_flags;
1360   }
1361 
1362   virtual void emit_code(LIR_Assembler* masm);
1363   virtual LIR_Op1* as_Op1() { return this; }
1364   virtual const char * name() const PRODUCT_RETURN0;
1365 
1366   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1367 
1368   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1369   virtual void verify() const;
1370 };
1371 
1372 
1373 // for runtime calls
1374 class LIR_OpRTCall: public LIR_OpCall {
1375  friend class LIR_OpVisitState;
1376 
1377  private:
1378   LIR_Opr _tmp;
1379  public:
1380   LIR_OpRTCall(address addr, LIR_Opr tmp,
1381                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1382     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1383     , _tmp(tmp) {}
1384 
1385   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1386   virtual void emit_code(LIR_Assembler* masm);
1387   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1388 
1389   LIR_Opr tmp() const                            { return _tmp; }
1390 
1391   virtual void verify() const;
1392 };
1393 
1394 
1395 class LIR_OpBranch: public LIR_Op {
1396  friend class LIR_OpVisitState;
1397 
1398  private:
1399   LIR_Condition _cond;
1400   BasicType     _type;
1401   Label*        _label;
1402   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1403   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1404   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1405 
1406  public:
1407   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1408     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1409     , _cond(cond)
1410     , _type(type)
1411     , _label(lbl)
1412     , _block(NULL)
1413     , _ublock(NULL)
1414     , _stub(NULL) { }
1415 
1416   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1417   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1418 
1419   // for unordered comparisons
1420   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1421 
1422   LIR_Condition cond()        const              { return _cond;        }
1423   BasicType     type()        const              { return _type;        }
1424   Label*        label()       const              { return _label;       }
1425   BlockBegin*   block()       const              { return _block;       }
1426   BlockBegin*   ublock()      const              { return _ublock;      }
1427   CodeStub*     stub()        const              { return _stub;       }
1428 
1429   void          change_block(BlockBegin* b);
1430   void          change_ublock(BlockBegin* b);
1431   void          negate_cond();
1432 
1433   virtual void emit_code(LIR_Assembler* masm);
1434   virtual LIR_OpBranch* as_OpBranch() { return this; }
1435   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1436 };
1437 
1438 
1439 class ConversionStub;
1440 
1441 class LIR_OpConvert: public LIR_Op1 {
1442  friend class LIR_OpVisitState;
1443 
1444  private:
1445    Bytecodes::Code _bytecode;
1446    ConversionStub* _stub;
1447 #ifdef PPC
1448   LIR_Opr _tmp1;
1449   LIR_Opr _tmp2;
1450 #endif
1451 
1452  public:
1453    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1454      : LIR_Op1(lir_convert, opr, result)
1455      , _stub(stub)
1456 #ifdef PPC
1457      , _tmp1(LIR_OprDesc::illegalOpr())
1458      , _tmp2(LIR_OprDesc::illegalOpr())
1459 #endif
1460      , _bytecode(code)                           {}
1461 
1462 #ifdef PPC
1463    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1464                  ,LIR_Opr tmp1, LIR_Opr tmp2)
1465      : LIR_Op1(lir_convert, opr, result)
1466      , _stub(stub)
1467      , _tmp1(tmp1)
1468      , _tmp2(tmp2)
1469      , _bytecode(code)                           {}
1470 #endif
1471 
1472   Bytecodes::Code bytecode() const               { return _bytecode; }
1473   ConversionStub* stub() const                   { return _stub; }
1474 #ifdef PPC
1475   LIR_Opr tmp1() const                           { return _tmp1; }
1476   LIR_Opr tmp2() const                           { return _tmp2; }
1477 #endif
1478 
1479   virtual void emit_code(LIR_Assembler* masm);
1480   virtual LIR_OpConvert* as_OpConvert() { return this; }
1481   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1482 
1483   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1484 };
1485 
1486 
1487 // LIR_OpAllocObj
1488 class LIR_OpAllocObj : public LIR_Op1 {
1489  friend class LIR_OpVisitState;
1490 
1491  private:
1492   LIR_Opr _tmp1;
1493   LIR_Opr _tmp2;
1494   LIR_Opr _tmp3;
1495   LIR_Opr _tmp4;
1496   int     _hdr_size;
1497   int     _obj_size;
1498   CodeStub* _stub;
1499   bool    _init_check;
1500 
1501  public:
1502   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1503                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1504                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1505     : LIR_Op1(lir_alloc_object, klass, result)
1506     , _tmp1(t1)
1507     , _tmp2(t2)
1508     , _tmp3(t3)
1509     , _tmp4(t4)
1510     , _hdr_size(hdr_size)
1511     , _obj_size(obj_size)
1512     , _init_check(init_check)
1513     , _stub(stub)                                { }
1514 
1515   LIR_Opr klass()        const                   { return in_opr();     }
1516   LIR_Opr obj()          const                   { return result_opr(); }
1517   LIR_Opr tmp1()         const                   { return _tmp1;        }
1518   LIR_Opr tmp2()         const                   { return _tmp2;        }
1519   LIR_Opr tmp3()         const                   { return _tmp3;        }
1520   LIR_Opr tmp4()         const                   { return _tmp4;        }
1521   int     header_size()  const                   { return _hdr_size;    }
1522   int     object_size()  const                   { return _obj_size;    }
1523   bool    init_check()   const                   { return _init_check;  }
1524   CodeStub* stub()       const                   { return _stub;        }
1525 
1526   virtual void emit_code(LIR_Assembler* masm);
1527   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1528   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1529 };
1530 
1531 
1532 // LIR_OpRoundFP
1533 class LIR_OpRoundFP : public LIR_Op1 {
1534  friend class LIR_OpVisitState;
1535 
1536  private:
1537   LIR_Opr _tmp;
1538 
1539  public:
1540   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1541     : LIR_Op1(lir_roundfp, reg, result)
1542     , _tmp(stack_loc_temp) {}
1543 
1544   LIR_Opr tmp() const                            { return _tmp; }
1545   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1546   void print_instr(outputStream* out) const PRODUCT_RETURN;
1547 };
1548 
1549 // LIR_OpTypeCheck
1550 class LIR_OpTypeCheck: public LIR_Op {
1551  friend class LIR_OpVisitState;
1552 
1553  private:
1554   LIR_Opr       _object;
1555   LIR_Opr       _array;
1556   ciKlass*      _klass;
1557   LIR_Opr       _tmp1;
1558   LIR_Opr       _tmp2;
1559   LIR_Opr       _tmp3;
1560   bool          _fast_check;
1561   CodeEmitInfo* _info_for_patch;
1562   CodeEmitInfo* _info_for_exception;
1563   CodeStub*     _stub;
1564   ciMethod*     _profiled_method;
1565   int           _profiled_bci;
1566   bool          _should_profile;
1567 
1568 public:
1569   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1570                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1571                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1572   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1573                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1574 
1575   LIR_Opr object() const                         { return _object;         }
1576   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1577   LIR_Opr tmp1() const                           { return _tmp1;           }
1578   LIR_Opr tmp2() const                           { return _tmp2;           }
1579   LIR_Opr tmp3() const                           { return _tmp3;           }
1580   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1581   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1582   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1583   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1584   CodeStub* stub() const                         { return _stub;           }
1585 
1586   // MethodData* profiling
1587   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1588   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1589   void set_should_profile(bool b)                { _should_profile = b;       }
1590   ciMethod* profiled_method() const              { return _profiled_method;   }
1591   int       profiled_bci() const                 { return _profiled_bci;      }
1592   bool      should_profile() const               { return _should_profile;    }
1593 
1594   virtual void emit_code(LIR_Assembler* masm);
1595   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1596   void print_instr(outputStream* out) const PRODUCT_RETURN;
1597 };
1598 
1599 // LIR_Op2
1600 class LIR_Op2: public LIR_Op {
1601  friend class LIR_OpVisitState;
1602 
1603   int  _fpu_stack_size; // for sin/cos implementation on Intel
1604 
1605  protected:
1606   LIR_Opr   _opr1;
1607   LIR_Opr   _opr2;
1608   BasicType _type;
1609   LIR_Opr   _tmp1;
1610   LIR_Opr   _tmp2;
1611   LIR_Opr   _tmp3;
1612   LIR_Opr   _tmp4;
1613   LIR_Opr   _tmp5;
1614   LIR_Condition _condition;
1615 
1616   void verify() const;
1617 
1618  public:
1619   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1620     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1621     , _opr1(opr1)
1622     , _opr2(opr2)
1623     , _type(T_ILLEGAL)
1624     , _condition(condition)
1625     , _fpu_stack_size(0)
1626     , _tmp1(LIR_OprFact::illegalOpr)
1627     , _tmp2(LIR_OprFact::illegalOpr)
1628     , _tmp3(LIR_OprFact::illegalOpr)
1629     , _tmp4(LIR_OprFact::illegalOpr)
1630     , _tmp5(LIR_OprFact::illegalOpr) {
1631     assert(code == lir_cmp || code == lir_assert, "code check");
1632   }
1633 
1634   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1635     : LIR_Op(code, result, NULL)
1636     , _opr1(opr1)
1637     , _opr2(opr2)
1638     , _type(type)
1639     , _condition(condition)
1640     , _fpu_stack_size(0)
1641     , _tmp1(LIR_OprFact::illegalOpr)
1642     , _tmp2(LIR_OprFact::illegalOpr)
1643     , _tmp3(LIR_OprFact::illegalOpr)
1644     , _tmp4(LIR_OprFact::illegalOpr)
1645     , _tmp5(LIR_OprFact::illegalOpr) {
1646     assert(code == lir_cmove, "code check");
1647     assert(type != T_ILLEGAL, "cmove should have type");
1648   }
1649 
1650   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1651           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1652     : LIR_Op(code, result, info)
1653     , _opr1(opr1)
1654     , _opr2(opr2)
1655     , _type(type)
1656     , _condition(lir_cond_unknown)
1657     , _fpu_stack_size(0)
1658     , _tmp1(LIR_OprFact::illegalOpr)
1659     , _tmp2(LIR_OprFact::illegalOpr)
1660     , _tmp3(LIR_OprFact::illegalOpr)
1661     , _tmp4(LIR_OprFact::illegalOpr)
1662     , _tmp5(LIR_OprFact::illegalOpr) {
1663     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1664   }
1665 
1666   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1667           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1668     : LIR_Op(code, result, NULL)
1669     , _opr1(opr1)
1670     , _opr2(opr2)
1671     , _type(T_ILLEGAL)
1672     , _condition(lir_cond_unknown)
1673     , _fpu_stack_size(0)
1674     , _tmp1(tmp1)
1675     , _tmp2(tmp2)
1676     , _tmp3(tmp3)
1677     , _tmp4(tmp4)
1678     , _tmp5(tmp5) {
1679     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1680   }
1681 
1682   LIR_Opr in_opr1() const                        { return _opr1; }
1683   LIR_Opr in_opr2() const                        { return _opr2; }
1684   BasicType type()  const                        { return _type; }
1685   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1686   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1687   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1688   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1689   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1690   LIR_Condition condition() const  {
1691     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1692   }
1693   void set_condition(LIR_Condition condition) {
1694     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1695   }
1696 
1697   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1698   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1699 
1700   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1701   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1702 
1703   virtual void emit_code(LIR_Assembler* masm);
1704   virtual LIR_Op2* as_Op2() { return this; }
1705   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1706 };
1707 
1708 class LIR_OpAllocArray : public LIR_Op {
1709  friend class LIR_OpVisitState;
1710 
1711  private:
1712   LIR_Opr   _klass;
1713   LIR_Opr   _len;
1714   LIR_Opr   _tmp1;
1715   LIR_Opr   _tmp2;
1716   LIR_Opr   _tmp3;
1717   LIR_Opr   _tmp4;
1718   BasicType _type;
1719   CodeStub* _stub;
1720 
1721  public:
1722   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1723     : LIR_Op(lir_alloc_array, result, NULL)
1724     , _klass(klass)
1725     , _len(len)
1726     , _tmp1(t1)
1727     , _tmp2(t2)
1728     , _tmp3(t3)
1729     , _tmp4(t4)
1730     , _type(type)
1731     , _stub(stub) {}
1732 
1733   LIR_Opr   klass()   const                      { return _klass;       }
1734   LIR_Opr   len()     const                      { return _len;         }
1735   LIR_Opr   obj()     const                      { return result_opr(); }
1736   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1737   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1738   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1739   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1740   BasicType type()    const                      { return _type;        }
1741   CodeStub* stub()    const                      { return _stub;        }
1742 
1743   virtual void emit_code(LIR_Assembler* masm);
1744   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1745   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1746 };
1747 
1748 
1749 class LIR_Op3: public LIR_Op {
1750  friend class LIR_OpVisitState;
1751 
1752  private:
1753   LIR_Opr _opr1;
1754   LIR_Opr _opr2;
1755   LIR_Opr _opr3;
1756  public:
1757   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1758     : LIR_Op(code, result, info)
1759     , _opr1(opr1)
1760     , _opr2(opr2)
1761     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1762   LIR_Opr in_opr1() const                        { return _opr1; }
1763   LIR_Opr in_opr2() const                        { return _opr2; }
1764   LIR_Opr in_opr3() const                        { return _opr3; }
1765 
1766   virtual void emit_code(LIR_Assembler* masm);
1767   virtual LIR_Op3* as_Op3() { return this; }
1768   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1769 };
1770 
1771 
1772 //--------------------------------
1773 class LabelObj: public CompilationResourceObj {
1774  private:
1775   Label _label;
1776  public:
1777   LabelObj()                                     {}
1778   Label* label()                                 { return &_label; }
1779 };
1780 
1781 
1782 class LIR_OpLock: public LIR_Op {
1783  friend class LIR_OpVisitState;
1784 
1785  private:
1786   LIR_Opr _hdr;
1787   LIR_Opr _obj;
1788   LIR_Opr _lock;
1789   LIR_Opr _scratch;
1790   CodeStub* _stub;
1791  public:
1792   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1793     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1794     , _hdr(hdr)
1795     , _obj(obj)
1796     , _lock(lock)
1797     , _scratch(scratch)
1798     , _stub(stub)                      {}
1799 
1800   LIR_Opr hdr_opr() const                        { return _hdr; }
1801   LIR_Opr obj_opr() const                        { return _obj; }
1802   LIR_Opr lock_opr() const                       { return _lock; }
1803   LIR_Opr scratch_opr() const                    { return _scratch; }
1804   CodeStub* stub() const                         { return _stub; }
1805 
1806   virtual void emit_code(LIR_Assembler* masm);
1807   virtual LIR_OpLock* as_OpLock() { return this; }
1808   void print_instr(outputStream* out) const PRODUCT_RETURN;
1809 };
1810 
1811 
1812 class LIR_OpDelay: public LIR_Op {
1813  friend class LIR_OpVisitState;
1814 
1815  private:
1816   LIR_Op* _op;
1817 
1818  public:
1819   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1820     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1821     _op(op) {
1822     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1823   }
1824   virtual void emit_code(LIR_Assembler* masm);
1825   virtual LIR_OpDelay* as_OpDelay() { return this; }
1826   void print_instr(outputStream* out) const PRODUCT_RETURN;
1827   LIR_Op* delay_op() const { return _op; }
1828   CodeEmitInfo* call_info() const { return info(); }
1829 };
1830 
1831 #ifndef PRODUCT
1832 // LIR_OpAssert
1833 class LIR_OpAssert : public LIR_Op2 {
1834  friend class LIR_OpVisitState;
1835 
1836  private:
1837   const char* _msg;
1838   bool        _halt;
1839 
1840  public:
1841   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1842     : LIR_Op2(lir_assert, condition, opr1, opr2)
1843     , _halt(halt)
1844     , _msg(msg) {
1845   }
1846 
1847   const char* msg() const                        { return _msg; }
1848   bool        halt() const                       { return _halt; }
1849 
1850   virtual void emit_code(LIR_Assembler* masm);
1851   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1852   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1853 };
1854 #endif
1855 
1856 // LIR_OpCompareAndSwap
1857 class LIR_OpCompareAndSwap : public LIR_Op {
1858  friend class LIR_OpVisitState;
1859 
1860  private:
1861   LIR_Opr _addr;
1862   LIR_Opr _cmp_value;
1863   LIR_Opr _new_value;
1864   LIR_Opr _tmp1;
1865   LIR_Opr _tmp2;
1866 
1867  public:
1868   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1869                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1870     : LIR_Op(code, result, NULL)  // no result, no info
1871     , _addr(addr)
1872     , _cmp_value(cmp_value)
1873     , _new_value(new_value)
1874     , _tmp1(t1)
1875     , _tmp2(t2)                                  { }
1876 
1877   LIR_Opr addr()        const                    { return _addr;  }
1878   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1879   LIR_Opr new_value()   const                    { return _new_value; }
1880   LIR_Opr tmp1()        const                    { return _tmp1;      }
1881   LIR_Opr tmp2()        const                    { return _tmp2;      }
1882 
1883   virtual void emit_code(LIR_Assembler* masm);
1884   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1885   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1886 };
1887 
1888 // LIR_OpProfileCall
1889 class LIR_OpProfileCall : public LIR_Op {
1890  friend class LIR_OpVisitState;
1891 
1892  private:
1893   ciMethod* _profiled_method;
1894   int       _profiled_bci;
1895   ciMethod* _profiled_callee;
1896   LIR_Opr   _mdo;
1897   LIR_Opr   _recv;
1898   LIR_Opr   _tmp1;
1899   ciKlass*  _known_holder;
1900 
1901  public:
1902   // Destroys recv
1903   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1904     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1905     , _profiled_method(profiled_method)
1906     , _profiled_bci(profiled_bci)
1907     , _profiled_callee(profiled_callee)
1908     , _mdo(mdo)
1909     , _recv(recv)
1910     , _tmp1(t1)
1911     , _known_holder(known_holder)                { }
1912 
1913   ciMethod* profiled_method() const              { return _profiled_method;  }
1914   int       profiled_bci()    const              { return _profiled_bci;     }
1915   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1916   LIR_Opr   mdo()             const              { return _mdo;              }
1917   LIR_Opr   recv()            const              { return _recv;             }
1918   LIR_Opr   tmp1()            const              { return _tmp1;             }
1919   ciKlass*  known_holder()    const              { return _known_holder;     }
1920 
1921   virtual void emit_code(LIR_Assembler* masm);
1922   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1923   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1924 };
1925 
1926 class LIR_InsertionBuffer;
1927 
1928 //--------------------------------LIR_List---------------------------------------------------
1929 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1930 // The LIR instructions are appended by the LIR_List class itself;
1931 //
1932 // Notes:
1933 // - all offsets are(should be) in bytes
1934 // - local positions are specified with an offset, with offset 0 being local 0
1935 
1936 class LIR_List: public CompilationResourceObj {
1937  private:
1938   LIR_OpList  _operations;
1939 
1940   Compilation*  _compilation;
1941 #ifndef PRODUCT
1942   BlockBegin*   _block;
1943 #endif
1944 #ifdef ASSERT
1945   const char *  _file;
1946   int           _line;
1947 #endif
1948 
1949   void append(LIR_Op* op) {
1950     if (op->source() == NULL)
1951       op->set_source(_compilation->current_instruction());
1952 #ifndef PRODUCT
1953     if (PrintIRWithLIR) {
1954       _compilation->maybe_print_current_instruction();
1955       op->print(); tty->cr();
1956     }
1957 #endif // PRODUCT
1958 
1959     _operations.append(op);
1960 
1961 #ifdef ASSERT
1962     op->verify();
1963     op->set_file_and_line(_file, _line);
1964     _file = NULL;
1965     _line = 0;
1966 #endif
1967   }
1968 
1969  public:
1970   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
1971 
1972 #ifdef ASSERT
1973   void set_file_and_line(const char * file, int line);
1974 #endif
1975 
1976   //---------- accessors ---------------
1977   LIR_OpList* instructions_list()                { return &_operations; }
1978   int         length() const                     { return _operations.length(); }
1979   LIR_Op*     at(int i) const                    { return _operations.at(i); }
1980 
1981   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
1982 
1983   // insert LIR_Ops in buffer to right places in LIR_List
1984   void append(LIR_InsertionBuffer* buffer);
1985 
1986   //---------- mutators ---------------
1987   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
1988   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
1989   void remove_at(int i)                          { _operations.remove_at(i); }
1990 
1991   //---------- printing -------------
1992   void print_instructions() PRODUCT_RETURN;
1993 
1994 
1995   //---------- instructions -------------
1996   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1997                         address dest, LIR_OprList* arguments,
1998                         CodeEmitInfo* info) {
1999     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2000   }
2001   void call_static(ciMethod* method, LIR_Opr result,
2002                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2003     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2004   }
2005   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2006                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2007     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2008   }
2009   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2010                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2011     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2012   }
2013   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2014                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2015     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2016   }
2017 
2018   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2019   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2020   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2021   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2022   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2023   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2024   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2025   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2026   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2027 
2028   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2029   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2030 
2031   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2032   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2033 
2034   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2035 
2036   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2037   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
2038 
2039   // result is a stack location for old backend and vreg for UseLinearScan
2040   // stack_loc_temp is an illegal register for old backend
2041   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2042   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2043   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2044   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2045   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2046   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2047   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2048   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2049     if (UseCompressedOops) {
2050       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2051     } else {
2052       move(src, dst, info);
2053     }
2054   }
2055   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2056     if (UseCompressedOops) {
2057       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2058     } else {
2059       move(src, dst, info);
2060     }
2061   }
2062   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2063 
2064   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2065   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2066 
2067   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2068   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2069 
2070   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2071 
2072   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2073 
2074 #ifdef PPC
2075   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
2076 #endif
2077   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2078 
2079   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2080   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2081   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2082 
2083   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2084   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2085 
2086   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
2087   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2088     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2089   }
2090   void unwind_exception(LIR_Opr exceptionOop) {
2091     append(new LIR_Op1(lir_unwind, exceptionOop));
2092   }
2093 
2094   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2095     append(new LIR_Op2(lir_compare_to,  left, right, dst));
2096   }
2097 
2098   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2099   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2100 
2101   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2102     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2103   }
2104   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2105     cmp(condition, left, LIR_OprFact::intConst(right), info);
2106   }
2107 
2108   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2109   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2110 
2111   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2112     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2113   }
2114 
2115   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2116                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2117   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2118                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2119   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2120                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2121 
2122   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2123   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2124   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
2125   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2126   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
2127   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
2128   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2129   void exp (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5)                { append(new LIR_Op2(lir_exp , from, tmp1, to, tmp2, tmp3, tmp4, tmp5)); }
2130   void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
2131 
2132   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2133   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2134   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2135   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2136   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2137   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2138   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2139 
2140   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2141   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2142 
2143   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2144 
2145   void prefetch(LIR_Address* addr, bool is_store);
2146 
2147   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2148   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2149   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2150   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2151   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2152 
2153   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2154   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2155   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2156   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2157 
2158   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2159   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2160 
2161   // jump is an unconditional branch
2162   void jump(BlockBegin* block) {
2163     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2164   }
2165   void jump(CodeStub* stub) {
2166     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2167   }
2168   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2169   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2170     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2171     append(new LIR_OpBranch(cond, type, block));
2172   }
2173   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2174     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2175     append(new LIR_OpBranch(cond, type, stub));
2176   }
2177   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2178     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2179     append(new LIR_OpBranch(cond, type, block, unordered));
2180   }
2181 
2182   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2183   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2184   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2185 
2186   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2187   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2188   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2189 
2190   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2191   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2192 
2193   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2194     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2195   }
2196 
2197   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2198                     LIR_OprList* arguments, CodeEmitInfo* info) {
2199     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2200   }
2201 
2202   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2203   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2204   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2205 
2206   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2207   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2208   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2209 
2210   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2211 
2212   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2213 
2214   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2215   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2216 
2217   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2218                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2219                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2220                   ciMethod* profiled_method, int profiled_bci);
2221   // MethodData* profiling
2222   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2223     append(new LIR_OpProfileCall(lir_profile_call, method, bci, callee, mdo, recv, t1, cha_klass));
2224   }
2225 
2226   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2227   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2228 #ifndef PRODUCT
2229   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2230 #endif
2231 };
2232 
2233 void print_LIR(BlockList* blocks);
2234 
2235 class LIR_InsertionBuffer : public CompilationResourceObj {
2236  private:
2237   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2238 
2239   // list of insertion points. index and count are stored alternately:
2240   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2241   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2242   intStack    _index_and_count;
2243 
2244   // the LIR_Ops to be inserted
2245   LIR_OpList  _ops;
2246 
2247   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2248   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2249   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2250 
2251 #ifdef ASSERT
2252   void verify();
2253 #endif
2254  public:
2255   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2256 
2257   // must be called before using the insertion buffer
2258   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2259   bool initialized() const  { return _lir != NULL; }
2260   // called automatically when the buffer is appended to the LIR_List
2261   void finish()             { _lir = NULL; }
2262 
2263   // accessors
2264   LIR_List*  lir_list() const             { return _lir; }
2265   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2266   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2267   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2268 
2269   int number_of_ops() const               { return _ops.length(); }
2270   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2271 
2272   // append an instruction to the buffer
2273   void append(int index, LIR_Op* op);
2274 
2275   // instruction
2276   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2277 };
2278 
2279 
2280 //
2281 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2282 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2283 // information about the input, output and temporaries used by the
2284 // op to be recorded.  It also records whether the op has call semantics
2285 // and also records all the CodeEmitInfos used by this op.
2286 //
2287 
2288 
2289 class LIR_OpVisitState: public StackObj {
2290  public:
2291   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2292 
2293   enum {
2294     maxNumberOfOperands = 20,
2295     maxNumberOfInfos = 4
2296   };
2297 
2298  private:
2299   LIR_Op*          _op;
2300 
2301   // optimization: the operands and infos are not stored in a variable-length
2302   //               list, but in a fixed-size array to save time of size checks and resizing
2303   int              _oprs_len[numModes];
2304   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2305   int _info_len;
2306   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2307 
2308   bool             _has_call;
2309   bool             _has_slow_case;
2310 
2311 
2312   // only include register operands
2313   // addresses are decomposed to the base and index registers
2314   // constants and stack operands are ignored
2315   void append(LIR_Opr& opr, OprMode mode) {
2316     assert(opr->is_valid(), "should not call this otherwise");
2317     assert(mode >= 0 && mode < numModes, "bad mode");
2318 
2319     if (opr->is_register()) {
2320        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2321       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2322 
2323     } else if (opr->is_pointer()) {
2324       LIR_Address* address = opr->as_address_ptr();
2325       if (address != NULL) {
2326         // special handling for addresses: add base and index register of the address
2327         // both are always input operands or temp if we want to extend
2328         // their liveness!
2329         if (mode == outputMode) {
2330           mode = inputMode;
2331         }
2332         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2333         if (address->_base->is_valid()) {
2334           assert(address->_base->is_register(), "must be");
2335           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2336           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2337         }
2338         if (address->_index->is_valid()) {
2339           assert(address->_index->is_register(), "must be");
2340           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2341           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2342         }
2343 
2344       } else {
2345         assert(opr->is_constant(), "constant operands are not processed");
2346       }
2347     } else {
2348       assert(opr->is_stack(), "stack operands are not processed");
2349     }
2350   }
2351 
2352   void append(CodeEmitInfo* info) {
2353     assert(info != NULL, "should not call this otherwise");
2354     assert(_info_len < maxNumberOfInfos, "array overflow");
2355     _info_new[_info_len++] = info;
2356   }
2357 
2358  public:
2359   LIR_OpVisitState()         { reset(); }
2360 
2361   LIR_Op* op() const         { return _op; }
2362   void set_op(LIR_Op* op)    { reset(); _op = op; }
2363 
2364   bool has_call() const      { return _has_call; }
2365   bool has_slow_case() const { return _has_slow_case; }
2366 
2367   void reset() {
2368     _op = NULL;
2369     _has_call = false;
2370     _has_slow_case = false;
2371 
2372     _oprs_len[inputMode] = 0;
2373     _oprs_len[tempMode] = 0;
2374     _oprs_len[outputMode] = 0;
2375     _info_len = 0;
2376   }
2377 
2378 
2379   int opr_count(OprMode mode) const {
2380     assert(mode >= 0 && mode < numModes, "bad mode");
2381     return _oprs_len[mode];
2382   }
2383 
2384   LIR_Opr opr_at(OprMode mode, int index) const {
2385     assert(mode >= 0 && mode < numModes, "bad mode");
2386     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2387     return *_oprs_new[mode][index];
2388   }
2389 
2390   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2391     assert(mode >= 0 && mode < numModes, "bad mode");
2392     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2393     *_oprs_new[mode][index] = opr;
2394   }
2395 
2396   int info_count() const {
2397     return _info_len;
2398   }
2399 
2400   CodeEmitInfo* info_at(int index) const {
2401     assert(index < _info_len, "index out of bounds");
2402     return _info_new[index];
2403   }
2404 
2405   XHandlers* all_xhandler();
2406 
2407   // collects all register operands of the instruction
2408   void visit(LIR_Op* op);
2409 
2410 #if ASSERT
2411   // check that an operation has no operands
2412   bool no_operands(LIR_Op* op);
2413 #endif
2414 
2415   // LIR_Op visitor functions use these to fill in the state
2416   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2417   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2418   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2419   void do_info(CodeEmitInfo* info)        { append(info); }
2420 
2421   void do_stub(CodeStub* stub);
2422   void do_call()                          { _has_call = true; }
2423   void do_slow_case()                     { _has_slow_case = true; }
2424   void do_slow_case(CodeEmitInfo* info) {
2425     _has_slow_case = true;
2426     append(info);
2427   }
2428 };
2429 
2430 
2431 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2432 
2433 #endif // SHARE_VM_C1_C1_LIR_HPP