1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/bitMap.inline.hpp"
  38 #include "utilities/macros.hpp"
  39 #if INCLUDE_ALL_GCS
  40 #include "gc_implementation/g1/heapRegion.hpp"
  41 #endif // INCLUDE_ALL_GCS
  42 
  43 #ifdef ASSERT
  44 #define __ gen()->lir(__FILE__, __LINE__)->
  45 #else
  46 #define __ gen()->lir()->
  47 #endif
  48 
  49 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  50 #ifdef ARM
  51 #define PATCHED_ADDR  (204)
  52 #else
  53 #define PATCHED_ADDR  (max_jint)
  54 #endif
  55 
  56 void PhiResolverState::reset(int max_vregs) {
  57   // Initialize array sizes
  58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  59   _virtual_operands.trunc_to(0);
  60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _other_operands.trunc_to(0);
  62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _vreg_table.trunc_to(0);
  64 }
  65 
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _temp(LIR_OprFact::illegalOpr)
  85 {
  86   // reinitialize the shared state arrays
  87   _state.reset(max_vregs);
  88 }
  89 
  90 
  91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  92   assert(src->is_valid(), "");
  93   assert(dest->is_valid(), "");
  94   __ move(src, dest);
  95 }
  96 
  97 
  98 void PhiResolver::move_temp_to(LIR_Opr dest) {
  99   assert(_temp->is_valid(), "");
 100   emit_move(_temp, dest);
 101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 102 }
 103 
 104 
 105 void PhiResolver::move_to_temp(LIR_Opr src) {
 106   assert(_temp->is_illegal(), "");
 107   _temp = _gen->new_register(src->type());
 108   emit_move(src, _temp);
 109 }
 110 
 111 
 112 // Traverse assignment graph in depth first order and generate moves in post order
 113 // ie. two assignments: b := c, a := b start with node c:
 114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 115 // Generates moves in this order: move b to a and move c to b
 116 // ie. cycle a := b, b := a start with node a
 117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 118 // Generates moves in this order: move b to temp, move a to b, move temp to a
 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 120   if (!dest->visited()) {
 121     dest->set_visited();
 122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 123       move(dest, dest->destination_at(i));
 124     }
 125   } else if (!dest->start_node()) {
 126     // cylce in graph detected
 127     assert(_loop == NULL, "only one loop valid!");
 128     _loop = dest;
 129     move_to_temp(src->operand());
 130     return;
 131   } // else dest is a start node
 132 
 133   if (!dest->assigned()) {
 134     if (_loop == dest) {
 135       move_temp_to(dest->operand());
 136       dest->set_assigned();
 137     } else if (src != NULL) {
 138       emit_move(src->operand(), dest->operand());
 139       dest->set_assigned();
 140     }
 141   }
 142 }
 143 
 144 
 145 PhiResolver::~PhiResolver() {
 146   int i;
 147   // resolve any cycles in moves from and to virtual registers
 148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 149     ResolveNode* node = virtual_operands()[i];
 150     if (!node->visited()) {
 151       _loop = NULL;
 152       move(NULL, node);
 153       node->set_start_node();
 154       assert(_temp->is_illegal(), "move_temp_to() call missing");
 155     }
 156   }
 157 
 158   // generate move for move from non virtual register to abitrary destination
 159   for (i = other_operands().length() - 1; i >= 0; i --) {
 160     ResolveNode* node = other_operands()[i];
 161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 162       emit_move(node->operand(), node->destination_at(j)->operand());
 163     }
 164   }
 165 }
 166 
 167 
 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 169   ResolveNode* node;
 170   if (opr->is_virtual()) {
 171     int vreg_num = opr->vreg_number();
 172     node = vreg_table().at_grow(vreg_num, NULL);
 173     assert(node == NULL || node->operand() == opr, "");
 174     if (node == NULL) {
 175       node = new ResolveNode(opr);
 176       vreg_table()[vreg_num] = node;
 177     }
 178     // Make sure that all virtual operands show up in the list when
 179     // they are used as the source of a move.
 180     if (source && !virtual_operands().contains(node)) {
 181       virtual_operands().append(node);
 182     }
 183   } else {
 184     assert(source, "");
 185     node = new ResolveNode(opr);
 186     other_operands().append(node);
 187   }
 188   return node;
 189 }
 190 
 191 
 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 193   assert(dest->is_virtual(), "");
 194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 195   assert(src->is_valid(), "");
 196   assert(dest->is_valid(), "");
 197   ResolveNode* source = source_node(src);
 198   source->append(destination_node(dest));
 199 }
 200 
 201 
 202 //--------------------------------------------------------------
 203 // LIRItem
 204 
 205 void LIRItem::set_result(LIR_Opr opr) {
 206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 207   value()->set_operand(opr);
 208 
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 211   }
 212 
 213   _result = opr;
 214 }
 215 
 216 void LIRItem::load_item() {
 217   if (result()->is_illegal()) {
 218     // update the items result
 219     _result = value()->operand();
 220   }
 221   if (!result()->is_register()) {
 222     LIR_Opr reg = _gen->new_register(value()->type());
 223     __ move(result(), reg);
 224     if (result()->is_constant()) {
 225       _result = reg;
 226     } else {
 227       set_result(reg);
 228     }
 229   }
 230 }
 231 
 232 
 233 void LIRItem::load_for_store(BasicType type) {
 234   if (_gen->can_store_as_constant(value(), type)) {
 235     _result = value()->operand();
 236     if (!_result->is_constant()) {
 237       _result = LIR_OprFact::value_type(value()->type());
 238     }
 239   } else if (type == T_BYTE || type == T_BOOLEAN) {
 240     load_byte_item();
 241   } else {
 242     load_item();
 243   }
 244 }
 245 
 246 void LIRItem::load_item_force(LIR_Opr reg) {
 247   LIR_Opr r = result();
 248   if (r != reg) {
 249 #if !defined(ARM) && !defined(E500V2)
 250     if (r->type() != reg->type()) {
 251       // moves between different types need an intervening spill slot
 252       r = _gen->force_to_spill(r, reg->type());
 253     }
 254 #endif
 255     __ move(r, reg);
 256     _result = reg;
 257   }
 258 }
 259 
 260 ciObject* LIRItem::get_jobject_constant() const {
 261   ObjectType* oc = type()->as_ObjectType();
 262   if (oc) {
 263     return oc->constant_value();
 264   }
 265   return NULL;
 266 }
 267 
 268 
 269 jint LIRItem::get_jint_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_IntConstant() != NULL, "type check");
 272   return type()->as_IntConstant()->value();
 273 }
 274 
 275 
 276 jint LIRItem::get_address_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_AddressConstant() != NULL, "type check");
 279   return type()->as_AddressConstant()->value();
 280 }
 281 
 282 
 283 jfloat LIRItem::get_jfloat_constant() const {
 284   assert(is_constant() && value() != NULL, "");
 285   assert(type()->as_FloatConstant() != NULL, "type check");
 286   return type()->as_FloatConstant()->value();
 287 }
 288 
 289 
 290 jdouble LIRItem::get_jdouble_constant() const {
 291   assert(is_constant() && value() != NULL, "");
 292   assert(type()->as_DoubleConstant() != NULL, "type check");
 293   return type()->as_DoubleConstant()->value();
 294 }
 295 
 296 
 297 jlong LIRItem::get_jlong_constant() const {
 298   assert(is_constant() && value() != NULL, "");
 299   assert(type()->as_LongConstant() != NULL, "type check");
 300   return type()->as_LongConstant()->value();
 301 }
 302 
 303 
 304 
 305 //--------------------------------------------------------------
 306 
 307 
 308 void LIRGenerator::init() {
 309   _bs = Universe::heap()->barrier_set();
 310 }
 311 
 312 
 313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 314 #ifndef PRODUCT
 315   if (PrintIRWithLIR) {
 316     block->print();
 317   }
 318 #endif
 319 
 320   // set up the list of LIR instructions
 321   assert(block->lir() == NULL, "LIR list already computed for this block");
 322   _lir = new LIR_List(compilation(), block);
 323   block->set_lir(_lir);
 324 
 325   __ branch_destination(block->label());
 326 
 327   if (LIRTraceExecution &&
 328       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 329       !block->is_set(BlockBegin::exception_entry_flag)) {
 330     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 331     trace_block_entry(block);
 332   }
 333 }
 334 
 335 
 336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 337 #ifndef PRODUCT
 338   if (PrintIRWithLIR) {
 339     tty->cr();
 340   }
 341 #endif
 342 
 343   // LIR_Opr for unpinned constants shouldn't be referenced by other
 344   // blocks so clear them out after processing the block.
 345   for (int i = 0; i < _unpinned_constants.length(); i++) {
 346     _unpinned_constants.at(i)->clear_operand();
 347   }
 348   _unpinned_constants.trunc_to(0);
 349 
 350   // clear our any registers for other local constants
 351   _constants.trunc_to(0);
 352   _reg_for_constants.trunc_to(0);
 353 }
 354 
 355 
 356 void LIRGenerator::block_do(BlockBegin* block) {
 357   CHECK_BAILOUT();
 358 
 359   block_do_prolog(block);
 360   set_block(block);
 361 
 362   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 363     if (instr->is_pinned()) do_root(instr);
 364   }
 365 
 366   set_block(NULL);
 367   block_do_epilog(block);
 368 }
 369 
 370 
 371 //-------------------------LIRGenerator-----------------------------
 372 
 373 // This is where the tree-walk starts; instr must be root;
 374 void LIRGenerator::do_root(Value instr) {
 375   CHECK_BAILOUT();
 376 
 377   InstructionMark im(compilation(), instr);
 378 
 379   assert(instr->is_pinned(), "use only with roots");
 380   assert(instr->subst() == instr, "shouldn't have missed substitution");
 381 
 382   instr->visit(this);
 383 
 384   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 385          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 386 }
 387 
 388 
 389 // This is called for each node in tree; the walk stops if a root is reached
 390 void LIRGenerator::walk(Value instr) {
 391   InstructionMark im(compilation(), instr);
 392   //stop walk when encounter a root
 393   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 394     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 395   } else {
 396     assert(instr->subst() == instr, "shouldn't have missed substitution");
 397     instr->visit(this);
 398     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 399   }
 400 }
 401 
 402 
 403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 404   assert(state != NULL, "state must be defined");
 405 
 406   ValueStack* s = state;
 407   for_each_state(s) {
 408     if (s->kind() == ValueStack::EmptyExceptionState) {
 409       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 410       continue;
 411     }
 412 
 413     int index;
 414     Value value;
 415     for_each_stack_value(s, index, value) {
 416       assert(value->subst() == value, "missed substitution");
 417       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 418         walk(value);
 419         assert(value->operand()->is_valid(), "must be evaluated now");
 420       }
 421     }
 422 
 423     int bci = s->bci();
 424     IRScope* scope = s->scope();
 425     ciMethod* method = scope->method();
 426 
 427     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 428     if (bci == SynchronizationEntryBCI) {
 429       if (x->as_ExceptionObject() || x->as_Throw()) {
 430         // all locals are dead on exit from the synthetic unlocker
 431         liveness.clear();
 432       } else {
 433         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 434       }
 435     }
 436     if (!liveness.is_valid()) {
 437       // Degenerate or breakpointed method.
 438       bailout("Degenerate or breakpointed method");
 439     } else {
 440       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 441       for_each_local_value(s, index, value) {
 442         assert(value->subst() == value, "missed substition");
 443         if (liveness.at(index) && !value->type()->is_illegal()) {
 444           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 445             walk(value);
 446             assert(value->operand()->is_valid(), "must be evaluated now");
 447           }
 448         } else {
 449           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 450           s->invalidate_local(index);
 451         }
 452       }
 453     }
 454   }
 455 
 456   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
 457 }
 458 
 459 
 460 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 461   return state_for(x, x->exception_state());
 462 }
 463 
 464 
 465 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
 466   if (!obj->is_loaded() || PatchALot) {
 467     assert(info != NULL, "info must be set if class is not loaded");
 468     __ klass2reg_patch(NULL, r, info);
 469   } else {
 470     // no patching needed
 471     __ metadata2reg(obj->constant_encoding(), r);
 472   }
 473 }
 474 
 475 
 476 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 477                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 478   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 479   if (index->is_constant()) {
 480     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 481                 index->as_jint(), null_check_info);
 482     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 483   } else {
 484     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 485                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 486     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 487   }
 488 }
 489 
 490 
 491 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 492   CodeStub* stub = new RangeCheckStub(info, index, true);
 493   if (index->is_constant()) {
 494     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 495     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 496   } else {
 497     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 498                 java_nio_Buffer::limit_offset(), T_INT, info);
 499     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 500   }
 501   __ move(index, result);
 502 }
 503 
 504 
 505 
 506 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 507   LIR_Opr result_op = result;
 508   LIR_Opr left_op   = left;
 509   LIR_Opr right_op  = right;
 510 
 511   if (TwoOperandLIRForm && left_op != result_op) {
 512     assert(right_op != result_op, "malformed");
 513     __ move(left_op, result_op);
 514     left_op = result_op;
 515   }
 516 
 517   switch(code) {
 518     case Bytecodes::_dadd:
 519     case Bytecodes::_fadd:
 520     case Bytecodes::_ladd:
 521     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 522     case Bytecodes::_fmul:
 523     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 524 
 525     case Bytecodes::_dmul:
 526       {
 527         if (is_strictfp) {
 528           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 529         } else {
 530           __ mul(left_op, right_op, result_op); break;
 531         }
 532       }
 533       break;
 534 
 535     case Bytecodes::_imul:
 536       {
 537         bool    did_strength_reduce = false;
 538 
 539         if (right->is_constant()) {
 540           int c = right->as_jint();
 541           if (is_power_of_2(c)) {
 542             // do not need tmp here
 543             __ shift_left(left_op, exact_log2(c), result_op);
 544             did_strength_reduce = true;
 545           } else {
 546             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 547           }
 548         }
 549         // we couldn't strength reduce so just emit the multiply
 550         if (!did_strength_reduce) {
 551           __ mul(left_op, right_op, result_op);
 552         }
 553       }
 554       break;
 555 
 556     case Bytecodes::_dsub:
 557     case Bytecodes::_fsub:
 558     case Bytecodes::_lsub:
 559     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 560 
 561     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 562     // ldiv and lrem are implemented with a direct runtime call
 563 
 564     case Bytecodes::_ddiv:
 565       {
 566         if (is_strictfp) {
 567           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 568         } else {
 569           __ div (left_op, right_op, result_op); break;
 570         }
 571       }
 572       break;
 573 
 574     case Bytecodes::_drem:
 575     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 576 
 577     default: ShouldNotReachHere();
 578   }
 579 }
 580 
 581 
 582 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 583   arithmetic_op(code, result, left, right, false, tmp);
 584 }
 585 
 586 
 587 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 588   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 589 }
 590 
 591 
 592 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 593   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 594 }
 595 
 596 
 597 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 598   if (TwoOperandLIRForm && value != result_op) {
 599     assert(count != result_op, "malformed");
 600     __ move(value, result_op);
 601     value = result_op;
 602   }
 603 
 604   assert(count->is_constant() || count->is_register(), "must be");
 605   switch(code) {
 606   case Bytecodes::_ishl:
 607   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 608   case Bytecodes::_ishr:
 609   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 610   case Bytecodes::_iushr:
 611   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 612   default: ShouldNotReachHere();
 613   }
 614 }
 615 
 616 
 617 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 618   if (TwoOperandLIRForm && left_op != result_op) {
 619     assert(right_op != result_op, "malformed");
 620     __ move(left_op, result_op);
 621     left_op = result_op;
 622   }
 623 
 624   switch(code) {
 625     case Bytecodes::_iand:
 626     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 627 
 628     case Bytecodes::_ior:
 629     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 630 
 631     case Bytecodes::_ixor:
 632     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 633 
 634     default: ShouldNotReachHere();
 635   }
 636 }
 637 
 638 
 639 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 640   if (!GenerateSynchronizationCode) return;
 641   // for slow path, use debug info for state after successful locking
 642   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 643   __ load_stack_address_monitor(monitor_no, lock);
 644   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 645   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 646 }
 647 
 648 
 649 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 650   if (!GenerateSynchronizationCode) return;
 651   // setup registers
 652   LIR_Opr hdr = lock;
 653   lock = new_hdr;
 654   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 655   __ load_stack_address_monitor(monitor_no, lock);
 656   __ unlock_object(hdr, object, lock, scratch, slow_path);
 657 }
 658 
 659 
 660 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 661   klass2reg_with_patching(klass_reg, klass, info);
 662   // If klass is not loaded we do not know if the klass has finalizers:
 663   if (UseFastNewInstance && klass->is_loaded()
 664       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 665 
 666     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 667 
 668     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 669 
 670     assert(klass->is_loaded(), "must be loaded");
 671     // allocate space for instance
 672     assert(klass->size_helper() >= 0, "illegal instance size");
 673     const int instance_size = align_object_size(klass->size_helper());
 674     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 675                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 676   } else {
 677     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 678     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 679     __ branch_destination(slow_path->continuation());
 680   }
 681 }
 682 
 683 
 684 static bool is_constant_zero(Instruction* inst) {
 685   IntConstant* c = inst->type()->as_IntConstant();
 686   if (c) {
 687     return (c->value() == 0);
 688   }
 689   return false;
 690 }
 691 
 692 
 693 static bool positive_constant(Instruction* inst) {
 694   IntConstant* c = inst->type()->as_IntConstant();
 695   if (c) {
 696     return (c->value() >= 0);
 697   }
 698   return false;
 699 }
 700 
 701 
 702 static ciArrayKlass* as_array_klass(ciType* type) {
 703   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 704     return (ciArrayKlass*)type;
 705   } else {
 706     return NULL;
 707   }
 708 }
 709 
 710 static Value maxvalue(IfOp* ifop) {
 711   switch (ifop->cond()) {
 712     case If::eql: return NULL;
 713     case If::neq: return NULL;
 714     case If::lss: // x <  y ? x : y
 715     case If::leq: // x <= y ? x : y
 716       if (ifop->x() == ifop->tval() &&
 717           ifop->y() == ifop->fval()) return ifop->y();
 718       return NULL;
 719 
 720     case If::gtr: // x >  y ? y : x
 721     case If::geq: // x >= y ? y : x
 722       if (ifop->x() == ifop->tval() &&
 723           ifop->y() == ifop->fval()) return ifop->y();
 724       return NULL;
 725 
 726   }
 727 }
 728 
 729 static ciType* phi_declared_type(Phi* phi) {
 730   ciType* t = phi->operand_at(0)->declared_type();
 731   if (t == NULL) {
 732     return NULL;
 733   }
 734   for(int i = 1; i < phi->operand_count(); i++) {
 735     if (t != phi->operand_at(i)->declared_type()) {
 736       return NULL;
 737     }
 738   }
 739   return t;
 740 }
 741 
 742 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 743   Instruction* src     = x->argument_at(0);
 744   Instruction* src_pos = x->argument_at(1);
 745   Instruction* dst     = x->argument_at(2);
 746   Instruction* dst_pos = x->argument_at(3);
 747   Instruction* length  = x->argument_at(4);
 748 
 749   // first try to identify the likely type of the arrays involved
 750   ciArrayKlass* expected_type = NULL;
 751   bool is_exact = false, src_objarray = false, dst_objarray = false;
 752   {
 753     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 754     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 755     Phi* phi;
 756     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 757       src_declared_type = as_array_klass(phi_declared_type(phi));
 758     }
 759     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 760     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 761     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 762       dst_declared_type = as_array_klass(phi_declared_type(phi));
 763     }
 764 
 765     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 766       // the types exactly match so the type is fully known
 767       is_exact = true;
 768       expected_type = src_exact_type;
 769     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 770       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 771       ciArrayKlass* src_type = NULL;
 772       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_exact_type;
 774       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 775         src_type = (ciArrayKlass*) src_declared_type;
 776       }
 777       if (src_type != NULL) {
 778         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 779           is_exact = true;
 780           expected_type = dst_type;
 781         }
 782       }
 783     }
 784     // at least pass along a good guess
 785     if (expected_type == NULL) expected_type = dst_exact_type;
 786     if (expected_type == NULL) expected_type = src_declared_type;
 787     if (expected_type == NULL) expected_type = dst_declared_type;
 788 
 789     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 790     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 791   }
 792 
 793   // if a probable array type has been identified, figure out if any
 794   // of the required checks for a fast case can be elided.
 795   int flags = LIR_OpArrayCopy::all_flags;
 796 
 797   if (!src_objarray)
 798     flags &= ~LIR_OpArrayCopy::src_objarray;
 799   if (!dst_objarray)
 800     flags &= ~LIR_OpArrayCopy::dst_objarray;
 801 
 802   if (!x->arg_needs_null_check(0))
 803     flags &= ~LIR_OpArrayCopy::src_null_check;
 804   if (!x->arg_needs_null_check(2))
 805     flags &= ~LIR_OpArrayCopy::dst_null_check;
 806 
 807 
 808   if (expected_type != NULL) {
 809     Value length_limit = NULL;
 810 
 811     IfOp* ifop = length->as_IfOp();
 812     if (ifop != NULL) {
 813       // look for expressions like min(v, a.length) which ends up as
 814       //   x > y ? y : x  or  x >= y ? y : x
 815       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 816           ifop->x() == ifop->fval() &&
 817           ifop->y() == ifop->tval()) {
 818         length_limit = ifop->y();
 819       }
 820     }
 821 
 822     // try to skip null checks and range checks
 823     NewArray* src_array = src->as_NewArray();
 824     if (src_array != NULL) {
 825       flags &= ~LIR_OpArrayCopy::src_null_check;
 826       if (length_limit != NULL &&
 827           src_array->length() == length_limit &&
 828           is_constant_zero(src_pos)) {
 829         flags &= ~LIR_OpArrayCopy::src_range_check;
 830       }
 831     }
 832 
 833     NewArray* dst_array = dst->as_NewArray();
 834     if (dst_array != NULL) {
 835       flags &= ~LIR_OpArrayCopy::dst_null_check;
 836       if (length_limit != NULL &&
 837           dst_array->length() == length_limit &&
 838           is_constant_zero(dst_pos)) {
 839         flags &= ~LIR_OpArrayCopy::dst_range_check;
 840       }
 841     }
 842 
 843     // check from incoming constant values
 844     if (positive_constant(src_pos))
 845       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 846     if (positive_constant(dst_pos))
 847       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 848     if (positive_constant(length))
 849       flags &= ~LIR_OpArrayCopy::length_positive_check;
 850 
 851     // see if the range check can be elided, which might also imply
 852     // that src or dst is non-null.
 853     ArrayLength* al = length->as_ArrayLength();
 854     if (al != NULL) {
 855       if (al->array() == src) {
 856         // it's the length of the source array
 857         flags &= ~LIR_OpArrayCopy::length_positive_check;
 858         flags &= ~LIR_OpArrayCopy::src_null_check;
 859         if (is_constant_zero(src_pos))
 860           flags &= ~LIR_OpArrayCopy::src_range_check;
 861       }
 862       if (al->array() == dst) {
 863         // it's the length of the destination array
 864         flags &= ~LIR_OpArrayCopy::length_positive_check;
 865         flags &= ~LIR_OpArrayCopy::dst_null_check;
 866         if (is_constant_zero(dst_pos))
 867           flags &= ~LIR_OpArrayCopy::dst_range_check;
 868       }
 869     }
 870     if (is_exact) {
 871       flags &= ~LIR_OpArrayCopy::type_check;
 872     }
 873   }
 874 
 875   IntConstant* src_int = src_pos->type()->as_IntConstant();
 876   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 877   if (src_int && dst_int) {
 878     int s_offs = src_int->value();
 879     int d_offs = dst_int->value();
 880     if (src_int->value() >= dst_int->value()) {
 881       flags &= ~LIR_OpArrayCopy::overlapping;
 882     }
 883     if (expected_type != NULL) {
 884       BasicType t = expected_type->element_type()->basic_type();
 885       int element_size = type2aelembytes(t);
 886       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 887           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 888         flags &= ~LIR_OpArrayCopy::unaligned;
 889       }
 890     }
 891   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 892     // src and dest positions are the same, or dst is zero so assume
 893     // nonoverlapping copy.
 894     flags &= ~LIR_OpArrayCopy::overlapping;
 895   }
 896 
 897   if (src == dst) {
 898     // moving within a single array so no type checks are needed
 899     if (flags & LIR_OpArrayCopy::type_check) {
 900       flags &= ~LIR_OpArrayCopy::type_check;
 901     }
 902   }
 903   *flagsp = flags;
 904   *expected_typep = (ciArrayKlass*)expected_type;
 905 }
 906 
 907 
 908 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 909   assert(opr->is_register(), "why spill if item is not register?");
 910 
 911   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 912     LIR_Opr result = new_register(T_FLOAT);
 913     set_vreg_flag(result, must_start_in_memory);
 914     assert(opr->is_register(), "only a register can be spilled");
 915     assert(opr->value_type()->is_float(), "rounding only for floats available");
 916     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 917     return result;
 918   }
 919   return opr;
 920 }
 921 
 922 
 923 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 924   assert(type2size[t] == type2size[value->type()],
 925          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 926   if (!value->is_register()) {
 927     // force into a register
 928     LIR_Opr r = new_register(value->type());
 929     __ move(value, r);
 930     value = r;
 931   }
 932 
 933   // create a spill location
 934   LIR_Opr tmp = new_register(t);
 935   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 936 
 937   // move from register to spill
 938   __ move(value, tmp);
 939   return tmp;
 940 }
 941 
 942 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 943   if (if_instr->should_profile()) {
 944     ciMethod* method = if_instr->profiled_method();
 945     assert(method != NULL, "method should be set if branch is profiled");
 946     ciMethodData* md = method->method_data_or_null();
 947     assert(md != NULL, "Sanity");
 948     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 949     assert(data != NULL, "must have profiling data");
 950     assert(data->is_BranchData(), "need BranchData for two-way branches");
 951     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 952     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 953     if (if_instr->is_swapped()) {
 954       int t = taken_count_offset;
 955       taken_count_offset = not_taken_count_offset;
 956       not_taken_count_offset = t;
 957     }
 958 
 959     LIR_Opr md_reg = new_register(T_METADATA);
 960     __ metadata2reg(md->constant_encoding(), md_reg);
 961 
 962     LIR_Opr data_offset_reg = new_pointer_register();
 963     __ cmove(lir_cond(cond),
 964              LIR_OprFact::intptrConst(taken_count_offset),
 965              LIR_OprFact::intptrConst(not_taken_count_offset),
 966              data_offset_reg, as_BasicType(if_instr->x()->type()));
 967 
 968     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 969     LIR_Opr data_reg = new_pointer_register();
 970     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 971     __ move(data_addr, data_reg);
 972     // Use leal instead of add to avoid destroying condition codes on x86
 973     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 974     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 975     __ move(data_reg, data_addr);
 976   }
 977 }
 978 
 979 // Phi technique:
 980 // This is about passing live values from one basic block to the other.
 981 // In code generated with Java it is rather rare that more than one
 982 // value is on the stack from one basic block to the other.
 983 // We optimize our technique for efficient passing of one value
 984 // (of type long, int, double..) but it can be extended.
 985 // When entering or leaving a basic block, all registers and all spill
 986 // slots are release and empty. We use the released registers
 987 // and spill slots to pass the live values from one block
 988 // to the other. The topmost value, i.e., the value on TOS of expression
 989 // stack is passed in registers. All other values are stored in spilling
 990 // area. Every Phi has an index which designates its spill slot
 991 // At exit of a basic block, we fill the register(s) and spill slots.
 992 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 993 // and locks necessary registers and spilling slots.
 994 
 995 
 996 // move current value to referenced phi function
 997 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 998   Phi* phi = sux_val->as_Phi();
 999   // cur_val can be null without phi being null in conjunction with inlining
1000   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1001     LIR_Opr operand = cur_val->operand();
1002     if (cur_val->operand()->is_illegal()) {
1003       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1004              "these can be produced lazily");
1005       operand = operand_for_instruction(cur_val);
1006     }
1007     resolver->move(operand, operand_for_instruction(phi));
1008   }
1009 }
1010 
1011 
1012 // Moves all stack values into their PHI position
1013 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1014   BlockBegin* bb = block();
1015   if (bb->number_of_sux() == 1) {
1016     BlockBegin* sux = bb->sux_at(0);
1017     assert(sux->number_of_preds() > 0, "invalid CFG");
1018 
1019     // a block with only one predecessor never has phi functions
1020     if (sux->number_of_preds() > 1) {
1021       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1022       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1023 
1024       ValueStack* sux_state = sux->state();
1025       Value sux_value;
1026       int index;
1027 
1028       assert(cur_state->scope() == sux_state->scope(), "not matching");
1029       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1030       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1031 
1032       for_each_stack_value(sux_state, index, sux_value) {
1033         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1034       }
1035 
1036       for_each_local_value(sux_state, index, sux_value) {
1037         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1038       }
1039 
1040       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1041     }
1042   }
1043 }
1044 
1045 
1046 LIR_Opr LIRGenerator::new_register(BasicType type) {
1047   int vreg = _virtual_register_number;
1048   // add a little fudge factor for the bailout, since the bailout is
1049   // only checked periodically.  This gives a few extra registers to
1050   // hand out before we really run out, which helps us keep from
1051   // tripping over assertions.
1052   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1053     bailout("out of virtual registers");
1054     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1055       // wrap it around
1056       _virtual_register_number = LIR_OprDesc::vreg_base;
1057     }
1058   }
1059   _virtual_register_number += 1;
1060   return LIR_OprFact::virtual_register(vreg, type);
1061 }
1062 
1063 
1064 // Try to lock using register in hint
1065 LIR_Opr LIRGenerator::rlock(Value instr) {
1066   return new_register(instr->type());
1067 }
1068 
1069 
1070 // does an rlock and sets result
1071 LIR_Opr LIRGenerator::rlock_result(Value x) {
1072   LIR_Opr reg = rlock(x);
1073   set_result(x, reg);
1074   return reg;
1075 }
1076 
1077 
1078 // does an rlock and sets result
1079 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1080   LIR_Opr reg;
1081   switch (type) {
1082   case T_BYTE:
1083   case T_BOOLEAN:
1084     reg = rlock_byte(type);
1085     break;
1086   default:
1087     reg = rlock(x);
1088     break;
1089   }
1090 
1091   set_result(x, reg);
1092   return reg;
1093 }
1094 
1095 
1096 //---------------------------------------------------------------------
1097 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1098   ObjectType* oc = value->type()->as_ObjectType();
1099   if (oc) {
1100     return oc->constant_value();
1101   }
1102   return NULL;
1103 }
1104 
1105 
1106 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1107   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1108   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1109 
1110   // no moves are created for phi functions at the begin of exception
1111   // handlers, so assign operands manually here
1112   for_each_phi_fun(block(), phi,
1113                    operand_for_instruction(phi));
1114 
1115   LIR_Opr thread_reg = getThreadPointer();
1116   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1117                exceptionOopOpr());
1118   __ move_wide(LIR_OprFact::oopConst(NULL),
1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1120   __ move_wide(LIR_OprFact::oopConst(NULL),
1121                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1122 
1123   LIR_Opr result = new_register(T_OBJECT);
1124   __ move(exceptionOopOpr(), result);
1125   set_result(x, result);
1126 }
1127 
1128 
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 //                        visitor functions
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 
1139 void LIRGenerator::do_Phi(Phi* x) {
1140   // phi functions are never visited directly
1141   ShouldNotReachHere();
1142 }
1143 
1144 
1145 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1146 void LIRGenerator::do_Constant(Constant* x) {
1147   if (x->state_before() != NULL) {
1148     // Any constant with a ValueStack requires patching so emit the patch here
1149     LIR_Opr reg = rlock_result(x);
1150     CodeEmitInfo* info = state_for(x, x->state_before());
1151     __ oop2reg_patch(NULL, reg, info);
1152   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1153     if (!x->is_pinned()) {
1154       // unpinned constants are handled specially so that they can be
1155       // put into registers when they are used multiple times within a
1156       // block.  After the block completes their operand will be
1157       // cleared so that other blocks can't refer to that register.
1158       set_result(x, load_constant(x));
1159     } else {
1160       LIR_Opr res = x->operand();
1161       if (!res->is_valid()) {
1162         res = LIR_OprFact::value_type(x->type());
1163       }
1164       if (res->is_constant()) {
1165         LIR_Opr reg = rlock_result(x);
1166         __ move(res, reg);
1167       } else {
1168         set_result(x, res);
1169       }
1170     }
1171   } else {
1172     set_result(x, LIR_OprFact::value_type(x->type()));
1173   }
1174 }
1175 
1176 
1177 void LIRGenerator::do_Local(Local* x) {
1178   // operand_for_instruction has the side effect of setting the result
1179   // so there's no need to do it here.
1180   operand_for_instruction(x);
1181 }
1182 
1183 
1184 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1185   Unimplemented();
1186 }
1187 
1188 
1189 void LIRGenerator::do_Return(Return* x) {
1190   if (compilation()->env()->dtrace_method_probes()) {
1191     BasicTypeList signature;
1192     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1193     signature.append(T_OBJECT); // Method*
1194     LIR_OprList* args = new LIR_OprList();
1195     args->append(getThreadPointer());
1196     LIR_Opr meth = new_register(T_METADATA);
1197     __ metadata2reg(method()->constant_encoding(), meth);
1198     args->append(meth);
1199     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1200   }
1201 
1202   if (x->type()->is_void()) {
1203     __ return_op(LIR_OprFact::illegalOpr);
1204   } else {
1205     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1206     LIRItem result(x->result(), this);
1207 
1208     result.load_item_force(reg);
1209     __ return_op(result.result());
1210   }
1211   set_no_result(x);
1212 }
1213 
1214 // Examble: ref.get()
1215 // Combination of LoadField and g1 pre-write barrier
1216 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1217 
1218   const int referent_offset = java_lang_ref_Reference::referent_offset;
1219   guarantee(referent_offset > 0, "referent offset not initialized");
1220 
1221   assert(x->number_of_arguments() == 1, "wrong type");
1222 
1223   LIRItem reference(x->argument_at(0), this);
1224   reference.load_item();
1225 
1226   // need to perform the null check on the reference objecy
1227   CodeEmitInfo* info = NULL;
1228   if (x->needs_null_check()) {
1229     info = state_for(x);
1230   }
1231 
1232   LIR_Address* referent_field_adr =
1233     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1234 
1235   LIR_Opr result = rlock_result(x);
1236 
1237   __ load(referent_field_adr, result, info);
1238 
1239   // Register the value in the referent field with the pre-barrier
1240   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1241               result /* pre_val */,
1242               false  /* do_load */,
1243               false  /* patch */,
1244               NULL   /* info */);
1245 }
1246 
1247 // Example: clazz.isInstance(object)
1248 void LIRGenerator::do_isInstance(Intrinsic* x) {
1249   assert(x->number_of_arguments() == 2, "wrong type");
1250 
1251   // TODO could try to substitute this node with an equivalent InstanceOf
1252   // if clazz is known to be a constant Class. This will pick up newly found
1253   // constants after HIR construction. I'll leave this to a future change.
1254 
1255   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1256   // could follow the aastore example in a future change.
1257 
1258   LIRItem clazz(x->argument_at(0), this);
1259   LIRItem object(x->argument_at(1), this);
1260   clazz.load_item();
1261   object.load_item();
1262   LIR_Opr result = rlock_result(x);
1263 
1264   // need to perform null check on clazz
1265   if (x->needs_null_check()) {
1266     CodeEmitInfo* info = state_for(x);
1267     __ null_check(clazz.result(), info);
1268   }
1269 
1270   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1271                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1272                                      x->type(),
1273                                      NULL); // NULL CodeEmitInfo results in a leaf call
1274   __ move(call_result, result);
1275 }
1276 
1277 // Example: object.getClass ()
1278 void LIRGenerator::do_getClass(Intrinsic* x) {
1279   assert(x->number_of_arguments() == 1, "wrong type");
1280 
1281   LIRItem rcvr(x->argument_at(0), this);
1282   rcvr.load_item();
1283   LIR_Opr result = rlock_result(x);
1284 
1285   // need to perform the null check on the rcvr
1286   CodeEmitInfo* info = NULL;
1287   if (x->needs_null_check()) {
1288     info = state_for(x);
1289   }
1290   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), result, info);
1291   __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1292 }
1293 
1294 
1295 // Example: Thread.currentThread()
1296 void LIRGenerator::do_currentThread(Intrinsic* x) {
1297   assert(x->number_of_arguments() == 0, "wrong type");
1298   LIR_Opr reg = rlock_result(x);
1299   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1300 }
1301 
1302 
1303 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1304   assert(x->number_of_arguments() == 1, "wrong type");
1305   LIRItem receiver(x->argument_at(0), this);
1306 
1307   receiver.load_item();
1308   BasicTypeList signature;
1309   signature.append(T_OBJECT); // receiver
1310   LIR_OprList* args = new LIR_OprList();
1311   args->append(receiver.result());
1312   CodeEmitInfo* info = state_for(x, x->state());
1313   call_runtime(&signature, args,
1314                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1315                voidType, info);
1316 
1317   set_no_result(x);
1318 }
1319 
1320 
1321 //------------------------local access--------------------------------------
1322 
1323 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1324   if (x->operand()->is_illegal()) {
1325     Constant* c = x->as_Constant();
1326     if (c != NULL) {
1327       x->set_operand(LIR_OprFact::value_type(c->type()));
1328     } else {
1329       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1330       // allocate a virtual register for this local or phi
1331       x->set_operand(rlock(x));
1332       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1333     }
1334   }
1335   return x->operand();
1336 }
1337 
1338 
1339 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1340   if (opr->is_virtual()) {
1341     return instruction_for_vreg(opr->vreg_number());
1342   }
1343   return NULL;
1344 }
1345 
1346 
1347 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1348   if (reg_num < _instruction_for_operand.length()) {
1349     return _instruction_for_operand.at(reg_num);
1350   }
1351   return NULL;
1352 }
1353 
1354 
1355 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1356   if (_vreg_flags.size_in_bits() == 0) {
1357     BitMap2D temp(100, num_vreg_flags);
1358     temp.clear();
1359     _vreg_flags = temp;
1360   }
1361   _vreg_flags.at_put_grow(vreg_num, f, true);
1362 }
1363 
1364 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1365   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1366     return false;
1367   }
1368   return _vreg_flags.at(vreg_num, f);
1369 }
1370 
1371 
1372 // Block local constant handling.  This code is useful for keeping
1373 // unpinned constants and constants which aren't exposed in the IR in
1374 // registers.  Unpinned Constant instructions have their operands
1375 // cleared when the block is finished so that other blocks can't end
1376 // up referring to their registers.
1377 
1378 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1379   assert(!x->is_pinned(), "only for unpinned constants");
1380   _unpinned_constants.append(x);
1381   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1382 }
1383 
1384 
1385 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1386   BasicType t = c->type();
1387   for (int i = 0; i < _constants.length(); i++) {
1388     LIR_Const* other = _constants.at(i);
1389     if (t == other->type()) {
1390       switch (t) {
1391       case T_INT:
1392       case T_FLOAT:
1393         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1394         break;
1395       case T_LONG:
1396       case T_DOUBLE:
1397         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1398         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1399         break;
1400       case T_OBJECT:
1401         if (c->as_jobject() != other->as_jobject()) continue;
1402         break;
1403       }
1404       return _reg_for_constants.at(i);
1405     }
1406   }
1407 
1408   LIR_Opr result = new_register(t);
1409   __ move((LIR_Opr)c, result);
1410   _constants.append(c);
1411   _reg_for_constants.append(result);
1412   return result;
1413 }
1414 
1415 // Various barriers
1416 
1417 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1418                                bool do_load, bool patch, CodeEmitInfo* info) {
1419   // Do the pre-write barrier, if any.
1420   switch (_bs->kind()) {
1421 #if INCLUDE_ALL_GCS
1422     case BarrierSet::G1SATBCT:
1423     case BarrierSet::G1SATBCTLogging:
1424       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1425       break;
1426 #endif // INCLUDE_ALL_GCS
1427     case BarrierSet::CardTableModRef:
1428     case BarrierSet::CardTableExtension:
1429       // No pre barriers
1430       break;
1431     case BarrierSet::ModRef:
1432     case BarrierSet::Other:
1433       // No pre barriers
1434       break;
1435     default      :
1436       ShouldNotReachHere();
1437 
1438   }
1439 }
1440 
1441 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1442   switch (_bs->kind()) {
1443 #if INCLUDE_ALL_GCS
1444     case BarrierSet::G1SATBCT:
1445     case BarrierSet::G1SATBCTLogging:
1446       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1447       break;
1448 #endif // INCLUDE_ALL_GCS
1449     case BarrierSet::CardTableModRef:
1450     case BarrierSet::CardTableExtension:
1451       CardTableModRef_post_barrier(addr,  new_val);
1452       break;
1453     case BarrierSet::ModRef:
1454     case BarrierSet::Other:
1455       // No post barriers
1456       break;
1457     default      :
1458       ShouldNotReachHere();
1459     }
1460 }
1461 
1462 ////////////////////////////////////////////////////////////////////////
1463 #if INCLUDE_ALL_GCS
1464 
1465 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1466                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1467   // First we test whether marking is in progress.
1468   BasicType flag_type;
1469   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1470     flag_type = T_INT;
1471   } else {
1472     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1473               "Assumption");
1474     flag_type = T_BYTE;
1475   }
1476   LIR_Opr thrd = getThreadPointer();
1477   LIR_Address* mark_active_flag_addr =
1478     new LIR_Address(thrd,
1479                     in_bytes(JavaThread::satb_mark_queue_offset() +
1480                              PtrQueue::byte_offset_of_active()),
1481                     flag_type);
1482   // Read the marking-in-progress flag.
1483   LIR_Opr flag_val = new_register(T_INT);
1484   __ load(mark_active_flag_addr, flag_val);
1485   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1486 
1487   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1488 
1489   CodeStub* slow;
1490 
1491   if (do_load) {
1492     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1493     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1494 
1495     if (patch)
1496       pre_val_patch_code = lir_patch_normal;
1497 
1498     pre_val = new_register(T_OBJECT);
1499 
1500     if (!addr_opr->is_address()) {
1501       assert(addr_opr->is_register(), "must be");
1502       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1503     }
1504     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1505   } else {
1506     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1507     assert(pre_val->is_register(), "must be");
1508     assert(pre_val->type() == T_OBJECT, "must be an object");
1509     assert(info == NULL, "sanity");
1510 
1511     slow = new G1PreBarrierStub(pre_val);
1512   }
1513 
1514   __ branch(lir_cond_notEqual, T_INT, slow);
1515   __ branch_destination(slow->continuation());
1516 }
1517 
1518 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1519   // If the "new_val" is a constant NULL, no barrier is necessary.
1520   if (new_val->is_constant() &&
1521       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1522 
1523   if (!new_val->is_register()) {
1524     LIR_Opr new_val_reg = new_register(T_OBJECT);
1525     if (new_val->is_constant()) {
1526       __ move(new_val, new_val_reg);
1527     } else {
1528       __ leal(new_val, new_val_reg);
1529     }
1530     new_val = new_val_reg;
1531   }
1532   assert(new_val->is_register(), "must be a register at this point");
1533 
1534   if (addr->is_address()) {
1535     LIR_Address* address = addr->as_address_ptr();
1536     LIR_Opr ptr = new_pointer_register();
1537     if (!address->index()->is_valid() && address->disp() == 0) {
1538       __ move(address->base(), ptr);
1539     } else {
1540       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1541       __ leal(addr, ptr);
1542     }
1543     addr = ptr;
1544   }
1545   assert(addr->is_register(), "must be a register at this point");
1546 
1547   LIR_Opr xor_res = new_pointer_register();
1548   LIR_Opr xor_shift_res = new_pointer_register();
1549   if (TwoOperandLIRForm ) {
1550     __ move(addr, xor_res);
1551     __ logical_xor(xor_res, new_val, xor_res);
1552     __ move(xor_res, xor_shift_res);
1553     __ unsigned_shift_right(xor_shift_res,
1554                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1555                             xor_shift_res,
1556                             LIR_OprDesc::illegalOpr());
1557   } else {
1558     __ logical_xor(addr, new_val, xor_res);
1559     __ unsigned_shift_right(xor_res,
1560                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1561                             xor_shift_res,
1562                             LIR_OprDesc::illegalOpr());
1563   }
1564 
1565   if (!new_val->is_register()) {
1566     LIR_Opr new_val_reg = new_register(T_OBJECT);
1567     __ leal(new_val, new_val_reg);
1568     new_val = new_val_reg;
1569   }
1570   assert(new_val->is_register(), "must be a register at this point");
1571 
1572   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1573 
1574   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1575   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1576   __ branch_destination(slow->continuation());
1577 }
1578 
1579 #endif // INCLUDE_ALL_GCS
1580 ////////////////////////////////////////////////////////////////////////
1581 
1582 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1583 
1584   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1585   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1586   if (addr->is_address()) {
1587     LIR_Address* address = addr->as_address_ptr();
1588     // ptr cannot be an object because we use this barrier for array card marks
1589     // and addr can point in the middle of an array.
1590     LIR_Opr ptr = new_pointer_register();
1591     if (!address->index()->is_valid() && address->disp() == 0) {
1592       __ move(address->base(), ptr);
1593     } else {
1594       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1595       __ leal(addr, ptr);
1596     }
1597     addr = ptr;
1598   }
1599   assert(addr->is_register(), "must be a register at this point");
1600 
1601 #ifdef ARM
1602   // TODO: ARM - move to platform-dependent code
1603   LIR_Opr tmp = FrameMap::R14_opr;
1604   if (VM_Version::supports_movw()) {
1605     __ move((LIR_Opr)card_table_base, tmp);
1606   } else {
1607     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1608   }
1609 
1610   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1611   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1612   if(((int)ct->byte_map_base & 0xff) == 0) {
1613     __ move(tmp, card_addr);
1614   } else {
1615     LIR_Opr tmp_zero = new_register(T_INT);
1616     __ move(LIR_OprFact::intConst(0), tmp_zero);
1617     __ move(tmp_zero, card_addr);
1618   }
1619 #else // ARM
1620   LIR_Opr tmp = new_pointer_register();
1621   if (TwoOperandLIRForm) {
1622     __ move(addr, tmp);
1623     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1624   } else {
1625     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1626   }
1627   if (can_inline_as_constant(card_table_base)) {
1628     __ move(LIR_OprFact::intConst(0),
1629               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1630   } else {
1631     __ move(LIR_OprFact::intConst(0),
1632               new LIR_Address(tmp, load_constant(card_table_base),
1633                               T_BYTE));
1634   }
1635 #endif // ARM
1636 }
1637 
1638 
1639 //------------------------field access--------------------------------------
1640 
1641 // Comment copied form templateTable_i486.cpp
1642 // ----------------------------------------------------------------------------
1643 // Volatile variables demand their effects be made known to all CPU's in
1644 // order.  Store buffers on most chips allow reads & writes to reorder; the
1645 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1646 // memory barrier (i.e., it's not sufficient that the interpreter does not
1647 // reorder volatile references, the hardware also must not reorder them).
1648 //
1649 // According to the new Java Memory Model (JMM):
1650 // (1) All volatiles are serialized wrt to each other.
1651 // ALSO reads & writes act as aquire & release, so:
1652 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1653 // the read float up to before the read.  It's OK for non-volatile memory refs
1654 // that happen before the volatile read to float down below it.
1655 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1656 // that happen BEFORE the write float down to after the write.  It's OK for
1657 // non-volatile memory refs that happen after the volatile write to float up
1658 // before it.
1659 //
1660 // We only put in barriers around volatile refs (they are expensive), not
1661 // _between_ memory refs (that would require us to track the flavor of the
1662 // previous memory refs).  Requirements (2) and (3) require some barriers
1663 // before volatile stores and after volatile loads.  These nearly cover
1664 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1665 // case is placed after volatile-stores although it could just as well go
1666 // before volatile-loads.
1667 
1668 
1669 void LIRGenerator::do_StoreField(StoreField* x) {
1670   bool needs_patching = x->needs_patching();
1671   bool is_volatile = x->field()->is_volatile();
1672   BasicType field_type = x->field_type();
1673   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1674 
1675   CodeEmitInfo* info = NULL;
1676   if (needs_patching) {
1677     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1678     info = state_for(x, x->state_before());
1679   } else if (x->needs_null_check()) {
1680     NullCheck* nc = x->explicit_null_check();
1681     if (nc == NULL) {
1682       info = state_for(x);
1683     } else {
1684       info = state_for(nc);
1685     }
1686   }
1687 
1688 
1689   LIRItem object(x->obj(), this);
1690   LIRItem value(x->value(),  this);
1691 
1692   object.load_item();
1693 
1694   if (is_volatile || needs_patching) {
1695     // load item if field is volatile (fewer special cases for volatiles)
1696     // load item if field not initialized
1697     // load item if field not constant
1698     // because of code patching we cannot inline constants
1699     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1700       value.load_byte_item();
1701     } else  {
1702       value.load_item();
1703     }
1704   } else {
1705     value.load_for_store(field_type);
1706   }
1707 
1708   set_no_result(x);
1709 
1710 #ifndef PRODUCT
1711   if (PrintNotLoaded && needs_patching) {
1712     tty->print_cr("   ###class not loaded at store_%s bci %d",
1713                   x->is_static() ?  "static" : "field", x->printable_bci());
1714   }
1715 #endif
1716 
1717   if (x->needs_null_check() &&
1718       (needs_patching ||
1719        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1720     // emit an explicit null check because the offset is too large
1721     __ null_check(object.result(), new CodeEmitInfo(info));
1722   }
1723 
1724   LIR_Address* address;
1725   if (needs_patching) {
1726     // we need to patch the offset in the instruction so don't allow
1727     // generate_address to try to be smart about emitting the -1.
1728     // Otherwise the patching code won't know how to find the
1729     // instruction to patch.
1730     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1731   } else {
1732     address = generate_address(object.result(), x->offset(), field_type);
1733   }
1734 
1735   if (is_volatile && os::is_MP()) {
1736     __ membar_release();
1737   }
1738 
1739   if (is_oop) {
1740     // Do the pre-write barrier, if any.
1741     pre_barrier(LIR_OprFact::address(address),
1742                 LIR_OprFact::illegalOpr /* pre_val */,
1743                 true /* do_load*/,
1744                 needs_patching,
1745                 (info ? new CodeEmitInfo(info) : NULL));
1746   }
1747 
1748   if (is_volatile && !needs_patching) {
1749     volatile_field_store(value.result(), address, info);
1750   } else {
1751     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1752     __ store(value.result(), address, info, patch_code);
1753   }
1754 
1755   if (is_oop) {
1756     // Store to object so mark the card of the header
1757     post_barrier(object.result(), value.result());
1758   }
1759 
1760   if (is_volatile && os::is_MP()) {
1761     __ membar();
1762   }
1763 }
1764 
1765 
1766 void LIRGenerator::do_LoadField(LoadField* x) {
1767   bool needs_patching = x->needs_patching();
1768   bool is_volatile = x->field()->is_volatile();
1769   BasicType field_type = x->field_type();
1770 
1771   CodeEmitInfo* info = NULL;
1772   if (needs_patching) {
1773     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1774     info = state_for(x, x->state_before());
1775   } else if (x->needs_null_check()) {
1776     NullCheck* nc = x->explicit_null_check();
1777     if (nc == NULL) {
1778       info = state_for(x);
1779     } else {
1780       info = state_for(nc);
1781     }
1782   }
1783 
1784   LIRItem object(x->obj(), this);
1785 
1786   object.load_item();
1787 
1788 #ifndef PRODUCT
1789   if (PrintNotLoaded && needs_patching) {
1790     tty->print_cr("   ###class not loaded at load_%s bci %d",
1791                   x->is_static() ?  "static" : "field", x->printable_bci());
1792   }
1793 #endif
1794 
1795   if (x->needs_null_check() &&
1796       (needs_patching ||
1797        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1798     // emit an explicit null check because the offset is too large
1799     __ null_check(object.result(), new CodeEmitInfo(info));
1800   }
1801 
1802   LIR_Opr reg = rlock_result(x, field_type);
1803   LIR_Address* address;
1804   if (needs_patching) {
1805     // we need to patch the offset in the instruction so don't allow
1806     // generate_address to try to be smart about emitting the -1.
1807     // Otherwise the patching code won't know how to find the
1808     // instruction to patch.
1809     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1810   } else {
1811     address = generate_address(object.result(), x->offset(), field_type);
1812   }
1813 
1814   if (is_volatile && !needs_patching) {
1815     volatile_field_load(address, reg, info);
1816   } else {
1817     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1818     __ load(address, reg, info, patch_code);
1819   }
1820 
1821   if (is_volatile && os::is_MP()) {
1822     __ membar_acquire();
1823   }
1824 }
1825 
1826 
1827 //------------------------java.nio.Buffer.checkIndex------------------------
1828 
1829 // int java.nio.Buffer.checkIndex(int)
1830 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1831   // NOTE: by the time we are in checkIndex() we are guaranteed that
1832   // the buffer is non-null (because checkIndex is package-private and
1833   // only called from within other methods in the buffer).
1834   assert(x->number_of_arguments() == 2, "wrong type");
1835   LIRItem buf  (x->argument_at(0), this);
1836   LIRItem index(x->argument_at(1), this);
1837   buf.load_item();
1838   index.load_item();
1839 
1840   LIR_Opr result = rlock_result(x);
1841   if (GenerateRangeChecks) {
1842     CodeEmitInfo* info = state_for(x);
1843     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1844     if (index.result()->is_constant()) {
1845       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1846       __ branch(lir_cond_belowEqual, T_INT, stub);
1847     } else {
1848       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1849                   java_nio_Buffer::limit_offset(), T_INT, info);
1850       __ branch(lir_cond_aboveEqual, T_INT, stub);
1851     }
1852     __ move(index.result(), result);
1853   } else {
1854     // Just load the index into the result register
1855     __ move(index.result(), result);
1856   }
1857 }
1858 
1859 
1860 //------------------------array access--------------------------------------
1861 
1862 
1863 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1864   LIRItem array(x->array(), this);
1865   array.load_item();
1866   LIR_Opr reg = rlock_result(x);
1867 
1868   CodeEmitInfo* info = NULL;
1869   if (x->needs_null_check()) {
1870     NullCheck* nc = x->explicit_null_check();
1871     if (nc == NULL) {
1872       info = state_for(x);
1873     } else {
1874       info = state_for(nc);
1875     }
1876   }
1877   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1878 }
1879 
1880 
1881 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1882   bool use_length = x->length() != NULL;
1883   LIRItem array(x->array(), this);
1884   LIRItem index(x->index(), this);
1885   LIRItem length(this);
1886   bool needs_range_check = true;
1887 
1888   if (use_length) {
1889     needs_range_check = x->compute_needs_range_check();
1890     if (needs_range_check) {
1891       length.set_instruction(x->length());
1892       length.load_item();
1893     }
1894   }
1895 
1896   array.load_item();
1897   if (index.is_constant() && can_inline_as_constant(x->index())) {
1898     // let it be a constant
1899     index.dont_load_item();
1900   } else {
1901     index.load_item();
1902   }
1903 
1904   CodeEmitInfo* range_check_info = state_for(x);
1905   CodeEmitInfo* null_check_info = NULL;
1906   if (x->needs_null_check()) {
1907     NullCheck* nc = x->explicit_null_check();
1908     if (nc != NULL) {
1909       null_check_info = state_for(nc);
1910     } else {
1911       null_check_info = range_check_info;
1912     }
1913   }
1914 
1915   // emit array address setup early so it schedules better
1916   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1917 
1918   if (GenerateRangeChecks && needs_range_check) {
1919     if (use_length) {
1920       // TODO: use a (modified) version of array_range_check that does not require a
1921       //       constant length to be loaded to a register
1922       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1923       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1924     } else {
1925       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1926       // The range check performs the null check, so clear it out for the load
1927       null_check_info = NULL;
1928     }
1929   }
1930 
1931   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1932 }
1933 
1934 
1935 void LIRGenerator::do_NullCheck(NullCheck* x) {
1936   if (x->can_trap()) {
1937     LIRItem value(x->obj(), this);
1938     value.load_item();
1939     CodeEmitInfo* info = state_for(x);
1940     __ null_check(value.result(), info);
1941   }
1942 }
1943 
1944 
1945 void LIRGenerator::do_TypeCast(TypeCast* x) {
1946   LIRItem value(x->obj(), this);
1947   value.load_item();
1948   // the result is the same as from the node we are casting
1949   set_result(x, value.result());
1950 }
1951 
1952 
1953 void LIRGenerator::do_Throw(Throw* x) {
1954   LIRItem exception(x->exception(), this);
1955   exception.load_item();
1956   set_no_result(x);
1957   LIR_Opr exception_opr = exception.result();
1958   CodeEmitInfo* info = state_for(x, x->state());
1959 
1960 #ifndef PRODUCT
1961   if (PrintC1Statistics) {
1962     increment_counter(Runtime1::throw_count_address(), T_INT);
1963   }
1964 #endif
1965 
1966   // check if the instruction has an xhandler in any of the nested scopes
1967   bool unwind = false;
1968   if (info->exception_handlers()->length() == 0) {
1969     // this throw is not inside an xhandler
1970     unwind = true;
1971   } else {
1972     // get some idea of the throw type
1973     bool type_is_exact = true;
1974     ciType* throw_type = x->exception()->exact_type();
1975     if (throw_type == NULL) {
1976       type_is_exact = false;
1977       throw_type = x->exception()->declared_type();
1978     }
1979     if (throw_type != NULL && throw_type->is_instance_klass()) {
1980       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1981       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1982     }
1983   }
1984 
1985   // do null check before moving exception oop into fixed register
1986   // to avoid a fixed interval with an oop during the null check.
1987   // Use a copy of the CodeEmitInfo because debug information is
1988   // different for null_check and throw.
1989   if (GenerateCompilerNullChecks &&
1990       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1991     // if the exception object wasn't created using new then it might be null.
1992     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1993   }
1994 
1995   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1996     // we need to go through the exception lookup path to get JVMTI
1997     // notification done
1998     unwind = false;
1999   }
2000 
2001   // move exception oop into fixed register
2002   __ move(exception_opr, exceptionOopOpr());
2003 
2004   if (unwind) {
2005     __ unwind_exception(exceptionOopOpr());
2006   } else {
2007     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2008   }
2009 }
2010 
2011 
2012 void LIRGenerator::do_RoundFP(RoundFP* x) {
2013   LIRItem input(x->input(), this);
2014   input.load_item();
2015   LIR_Opr input_opr = input.result();
2016   assert(input_opr->is_register(), "why round if value is not in a register?");
2017   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2018   if (input_opr->is_single_fpu()) {
2019     set_result(x, round_item(input_opr)); // This code path not currently taken
2020   } else {
2021     LIR_Opr result = new_register(T_DOUBLE);
2022     set_vreg_flag(result, must_start_in_memory);
2023     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2024     set_result(x, result);
2025   }
2026 }
2027 
2028 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2029   LIRItem base(x->base(), this);
2030   LIRItem idx(this);
2031 
2032   base.load_item();
2033   if (x->has_index()) {
2034     idx.set_instruction(x->index());
2035     idx.load_nonconstant();
2036   }
2037 
2038   LIR_Opr reg = rlock_result(x, x->basic_type());
2039 
2040   int   log2_scale = 0;
2041   if (x->has_index()) {
2042     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2043     log2_scale = x->log2_scale();
2044   }
2045 
2046   assert(!x->has_index() || idx.value() == x->index(), "should match");
2047 
2048   LIR_Opr base_op = base.result();
2049 #ifndef _LP64
2050   if (x->base()->type()->tag() == longTag) {
2051     base_op = new_register(T_INT);
2052     __ convert(Bytecodes::_l2i, base.result(), base_op);
2053   } else {
2054     assert(x->base()->type()->tag() == intTag, "must be");
2055   }
2056 #endif
2057 
2058   BasicType dst_type = x->basic_type();
2059   LIR_Opr index_op = idx.result();
2060 
2061   LIR_Address* addr;
2062   if (index_op->is_constant()) {
2063     assert(log2_scale == 0, "must not have a scale");
2064     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2065   } else {
2066 #ifdef X86
2067 #ifdef _LP64
2068     if (!index_op->is_illegal() && index_op->type() == T_INT) {
2069       LIR_Opr tmp = new_pointer_register();
2070       __ convert(Bytecodes::_i2l, index_op, tmp);
2071       index_op = tmp;
2072     }
2073 #endif
2074     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2075 #elif defined(ARM)
2076     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2077 #else
2078     if (index_op->is_illegal() || log2_scale == 0) {
2079 #ifdef _LP64
2080       if (!index_op->is_illegal() && index_op->type() == T_INT) {
2081         LIR_Opr tmp = new_pointer_register();
2082         __ convert(Bytecodes::_i2l, index_op, tmp);
2083         index_op = tmp;
2084       }
2085 #endif
2086       addr = new LIR_Address(base_op, index_op, dst_type);
2087     } else {
2088       LIR_Opr tmp = new_pointer_register();
2089       __ shift_left(index_op, log2_scale, tmp);
2090       addr = new LIR_Address(base_op, tmp, dst_type);
2091     }
2092 #endif
2093   }
2094 
2095   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2096     __ unaligned_move(addr, reg);
2097   } else {
2098     if (dst_type == T_OBJECT && x->is_wide()) {
2099       __ move_wide(addr, reg);
2100     } else {
2101       __ move(addr, reg);
2102     }
2103   }
2104 }
2105 
2106 
2107 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2108   int  log2_scale = 0;
2109   BasicType type = x->basic_type();
2110 
2111   if (x->has_index()) {
2112     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2113     log2_scale = x->log2_scale();
2114   }
2115 
2116   LIRItem base(x->base(), this);
2117   LIRItem value(x->value(), this);
2118   LIRItem idx(this);
2119 
2120   base.load_item();
2121   if (x->has_index()) {
2122     idx.set_instruction(x->index());
2123     idx.load_item();
2124   }
2125 
2126   if (type == T_BYTE || type == T_BOOLEAN) {
2127     value.load_byte_item();
2128   } else {
2129     value.load_item();
2130   }
2131 
2132   set_no_result(x);
2133 
2134   LIR_Opr base_op = base.result();
2135 #ifndef _LP64
2136   if (x->base()->type()->tag() == longTag) {
2137     base_op = new_register(T_INT);
2138     __ convert(Bytecodes::_l2i, base.result(), base_op);
2139   } else {
2140     assert(x->base()->type()->tag() == intTag, "must be");
2141   }
2142 #endif
2143 
2144   LIR_Opr index_op = idx.result();
2145   if (log2_scale != 0) {
2146     // temporary fix (platform dependent code without shift on Intel would be better)
2147     index_op = new_pointer_register();
2148 #ifdef _LP64
2149     if(idx.result()->type() == T_INT) {
2150       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2151     } else {
2152 #endif
2153       // TODO: ARM also allows embedded shift in the address
2154       __ move(idx.result(), index_op);
2155 #ifdef _LP64
2156     }
2157 #endif
2158     __ shift_left(index_op, log2_scale, index_op);
2159   }
2160 #ifdef _LP64
2161   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
2162     LIR_Opr tmp = new_pointer_register();
2163     __ convert(Bytecodes::_i2l, index_op, tmp);
2164     index_op = tmp;
2165   }
2166 #endif
2167 
2168   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2169   __ move(value.result(), addr);
2170 }
2171 
2172 
2173 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2174   BasicType type = x->basic_type();
2175   LIRItem src(x->object(), this);
2176   LIRItem off(x->offset(), this);
2177 
2178   off.load_item();
2179   src.load_item();
2180 
2181   LIR_Opr value = rlock_result(x, x->basic_type());
2182 
2183   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2184 
2185 #if INCLUDE_ALL_GCS
2186   // We might be reading the value of the referent field of a
2187   // Reference object in order to attach it back to the live
2188   // object graph. If G1 is enabled then we need to record
2189   // the value that is being returned in an SATB log buffer.
2190   //
2191   // We need to generate code similar to the following...
2192   //
2193   // if (offset == java_lang_ref_Reference::referent_offset) {
2194   //   if (src != NULL) {
2195   //     if (klass(src)->reference_type() != REF_NONE) {
2196   //       pre_barrier(..., value, ...);
2197   //     }
2198   //   }
2199   // }
2200 
2201   if (UseG1GC && type == T_OBJECT) {
2202     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2203     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2204     bool gen_source_check = true;    // Assume we need to check the src object for null.
2205     bool gen_type_check = true;      // Assume we need to check the reference_type.
2206 
2207     if (off.is_constant()) {
2208       jlong off_con = (off.type()->is_int() ?
2209                         (jlong) off.get_jint_constant() :
2210                         off.get_jlong_constant());
2211 
2212 
2213       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2214         // The constant offset is something other than referent_offset.
2215         // We can skip generating/checking the remaining guards and
2216         // skip generation of the code stub.
2217         gen_pre_barrier = false;
2218       } else {
2219         // The constant offset is the same as referent_offset -
2220         // we do not need to generate a runtime offset check.
2221         gen_offset_check = false;
2222       }
2223     }
2224 
2225     // We don't need to generate stub if the source object is an array
2226     if (gen_pre_barrier && src.type()->is_array()) {
2227       gen_pre_barrier = false;
2228     }
2229 
2230     if (gen_pre_barrier) {
2231       // We still need to continue with the checks.
2232       if (src.is_constant()) {
2233         ciObject* src_con = src.get_jobject_constant();
2234 
2235         if (src_con->is_null_object()) {
2236           // The constant src object is null - We can skip
2237           // generating the code stub.
2238           gen_pre_barrier = false;
2239         } else {
2240           // Non-null constant source object. We still have to generate
2241           // the slow stub - but we don't need to generate the runtime
2242           // null object check.
2243           gen_source_check = false;
2244         }
2245       }
2246     }
2247     if (gen_pre_barrier && !PatchALot) {
2248       // Can the klass of object be statically determined to be
2249       // a sub-class of Reference?
2250       ciType* type = src.value()->declared_type();
2251       if ((type != NULL) && type->is_loaded()) {
2252         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2253           gen_type_check = false;
2254         } else if (type->is_klass() &&
2255                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2256           // Not Reference and not Object klass.
2257           gen_pre_barrier = false;
2258         }
2259       }
2260     }
2261 
2262     if (gen_pre_barrier) {
2263       LabelObj* Lcont = new LabelObj();
2264 
2265       // We can have generate one runtime check here. Let's start with
2266       // the offset check.
2267       if (gen_offset_check) {
2268         // if (offset != referent_offset) -> continue
2269         // If offset is an int then we can do the comparison with the
2270         // referent_offset constant; otherwise we need to move
2271         // referent_offset into a temporary register and generate
2272         // a reg-reg compare.
2273 
2274         LIR_Opr referent_off;
2275 
2276         if (off.type()->is_int()) {
2277           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2278         } else {
2279           assert(off.type()->is_long(), "what else?");
2280           referent_off = new_register(T_LONG);
2281           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2282         }
2283         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2284         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2285       }
2286       if (gen_source_check) {
2287         // offset is a const and equals referent offset
2288         // if (source == null) -> continue
2289         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2290         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2291       }
2292       LIR_Opr src_klass = new_register(T_OBJECT);
2293       if (gen_type_check) {
2294         // We have determined that offset == referent_offset && src != null.
2295         // if (src->_klass->_reference_type == REF_NONE) -> continue
2296         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), UseCompressedKlassPointers ? T_OBJECT : T_ADDRESS), src_klass);
2297         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2298         LIR_Opr reference_type = new_register(T_INT);
2299         __ move(reference_type_addr, reference_type);
2300         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2301         __ branch(lir_cond_equal, T_INT, Lcont->label());
2302       }
2303       {
2304         // We have determined that src->_klass->_reference_type != REF_NONE
2305         // so register the value in the referent field with the pre-barrier.
2306         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2307                     value  /* pre_val */,
2308                     false  /* do_load */,
2309                     false  /* patch */,
2310                     NULL   /* info */);
2311       }
2312       __ branch_destination(Lcont->label());
2313     }
2314   }
2315 #endif // INCLUDE_ALL_GCS
2316 
2317   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2318 }
2319 
2320 
2321 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2322   BasicType type = x->basic_type();
2323   LIRItem src(x->object(), this);
2324   LIRItem off(x->offset(), this);
2325   LIRItem data(x->value(), this);
2326 
2327   src.load_item();
2328   if (type == T_BOOLEAN || type == T_BYTE) {
2329     data.load_byte_item();
2330   } else {
2331     data.load_item();
2332   }
2333   off.load_item();
2334 
2335   set_no_result(x);
2336 
2337   if (x->is_volatile() && os::is_MP()) __ membar_release();
2338   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2339   if (x->is_volatile() && os::is_MP()) __ membar();
2340 }
2341 
2342 
2343 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2344   LIRItem src(x->object(), this);
2345   LIRItem off(x->offset(), this);
2346 
2347   src.load_item();
2348   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2349     // let it be a constant
2350     off.dont_load_item();
2351   } else {
2352     off.load_item();
2353   }
2354 
2355   set_no_result(x);
2356 
2357   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2358   __ prefetch(addr, is_store);
2359 }
2360 
2361 
2362 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2363   do_UnsafePrefetch(x, false);
2364 }
2365 
2366 
2367 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2368   do_UnsafePrefetch(x, true);
2369 }
2370 
2371 
2372 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2373   int lng = x->length();
2374 
2375   for (int i = 0; i < lng; i++) {
2376     SwitchRange* one_range = x->at(i);
2377     int low_key = one_range->low_key();
2378     int high_key = one_range->high_key();
2379     BlockBegin* dest = one_range->sux();
2380     if (low_key == high_key) {
2381       __ cmp(lir_cond_equal, value, low_key);
2382       __ branch(lir_cond_equal, T_INT, dest);
2383     } else if (high_key - low_key == 1) {
2384       __ cmp(lir_cond_equal, value, low_key);
2385       __ branch(lir_cond_equal, T_INT, dest);
2386       __ cmp(lir_cond_equal, value, high_key);
2387       __ branch(lir_cond_equal, T_INT, dest);
2388     } else {
2389       LabelObj* L = new LabelObj();
2390       __ cmp(lir_cond_less, value, low_key);
2391       __ branch(lir_cond_less, T_INT, L->label());
2392       __ cmp(lir_cond_lessEqual, value, high_key);
2393       __ branch(lir_cond_lessEqual, T_INT, dest);
2394       __ branch_destination(L->label());
2395     }
2396   }
2397   __ jump(default_sux);
2398 }
2399 
2400 
2401 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2402   SwitchRangeList* res = new SwitchRangeList();
2403   int len = x->length();
2404   if (len > 0) {
2405     BlockBegin* sux = x->sux_at(0);
2406     int key = x->lo_key();
2407     BlockBegin* default_sux = x->default_sux();
2408     SwitchRange* range = new SwitchRange(key, sux);
2409     for (int i = 0; i < len; i++, key++) {
2410       BlockBegin* new_sux = x->sux_at(i);
2411       if (sux == new_sux) {
2412         // still in same range
2413         range->set_high_key(key);
2414       } else {
2415         // skip tests which explicitly dispatch to the default
2416         if (sux != default_sux) {
2417           res->append(range);
2418         }
2419         range = new SwitchRange(key, new_sux);
2420       }
2421       sux = new_sux;
2422     }
2423     if (res->length() == 0 || res->last() != range)  res->append(range);
2424   }
2425   return res;
2426 }
2427 
2428 
2429 // we expect the keys to be sorted by increasing value
2430 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2431   SwitchRangeList* res = new SwitchRangeList();
2432   int len = x->length();
2433   if (len > 0) {
2434     BlockBegin* default_sux = x->default_sux();
2435     int key = x->key_at(0);
2436     BlockBegin* sux = x->sux_at(0);
2437     SwitchRange* range = new SwitchRange(key, sux);
2438     for (int i = 1; i < len; i++) {
2439       int new_key = x->key_at(i);
2440       BlockBegin* new_sux = x->sux_at(i);
2441       if (key+1 == new_key && sux == new_sux) {
2442         // still in same range
2443         range->set_high_key(new_key);
2444       } else {
2445         // skip tests which explicitly dispatch to the default
2446         if (range->sux() != default_sux) {
2447           res->append(range);
2448         }
2449         range = new SwitchRange(new_key, new_sux);
2450       }
2451       key = new_key;
2452       sux = new_sux;
2453     }
2454     if (res->length() == 0 || res->last() != range)  res->append(range);
2455   }
2456   return res;
2457 }
2458 
2459 
2460 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2461   LIRItem tag(x->tag(), this);
2462   tag.load_item();
2463   set_no_result(x);
2464 
2465   if (x->is_safepoint()) {
2466     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2467   }
2468 
2469   // move values into phi locations
2470   move_to_phi(x->state());
2471 
2472   int lo_key = x->lo_key();
2473   int hi_key = x->hi_key();
2474   int len = x->length();
2475   LIR_Opr value = tag.result();
2476   if (UseTableRanges) {
2477     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2478   } else {
2479     for (int i = 0; i < len; i++) {
2480       __ cmp(lir_cond_equal, value, i + lo_key);
2481       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2482     }
2483     __ jump(x->default_sux());
2484   }
2485 }
2486 
2487 
2488 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2489   LIRItem tag(x->tag(), this);
2490   tag.load_item();
2491   set_no_result(x);
2492 
2493   if (x->is_safepoint()) {
2494     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2495   }
2496 
2497   // move values into phi locations
2498   move_to_phi(x->state());
2499 
2500   LIR_Opr value = tag.result();
2501   if (UseTableRanges) {
2502     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2503   } else {
2504     int len = x->length();
2505     for (int i = 0; i < len; i++) {
2506       __ cmp(lir_cond_equal, value, x->key_at(i));
2507       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2508     }
2509     __ jump(x->default_sux());
2510   }
2511 }
2512 
2513 
2514 void LIRGenerator::do_Goto(Goto* x) {
2515   set_no_result(x);
2516 
2517   if (block()->next()->as_OsrEntry()) {
2518     // need to free up storage used for OSR entry point
2519     LIR_Opr osrBuffer = block()->next()->operand();
2520     BasicTypeList signature;
2521     signature.append(T_INT);
2522     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2523     __ move(osrBuffer, cc->args()->at(0));
2524     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2525                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2526   }
2527 
2528   if (x->is_safepoint()) {
2529     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2530 
2531     // increment backedge counter if needed
2532     CodeEmitInfo* info = state_for(x, state);
2533     increment_backedge_counter(info, x->profiled_bci());
2534     CodeEmitInfo* safepoint_info = state_for(x, state);
2535     __ safepoint(safepoint_poll_register(), safepoint_info);
2536   }
2537 
2538   // Gotos can be folded Ifs, handle this case.
2539   if (x->should_profile()) {
2540     ciMethod* method = x->profiled_method();
2541     assert(method != NULL, "method should be set if branch is profiled");
2542     ciMethodData* md = method->method_data_or_null();
2543     assert(md != NULL, "Sanity");
2544     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2545     assert(data != NULL, "must have profiling data");
2546     int offset;
2547     if (x->direction() == Goto::taken) {
2548       assert(data->is_BranchData(), "need BranchData for two-way branches");
2549       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2550     } else if (x->direction() == Goto::not_taken) {
2551       assert(data->is_BranchData(), "need BranchData for two-way branches");
2552       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2553     } else {
2554       assert(data->is_JumpData(), "need JumpData for branches");
2555       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2556     }
2557     LIR_Opr md_reg = new_register(T_METADATA);
2558     __ metadata2reg(md->constant_encoding(), md_reg);
2559 
2560     increment_counter(new LIR_Address(md_reg, offset,
2561                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2562   }
2563 
2564   // emit phi-instruction move after safepoint since this simplifies
2565   // describing the state as the safepoint.
2566   move_to_phi(x->state());
2567 
2568   __ jump(x->default_sux());
2569 }
2570 
2571 
2572 void LIRGenerator::do_Base(Base* x) {
2573   __ std_entry(LIR_OprFact::illegalOpr);
2574   // Emit moves from physical registers / stack slots to virtual registers
2575   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2576   IRScope* irScope = compilation()->hir()->top_scope();
2577   int java_index = 0;
2578   for (int i = 0; i < args->length(); i++) {
2579     LIR_Opr src = args->at(i);
2580     assert(!src->is_illegal(), "check");
2581     BasicType t = src->type();
2582 
2583     // Types which are smaller than int are passed as int, so
2584     // correct the type which passed.
2585     switch (t) {
2586     case T_BYTE:
2587     case T_BOOLEAN:
2588     case T_SHORT:
2589     case T_CHAR:
2590       t = T_INT;
2591       break;
2592     }
2593 
2594     LIR_Opr dest = new_register(t);
2595     __ move(src, dest);
2596 
2597     // Assign new location to Local instruction for this local
2598     Local* local = x->state()->local_at(java_index)->as_Local();
2599     assert(local != NULL, "Locals for incoming arguments must have been created");
2600 #ifndef __SOFTFP__
2601     // The java calling convention passes double as long and float as int.
2602     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2603 #endif // __SOFTFP__
2604     local->set_operand(dest);
2605     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2606     java_index += type2size[t];
2607   }
2608 
2609   if (compilation()->env()->dtrace_method_probes()) {
2610     BasicTypeList signature;
2611     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2612     signature.append(T_OBJECT); // Method*
2613     LIR_OprList* args = new LIR_OprList();
2614     args->append(getThreadPointer());
2615     LIR_Opr meth = new_register(T_METADATA);
2616     __ metadata2reg(method()->constant_encoding(), meth);
2617     args->append(meth);
2618     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2619   }
2620 
2621   if (method()->is_synchronized()) {
2622     LIR_Opr obj;
2623     if (method()->is_static()) {
2624       obj = new_register(T_OBJECT);
2625       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2626     } else {
2627       Local* receiver = x->state()->local_at(0)->as_Local();
2628       assert(receiver != NULL, "must already exist");
2629       obj = receiver->operand();
2630     }
2631     assert(obj->is_valid(), "must be valid");
2632 
2633     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2634       LIR_Opr lock = new_register(T_INT);
2635       __ load_stack_address_monitor(0, lock);
2636 
2637       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2638       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2639 
2640       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2641       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2642     }
2643   }
2644 
2645   // increment invocation counters if needed
2646   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2647     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2648     increment_invocation_counter(info);
2649   }
2650 
2651   // all blocks with a successor must end with an unconditional jump
2652   // to the successor even if they are consecutive
2653   __ jump(x->default_sux());
2654 }
2655 
2656 
2657 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2658   // construct our frame and model the production of incoming pointer
2659   // to the OSR buffer.
2660   __ osr_entry(LIR_Assembler::osrBufferPointer());
2661   LIR_Opr result = rlock_result(x);
2662   __ move(LIR_Assembler::osrBufferPointer(), result);
2663 }
2664 
2665 
2666 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2667   assert(args->length() == arg_list->length(),
2668          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2669   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2670     LIRItem* param = args->at(i);
2671     LIR_Opr loc = arg_list->at(i);
2672     if (loc->is_register()) {
2673       param->load_item_force(loc);
2674     } else {
2675       LIR_Address* addr = loc->as_address_ptr();
2676       param->load_for_store(addr->type());
2677       if (addr->type() == T_OBJECT) {
2678         __ move_wide(param->result(), addr);
2679       } else
2680         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2681           __ unaligned_move(param->result(), addr);
2682         } else {
2683           __ move(param->result(), addr);
2684         }
2685     }
2686   }
2687 
2688   if (x->has_receiver()) {
2689     LIRItem* receiver = args->at(0);
2690     LIR_Opr loc = arg_list->at(0);
2691     if (loc->is_register()) {
2692       receiver->load_item_force(loc);
2693     } else {
2694       assert(loc->is_address(), "just checking");
2695       receiver->load_for_store(T_OBJECT);
2696       __ move_wide(receiver->result(), loc->as_address_ptr());
2697     }
2698   }
2699 }
2700 
2701 
2702 // Visits all arguments, returns appropriate items without loading them
2703 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2704   LIRItemList* argument_items = new LIRItemList();
2705   if (x->has_receiver()) {
2706     LIRItem* receiver = new LIRItem(x->receiver(), this);
2707     argument_items->append(receiver);
2708   }
2709   for (int i = 0; i < x->number_of_arguments(); i++) {
2710     LIRItem* param = new LIRItem(x->argument_at(i), this);
2711     argument_items->append(param);
2712   }
2713   return argument_items;
2714 }
2715 
2716 
2717 // The invoke with receiver has following phases:
2718 //   a) traverse and load/lock receiver;
2719 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2720 //   c) push receiver on stack
2721 //   d) load each of the items and push on stack
2722 //   e) unlock receiver
2723 //   f) move receiver into receiver-register %o0
2724 //   g) lock result registers and emit call operation
2725 //
2726 // Before issuing a call, we must spill-save all values on stack
2727 // that are in caller-save register. "spill-save" moves thos registers
2728 // either in a free callee-save register or spills them if no free
2729 // callee save register is available.
2730 //
2731 // The problem is where to invoke spill-save.
2732 // - if invoked between e) and f), we may lock callee save
2733 //   register in "spill-save" that destroys the receiver register
2734 //   before f) is executed
2735 // - if we rearange the f) to be earlier, by loading %o0, it
2736 //   may destroy a value on the stack that is currently in %o0
2737 //   and is waiting to be spilled
2738 // - if we keep the receiver locked while doing spill-save,
2739 //   we cannot spill it as it is spill-locked
2740 //
2741 void LIRGenerator::do_Invoke(Invoke* x) {
2742   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2743 
2744   LIR_OprList* arg_list = cc->args();
2745   LIRItemList* args = invoke_visit_arguments(x);
2746   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2747 
2748   // setup result register
2749   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2750   if (x->type() != voidType) {
2751     result_register = result_register_for(x->type());
2752   }
2753 
2754   CodeEmitInfo* info = state_for(x, x->state());
2755 
2756   invoke_load_arguments(x, args, arg_list);
2757 
2758   if (x->has_receiver()) {
2759     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2760     receiver = args->at(0)->result();
2761   }
2762 
2763   // emit invoke code
2764   bool optimized = x->target_is_loaded() && x->target_is_final();
2765   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2766 
2767   // JSR 292
2768   // Preserve the SP over MethodHandle call sites.
2769   ciMethod* target = x->target();
2770   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2771                                   target->is_method_handle_intrinsic() ||
2772                                   target->is_compiled_lambda_form());
2773   if (is_method_handle_invoke) {
2774     info->set_is_method_handle_invoke(true);
2775     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2776   }
2777 
2778   switch (x->code()) {
2779     case Bytecodes::_invokestatic:
2780       __ call_static(target, result_register,
2781                      SharedRuntime::get_resolve_static_call_stub(),
2782                      arg_list, info);
2783       break;
2784     case Bytecodes::_invokespecial:
2785     case Bytecodes::_invokevirtual:
2786     case Bytecodes::_invokeinterface:
2787       // for final target we still produce an inline cache, in order
2788       // to be able to call mixed mode
2789       if (x->code() == Bytecodes::_invokespecial || optimized) {
2790         __ call_opt_virtual(target, receiver, result_register,
2791                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2792                             arg_list, info);
2793       } else if (x->vtable_index() < 0) {
2794         __ call_icvirtual(target, receiver, result_register,
2795                           SharedRuntime::get_resolve_virtual_call_stub(),
2796                           arg_list, info);
2797       } else {
2798         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2799         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2800         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2801       }
2802       break;
2803     case Bytecodes::_invokedynamic: {
2804       __ call_dynamic(target, receiver, result_register,
2805                       SharedRuntime::get_resolve_static_call_stub(),
2806                       arg_list, info);
2807       break;
2808     }
2809     default:
2810       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2811       break;
2812   }
2813 
2814   // JSR 292
2815   // Restore the SP after MethodHandle call sites.
2816   if (is_method_handle_invoke) {
2817     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2818   }
2819 
2820   if (x->type()->is_float() || x->type()->is_double()) {
2821     // Force rounding of results from non-strictfp when in strictfp
2822     // scope (or when we don't know the strictness of the callee, to
2823     // be safe.)
2824     if (method()->is_strict()) {
2825       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2826         result_register = round_item(result_register);
2827       }
2828     }
2829   }
2830 
2831   if (result_register->is_valid()) {
2832     LIR_Opr result = rlock_result(x);
2833     __ move(result_register, result);
2834   }
2835 }
2836 
2837 
2838 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2839   assert(x->number_of_arguments() == 1, "wrong type");
2840   LIRItem value       (x->argument_at(0), this);
2841   LIR_Opr reg = rlock_result(x);
2842   value.load_item();
2843   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2844   __ move(tmp, reg);
2845 }
2846 
2847 
2848 
2849 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2850 void LIRGenerator::do_IfOp(IfOp* x) {
2851 #ifdef ASSERT
2852   {
2853     ValueTag xtag = x->x()->type()->tag();
2854     ValueTag ttag = x->tval()->type()->tag();
2855     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2856     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2857     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2858   }
2859 #endif
2860 
2861   LIRItem left(x->x(), this);
2862   LIRItem right(x->y(), this);
2863   left.load_item();
2864   if (can_inline_as_constant(right.value())) {
2865     right.dont_load_item();
2866   } else {
2867     right.load_item();
2868   }
2869 
2870   LIRItem t_val(x->tval(), this);
2871   LIRItem f_val(x->fval(), this);
2872   t_val.dont_load_item();
2873   f_val.dont_load_item();
2874   LIR_Opr reg = rlock_result(x);
2875 
2876   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2877   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2878 }
2879 
2880 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
2881     assert(x->number_of_arguments() == expected_arguments, "wrong type");
2882     LIR_Opr reg = result_register_for(x->type());
2883     __ call_runtime_leaf(routine, getThreadTemp(),
2884                          reg, new LIR_OprList());
2885     LIR_Opr result = rlock_result(x);
2886     __ move(reg, result);
2887 }
2888 
2889 #ifdef TRACE_HAVE_INTRINSICS
2890 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
2891     LIR_Opr thread = getThreadPointer();
2892     LIR_Opr osthread = new_pointer_register();
2893     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
2894     size_t thread_id_size = OSThread::thread_id_size();
2895     if (thread_id_size == (size_t) BytesPerLong) {
2896       LIR_Opr id = new_register(T_LONG);
2897       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
2898       __ convert(Bytecodes::_l2i, id, rlock_result(x));
2899     } else if (thread_id_size == (size_t) BytesPerInt) {
2900       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
2901     } else {
2902       ShouldNotReachHere();
2903     }
2904 }
2905 
2906 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
2907     CodeEmitInfo* info = state_for(x);
2908     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
2909     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
2910     assert(info != NULL, "must have info");
2911     LIRItem arg(x->argument_at(1), this);
2912     arg.load_item();
2913     LIR_Opr klass = new_pointer_register();
2914     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
2915     LIR_Opr id = new_register(T_LONG);
2916     ByteSize offset = TRACE_ID_OFFSET;
2917     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
2918     __ move(trace_id_addr, id);
2919     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
2920     __ store(id, trace_id_addr);
2921     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
2922     __ move(id, rlock_result(x));
2923 }
2924 #endif
2925 
2926 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2927   switch (x->id()) {
2928   case vmIntrinsics::_intBitsToFloat      :
2929   case vmIntrinsics::_doubleToRawLongBits :
2930   case vmIntrinsics::_longBitsToDouble    :
2931   case vmIntrinsics::_floatToRawIntBits   : {
2932     do_FPIntrinsics(x);
2933     break;
2934   }
2935 
2936 #ifdef TRACE_HAVE_INTRINSICS
2937   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
2938   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
2939   case vmIntrinsics::_counterTime:
2940     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
2941     break;
2942 #endif
2943 
2944   case vmIntrinsics::_currentTimeMillis:
2945     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
2946     break;
2947 
2948   case vmIntrinsics::_nanoTime:
2949     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
2950     break;
2951 
2952   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2953   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2954   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2955   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2956 
2957   case vmIntrinsics::_dlog:           // fall through
2958   case vmIntrinsics::_dlog10:         // fall through
2959   case vmIntrinsics::_dabs:           // fall through
2960   case vmIntrinsics::_dsqrt:          // fall through
2961   case vmIntrinsics::_dtan:           // fall through
2962   case vmIntrinsics::_dsin :          // fall through
2963   case vmIntrinsics::_dcos :          // fall through
2964   case vmIntrinsics::_dexp :          // fall through
2965   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2966   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2967 
2968   // java.nio.Buffer.checkIndex
2969   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2970 
2971   case vmIntrinsics::_compareAndSwapObject:
2972     do_CompareAndSwap(x, objectType);
2973     break;
2974   case vmIntrinsics::_compareAndSwapInt:
2975     do_CompareAndSwap(x, intType);
2976     break;
2977   case vmIntrinsics::_compareAndSwapLong:
2978     do_CompareAndSwap(x, longType);
2979     break;
2980 
2981   case vmIntrinsics::_loadFence :
2982     if (os::is_MP()) __ membar_acquire();
2983     break;
2984   case vmIntrinsics::_storeFence:
2985     if (os::is_MP()) __ membar_release();
2986     break;
2987   case vmIntrinsics::_fullFence :
2988     if (os::is_MP()) __ membar();
2989     break;
2990 
2991   case vmIntrinsics::_Reference_get:
2992     do_Reference_get(x);
2993     break;
2994 
2995   default: ShouldNotReachHere(); break;
2996   }
2997 }
2998 
2999 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3000   // Need recv in a temporary register so it interferes with the other temporaries
3001   LIR_Opr recv = LIR_OprFact::illegalOpr;
3002   LIR_Opr mdo = new_register(T_OBJECT);
3003   // tmp is used to hold the counters on SPARC
3004   LIR_Opr tmp = new_pointer_register();
3005   if (x->recv() != NULL) {
3006     LIRItem value(x->recv(), this);
3007     value.load_item();
3008     recv = new_register(T_OBJECT);
3009     __ move(value.result(), recv);
3010   }
3011   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3012 }
3013 
3014 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3015   // We can safely ignore accessors here, since c2 will inline them anyway,
3016   // accessors are also always mature.
3017   if (!x->inlinee()->is_accessor()) {
3018     CodeEmitInfo* info = state_for(x, x->state(), true);
3019     // Notify the runtime very infrequently only to take care of counter overflows
3020     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3021   }
3022 }
3023 
3024 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3025   int freq_log;
3026   int level = compilation()->env()->comp_level();
3027   if (level == CompLevel_limited_profile) {
3028     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3029   } else if (level == CompLevel_full_profile) {
3030     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3031   } else {
3032     ShouldNotReachHere();
3033   }
3034   // Increment the appropriate invocation/backedge counter and notify the runtime.
3035   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3036 }
3037 
3038 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3039                                                 ciMethod *method, int frequency,
3040                                                 int bci, bool backedge, bool notify) {
3041   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3042   int level = _compilation->env()->comp_level();
3043   assert(level > CompLevel_simple, "Shouldn't be here");
3044 
3045   int offset = -1;
3046   LIR_Opr counter_holder = new_register(T_METADATA);
3047   LIR_Opr meth;
3048   if (level == CompLevel_limited_profile) {
3049     offset = in_bytes(backedge ? Method::backedge_counter_offset() :
3050                                  Method::invocation_counter_offset());
3051     __ metadata2reg(method->constant_encoding(), counter_holder);
3052     meth = counter_holder;
3053   } else if (level == CompLevel_full_profile) {
3054     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3055                                  MethodData::invocation_counter_offset());
3056     ciMethodData* md = method->method_data_or_null();
3057     assert(md != NULL, "Sanity");
3058     __ metadata2reg(md->constant_encoding(), counter_holder);
3059     meth = new_register(T_METADATA);
3060     __ metadata2reg(method->constant_encoding(), meth);
3061   } else {
3062     ShouldNotReachHere();
3063   }
3064   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3065   LIR_Opr result = new_register(T_INT);
3066   __ load(counter, result);
3067   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3068   __ store(result, counter);
3069   if (notify) {
3070     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3071     __ logical_and(result, mask, result);
3072     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3073     // The bci for info can point to cmp for if's we want the if bci
3074     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3075     __ branch(lir_cond_equal, T_INT, overflow);
3076     __ branch_destination(overflow->continuation());
3077   }
3078 }
3079 
3080 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3081   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3082   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3083 
3084   if (x->pass_thread()) {
3085     signature->append(T_ADDRESS);
3086     args->append(getThreadPointer());
3087   }
3088 
3089   for (int i = 0; i < x->number_of_arguments(); i++) {
3090     Value a = x->argument_at(i);
3091     LIRItem* item = new LIRItem(a, this);
3092     item->load_item();
3093     args->append(item->result());
3094     signature->append(as_BasicType(a->type()));
3095   }
3096 
3097   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3098   if (x->type() == voidType) {
3099     set_no_result(x);
3100   } else {
3101     __ move(result, rlock_result(x));
3102   }
3103 }
3104 
3105 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3106   LIRItemList args(1);
3107   LIRItem value(arg1, this);
3108   args.append(&value);
3109   BasicTypeList signature;
3110   signature.append(as_BasicType(arg1->type()));
3111 
3112   return call_runtime(&signature, &args, entry, result_type, info);
3113 }
3114 
3115 
3116 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3117   LIRItemList args(2);
3118   LIRItem value1(arg1, this);
3119   LIRItem value2(arg2, this);
3120   args.append(&value1);
3121   args.append(&value2);
3122   BasicTypeList signature;
3123   signature.append(as_BasicType(arg1->type()));
3124   signature.append(as_BasicType(arg2->type()));
3125 
3126   return call_runtime(&signature, &args, entry, result_type, info);
3127 }
3128 
3129 
3130 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3131                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3132   // get a result register
3133   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3134   LIR_Opr result = LIR_OprFact::illegalOpr;
3135   if (result_type->tag() != voidTag) {
3136     result = new_register(result_type);
3137     phys_reg = result_register_for(result_type);
3138   }
3139 
3140   // move the arguments into the correct location
3141   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3142   assert(cc->length() == args->length(), "argument mismatch");
3143   for (int i = 0; i < args->length(); i++) {
3144     LIR_Opr arg = args->at(i);
3145     LIR_Opr loc = cc->at(i);
3146     if (loc->is_register()) {
3147       __ move(arg, loc);
3148     } else {
3149       LIR_Address* addr = loc->as_address_ptr();
3150 //           if (!can_store_as_constant(arg)) {
3151 //             LIR_Opr tmp = new_register(arg->type());
3152 //             __ move(arg, tmp);
3153 //             arg = tmp;
3154 //           }
3155       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3156         __ unaligned_move(arg, addr);
3157       } else {
3158         __ move(arg, addr);
3159       }
3160     }
3161   }
3162 
3163   if (info) {
3164     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3165   } else {
3166     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3167   }
3168   if (result->is_valid()) {
3169     __ move(phys_reg, result);
3170   }
3171   return result;
3172 }
3173 
3174 
3175 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3176                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3177   // get a result register
3178   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3179   LIR_Opr result = LIR_OprFact::illegalOpr;
3180   if (result_type->tag() != voidTag) {
3181     result = new_register(result_type);
3182     phys_reg = result_register_for(result_type);
3183   }
3184 
3185   // move the arguments into the correct location
3186   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3187 
3188   assert(cc->length() == args->length(), "argument mismatch");
3189   for (int i = 0; i < args->length(); i++) {
3190     LIRItem* arg = args->at(i);
3191     LIR_Opr loc = cc->at(i);
3192     if (loc->is_register()) {
3193       arg->load_item_force(loc);
3194     } else {
3195       LIR_Address* addr = loc->as_address_ptr();
3196       arg->load_for_store(addr->type());
3197       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3198         __ unaligned_move(arg->result(), addr);
3199       } else {
3200         __ move(arg->result(), addr);
3201       }
3202     }
3203   }
3204 
3205   if (info) {
3206     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3207   } else {
3208     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3209   }
3210   if (result->is_valid()) {
3211     __ move(phys_reg, result);
3212   }
3213   return result;
3214 }
3215 
3216 void LIRGenerator::do_MemBar(MemBar* x) {
3217   if (os::is_MP()) {
3218     LIR_Code code = x->code();
3219     switch(code) {
3220       case lir_membar_acquire   : __ membar_acquire(); break;
3221       case lir_membar_release   : __ membar_release(); break;
3222       case lir_membar           : __ membar(); break;
3223       case lir_membar_loadload  : __ membar_loadload(); break;
3224       case lir_membar_storestore: __ membar_storestore(); break;
3225       case lir_membar_loadstore : __ membar_loadstore(); break;
3226       case lir_membar_storeload : __ membar_storeload(); break;
3227       default                   : ShouldNotReachHere(); break;
3228     }
3229   }
3230 }