1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/bitMap.inline.hpp"
  38 #include "utilities/macros.hpp"
  39 #if INCLUDE_ALL_GCS
  40 #include "gc_implementation/g1/heapRegion.hpp"
  41 #endif // INCLUDE_ALL_GCS
  42 
  43 #ifdef ASSERT
  44 #define __ gen()->lir(__FILE__, __LINE__)->
  45 #else
  46 #define __ gen()->lir()->
  47 #endif
  48 
  49 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  50 #ifdef ARM
  51 #define PATCHED_ADDR  (204)
  52 #else
  53 #define PATCHED_ADDR  (max_jint)
  54 #endif
  55 
  56 void PhiResolverState::reset(int max_vregs) {
  57   // Initialize array sizes
  58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  59   _virtual_operands.trunc_to(0);
  60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _other_operands.trunc_to(0);
  62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _vreg_table.trunc_to(0);
  64 }
  65 
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _temp(LIR_OprFact::illegalOpr)
  85 {
  86   // reinitialize the shared state arrays
  87   _state.reset(max_vregs);
  88 }
  89 
  90 
  91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  92   assert(src->is_valid(), "");
  93   assert(dest->is_valid(), "");
  94   __ move(src, dest);
  95 }
  96 
  97 
  98 void PhiResolver::move_temp_to(LIR_Opr dest) {
  99   assert(_temp->is_valid(), "");
 100   emit_move(_temp, dest);
 101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 102 }
 103 
 104 
 105 void PhiResolver::move_to_temp(LIR_Opr src) {
 106   assert(_temp->is_illegal(), "");
 107   _temp = _gen->new_register(src->type());
 108   emit_move(src, _temp);
 109 }
 110 
 111 
 112 // Traverse assignment graph in depth first order and generate moves in post order
 113 // ie. two assignments: b := c, a := b start with node c:
 114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 115 // Generates moves in this order: move b to a and move c to b
 116 // ie. cycle a := b, b := a start with node a
 117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 118 // Generates moves in this order: move b to temp, move a to b, move temp to a
 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 120   if (!dest->visited()) {
 121     dest->set_visited();
 122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 123       move(dest, dest->destination_at(i));
 124     }
 125   } else if (!dest->start_node()) {
 126     // cylce in graph detected
 127     assert(_loop == NULL, "only one loop valid!");
 128     _loop = dest;
 129     move_to_temp(src->operand());
 130     return;
 131   } // else dest is a start node
 132 
 133   if (!dest->assigned()) {
 134     if (_loop == dest) {
 135       move_temp_to(dest->operand());
 136       dest->set_assigned();
 137     } else if (src != NULL) {
 138       emit_move(src->operand(), dest->operand());
 139       dest->set_assigned();
 140     }
 141   }
 142 }
 143 
 144 
 145 PhiResolver::~PhiResolver() {
 146   int i;
 147   // resolve any cycles in moves from and to virtual registers
 148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 149     ResolveNode* node = virtual_operands()[i];
 150     if (!node->visited()) {
 151       _loop = NULL;
 152       move(NULL, node);
 153       node->set_start_node();
 154       assert(_temp->is_illegal(), "move_temp_to() call missing");
 155     }
 156   }
 157 
 158   // generate move for move from non virtual register to abitrary destination
 159   for (i = other_operands().length() - 1; i >= 0; i --) {
 160     ResolveNode* node = other_operands()[i];
 161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 162       emit_move(node->operand(), node->destination_at(j)->operand());
 163     }
 164   }
 165 }
 166 
 167 
 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 169   ResolveNode* node;
 170   if (opr->is_virtual()) {
 171     int vreg_num = opr->vreg_number();
 172     node = vreg_table().at_grow(vreg_num, NULL);
 173     assert(node == NULL || node->operand() == opr, "");
 174     if (node == NULL) {
 175       node = new ResolveNode(opr);
 176       vreg_table()[vreg_num] = node;
 177     }
 178     // Make sure that all virtual operands show up in the list when
 179     // they are used as the source of a move.
 180     if (source && !virtual_operands().contains(node)) {
 181       virtual_operands().append(node);
 182     }
 183   } else {
 184     assert(source, "");
 185     node = new ResolveNode(opr);
 186     other_operands().append(node);
 187   }
 188   return node;
 189 }
 190 
 191 
 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 193   assert(dest->is_virtual(), "");
 194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 195   assert(src->is_valid(), "");
 196   assert(dest->is_valid(), "");
 197   ResolveNode* source = source_node(src);
 198   source->append(destination_node(dest));
 199 }
 200 
 201 
 202 //--------------------------------------------------------------
 203 // LIRItem
 204 
 205 void LIRItem::set_result(LIR_Opr opr) {
 206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 207   value()->set_operand(opr);
 208 
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 211   }
 212 
 213   _result = opr;
 214 }
 215 
 216 void LIRItem::load_item() {
 217   if (result()->is_illegal()) {
 218     // update the items result
 219     _result = value()->operand();
 220   }
 221   if (!result()->is_register()) {
 222     LIR_Opr reg = _gen->new_register(value()->type());
 223     __ move(result(), reg);
 224     if (result()->is_constant()) {
 225       _result = reg;
 226     } else {
 227       set_result(reg);
 228     }
 229   }
 230 }
 231 
 232 
 233 void LIRItem::load_for_store(BasicType type) {
 234   if (_gen->can_store_as_constant(value(), type)) {
 235     _result = value()->operand();
 236     if (!_result->is_constant()) {
 237       _result = LIR_OprFact::value_type(value()->type());
 238     }
 239   } else if (type == T_BYTE || type == T_BOOLEAN) {
 240     load_byte_item();
 241   } else {
 242     load_item();
 243   }
 244 }
 245 
 246 void LIRItem::load_item_force(LIR_Opr reg) {
 247   LIR_Opr r = result();
 248   if (r != reg) {
 249 #if !defined(ARM) && !defined(E500V2)
 250     if (r->type() != reg->type()) {
 251       // moves between different types need an intervening spill slot
 252       r = _gen->force_to_spill(r, reg->type());
 253     }
 254 #endif
 255     __ move(r, reg);
 256     _result = reg;
 257   }
 258 }
 259 
 260 ciObject* LIRItem::get_jobject_constant() const {
 261   ObjectType* oc = type()->as_ObjectType();
 262   if (oc) {
 263     return oc->constant_value();
 264   }
 265   return NULL;
 266 }
 267 
 268 
 269 jint LIRItem::get_jint_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_IntConstant() != NULL, "type check");
 272   return type()->as_IntConstant()->value();
 273 }
 274 
 275 
 276 jint LIRItem::get_address_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_AddressConstant() != NULL, "type check");
 279   return type()->as_AddressConstant()->value();
 280 }
 281 
 282 
 283 jfloat LIRItem::get_jfloat_constant() const {
 284   assert(is_constant() && value() != NULL, "");
 285   assert(type()->as_FloatConstant() != NULL, "type check");
 286   return type()->as_FloatConstant()->value();
 287 }
 288 
 289 
 290 jdouble LIRItem::get_jdouble_constant() const {
 291   assert(is_constant() && value() != NULL, "");
 292   assert(type()->as_DoubleConstant() != NULL, "type check");
 293   return type()->as_DoubleConstant()->value();
 294 }
 295 
 296 
 297 jlong LIRItem::get_jlong_constant() const {
 298   assert(is_constant() && value() != NULL, "");
 299   assert(type()->as_LongConstant() != NULL, "type check");
 300   return type()->as_LongConstant()->value();
 301 }
 302 
 303 
 304 
 305 //--------------------------------------------------------------
 306 
 307 
 308 void LIRGenerator::init() {
 309   _bs = Universe::heap()->barrier_set();
 310 }
 311 
 312 
 313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 314 #ifndef PRODUCT
 315   if (PrintIRWithLIR) {
 316     block->print();
 317   }
 318 #endif
 319 
 320   // set up the list of LIR instructions
 321   assert(block->lir() == NULL, "LIR list already computed for this block");
 322   _lir = new LIR_List(compilation(), block);
 323   block->set_lir(_lir);
 324 
 325   __ branch_destination(block->label());
 326 
 327   if (LIRTraceExecution &&
 328       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 329       !block->is_set(BlockBegin::exception_entry_flag)) {
 330     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 331     trace_block_entry(block);
 332   }
 333 }
 334 
 335 
 336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 337 #ifndef PRODUCT
 338   if (PrintIRWithLIR) {
 339     tty->cr();
 340   }
 341 #endif
 342 
 343   // LIR_Opr for unpinned constants shouldn't be referenced by other
 344   // blocks so clear them out after processing the block.
 345   for (int i = 0; i < _unpinned_constants.length(); i++) {
 346     _unpinned_constants.at(i)->clear_operand();
 347   }
 348   _unpinned_constants.trunc_to(0);
 349 
 350   // clear our any registers for other local constants
 351   _constants.trunc_to(0);
 352   _reg_for_constants.trunc_to(0);
 353 }
 354 
 355 
 356 void LIRGenerator::block_do(BlockBegin* block) {
 357   CHECK_BAILOUT();
 358 
 359   block_do_prolog(block);
 360   set_block(block);
 361 
 362   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 363     if (instr->is_pinned()) do_root(instr);
 364   }
 365 
 366   set_block(NULL);
 367   block_do_epilog(block);
 368 }
 369 
 370 
 371 //-------------------------LIRGenerator-----------------------------
 372 
 373 // This is where the tree-walk starts; instr must be root;
 374 void LIRGenerator::do_root(Value instr) {
 375   CHECK_BAILOUT();
 376 
 377   InstructionMark im(compilation(), instr);
 378 
 379   assert(instr->is_pinned(), "use only with roots");
 380   assert(instr->subst() == instr, "shouldn't have missed substitution");
 381 
 382   instr->visit(this);
 383 
 384   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 385          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 386 }
 387 
 388 
 389 // This is called for each node in tree; the walk stops if a root is reached
 390 void LIRGenerator::walk(Value instr) {
 391   InstructionMark im(compilation(), instr);
 392   //stop walk when encounter a root
 393   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 394     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 395   } else {
 396     assert(instr->subst() == instr, "shouldn't have missed substitution");
 397     instr->visit(this);
 398     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 399   }
 400 }
 401 
 402 
 403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 404   assert(state != NULL, "state must be defined");
 405 
 406 #ifndef PRODUCT
 407   state->verify();
 408 #endif
 409 
 410   ValueStack* s = state;
 411   for_each_state(s) {
 412     if (s->kind() == ValueStack::EmptyExceptionState) {
 413       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 414       continue;
 415     }
 416 
 417     int index;
 418     Value value;
 419     for_each_stack_value(s, index, value) {
 420       assert(value->subst() == value, "missed substitution");
 421       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 422         walk(value);
 423         assert(value->operand()->is_valid(), "must be evaluated now");
 424       }
 425     }
 426 
 427     int bci = s->bci();
 428     IRScope* scope = s->scope();
 429     ciMethod* method = scope->method();
 430 
 431     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 432     if (bci == SynchronizationEntryBCI) {
 433       if (x->as_ExceptionObject() || x->as_Throw()) {
 434         // all locals are dead on exit from the synthetic unlocker
 435         liveness.clear();
 436       } else {
 437         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 438       }
 439     }
 440     if (!liveness.is_valid()) {
 441       // Degenerate or breakpointed method.
 442       bailout("Degenerate or breakpointed method");
 443     } else {
 444       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 445       for_each_local_value(s, index, value) {
 446         assert(value->subst() == value, "missed substition");
 447         if (liveness.at(index) && !value->type()->is_illegal()) {
 448           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 449             walk(value);
 450             assert(value->operand()->is_valid(), "must be evaluated now");
 451           }
 452         } else {
 453           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 454           s->invalidate_local(index);
 455         }
 456       }
 457     }
 458   }
 459 
 460   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 461 }
 462 
 463 
 464 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 465   return state_for(x, x->exception_state());
 466 }
 467 
 468 
 469 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
 470   if (!obj->is_loaded() || PatchALot) {
 471     assert(info != NULL, "info must be set if class is not loaded");
 472     __ klass2reg_patch(NULL, r, info);
 473   } else {
 474     // no patching needed
 475     __ metadata2reg(obj->constant_encoding(), r);
 476   }
 477 }
 478 
 479 
 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 482   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 483   if (index->is_constant()) {
 484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 485                 index->as_jint(), null_check_info);
 486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 487   } else {
 488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 491   }
 492 }
 493 
 494 
 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 496   CodeStub* stub = new RangeCheckStub(info, index, true);
 497   if (index->is_constant()) {
 498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 502                 java_nio_Buffer::limit_offset(), T_INT, info);
 503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 504   }
 505   __ move(index, result);
 506 }
 507 
 508 
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (TwoOperandLIRForm && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:
 530       {
 531         if (is_strictfp) {
 532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 533         } else {
 534           __ mul(left_op, right_op, result_op); break;
 535         }
 536       }
 537       break;
 538 
 539     case Bytecodes::_imul:
 540       {
 541         bool    did_strength_reduce = false;
 542 
 543         if (right->is_constant()) {
 544           int c = right->as_jint();
 545           if (is_power_of_2(c)) {
 546             // do not need tmp here
 547             __ shift_left(left_op, exact_log2(c), result_op);
 548             did_strength_reduce = true;
 549           } else {
 550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 551           }
 552         }
 553         // we couldn't strength reduce so just emit the multiply
 554         if (!did_strength_reduce) {
 555           __ mul(left_op, right_op, result_op);
 556         }
 557       }
 558       break;
 559 
 560     case Bytecodes::_dsub:
 561     case Bytecodes::_fsub:
 562     case Bytecodes::_lsub:
 563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 564 
 565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 566     // ldiv and lrem are implemented with a direct runtime call
 567 
 568     case Bytecodes::_ddiv:
 569       {
 570         if (is_strictfp) {
 571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 572         } else {
 573           __ div (left_op, right_op, result_op); break;
 574         }
 575       }
 576       break;
 577 
 578     case Bytecodes::_drem:
 579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 580 
 581     default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 587   arithmetic_op(code, result, left, right, false, tmp);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 598 }
 599 
 600 
 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 602   if (TwoOperandLIRForm && value != result_op) {
 603     assert(count != result_op, "malformed");
 604     __ move(value, result_op);
 605     value = result_op;
 606   }
 607 
 608   assert(count->is_constant() || count->is_register(), "must be");
 609   switch(code) {
 610   case Bytecodes::_ishl:
 611   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 612   case Bytecodes::_ishr:
 613   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 614   case Bytecodes::_iushr:
 615   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 616   default: ShouldNotReachHere();
 617   }
 618 }
 619 
 620 
 621 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 622   if (TwoOperandLIRForm && left_op != result_op) {
 623     assert(right_op != result_op, "malformed");
 624     __ move(left_op, result_op);
 625     left_op = result_op;
 626   }
 627 
 628   switch(code) {
 629     case Bytecodes::_iand:
 630     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 631 
 632     case Bytecodes::_ior:
 633     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 634 
 635     case Bytecodes::_ixor:
 636     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 637 
 638     default: ShouldNotReachHere();
 639   }
 640 }
 641 
 642 
 643 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 644   if (!GenerateSynchronizationCode) return;
 645   // for slow path, use debug info for state after successful locking
 646   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 647   __ load_stack_address_monitor(monitor_no, lock);
 648   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 649   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 650 }
 651 
 652 
 653 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 654   if (!GenerateSynchronizationCode) return;
 655   // setup registers
 656   LIR_Opr hdr = lock;
 657   lock = new_hdr;
 658   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 659   __ load_stack_address_monitor(monitor_no, lock);
 660   __ unlock_object(hdr, object, lock, scratch, slow_path);
 661 }
 662 
 663 
 664 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 665   klass2reg_with_patching(klass_reg, klass, info);
 666   // If klass is not loaded we do not know if the klass has finalizers:
 667   if (UseFastNewInstance && klass->is_loaded()
 668       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 669 
 670     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 671 
 672     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 673 
 674     assert(klass->is_loaded(), "must be loaded");
 675     // allocate space for instance
 676     assert(klass->size_helper() >= 0, "illegal instance size");
 677     const int instance_size = align_object_size(klass->size_helper());
 678     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 679                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 680   } else {
 681     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 682     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 683     __ branch_destination(slow_path->continuation());
 684   }
 685 }
 686 
 687 
 688 static bool is_constant_zero(Instruction* inst) {
 689   IntConstant* c = inst->type()->as_IntConstant();
 690   if (c) {
 691     return (c->value() == 0);
 692   }
 693   return false;
 694 }
 695 
 696 
 697 static bool positive_constant(Instruction* inst) {
 698   IntConstant* c = inst->type()->as_IntConstant();
 699   if (c) {
 700     return (c->value() >= 0);
 701   }
 702   return false;
 703 }
 704 
 705 
 706 static ciArrayKlass* as_array_klass(ciType* type) {
 707   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 708     return (ciArrayKlass*)type;
 709   } else {
 710     return NULL;
 711   }
 712 }
 713 
 714 static Value maxvalue(IfOp* ifop) {
 715   switch (ifop->cond()) {
 716     case If::eql: return NULL;
 717     case If::neq: return NULL;
 718     case If::lss: // x <  y ? x : y
 719     case If::leq: // x <= y ? x : y
 720       if (ifop->x() == ifop->tval() &&
 721           ifop->y() == ifop->fval()) return ifop->y();
 722       return NULL;
 723 
 724     case If::gtr: // x >  y ? y : x
 725     case If::geq: // x >= y ? y : x
 726       if (ifop->x() == ifop->tval() &&
 727           ifop->y() == ifop->fval()) return ifop->y();
 728       return NULL;
 729 
 730   }
 731 }
 732 
 733 static ciType* phi_declared_type(Phi* phi) {
 734   ciType* t = phi->operand_at(0)->declared_type();
 735   if (t == NULL) {
 736     return NULL;
 737   }
 738   for(int i = 1; i < phi->operand_count(); i++) {
 739     if (t != phi->operand_at(i)->declared_type()) {
 740       return NULL;
 741     }
 742   }
 743   return t;
 744 }
 745 
 746 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 747   Instruction* src     = x->argument_at(0);
 748   Instruction* src_pos = x->argument_at(1);
 749   Instruction* dst     = x->argument_at(2);
 750   Instruction* dst_pos = x->argument_at(3);
 751   Instruction* length  = x->argument_at(4);
 752 
 753   // first try to identify the likely type of the arrays involved
 754   ciArrayKlass* expected_type = NULL;
 755   bool is_exact = false, src_objarray = false, dst_objarray = false;
 756   {
 757     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 758     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 759     Phi* phi;
 760     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 761       src_declared_type = as_array_klass(phi_declared_type(phi));
 762     }
 763     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 764     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 765     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 766       dst_declared_type = as_array_klass(phi_declared_type(phi));
 767     }
 768 
 769     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 770       // the types exactly match so the type is fully known
 771       is_exact = true;
 772       expected_type = src_exact_type;
 773     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 774       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 775       ciArrayKlass* src_type = NULL;
 776       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 777         src_type = (ciArrayKlass*) src_exact_type;
 778       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 779         src_type = (ciArrayKlass*) src_declared_type;
 780       }
 781       if (src_type != NULL) {
 782         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 783           is_exact = true;
 784           expected_type = dst_type;
 785         }
 786       }
 787     }
 788     // at least pass along a good guess
 789     if (expected_type == NULL) expected_type = dst_exact_type;
 790     if (expected_type == NULL) expected_type = src_declared_type;
 791     if (expected_type == NULL) expected_type = dst_declared_type;
 792 
 793     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 794     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 795   }
 796 
 797   // if a probable array type has been identified, figure out if any
 798   // of the required checks for a fast case can be elided.
 799   int flags = LIR_OpArrayCopy::all_flags;
 800 
 801   if (!src_objarray)
 802     flags &= ~LIR_OpArrayCopy::src_objarray;
 803   if (!dst_objarray)
 804     flags &= ~LIR_OpArrayCopy::dst_objarray;
 805 
 806   if (!x->arg_needs_null_check(0))
 807     flags &= ~LIR_OpArrayCopy::src_null_check;
 808   if (!x->arg_needs_null_check(2))
 809     flags &= ~LIR_OpArrayCopy::dst_null_check;
 810 
 811 
 812   if (expected_type != NULL) {
 813     Value length_limit = NULL;
 814 
 815     IfOp* ifop = length->as_IfOp();
 816     if (ifop != NULL) {
 817       // look for expressions like min(v, a.length) which ends up as
 818       //   x > y ? y : x  or  x >= y ? y : x
 819       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 820           ifop->x() == ifop->fval() &&
 821           ifop->y() == ifop->tval()) {
 822         length_limit = ifop->y();
 823       }
 824     }
 825 
 826     // try to skip null checks and range checks
 827     NewArray* src_array = src->as_NewArray();
 828     if (src_array != NULL) {
 829       flags &= ~LIR_OpArrayCopy::src_null_check;
 830       if (length_limit != NULL &&
 831           src_array->length() == length_limit &&
 832           is_constant_zero(src_pos)) {
 833         flags &= ~LIR_OpArrayCopy::src_range_check;
 834       }
 835     }
 836 
 837     NewArray* dst_array = dst->as_NewArray();
 838     if (dst_array != NULL) {
 839       flags &= ~LIR_OpArrayCopy::dst_null_check;
 840       if (length_limit != NULL &&
 841           dst_array->length() == length_limit &&
 842           is_constant_zero(dst_pos)) {
 843         flags &= ~LIR_OpArrayCopy::dst_range_check;
 844       }
 845     }
 846 
 847     // check from incoming constant values
 848     if (positive_constant(src_pos))
 849       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 850     if (positive_constant(dst_pos))
 851       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 852     if (positive_constant(length))
 853       flags &= ~LIR_OpArrayCopy::length_positive_check;
 854 
 855     // see if the range check can be elided, which might also imply
 856     // that src or dst is non-null.
 857     ArrayLength* al = length->as_ArrayLength();
 858     if (al != NULL) {
 859       if (al->array() == src) {
 860         // it's the length of the source array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::src_null_check;
 863         if (is_constant_zero(src_pos))
 864           flags &= ~LIR_OpArrayCopy::src_range_check;
 865       }
 866       if (al->array() == dst) {
 867         // it's the length of the destination array
 868         flags &= ~LIR_OpArrayCopy::length_positive_check;
 869         flags &= ~LIR_OpArrayCopy::dst_null_check;
 870         if (is_constant_zero(dst_pos))
 871           flags &= ~LIR_OpArrayCopy::dst_range_check;
 872       }
 873     }
 874     if (is_exact) {
 875       flags &= ~LIR_OpArrayCopy::type_check;
 876     }
 877   }
 878 
 879   IntConstant* src_int = src_pos->type()->as_IntConstant();
 880   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 881   if (src_int && dst_int) {
 882     int s_offs = src_int->value();
 883     int d_offs = dst_int->value();
 884     if (src_int->value() >= dst_int->value()) {
 885       flags &= ~LIR_OpArrayCopy::overlapping;
 886     }
 887     if (expected_type != NULL) {
 888       BasicType t = expected_type->element_type()->basic_type();
 889       int element_size = type2aelembytes(t);
 890       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 891           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 892         flags &= ~LIR_OpArrayCopy::unaligned;
 893       }
 894     }
 895   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 896     // src and dest positions are the same, or dst is zero so assume
 897     // nonoverlapping copy.
 898     flags &= ~LIR_OpArrayCopy::overlapping;
 899   }
 900 
 901   if (src == dst) {
 902     // moving within a single array so no type checks are needed
 903     if (flags & LIR_OpArrayCopy::type_check) {
 904       flags &= ~LIR_OpArrayCopy::type_check;
 905     }
 906   }
 907   *flagsp = flags;
 908   *expected_typep = (ciArrayKlass*)expected_type;
 909 }
 910 
 911 
 912 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 913   assert(opr->is_register(), "why spill if item is not register?");
 914 
 915   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 916     LIR_Opr result = new_register(T_FLOAT);
 917     set_vreg_flag(result, must_start_in_memory);
 918     assert(opr->is_register(), "only a register can be spilled");
 919     assert(opr->value_type()->is_float(), "rounding only for floats available");
 920     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 921     return result;
 922   }
 923   return opr;
 924 }
 925 
 926 
 927 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 928   assert(type2size[t] == type2size[value->type()],
 929          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 930   if (!value->is_register()) {
 931     // force into a register
 932     LIR_Opr r = new_register(value->type());
 933     __ move(value, r);
 934     value = r;
 935   }
 936 
 937   // create a spill location
 938   LIR_Opr tmp = new_register(t);
 939   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 940 
 941   // move from register to spill
 942   __ move(value, tmp);
 943   return tmp;
 944 }
 945 
 946 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 947   if (if_instr->should_profile()) {
 948     ciMethod* method = if_instr->profiled_method();
 949     assert(method != NULL, "method should be set if branch is profiled");
 950     ciMethodData* md = method->method_data_or_null();
 951     assert(md != NULL, "Sanity");
 952     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 953     assert(data != NULL, "must have profiling data");
 954     assert(data->is_BranchData(), "need BranchData for two-way branches");
 955     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 956     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 957     if (if_instr->is_swapped()) {
 958       int t = taken_count_offset;
 959       taken_count_offset = not_taken_count_offset;
 960       not_taken_count_offset = t;
 961     }
 962 
 963     LIR_Opr md_reg = new_register(T_METADATA);
 964     __ metadata2reg(md->constant_encoding(), md_reg);
 965 
 966     LIR_Opr data_offset_reg = new_pointer_register();
 967     __ cmove(lir_cond(cond),
 968              LIR_OprFact::intptrConst(taken_count_offset),
 969              LIR_OprFact::intptrConst(not_taken_count_offset),
 970              data_offset_reg, as_BasicType(if_instr->x()->type()));
 971 
 972     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 973     LIR_Opr data_reg = new_pointer_register();
 974     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 975     __ move(data_addr, data_reg);
 976     // Use leal instead of add to avoid destroying condition codes on x86
 977     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 978     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 979     __ move(data_reg, data_addr);
 980   }
 981 }
 982 
 983 // Phi technique:
 984 // This is about passing live values from one basic block to the other.
 985 // In code generated with Java it is rather rare that more than one
 986 // value is on the stack from one basic block to the other.
 987 // We optimize our technique for efficient passing of one value
 988 // (of type long, int, double..) but it can be extended.
 989 // When entering or leaving a basic block, all registers and all spill
 990 // slots are release and empty. We use the released registers
 991 // and spill slots to pass the live values from one block
 992 // to the other. The topmost value, i.e., the value on TOS of expression
 993 // stack is passed in registers. All other values are stored in spilling
 994 // area. Every Phi has an index which designates its spill slot
 995 // At exit of a basic block, we fill the register(s) and spill slots.
 996 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 997 // and locks necessary registers and spilling slots.
 998 
 999 
1000 // move current value to referenced phi function
1001 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1002   Phi* phi = sux_val->as_Phi();
1003   // cur_val can be null without phi being null in conjunction with inlining
1004   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1005     LIR_Opr operand = cur_val->operand();
1006     if (cur_val->operand()->is_illegal()) {
1007       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1008              "these can be produced lazily");
1009       operand = operand_for_instruction(cur_val);
1010     }
1011     resolver->move(operand, operand_for_instruction(phi));
1012   }
1013 }
1014 
1015 
1016 // Moves all stack values into their PHI position
1017 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1018   BlockBegin* bb = block();
1019   if (bb->number_of_sux() == 1) {
1020     BlockBegin* sux = bb->sux_at(0);
1021     assert(sux->number_of_preds() > 0, "invalid CFG");
1022 
1023     // a block with only one predecessor never has phi functions
1024     if (sux->number_of_preds() > 1) {
1025       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1026       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1027 
1028       ValueStack* sux_state = sux->state();
1029       Value sux_value;
1030       int index;
1031 
1032       assert(cur_state->scope() == sux_state->scope(), "not matching");
1033       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1034       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1035 
1036       for_each_stack_value(sux_state, index, sux_value) {
1037         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1038       }
1039 
1040       for_each_local_value(sux_state, index, sux_value) {
1041         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1042       }
1043 
1044       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1045     }
1046   }
1047 }
1048 
1049 
1050 LIR_Opr LIRGenerator::new_register(BasicType type) {
1051   int vreg = _virtual_register_number;
1052   // add a little fudge factor for the bailout, since the bailout is
1053   // only checked periodically.  This gives a few extra registers to
1054   // hand out before we really run out, which helps us keep from
1055   // tripping over assertions.
1056   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1057     bailout("out of virtual registers");
1058     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1059       // wrap it around
1060       _virtual_register_number = LIR_OprDesc::vreg_base;
1061     }
1062   }
1063   _virtual_register_number += 1;
1064   return LIR_OprFact::virtual_register(vreg, type);
1065 }
1066 
1067 
1068 // Try to lock using register in hint
1069 LIR_Opr LIRGenerator::rlock(Value instr) {
1070   return new_register(instr->type());
1071 }
1072 
1073 
1074 // does an rlock and sets result
1075 LIR_Opr LIRGenerator::rlock_result(Value x) {
1076   LIR_Opr reg = rlock(x);
1077   set_result(x, reg);
1078   return reg;
1079 }
1080 
1081 
1082 // does an rlock and sets result
1083 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1084   LIR_Opr reg;
1085   switch (type) {
1086   case T_BYTE:
1087   case T_BOOLEAN:
1088     reg = rlock_byte(type);
1089     break;
1090   default:
1091     reg = rlock(x);
1092     break;
1093   }
1094 
1095   set_result(x, reg);
1096   return reg;
1097 }
1098 
1099 
1100 //---------------------------------------------------------------------
1101 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1102   ObjectType* oc = value->type()->as_ObjectType();
1103   if (oc) {
1104     return oc->constant_value();
1105   }
1106   return NULL;
1107 }
1108 
1109 
1110 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1111   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1112   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1113 
1114   // no moves are created for phi functions at the begin of exception
1115   // handlers, so assign operands manually here
1116   for_each_phi_fun(block(), phi,
1117                    operand_for_instruction(phi));
1118 
1119   LIR_Opr thread_reg = getThreadPointer();
1120   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1121                exceptionOopOpr());
1122   __ move_wide(LIR_OprFact::oopConst(NULL),
1123                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1124   __ move_wide(LIR_OprFact::oopConst(NULL),
1125                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1126 
1127   LIR_Opr result = new_register(T_OBJECT);
1128   __ move(exceptionOopOpr(), result);
1129   set_result(x, result);
1130 }
1131 
1132 
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //                        visitor functions
1138 //----------------------------------------------------------------------
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 
1143 void LIRGenerator::do_Phi(Phi* x) {
1144   // phi functions are never visited directly
1145   ShouldNotReachHere();
1146 }
1147 
1148 
1149 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1150 void LIRGenerator::do_Constant(Constant* x) {
1151   if (x->state_before() != NULL) {
1152     // Any constant with a ValueStack requires patching so emit the patch here
1153     LIR_Opr reg = rlock_result(x);
1154     CodeEmitInfo* info = state_for(x, x->state_before());
1155     __ oop2reg_patch(NULL, reg, info);
1156   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1157     if (!x->is_pinned()) {
1158       // unpinned constants are handled specially so that they can be
1159       // put into registers when they are used multiple times within a
1160       // block.  After the block completes their operand will be
1161       // cleared so that other blocks can't refer to that register.
1162       set_result(x, load_constant(x));
1163     } else {
1164       LIR_Opr res = x->operand();
1165       if (!res->is_valid()) {
1166         res = LIR_OprFact::value_type(x->type());
1167       }
1168       if (res->is_constant()) {
1169         LIR_Opr reg = rlock_result(x);
1170         __ move(res, reg);
1171       } else {
1172         set_result(x, res);
1173       }
1174     }
1175   } else {
1176     set_result(x, LIR_OprFact::value_type(x->type()));
1177   }
1178 }
1179 
1180 
1181 void LIRGenerator::do_Local(Local* x) {
1182   // operand_for_instruction has the side effect of setting the result
1183   // so there's no need to do it here.
1184   operand_for_instruction(x);
1185 }
1186 
1187 
1188 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1189   Unimplemented();
1190 }
1191 
1192 
1193 void LIRGenerator::do_Return(Return* x) {
1194   if (compilation()->env()->dtrace_method_probes()) {
1195     BasicTypeList signature;
1196     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1197     signature.append(T_OBJECT); // Method*
1198     LIR_OprList* args = new LIR_OprList();
1199     args->append(getThreadPointer());
1200     LIR_Opr meth = new_register(T_METADATA);
1201     __ metadata2reg(method()->constant_encoding(), meth);
1202     args->append(meth);
1203     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1204   }
1205 
1206   if (x->type()->is_void()) {
1207     __ return_op(LIR_OprFact::illegalOpr);
1208   } else {
1209     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1210     LIRItem result(x->result(), this);
1211 
1212     result.load_item_force(reg);
1213     __ return_op(result.result());
1214   }
1215   set_no_result(x);
1216 }
1217 
1218 // Examble: ref.get()
1219 // Combination of LoadField and g1 pre-write barrier
1220 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1221 
1222   const int referent_offset = java_lang_ref_Reference::referent_offset;
1223   guarantee(referent_offset > 0, "referent offset not initialized");
1224 
1225   assert(x->number_of_arguments() == 1, "wrong type");
1226 
1227   LIRItem reference(x->argument_at(0), this);
1228   reference.load_item();
1229 
1230   // need to perform the null check on the reference objecy
1231   CodeEmitInfo* info = NULL;
1232   if (x->needs_null_check()) {
1233     info = state_for(x);
1234   }
1235 
1236   LIR_Address* referent_field_adr =
1237     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1238 
1239   LIR_Opr result = rlock_result(x);
1240 
1241   __ load(referent_field_adr, result, info);
1242 
1243   // Register the value in the referent field with the pre-barrier
1244   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1245               result /* pre_val */,
1246               false  /* do_load */,
1247               false  /* patch */,
1248               NULL   /* info */);
1249 }
1250 
1251 // Example: clazz.isInstance(object)
1252 void LIRGenerator::do_isInstance(Intrinsic* x) {
1253   assert(x->number_of_arguments() == 2, "wrong type");
1254 
1255   // TODO could try to substitute this node with an equivalent InstanceOf
1256   // if clazz is known to be a constant Class. This will pick up newly found
1257   // constants after HIR construction. I'll leave this to a future change.
1258 
1259   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1260   // could follow the aastore example in a future change.
1261 
1262   LIRItem clazz(x->argument_at(0), this);
1263   LIRItem object(x->argument_at(1), this);
1264   clazz.load_item();
1265   object.load_item();
1266   LIR_Opr result = rlock_result(x);
1267 
1268   // need to perform null check on clazz
1269   if (x->needs_null_check()) {
1270     CodeEmitInfo* info = state_for(x);
1271     __ null_check(clazz.result(), info);
1272   }
1273 
1274   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1275                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1276                                      x->type(),
1277                                      NULL); // NULL CodeEmitInfo results in a leaf call
1278   __ move(call_result, result);
1279 }
1280 
1281 // Example: object.getClass ()
1282 void LIRGenerator::do_getClass(Intrinsic* x) {
1283   assert(x->number_of_arguments() == 1, "wrong type");
1284 
1285   LIRItem rcvr(x->argument_at(0), this);
1286   rcvr.load_item();
1287   LIR_Opr result = rlock_result(x);
1288 
1289   // need to perform the null check on the rcvr
1290   CodeEmitInfo* info = NULL;
1291   if (x->needs_null_check()) {
1292     info = state_for(x);
1293   }
1294   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), result, info);
1295   __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1296 }
1297 
1298 
1299 // Example: Thread.currentThread()
1300 void LIRGenerator::do_currentThread(Intrinsic* x) {
1301   assert(x->number_of_arguments() == 0, "wrong type");
1302   LIR_Opr reg = rlock_result(x);
1303   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1304 }
1305 
1306 
1307 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1308   assert(x->number_of_arguments() == 1, "wrong type");
1309   LIRItem receiver(x->argument_at(0), this);
1310 
1311   receiver.load_item();
1312   BasicTypeList signature;
1313   signature.append(T_OBJECT); // receiver
1314   LIR_OprList* args = new LIR_OprList();
1315   args->append(receiver.result());
1316   CodeEmitInfo* info = state_for(x, x->state());
1317   call_runtime(&signature, args,
1318                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1319                voidType, info);
1320 
1321   set_no_result(x);
1322 }
1323 
1324 
1325 //------------------------local access--------------------------------------
1326 
1327 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1328   if (x->operand()->is_illegal()) {
1329     Constant* c = x->as_Constant();
1330     if (c != NULL) {
1331       x->set_operand(LIR_OprFact::value_type(c->type()));
1332     } else {
1333       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1334       // allocate a virtual register for this local or phi
1335       x->set_operand(rlock(x));
1336       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1337     }
1338   }
1339   return x->operand();
1340 }
1341 
1342 
1343 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1344   if (opr->is_virtual()) {
1345     return instruction_for_vreg(opr->vreg_number());
1346   }
1347   return NULL;
1348 }
1349 
1350 
1351 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1352   if (reg_num < _instruction_for_operand.length()) {
1353     return _instruction_for_operand.at(reg_num);
1354   }
1355   return NULL;
1356 }
1357 
1358 
1359 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1360   if (_vreg_flags.size_in_bits() == 0) {
1361     BitMap2D temp(100, num_vreg_flags);
1362     temp.clear();
1363     _vreg_flags = temp;
1364   }
1365   _vreg_flags.at_put_grow(vreg_num, f, true);
1366 }
1367 
1368 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1369   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1370     return false;
1371   }
1372   return _vreg_flags.at(vreg_num, f);
1373 }
1374 
1375 
1376 // Block local constant handling.  This code is useful for keeping
1377 // unpinned constants and constants which aren't exposed in the IR in
1378 // registers.  Unpinned Constant instructions have their operands
1379 // cleared when the block is finished so that other blocks can't end
1380 // up referring to their registers.
1381 
1382 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1383   assert(!x->is_pinned(), "only for unpinned constants");
1384   _unpinned_constants.append(x);
1385   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1386 }
1387 
1388 
1389 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1390   BasicType t = c->type();
1391   for (int i = 0; i < _constants.length(); i++) {
1392     LIR_Const* other = _constants.at(i);
1393     if (t == other->type()) {
1394       switch (t) {
1395       case T_INT:
1396       case T_FLOAT:
1397         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1398         break;
1399       case T_LONG:
1400       case T_DOUBLE:
1401         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1402         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1403         break;
1404       case T_OBJECT:
1405         if (c->as_jobject() != other->as_jobject()) continue;
1406         break;
1407       }
1408       return _reg_for_constants.at(i);
1409     }
1410   }
1411 
1412   LIR_Opr result = new_register(t);
1413   __ move((LIR_Opr)c, result);
1414   _constants.append(c);
1415   _reg_for_constants.append(result);
1416   return result;
1417 }
1418 
1419 // Various barriers
1420 
1421 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1422                                bool do_load, bool patch, CodeEmitInfo* info) {
1423   // Do the pre-write barrier, if any.
1424   switch (_bs->kind()) {
1425 #if INCLUDE_ALL_GCS
1426     case BarrierSet::G1SATBCT:
1427     case BarrierSet::G1SATBCTLogging:
1428       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1429       break;
1430 #endif // INCLUDE_ALL_GCS
1431     case BarrierSet::CardTableModRef:
1432     case BarrierSet::CardTableExtension:
1433       // No pre barriers
1434       break;
1435     case BarrierSet::ModRef:
1436     case BarrierSet::Other:
1437       // No pre barriers
1438       break;
1439     default      :
1440       ShouldNotReachHere();
1441 
1442   }
1443 }
1444 
1445 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1446   switch (_bs->kind()) {
1447 #if INCLUDE_ALL_GCS
1448     case BarrierSet::G1SATBCT:
1449     case BarrierSet::G1SATBCTLogging:
1450       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1451       break;
1452 #endif // INCLUDE_ALL_GCS
1453     case BarrierSet::CardTableModRef:
1454     case BarrierSet::CardTableExtension:
1455       CardTableModRef_post_barrier(addr,  new_val);
1456       break;
1457     case BarrierSet::ModRef:
1458     case BarrierSet::Other:
1459       // No post barriers
1460       break;
1461     default      :
1462       ShouldNotReachHere();
1463     }
1464 }
1465 
1466 ////////////////////////////////////////////////////////////////////////
1467 #if INCLUDE_ALL_GCS
1468 
1469 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1470                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1471   // First we test whether marking is in progress.
1472   BasicType flag_type;
1473   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1474     flag_type = T_INT;
1475   } else {
1476     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1477               "Assumption");
1478     flag_type = T_BYTE;
1479   }
1480   LIR_Opr thrd = getThreadPointer();
1481   LIR_Address* mark_active_flag_addr =
1482     new LIR_Address(thrd,
1483                     in_bytes(JavaThread::satb_mark_queue_offset() +
1484                              PtrQueue::byte_offset_of_active()),
1485                     flag_type);
1486   // Read the marking-in-progress flag.
1487   LIR_Opr flag_val = new_register(T_INT);
1488   __ load(mark_active_flag_addr, flag_val);
1489   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1490 
1491   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1492 
1493   CodeStub* slow;
1494 
1495   if (do_load) {
1496     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1497     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1498 
1499     if (patch)
1500       pre_val_patch_code = lir_patch_normal;
1501 
1502     pre_val = new_register(T_OBJECT);
1503 
1504     if (!addr_opr->is_address()) {
1505       assert(addr_opr->is_register(), "must be");
1506       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1507     }
1508     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1509   } else {
1510     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1511     assert(pre_val->is_register(), "must be");
1512     assert(pre_val->type() == T_OBJECT, "must be an object");
1513     assert(info == NULL, "sanity");
1514 
1515     slow = new G1PreBarrierStub(pre_val);
1516   }
1517 
1518   __ branch(lir_cond_notEqual, T_INT, slow);
1519   __ branch_destination(slow->continuation());
1520 }
1521 
1522 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1523   // If the "new_val" is a constant NULL, no barrier is necessary.
1524   if (new_val->is_constant() &&
1525       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1526 
1527   if (!new_val->is_register()) {
1528     LIR_Opr new_val_reg = new_register(T_OBJECT);
1529     if (new_val->is_constant()) {
1530       __ move(new_val, new_val_reg);
1531     } else {
1532       __ leal(new_val, new_val_reg);
1533     }
1534     new_val = new_val_reg;
1535   }
1536   assert(new_val->is_register(), "must be a register at this point");
1537 
1538   if (addr->is_address()) {
1539     LIR_Address* address = addr->as_address_ptr();
1540     LIR_Opr ptr = new_pointer_register();
1541     if (!address->index()->is_valid() && address->disp() == 0) {
1542       __ move(address->base(), ptr);
1543     } else {
1544       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1545       __ leal(addr, ptr);
1546     }
1547     addr = ptr;
1548   }
1549   assert(addr->is_register(), "must be a register at this point");
1550 
1551   LIR_Opr xor_res = new_pointer_register();
1552   LIR_Opr xor_shift_res = new_pointer_register();
1553   if (TwoOperandLIRForm ) {
1554     __ move(addr, xor_res);
1555     __ logical_xor(xor_res, new_val, xor_res);
1556     __ move(xor_res, xor_shift_res);
1557     __ unsigned_shift_right(xor_shift_res,
1558                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1559                             xor_shift_res,
1560                             LIR_OprDesc::illegalOpr());
1561   } else {
1562     __ logical_xor(addr, new_val, xor_res);
1563     __ unsigned_shift_right(xor_res,
1564                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1565                             xor_shift_res,
1566                             LIR_OprDesc::illegalOpr());
1567   }
1568 
1569   if (!new_val->is_register()) {
1570     LIR_Opr new_val_reg = new_register(T_OBJECT);
1571     __ leal(new_val, new_val_reg);
1572     new_val = new_val_reg;
1573   }
1574   assert(new_val->is_register(), "must be a register at this point");
1575 
1576   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1577 
1578   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1579   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1580   __ branch_destination(slow->continuation());
1581 }
1582 
1583 #endif // INCLUDE_ALL_GCS
1584 ////////////////////////////////////////////////////////////////////////
1585 
1586 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1587 
1588   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1589   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1590   if (addr->is_address()) {
1591     LIR_Address* address = addr->as_address_ptr();
1592     // ptr cannot be an object because we use this barrier for array card marks
1593     // and addr can point in the middle of an array.
1594     LIR_Opr ptr = new_pointer_register();
1595     if (!address->index()->is_valid() && address->disp() == 0) {
1596       __ move(address->base(), ptr);
1597     } else {
1598       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1599       __ leal(addr, ptr);
1600     }
1601     addr = ptr;
1602   }
1603   assert(addr->is_register(), "must be a register at this point");
1604 
1605 #ifdef ARM
1606   // TODO: ARM - move to platform-dependent code
1607   LIR_Opr tmp = FrameMap::R14_opr;
1608   if (VM_Version::supports_movw()) {
1609     __ move((LIR_Opr)card_table_base, tmp);
1610   } else {
1611     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1612   }
1613 
1614   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1615   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1616   if(((int)ct->byte_map_base & 0xff) == 0) {
1617     __ move(tmp, card_addr);
1618   } else {
1619     LIR_Opr tmp_zero = new_register(T_INT);
1620     __ move(LIR_OprFact::intConst(0), tmp_zero);
1621     __ move(tmp_zero, card_addr);
1622   }
1623 #else // ARM
1624   LIR_Opr tmp = new_pointer_register();
1625   if (TwoOperandLIRForm) {
1626     __ move(addr, tmp);
1627     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1628   } else {
1629     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1630   }
1631   if (can_inline_as_constant(card_table_base)) {
1632     __ move(LIR_OprFact::intConst(0),
1633               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1634   } else {
1635     __ move(LIR_OprFact::intConst(0),
1636               new LIR_Address(tmp, load_constant(card_table_base),
1637                               T_BYTE));
1638   }
1639 #endif // ARM
1640 }
1641 
1642 
1643 //------------------------field access--------------------------------------
1644 
1645 // Comment copied form templateTable_i486.cpp
1646 // ----------------------------------------------------------------------------
1647 // Volatile variables demand their effects be made known to all CPU's in
1648 // order.  Store buffers on most chips allow reads & writes to reorder; the
1649 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1650 // memory barrier (i.e., it's not sufficient that the interpreter does not
1651 // reorder volatile references, the hardware also must not reorder them).
1652 //
1653 // According to the new Java Memory Model (JMM):
1654 // (1) All volatiles are serialized wrt to each other.
1655 // ALSO reads & writes act as aquire & release, so:
1656 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1657 // the read float up to before the read.  It's OK for non-volatile memory refs
1658 // that happen before the volatile read to float down below it.
1659 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1660 // that happen BEFORE the write float down to after the write.  It's OK for
1661 // non-volatile memory refs that happen after the volatile write to float up
1662 // before it.
1663 //
1664 // We only put in barriers around volatile refs (they are expensive), not
1665 // _between_ memory refs (that would require us to track the flavor of the
1666 // previous memory refs).  Requirements (2) and (3) require some barriers
1667 // before volatile stores and after volatile loads.  These nearly cover
1668 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1669 // case is placed after volatile-stores although it could just as well go
1670 // before volatile-loads.
1671 
1672 
1673 void LIRGenerator::do_StoreField(StoreField* x) {
1674   bool needs_patching = x->needs_patching();
1675   bool is_volatile = x->field()->is_volatile();
1676   BasicType field_type = x->field_type();
1677   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1678 
1679   CodeEmitInfo* info = NULL;
1680   if (needs_patching) {
1681     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1682     info = state_for(x, x->state_before());
1683   } else if (x->needs_null_check()) {
1684     NullCheck* nc = x->explicit_null_check();
1685     if (nc == NULL) {
1686       info = state_for(x);
1687     } else {
1688       info = state_for(nc);
1689     }
1690   }
1691 
1692 
1693   LIRItem object(x->obj(), this);
1694   LIRItem value(x->value(),  this);
1695 
1696   object.load_item();
1697 
1698   if (is_volatile || needs_patching) {
1699     // load item if field is volatile (fewer special cases for volatiles)
1700     // load item if field not initialized
1701     // load item if field not constant
1702     // because of code patching we cannot inline constants
1703     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1704       value.load_byte_item();
1705     } else  {
1706       value.load_item();
1707     }
1708   } else {
1709     value.load_for_store(field_type);
1710   }
1711 
1712   set_no_result(x);
1713 
1714 #ifndef PRODUCT
1715   if (PrintNotLoaded && needs_patching) {
1716     tty->print_cr("   ###class not loaded at store_%s bci %d",
1717                   x->is_static() ?  "static" : "field", x->printable_bci());
1718   }
1719 #endif
1720 
1721   if (x->needs_null_check() &&
1722       (needs_patching ||
1723        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1724     // emit an explicit null check because the offset is too large
1725     __ null_check(object.result(), new CodeEmitInfo(info));
1726   }
1727 
1728   LIR_Address* address;
1729   if (needs_patching) {
1730     // we need to patch the offset in the instruction so don't allow
1731     // generate_address to try to be smart about emitting the -1.
1732     // Otherwise the patching code won't know how to find the
1733     // instruction to patch.
1734     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1735   } else {
1736     address = generate_address(object.result(), x->offset(), field_type);
1737   }
1738 
1739   if (is_volatile && os::is_MP()) {
1740     __ membar_release();
1741   }
1742 
1743   if (is_oop) {
1744     // Do the pre-write barrier, if any.
1745     pre_barrier(LIR_OprFact::address(address),
1746                 LIR_OprFact::illegalOpr /* pre_val */,
1747                 true /* do_load*/,
1748                 needs_patching,
1749                 (info ? new CodeEmitInfo(info) : NULL));
1750   }
1751 
1752   if (is_volatile && !needs_patching) {
1753     volatile_field_store(value.result(), address, info);
1754   } else {
1755     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1756     __ store(value.result(), address, info, patch_code);
1757   }
1758 
1759   if (is_oop) {
1760     // Store to object so mark the card of the header
1761     post_barrier(object.result(), value.result());
1762   }
1763 
1764   if (is_volatile && os::is_MP()) {
1765     __ membar();
1766   }
1767 }
1768 
1769 
1770 void LIRGenerator::do_LoadField(LoadField* x) {
1771   bool needs_patching = x->needs_patching();
1772   bool is_volatile = x->field()->is_volatile();
1773   BasicType field_type = x->field_type();
1774 
1775   CodeEmitInfo* info = NULL;
1776   if (needs_patching) {
1777     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1778     info = state_for(x, x->state_before());
1779   } else if (x->needs_null_check()) {
1780     NullCheck* nc = x->explicit_null_check();
1781     if (nc == NULL) {
1782       info = state_for(x);
1783     } else {
1784       info = state_for(nc);
1785     }
1786   }
1787 
1788   LIRItem object(x->obj(), this);
1789 
1790   object.load_item();
1791 
1792 #ifndef PRODUCT
1793   if (PrintNotLoaded && needs_patching) {
1794     tty->print_cr("   ###class not loaded at load_%s bci %d",
1795                   x->is_static() ?  "static" : "field", x->printable_bci());
1796   }
1797 #endif
1798   
1799   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1800   if (x->needs_null_check() &&
1801       (needs_patching ||
1802        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1803        stress_deopt)) {
1804     LIR_Opr obj = object.result();
1805     if (stress_deopt) {
1806       obj = new_register(T_OBJECT);
1807       __ move(LIR_OprFact::oopConst(NULL), obj);
1808     }
1809     // emit an explicit null check because the offset is too large
1810     __ null_check(obj, new CodeEmitInfo(info));
1811   }
1812 
1813   LIR_Opr reg = rlock_result(x, field_type);
1814   LIR_Address* address;
1815   if (needs_patching) {
1816     // we need to patch the offset in the instruction so don't allow
1817     // generate_address to try to be smart about emitting the -1.
1818     // Otherwise the patching code won't know how to find the
1819     // instruction to patch.
1820     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1821   } else {
1822     address = generate_address(object.result(), x->offset(), field_type);
1823   }
1824 
1825   if (is_volatile && !needs_patching) {
1826     volatile_field_load(address, reg, info);
1827   } else {
1828     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1829     __ load(address, reg, info, patch_code);
1830   }
1831 
1832   if (is_volatile && os::is_MP()) {
1833     __ membar_acquire();
1834   }
1835 }
1836 
1837 
1838 //------------------------java.nio.Buffer.checkIndex------------------------
1839 
1840 // int java.nio.Buffer.checkIndex(int)
1841 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1842   // NOTE: by the time we are in checkIndex() we are guaranteed that
1843   // the buffer is non-null (because checkIndex is package-private and
1844   // only called from within other methods in the buffer).
1845   assert(x->number_of_arguments() == 2, "wrong type");
1846   LIRItem buf  (x->argument_at(0), this);
1847   LIRItem index(x->argument_at(1), this);
1848   buf.load_item();
1849   index.load_item();
1850 
1851   LIR_Opr result = rlock_result(x);
1852   if (GenerateRangeChecks) {
1853     CodeEmitInfo* info = state_for(x);
1854     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1855     if (index.result()->is_constant()) {
1856       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1857       __ branch(lir_cond_belowEqual, T_INT, stub);
1858     } else {
1859       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1860                   java_nio_Buffer::limit_offset(), T_INT, info);
1861       __ branch(lir_cond_aboveEqual, T_INT, stub);
1862     }
1863     __ move(index.result(), result);
1864   } else {
1865     // Just load the index into the result register
1866     __ move(index.result(), result);
1867   }
1868 }
1869 
1870 
1871 //------------------------array access--------------------------------------
1872 
1873 
1874 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1875   if (x->use_count() == 0 && !x->can_trap()) return;
1876 
1877   LIRItem array(x->array(), this);
1878   array.load_item();
1879   LIR_Opr reg = rlock_result(x);
1880 
1881   CodeEmitInfo* info = NULL;
1882   if (x->needs_null_check()) {
1883     NullCheck* nc = x->explicit_null_check();
1884     if (nc == NULL) {
1885       info = state_for(x);
1886     } else {
1887       info = state_for(nc);
1888     }
1889     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1890       LIR_Opr obj = new_register(T_OBJECT);
1891       __ move(LIR_OprFact::oopConst(NULL), obj);
1892       __ null_check(obj, new CodeEmitInfo(info));
1893     }
1894   }
1895   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1896 }
1897 
1898 
1899 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1900   bool use_length = x->length() != NULL;
1901   LIRItem array(x->array(), this);
1902   LIRItem index(x->index(), this);
1903   LIRItem length(this);
1904   bool needs_range_check = x->compute_needs_range_check();
1905 
1906   if (use_length && needs_range_check) {
1907     length.set_instruction(x->length());
1908     length.load_item();
1909   }
1910 
1911   array.load_item();
1912   if (index.is_constant() && can_inline_as_constant(x->index())) {
1913     // let it be a constant
1914     index.dont_load_item();
1915   } else {
1916     index.load_item();
1917   }
1918 
1919   CodeEmitInfo* range_check_info = state_for(x);
1920   CodeEmitInfo* null_check_info = NULL;
1921   if (x->needs_null_check()) {
1922     NullCheck* nc = x->explicit_null_check();
1923     if (nc != NULL) {
1924       null_check_info = state_for(nc);
1925     } else {
1926       null_check_info = range_check_info;
1927     }
1928     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1929       LIR_Opr obj = new_register(T_OBJECT);
1930       __ move(LIR_OprFact::oopConst(NULL), obj);
1931       __ null_check(obj, new CodeEmitInfo(null_check_info));
1932     }
1933   }
1934 
1935   // emit array address setup early so it schedules better
1936   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1937 
1938   if (GenerateRangeChecks && needs_range_check) {
1939     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1940       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1941     } else if (use_length) {
1942       // TODO: use a (modified) version of array_range_check that does not require a
1943       //       constant length to be loaded to a register
1944       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1945       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1946     } else {
1947       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1948       // The range check performs the null check, so clear it out for the load
1949       null_check_info = NULL;
1950     }
1951   }
1952 
1953   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1954 }
1955 
1956 
1957 void LIRGenerator::do_NullCheck(NullCheck* x) {
1958   if (x->can_trap()) {
1959     LIRItem value(x->obj(), this);
1960     value.load_item();
1961     CodeEmitInfo* info = state_for(x);
1962     __ null_check(value.result(), info);
1963   }
1964 }
1965 
1966 
1967 void LIRGenerator::do_TypeCast(TypeCast* x) {
1968   LIRItem value(x->obj(), this);
1969   value.load_item();
1970   // the result is the same as from the node we are casting
1971   set_result(x, value.result());
1972 }
1973 
1974 
1975 void LIRGenerator::do_Throw(Throw* x) {
1976   LIRItem exception(x->exception(), this);
1977   exception.load_item();
1978   set_no_result(x);
1979   LIR_Opr exception_opr = exception.result();
1980   CodeEmitInfo* info = state_for(x, x->state());
1981 
1982 #ifndef PRODUCT
1983   if (PrintC1Statistics) {
1984     increment_counter(Runtime1::throw_count_address(), T_INT);
1985   }
1986 #endif
1987 
1988   // check if the instruction has an xhandler in any of the nested scopes
1989   bool unwind = false;
1990   if (info->exception_handlers()->length() == 0) {
1991     // this throw is not inside an xhandler
1992     unwind = true;
1993   } else {
1994     // get some idea of the throw type
1995     bool type_is_exact = true;
1996     ciType* throw_type = x->exception()->exact_type();
1997     if (throw_type == NULL) {
1998       type_is_exact = false;
1999       throw_type = x->exception()->declared_type();
2000     }
2001     if (throw_type != NULL && throw_type->is_instance_klass()) {
2002       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2003       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2004     }
2005   }
2006 
2007   // do null check before moving exception oop into fixed register
2008   // to avoid a fixed interval with an oop during the null check.
2009   // Use a copy of the CodeEmitInfo because debug information is
2010   // different for null_check and throw.
2011   if (GenerateCompilerNullChecks &&
2012       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2013     // if the exception object wasn't created using new then it might be null.
2014     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2015   }
2016 
2017   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2018     // we need to go through the exception lookup path to get JVMTI
2019     // notification done
2020     unwind = false;
2021   }
2022 
2023   // move exception oop into fixed register
2024   __ move(exception_opr, exceptionOopOpr());
2025 
2026   if (unwind) {
2027     __ unwind_exception(exceptionOopOpr());
2028   } else {
2029     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2030   }
2031 }
2032 
2033 
2034 void LIRGenerator::do_RoundFP(RoundFP* x) {
2035   LIRItem input(x->input(), this);
2036   input.load_item();
2037   LIR_Opr input_opr = input.result();
2038   assert(input_opr->is_register(), "why round if value is not in a register?");
2039   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2040   if (input_opr->is_single_fpu()) {
2041     set_result(x, round_item(input_opr)); // This code path not currently taken
2042   } else {
2043     LIR_Opr result = new_register(T_DOUBLE);
2044     set_vreg_flag(result, must_start_in_memory);
2045     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2046     set_result(x, result);
2047   }
2048 }
2049 
2050 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2051   LIRItem base(x->base(), this);
2052   LIRItem idx(this);
2053 
2054   base.load_item();
2055   if (x->has_index()) {
2056     idx.set_instruction(x->index());
2057     idx.load_nonconstant();
2058   }
2059 
2060   LIR_Opr reg = rlock_result(x, x->basic_type());
2061 
2062   int   log2_scale = 0;
2063   if (x->has_index()) {
2064     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2065     log2_scale = x->log2_scale();
2066   }
2067 
2068   assert(!x->has_index() || idx.value() == x->index(), "should match");
2069 
2070   LIR_Opr base_op = base.result();
2071 #ifndef _LP64
2072   if (x->base()->type()->tag() == longTag) {
2073     base_op = new_register(T_INT);
2074     __ convert(Bytecodes::_l2i, base.result(), base_op);
2075   } else {
2076     assert(x->base()->type()->tag() == intTag, "must be");
2077   }
2078 #endif
2079 
2080   BasicType dst_type = x->basic_type();
2081   LIR_Opr index_op = idx.result();
2082 
2083   LIR_Address* addr;
2084   if (index_op->is_constant()) {
2085     assert(log2_scale == 0, "must not have a scale");
2086     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2087   } else {
2088 #ifdef X86
2089 #ifdef _LP64
2090     if (!index_op->is_illegal() && index_op->type() == T_INT) {
2091       LIR_Opr tmp = new_pointer_register();
2092       __ convert(Bytecodes::_i2l, index_op, tmp);
2093       index_op = tmp;
2094     }
2095 #endif
2096     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2097 #elif defined(ARM)
2098     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2099 #else
2100     if (index_op->is_illegal() || log2_scale == 0) {
2101 #ifdef _LP64
2102       if (!index_op->is_illegal() && index_op->type() == T_INT) {
2103         LIR_Opr tmp = new_pointer_register();
2104         __ convert(Bytecodes::_i2l, index_op, tmp);
2105         index_op = tmp;
2106       }
2107 #endif
2108       addr = new LIR_Address(base_op, index_op, dst_type);
2109     } else {
2110       LIR_Opr tmp = new_pointer_register();
2111       __ shift_left(index_op, log2_scale, tmp);
2112       addr = new LIR_Address(base_op, tmp, dst_type);
2113     }
2114 #endif
2115   }
2116 
2117   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2118     __ unaligned_move(addr, reg);
2119   } else {
2120     if (dst_type == T_OBJECT && x->is_wide()) {
2121       __ move_wide(addr, reg);
2122     } else {
2123       __ move(addr, reg);
2124     }
2125   }
2126 }
2127 
2128 
2129 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2130   int  log2_scale = 0;
2131   BasicType type = x->basic_type();
2132 
2133   if (x->has_index()) {
2134     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2135     log2_scale = x->log2_scale();
2136   }
2137 
2138   LIRItem base(x->base(), this);
2139   LIRItem value(x->value(), this);
2140   LIRItem idx(this);
2141 
2142   base.load_item();
2143   if (x->has_index()) {
2144     idx.set_instruction(x->index());
2145     idx.load_item();
2146   }
2147 
2148   if (type == T_BYTE || type == T_BOOLEAN) {
2149     value.load_byte_item();
2150   } else {
2151     value.load_item();
2152   }
2153 
2154   set_no_result(x);
2155 
2156   LIR_Opr base_op = base.result();
2157 #ifndef _LP64
2158   if (x->base()->type()->tag() == longTag) {
2159     base_op = new_register(T_INT);
2160     __ convert(Bytecodes::_l2i, base.result(), base_op);
2161   } else {
2162     assert(x->base()->type()->tag() == intTag, "must be");
2163   }
2164 #endif
2165 
2166   LIR_Opr index_op = idx.result();
2167   if (log2_scale != 0) {
2168     // temporary fix (platform dependent code without shift on Intel would be better)
2169     index_op = new_pointer_register();
2170 #ifdef _LP64
2171     if(idx.result()->type() == T_INT) {
2172       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2173     } else {
2174 #endif
2175       // TODO: ARM also allows embedded shift in the address
2176       __ move(idx.result(), index_op);
2177 #ifdef _LP64
2178     }
2179 #endif
2180     __ shift_left(index_op, log2_scale, index_op);
2181   }
2182 #ifdef _LP64
2183   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
2184     LIR_Opr tmp = new_pointer_register();
2185     __ convert(Bytecodes::_i2l, index_op, tmp);
2186     index_op = tmp;
2187   }
2188 #endif
2189 
2190   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2191   __ move(value.result(), addr);
2192 }
2193 
2194 
2195 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2196   BasicType type = x->basic_type();
2197   LIRItem src(x->object(), this);
2198   LIRItem off(x->offset(), this);
2199 
2200   off.load_item();
2201   src.load_item();
2202 
2203   LIR_Opr value = rlock_result(x, x->basic_type());
2204 
2205   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2206 
2207 #if INCLUDE_ALL_GCS
2208   // We might be reading the value of the referent field of a
2209   // Reference object in order to attach it back to the live
2210   // object graph. If G1 is enabled then we need to record
2211   // the value that is being returned in an SATB log buffer.
2212   //
2213   // We need to generate code similar to the following...
2214   //
2215   // if (offset == java_lang_ref_Reference::referent_offset) {
2216   //   if (src != NULL) {
2217   //     if (klass(src)->reference_type() != REF_NONE) {
2218   //       pre_barrier(..., value, ...);
2219   //     }
2220   //   }
2221   // }
2222 
2223   if (UseG1GC && type == T_OBJECT) {
2224     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2225     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2226     bool gen_source_check = true;    // Assume we need to check the src object for null.
2227     bool gen_type_check = true;      // Assume we need to check the reference_type.
2228 
2229     if (off.is_constant()) {
2230       jlong off_con = (off.type()->is_int() ?
2231                         (jlong) off.get_jint_constant() :
2232                         off.get_jlong_constant());
2233 
2234 
2235       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2236         // The constant offset is something other than referent_offset.
2237         // We can skip generating/checking the remaining guards and
2238         // skip generation of the code stub.
2239         gen_pre_barrier = false;
2240       } else {
2241         // The constant offset is the same as referent_offset -
2242         // we do not need to generate a runtime offset check.
2243         gen_offset_check = false;
2244       }
2245     }
2246 
2247     // We don't need to generate stub if the source object is an array
2248     if (gen_pre_barrier && src.type()->is_array()) {
2249       gen_pre_barrier = false;
2250     }
2251 
2252     if (gen_pre_barrier) {
2253       // We still need to continue with the checks.
2254       if (src.is_constant()) {
2255         ciObject* src_con = src.get_jobject_constant();
2256 
2257         if (src_con->is_null_object()) {
2258           // The constant src object is null - We can skip
2259           // generating the code stub.
2260           gen_pre_barrier = false;
2261         } else {
2262           // Non-null constant source object. We still have to generate
2263           // the slow stub - but we don't need to generate the runtime
2264           // null object check.
2265           gen_source_check = false;
2266         }
2267       }
2268     }
2269     if (gen_pre_barrier && !PatchALot) {
2270       // Can the klass of object be statically determined to be
2271       // a sub-class of Reference?
2272       ciType* type = src.value()->declared_type();
2273       if ((type != NULL) && type->is_loaded()) {
2274         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2275           gen_type_check = false;
2276         } else if (type->is_klass() &&
2277                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2278           // Not Reference and not Object klass.
2279           gen_pre_barrier = false;
2280         }
2281       }
2282     }
2283 
2284     if (gen_pre_barrier) {
2285       LabelObj* Lcont = new LabelObj();
2286 
2287       // We can have generate one runtime check here. Let's start with
2288       // the offset check.
2289       if (gen_offset_check) {
2290         // if (offset != referent_offset) -> continue
2291         // If offset is an int then we can do the comparison with the
2292         // referent_offset constant; otherwise we need to move
2293         // referent_offset into a temporary register and generate
2294         // a reg-reg compare.
2295 
2296         LIR_Opr referent_off;
2297 
2298         if (off.type()->is_int()) {
2299           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2300         } else {
2301           assert(off.type()->is_long(), "what else?");
2302           referent_off = new_register(T_LONG);
2303           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2304         }
2305         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2306         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2307       }
2308       if (gen_source_check) {
2309         // offset is a const and equals referent offset
2310         // if (source == null) -> continue
2311         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2312         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2313       }
2314       LIR_Opr src_klass = new_register(T_OBJECT);
2315       if (gen_type_check) {
2316         // We have determined that offset == referent_offset && src != null.
2317         // if (src->_klass->_reference_type == REF_NONE) -> continue
2318         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), UseCompressedKlassPointers ? T_OBJECT : T_ADDRESS), src_klass);
2319         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2320         LIR_Opr reference_type = new_register(T_INT);
2321         __ move(reference_type_addr, reference_type);
2322         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2323         __ branch(lir_cond_equal, T_INT, Lcont->label());
2324       }
2325       {
2326         // We have determined that src->_klass->_reference_type != REF_NONE
2327         // so register the value in the referent field with the pre-barrier.
2328         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2329                     value  /* pre_val */,
2330                     false  /* do_load */,
2331                     false  /* patch */,
2332                     NULL   /* info */);
2333       }
2334       __ branch_destination(Lcont->label());
2335     }
2336   }
2337 #endif // INCLUDE_ALL_GCS
2338 
2339   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2340 }
2341 
2342 
2343 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2344   BasicType type = x->basic_type();
2345   LIRItem src(x->object(), this);
2346   LIRItem off(x->offset(), this);
2347   LIRItem data(x->value(), this);
2348 
2349   src.load_item();
2350   if (type == T_BOOLEAN || type == T_BYTE) {
2351     data.load_byte_item();
2352   } else {
2353     data.load_item();
2354   }
2355   off.load_item();
2356 
2357   set_no_result(x);
2358 
2359   if (x->is_volatile() && os::is_MP()) __ membar_release();
2360   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2361   if (x->is_volatile() && os::is_MP()) __ membar();
2362 }
2363 
2364 
2365 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2366   LIRItem src(x->object(), this);
2367   LIRItem off(x->offset(), this);
2368 
2369   src.load_item();
2370   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2371     // let it be a constant
2372     off.dont_load_item();
2373   } else {
2374     off.load_item();
2375   }
2376 
2377   set_no_result(x);
2378 
2379   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2380   __ prefetch(addr, is_store);
2381 }
2382 
2383 
2384 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2385   do_UnsafePrefetch(x, false);
2386 }
2387 
2388 
2389 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2390   do_UnsafePrefetch(x, true);
2391 }
2392 
2393 
2394 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2395   int lng = x->length();
2396 
2397   for (int i = 0; i < lng; i++) {
2398     SwitchRange* one_range = x->at(i);
2399     int low_key = one_range->low_key();
2400     int high_key = one_range->high_key();
2401     BlockBegin* dest = one_range->sux();
2402     if (low_key == high_key) {
2403       __ cmp(lir_cond_equal, value, low_key);
2404       __ branch(lir_cond_equal, T_INT, dest);
2405     } else if (high_key - low_key == 1) {
2406       __ cmp(lir_cond_equal, value, low_key);
2407       __ branch(lir_cond_equal, T_INT, dest);
2408       __ cmp(lir_cond_equal, value, high_key);
2409       __ branch(lir_cond_equal, T_INT, dest);
2410     } else {
2411       LabelObj* L = new LabelObj();
2412       __ cmp(lir_cond_less, value, low_key);
2413       __ branch(lir_cond_less, T_INT, L->label());
2414       __ cmp(lir_cond_lessEqual, value, high_key);
2415       __ branch(lir_cond_lessEqual, T_INT, dest);
2416       __ branch_destination(L->label());
2417     }
2418   }
2419   __ jump(default_sux);
2420 }
2421 
2422 
2423 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2424   SwitchRangeList* res = new SwitchRangeList();
2425   int len = x->length();
2426   if (len > 0) {
2427     BlockBegin* sux = x->sux_at(0);
2428     int key = x->lo_key();
2429     BlockBegin* default_sux = x->default_sux();
2430     SwitchRange* range = new SwitchRange(key, sux);
2431     for (int i = 0; i < len; i++, key++) {
2432       BlockBegin* new_sux = x->sux_at(i);
2433       if (sux == new_sux) {
2434         // still in same range
2435         range->set_high_key(key);
2436       } else {
2437         // skip tests which explicitly dispatch to the default
2438         if (sux != default_sux) {
2439           res->append(range);
2440         }
2441         range = new SwitchRange(key, new_sux);
2442       }
2443       sux = new_sux;
2444     }
2445     if (res->length() == 0 || res->last() != range)  res->append(range);
2446   }
2447   return res;
2448 }
2449 
2450 
2451 // we expect the keys to be sorted by increasing value
2452 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2453   SwitchRangeList* res = new SwitchRangeList();
2454   int len = x->length();
2455   if (len > 0) {
2456     BlockBegin* default_sux = x->default_sux();
2457     int key = x->key_at(0);
2458     BlockBegin* sux = x->sux_at(0);
2459     SwitchRange* range = new SwitchRange(key, sux);
2460     for (int i = 1; i < len; i++) {
2461       int new_key = x->key_at(i);
2462       BlockBegin* new_sux = x->sux_at(i);
2463       if (key+1 == new_key && sux == new_sux) {
2464         // still in same range
2465         range->set_high_key(new_key);
2466       } else {
2467         // skip tests which explicitly dispatch to the default
2468         if (range->sux() != default_sux) {
2469           res->append(range);
2470         }
2471         range = new SwitchRange(new_key, new_sux);
2472       }
2473       key = new_key;
2474       sux = new_sux;
2475     }
2476     if (res->length() == 0 || res->last() != range)  res->append(range);
2477   }
2478   return res;
2479 }
2480 
2481 
2482 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2483   LIRItem tag(x->tag(), this);
2484   tag.load_item();
2485   set_no_result(x);
2486 
2487   if (x->is_safepoint()) {
2488     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2489   }
2490 
2491   // move values into phi locations
2492   move_to_phi(x->state());
2493 
2494   int lo_key = x->lo_key();
2495   int hi_key = x->hi_key();
2496   int len = x->length();
2497   LIR_Opr value = tag.result();
2498   if (UseTableRanges) {
2499     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2500   } else {
2501     for (int i = 0; i < len; i++) {
2502       __ cmp(lir_cond_equal, value, i + lo_key);
2503       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2504     }
2505     __ jump(x->default_sux());
2506   }
2507 }
2508 
2509 
2510 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2511   LIRItem tag(x->tag(), this);
2512   tag.load_item();
2513   set_no_result(x);
2514 
2515   if (x->is_safepoint()) {
2516     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2517   }
2518 
2519   // move values into phi locations
2520   move_to_phi(x->state());
2521 
2522   LIR_Opr value = tag.result();
2523   if (UseTableRanges) {
2524     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2525   } else {
2526     int len = x->length();
2527     for (int i = 0; i < len; i++) {
2528       __ cmp(lir_cond_equal, value, x->key_at(i));
2529       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2530     }
2531     __ jump(x->default_sux());
2532   }
2533 }
2534 
2535 
2536 void LIRGenerator::do_Goto(Goto* x) {
2537   set_no_result(x);
2538 
2539   if (block()->next()->as_OsrEntry()) {
2540     // need to free up storage used for OSR entry point
2541     LIR_Opr osrBuffer = block()->next()->operand();
2542     BasicTypeList signature;
2543     signature.append(T_INT);
2544     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2545     __ move(osrBuffer, cc->args()->at(0));
2546     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2547                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2548   }
2549 
2550   if (x->is_safepoint()) {
2551     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2552 
2553     // increment backedge counter if needed
2554     CodeEmitInfo* info = state_for(x, state);
2555     increment_backedge_counter(info, x->profiled_bci());
2556     CodeEmitInfo* safepoint_info = state_for(x, state);
2557     __ safepoint(safepoint_poll_register(), safepoint_info);
2558   }
2559 
2560   // Gotos can be folded Ifs, handle this case.
2561   if (x->should_profile()) {
2562     ciMethod* method = x->profiled_method();
2563     assert(method != NULL, "method should be set if branch is profiled");
2564     ciMethodData* md = method->method_data_or_null();
2565     assert(md != NULL, "Sanity");
2566     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2567     assert(data != NULL, "must have profiling data");
2568     int offset;
2569     if (x->direction() == Goto::taken) {
2570       assert(data->is_BranchData(), "need BranchData for two-way branches");
2571       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2572     } else if (x->direction() == Goto::not_taken) {
2573       assert(data->is_BranchData(), "need BranchData for two-way branches");
2574       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2575     } else {
2576       assert(data->is_JumpData(), "need JumpData for branches");
2577       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2578     }
2579     LIR_Opr md_reg = new_register(T_METADATA);
2580     __ metadata2reg(md->constant_encoding(), md_reg);
2581 
2582     increment_counter(new LIR_Address(md_reg, offset,
2583                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2584   }
2585 
2586   // emit phi-instruction move after safepoint since this simplifies
2587   // describing the state as the safepoint.
2588   move_to_phi(x->state());
2589 
2590   __ jump(x->default_sux());
2591 }
2592 
2593 
2594 void LIRGenerator::do_Base(Base* x) {
2595   __ std_entry(LIR_OprFact::illegalOpr);
2596   // Emit moves from physical registers / stack slots to virtual registers
2597   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2598   IRScope* irScope = compilation()->hir()->top_scope();
2599   int java_index = 0;
2600   for (int i = 0; i < args->length(); i++) {
2601     LIR_Opr src = args->at(i);
2602     assert(!src->is_illegal(), "check");
2603     BasicType t = src->type();
2604 
2605     // Types which are smaller than int are passed as int, so
2606     // correct the type which passed.
2607     switch (t) {
2608     case T_BYTE:
2609     case T_BOOLEAN:
2610     case T_SHORT:
2611     case T_CHAR:
2612       t = T_INT;
2613       break;
2614     }
2615 
2616     LIR_Opr dest = new_register(t);
2617     __ move(src, dest);
2618 
2619     // Assign new location to Local instruction for this local
2620     Local* local = x->state()->local_at(java_index)->as_Local();
2621     assert(local != NULL, "Locals for incoming arguments must have been created");
2622 #ifndef __SOFTFP__
2623     // The java calling convention passes double as long and float as int.
2624     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2625 #endif // __SOFTFP__
2626     local->set_operand(dest);
2627     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2628     java_index += type2size[t];
2629   }
2630 
2631   if (compilation()->env()->dtrace_method_probes()) {
2632     BasicTypeList signature;
2633     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2634     signature.append(T_OBJECT); // Method*
2635     LIR_OprList* args = new LIR_OprList();
2636     args->append(getThreadPointer());
2637     LIR_Opr meth = new_register(T_METADATA);
2638     __ metadata2reg(method()->constant_encoding(), meth);
2639     args->append(meth);
2640     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2641   }
2642 
2643   if (method()->is_synchronized()) {
2644     LIR_Opr obj;
2645     if (method()->is_static()) {
2646       obj = new_register(T_OBJECT);
2647       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2648     } else {
2649       Local* receiver = x->state()->local_at(0)->as_Local();
2650       assert(receiver != NULL, "must already exist");
2651       obj = receiver->operand();
2652     }
2653     assert(obj->is_valid(), "must be valid");
2654 
2655     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2656       LIR_Opr lock = new_register(T_INT);
2657       __ load_stack_address_monitor(0, lock);
2658 
2659       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2660       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2661 
2662       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2663       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2664     }
2665   }
2666 
2667   // increment invocation counters if needed
2668   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2669     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2670     increment_invocation_counter(info);
2671   }
2672 
2673   // all blocks with a successor must end with an unconditional jump
2674   // to the successor even if they are consecutive
2675   __ jump(x->default_sux());
2676 }
2677 
2678 
2679 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2680   // construct our frame and model the production of incoming pointer
2681   // to the OSR buffer.
2682   __ osr_entry(LIR_Assembler::osrBufferPointer());
2683   LIR_Opr result = rlock_result(x);
2684   __ move(LIR_Assembler::osrBufferPointer(), result);
2685 }
2686 
2687 
2688 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2689   assert(args->length() == arg_list->length(),
2690          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2691   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2692     LIRItem* param = args->at(i);
2693     LIR_Opr loc = arg_list->at(i);
2694     if (loc->is_register()) {
2695       param->load_item_force(loc);
2696     } else {
2697       LIR_Address* addr = loc->as_address_ptr();
2698       param->load_for_store(addr->type());
2699       if (addr->type() == T_OBJECT) {
2700         __ move_wide(param->result(), addr);
2701       } else
2702         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2703           __ unaligned_move(param->result(), addr);
2704         } else {
2705           __ move(param->result(), addr);
2706         }
2707     }
2708   }
2709 
2710   if (x->has_receiver()) {
2711     LIRItem* receiver = args->at(0);
2712     LIR_Opr loc = arg_list->at(0);
2713     if (loc->is_register()) {
2714       receiver->load_item_force(loc);
2715     } else {
2716       assert(loc->is_address(), "just checking");
2717       receiver->load_for_store(T_OBJECT);
2718       __ move_wide(receiver->result(), loc->as_address_ptr());
2719     }
2720   }
2721 }
2722 
2723 
2724 // Visits all arguments, returns appropriate items without loading them
2725 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2726   LIRItemList* argument_items = new LIRItemList();
2727   if (x->has_receiver()) {
2728     LIRItem* receiver = new LIRItem(x->receiver(), this);
2729     argument_items->append(receiver);
2730   }
2731   for (int i = 0; i < x->number_of_arguments(); i++) {
2732     LIRItem* param = new LIRItem(x->argument_at(i), this);
2733     argument_items->append(param);
2734   }
2735   return argument_items;
2736 }
2737 
2738 
2739 // The invoke with receiver has following phases:
2740 //   a) traverse and load/lock receiver;
2741 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2742 //   c) push receiver on stack
2743 //   d) load each of the items and push on stack
2744 //   e) unlock receiver
2745 //   f) move receiver into receiver-register %o0
2746 //   g) lock result registers and emit call operation
2747 //
2748 // Before issuing a call, we must spill-save all values on stack
2749 // that are in caller-save register. "spill-save" moves thos registers
2750 // either in a free callee-save register or spills them if no free
2751 // callee save register is available.
2752 //
2753 // The problem is where to invoke spill-save.
2754 // - if invoked between e) and f), we may lock callee save
2755 //   register in "spill-save" that destroys the receiver register
2756 //   before f) is executed
2757 // - if we rearange the f) to be earlier, by loading %o0, it
2758 //   may destroy a value on the stack that is currently in %o0
2759 //   and is waiting to be spilled
2760 // - if we keep the receiver locked while doing spill-save,
2761 //   we cannot spill it as it is spill-locked
2762 //
2763 void LIRGenerator::do_Invoke(Invoke* x) {
2764   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2765 
2766   LIR_OprList* arg_list = cc->args();
2767   LIRItemList* args = invoke_visit_arguments(x);
2768   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2769 
2770   // setup result register
2771   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2772   if (x->type() != voidType) {
2773     result_register = result_register_for(x->type());
2774   }
2775 
2776   CodeEmitInfo* info = state_for(x, x->state());
2777 
2778   invoke_load_arguments(x, args, arg_list);
2779 
2780   if (x->has_receiver()) {
2781     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2782     receiver = args->at(0)->result();
2783   }
2784 
2785   // emit invoke code
2786   bool optimized = x->target_is_loaded() && x->target_is_final();
2787   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2788 
2789   // JSR 292
2790   // Preserve the SP over MethodHandle call sites.
2791   ciMethod* target = x->target();
2792   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2793                                   target->is_method_handle_intrinsic() ||
2794                                   target->is_compiled_lambda_form());
2795   if (is_method_handle_invoke) {
2796     info->set_is_method_handle_invoke(true);
2797     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2798   }
2799 
2800   switch (x->code()) {
2801     case Bytecodes::_invokestatic:
2802       __ call_static(target, result_register,
2803                      SharedRuntime::get_resolve_static_call_stub(),
2804                      arg_list, info);
2805       break;
2806     case Bytecodes::_invokespecial:
2807     case Bytecodes::_invokevirtual:
2808     case Bytecodes::_invokeinterface:
2809       // for final target we still produce an inline cache, in order
2810       // to be able to call mixed mode
2811       if (x->code() == Bytecodes::_invokespecial || optimized) {
2812         __ call_opt_virtual(target, receiver, result_register,
2813                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2814                             arg_list, info);
2815       } else if (x->vtable_index() < 0) {
2816         __ call_icvirtual(target, receiver, result_register,
2817                           SharedRuntime::get_resolve_virtual_call_stub(),
2818                           arg_list, info);
2819       } else {
2820         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2821         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2822         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2823       }
2824       break;
2825     case Bytecodes::_invokedynamic: {
2826       __ call_dynamic(target, receiver, result_register,
2827                       SharedRuntime::get_resolve_static_call_stub(),
2828                       arg_list, info);
2829       break;
2830     }
2831     default:
2832       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2833       break;
2834   }
2835 
2836   // JSR 292
2837   // Restore the SP after MethodHandle call sites.
2838   if (is_method_handle_invoke) {
2839     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2840   }
2841 
2842   if (x->type()->is_float() || x->type()->is_double()) {
2843     // Force rounding of results from non-strictfp when in strictfp
2844     // scope (or when we don't know the strictness of the callee, to
2845     // be safe.)
2846     if (method()->is_strict()) {
2847       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2848         result_register = round_item(result_register);
2849       }
2850     }
2851   }
2852 
2853   if (result_register->is_valid()) {
2854     LIR_Opr result = rlock_result(x);
2855     __ move(result_register, result);
2856   }
2857 }
2858 
2859 
2860 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2861   assert(x->number_of_arguments() == 1, "wrong type");
2862   LIRItem value       (x->argument_at(0), this);
2863   LIR_Opr reg = rlock_result(x);
2864   value.load_item();
2865   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2866   __ move(tmp, reg);
2867 }
2868 
2869 
2870 
2871 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2872 void LIRGenerator::do_IfOp(IfOp* x) {
2873 #ifdef ASSERT
2874   {
2875     ValueTag xtag = x->x()->type()->tag();
2876     ValueTag ttag = x->tval()->type()->tag();
2877     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2878     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2879     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2880   }
2881 #endif
2882 
2883   LIRItem left(x->x(), this);
2884   LIRItem right(x->y(), this);
2885   left.load_item();
2886   if (can_inline_as_constant(right.value())) {
2887     right.dont_load_item();
2888   } else {
2889     right.load_item();
2890   }
2891 
2892   LIRItem t_val(x->tval(), this);
2893   LIRItem f_val(x->fval(), this);
2894   t_val.dont_load_item();
2895   f_val.dont_load_item();
2896   LIR_Opr reg = rlock_result(x);
2897 
2898   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2899   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2900 }
2901 
2902 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
2903     assert(x->number_of_arguments() == expected_arguments, "wrong type");
2904     LIR_Opr reg = result_register_for(x->type());
2905     __ call_runtime_leaf(routine, getThreadTemp(),
2906                          reg, new LIR_OprList());
2907     LIR_Opr result = rlock_result(x);
2908     __ move(reg, result);
2909 }
2910 
2911 #ifdef TRACE_HAVE_INTRINSICS
2912 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
2913     LIR_Opr thread = getThreadPointer();
2914     LIR_Opr osthread = new_pointer_register();
2915     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
2916     size_t thread_id_size = OSThread::thread_id_size();
2917     if (thread_id_size == (size_t) BytesPerLong) {
2918       LIR_Opr id = new_register(T_LONG);
2919       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
2920       __ convert(Bytecodes::_l2i, id, rlock_result(x));
2921     } else if (thread_id_size == (size_t) BytesPerInt) {
2922       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
2923     } else {
2924       ShouldNotReachHere();
2925     }
2926 }
2927 
2928 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
2929     CodeEmitInfo* info = state_for(x);
2930     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
2931     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
2932     assert(info != NULL, "must have info");
2933     LIRItem arg(x->argument_at(1), this);
2934     arg.load_item();
2935     LIR_Opr klass = new_pointer_register();
2936     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
2937     LIR_Opr id = new_register(T_LONG);
2938     ByteSize offset = TRACE_ID_OFFSET;
2939     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
2940     __ move(trace_id_addr, id);
2941     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
2942     __ store(id, trace_id_addr);
2943     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
2944     __ move(id, rlock_result(x));
2945 }
2946 #endif
2947 
2948 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2949   switch (x->id()) {
2950   case vmIntrinsics::_intBitsToFloat      :
2951   case vmIntrinsics::_doubleToRawLongBits :
2952   case vmIntrinsics::_longBitsToDouble    :
2953   case vmIntrinsics::_floatToRawIntBits   : {
2954     do_FPIntrinsics(x);
2955     break;
2956   }
2957 
2958 #ifdef TRACE_HAVE_INTRINSICS
2959   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
2960   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
2961   case vmIntrinsics::_counterTime:
2962     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
2963     break;
2964 #endif
2965 
2966   case vmIntrinsics::_currentTimeMillis:
2967     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
2968     break;
2969 
2970   case vmIntrinsics::_nanoTime:
2971     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
2972     break;
2973 
2974   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2975   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2976   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2977   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2978 
2979   case vmIntrinsics::_dlog:           // fall through
2980   case vmIntrinsics::_dlog10:         // fall through
2981   case vmIntrinsics::_dabs:           // fall through
2982   case vmIntrinsics::_dsqrt:          // fall through
2983   case vmIntrinsics::_dtan:           // fall through
2984   case vmIntrinsics::_dsin :          // fall through
2985   case vmIntrinsics::_dcos :          // fall through
2986   case vmIntrinsics::_dexp :          // fall through
2987   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2988   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2989 
2990   // java.nio.Buffer.checkIndex
2991   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2992 
2993   case vmIntrinsics::_compareAndSwapObject:
2994     do_CompareAndSwap(x, objectType);
2995     break;
2996   case vmIntrinsics::_compareAndSwapInt:
2997     do_CompareAndSwap(x, intType);
2998     break;
2999   case vmIntrinsics::_compareAndSwapLong:
3000     do_CompareAndSwap(x, longType);
3001     break;
3002 
3003   case vmIntrinsics::_loadFence :
3004     if (os::is_MP()) __ membar_acquire();
3005     break;
3006   case vmIntrinsics::_storeFence:
3007     if (os::is_MP()) __ membar_release();
3008     break;
3009   case vmIntrinsics::_fullFence :
3010     if (os::is_MP()) __ membar();
3011     break;
3012 
3013   case vmIntrinsics::_Reference_get:
3014     do_Reference_get(x);
3015     break;
3016 
3017   default: ShouldNotReachHere(); break;
3018   }
3019 }
3020 
3021 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3022   // Need recv in a temporary register so it interferes with the other temporaries
3023   LIR_Opr recv = LIR_OprFact::illegalOpr;
3024   LIR_Opr mdo = new_register(T_OBJECT);
3025   // tmp is used to hold the counters on SPARC
3026   LIR_Opr tmp = new_pointer_register();
3027   if (x->recv() != NULL) {
3028     LIRItem value(x->recv(), this);
3029     value.load_item();
3030     recv = new_register(T_OBJECT);
3031     __ move(value.result(), recv);
3032   }
3033   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3034 }
3035 
3036 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3037   // We can safely ignore accessors here, since c2 will inline them anyway,
3038   // accessors are also always mature.
3039   if (!x->inlinee()->is_accessor()) {
3040     CodeEmitInfo* info = state_for(x, x->state(), true);
3041     // Notify the runtime very infrequently only to take care of counter overflows
3042     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3043   }
3044 }
3045 
3046 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3047   int freq_log;
3048   int level = compilation()->env()->comp_level();
3049   if (level == CompLevel_limited_profile) {
3050     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3051   } else if (level == CompLevel_full_profile) {
3052     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3053   } else {
3054     ShouldNotReachHere();
3055   }
3056   // Increment the appropriate invocation/backedge counter and notify the runtime.
3057   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3058 }
3059 
3060 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3061                                                 ciMethod *method, int frequency,
3062                                                 int bci, bool backedge, bool notify) {
3063   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3064   int level = _compilation->env()->comp_level();
3065   assert(level > CompLevel_simple, "Shouldn't be here");
3066 
3067   int offset = -1;
3068   LIR_Opr counter_holder = new_register(T_METADATA);
3069   LIR_Opr meth;
3070   if (level == CompLevel_limited_profile) {
3071     offset = in_bytes(backedge ? Method::backedge_counter_offset() :
3072                                  Method::invocation_counter_offset());
3073     __ metadata2reg(method->constant_encoding(), counter_holder);
3074     meth = counter_holder;
3075   } else if (level == CompLevel_full_profile) {
3076     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3077                                  MethodData::invocation_counter_offset());
3078     ciMethodData* md = method->method_data_or_null();
3079     assert(md != NULL, "Sanity");
3080     __ metadata2reg(md->constant_encoding(), counter_holder);
3081     meth = new_register(T_METADATA);
3082     __ metadata2reg(method->constant_encoding(), meth);
3083   } else {
3084     ShouldNotReachHere();
3085   }
3086   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3087   LIR_Opr result = new_register(T_INT);
3088   __ load(counter, result);
3089   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3090   __ store(result, counter);
3091   if (notify) {
3092     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3093     __ logical_and(result, mask, result);
3094     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3095     // The bci for info can point to cmp for if's we want the if bci
3096     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3097     __ branch(lir_cond_equal, T_INT, overflow);
3098     __ branch_destination(overflow->continuation());
3099   }
3100 }
3101 
3102 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3103   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3104   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3105 
3106   if (x->pass_thread()) {
3107     signature->append(T_ADDRESS);
3108     args->append(getThreadPointer());
3109   }
3110 
3111   for (int i = 0; i < x->number_of_arguments(); i++) {
3112     Value a = x->argument_at(i);
3113     LIRItem* item = new LIRItem(a, this);
3114     item->load_item();
3115     args->append(item->result());
3116     signature->append(as_BasicType(a->type()));
3117   }
3118 
3119   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3120   if (x->type() == voidType) {
3121     set_no_result(x);
3122   } else {
3123     __ move(result, rlock_result(x));
3124   }
3125 }
3126 
3127 void LIRGenerator::do_Assert(Assert *x) {
3128 #ifndef PRODUCT
3129   ValueTag tag = x->x()->type()->tag();
3130   If::Condition cond = x->cond();
3131 
3132   LIRItem xitem(x->x(), this);
3133   LIRItem yitem(x->y(), this);
3134   LIRItem* xin = &xitem;
3135   LIRItem* yin = &yitem;
3136 
3137   assert(tag == intTag, "Only integer assertions are valid!");
3138 
3139   xin->load_item();
3140   yin->dont_load_item();
3141 
3142   set_no_result(x);
3143 
3144   LIR_Opr left = xin->result();
3145   LIR_Opr right = yin->result();
3146 
3147   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3148 
3149 #endif
3150 }
3151 
3152 
3153 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3154 
3155 
3156   Instruction *a = x->x();
3157   Instruction *b = x->y();
3158   if (!a || StressRangeCheckElimination) {
3159     assert(!b || StressRangeCheckElimination, "B must also be null");
3160 
3161     CodeEmitInfo *info = state_for(x, x->state());
3162     CodeStub* stub = new PredicateFailedStub(info);
3163 
3164     __ jump(stub);
3165   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3166     int a_int = a->type()->as_IntConstant()->value();
3167     int b_int = b->type()->as_IntConstant()->value();
3168 
3169     bool ok = false;
3170 
3171     switch(x->cond()) {
3172       case Instruction::eql: ok = (a_int == b_int); break;
3173       case Instruction::neq: ok = (a_int != b_int); break;
3174       case Instruction::lss: ok = (a_int < b_int); break;
3175       case Instruction::leq: ok = (a_int <= b_int); break;
3176       case Instruction::gtr: ok = (a_int > b_int); break;
3177       case Instruction::geq: ok = (a_int >= b_int); break;
3178       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3179       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3180       default: ShouldNotReachHere();
3181     }
3182 
3183     if (ok) {
3184 
3185       CodeEmitInfo *info = state_for(x, x->state());
3186       CodeStub* stub = new PredicateFailedStub(info);
3187 
3188       __ jump(stub);
3189     }
3190   } else {
3191 
3192     ValueTag tag = x->x()->type()->tag();
3193     If::Condition cond = x->cond();
3194     LIRItem xitem(x->x(), this);
3195     LIRItem yitem(x->y(), this);
3196     LIRItem* xin = &xitem;
3197     LIRItem* yin = &yitem;
3198 
3199     assert(tag == intTag, "Only integer deoptimizations are valid!");
3200 
3201     xin->load_item();
3202     yin->dont_load_item();
3203     set_no_result(x);
3204 
3205     LIR_Opr left = xin->result();
3206     LIR_Opr right = yin->result();
3207 
3208     CodeEmitInfo *info = state_for(x, x->state());
3209     CodeStub* stub = new PredicateFailedStub(info);
3210 
3211     __ cmp(lir_cond(cond), left, right);
3212     __ branch(lir_cond(cond), right->type(), stub);
3213   }
3214 }
3215 
3216 
3217 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3218   LIRItemList args(1);
3219   LIRItem value(arg1, this);
3220   args.append(&value);
3221   BasicTypeList signature;
3222   signature.append(as_BasicType(arg1->type()));
3223 
3224   return call_runtime(&signature, &args, entry, result_type, info);
3225 }
3226 
3227 
3228 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3229   LIRItemList args(2);
3230   LIRItem value1(arg1, this);
3231   LIRItem value2(arg2, this);
3232   args.append(&value1);
3233   args.append(&value2);
3234   BasicTypeList signature;
3235   signature.append(as_BasicType(arg1->type()));
3236   signature.append(as_BasicType(arg2->type()));
3237 
3238   return call_runtime(&signature, &args, entry, result_type, info);
3239 }
3240 
3241 
3242 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3243                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3244   // get a result register
3245   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3246   LIR_Opr result = LIR_OprFact::illegalOpr;
3247   if (result_type->tag() != voidTag) {
3248     result = new_register(result_type);
3249     phys_reg = result_register_for(result_type);
3250   }
3251 
3252   // move the arguments into the correct location
3253   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3254   assert(cc->length() == args->length(), "argument mismatch");
3255   for (int i = 0; i < args->length(); i++) {
3256     LIR_Opr arg = args->at(i);
3257     LIR_Opr loc = cc->at(i);
3258     if (loc->is_register()) {
3259       __ move(arg, loc);
3260     } else {
3261       LIR_Address* addr = loc->as_address_ptr();
3262 //           if (!can_store_as_constant(arg)) {
3263 //             LIR_Opr tmp = new_register(arg->type());
3264 //             __ move(arg, tmp);
3265 //             arg = tmp;
3266 //           }
3267       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3268         __ unaligned_move(arg, addr);
3269       } else {
3270         __ move(arg, addr);
3271       }
3272     }
3273   }
3274 
3275   if (info) {
3276     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3277   } else {
3278     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3279   }
3280   if (result->is_valid()) {
3281     __ move(phys_reg, result);
3282   }
3283   return result;
3284 }
3285 
3286 
3287 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3288                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3289   // get a result register
3290   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3291   LIR_Opr result = LIR_OprFact::illegalOpr;
3292   if (result_type->tag() != voidTag) {
3293     result = new_register(result_type);
3294     phys_reg = result_register_for(result_type);
3295   }
3296 
3297   // move the arguments into the correct location
3298   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3299 
3300   assert(cc->length() == args->length(), "argument mismatch");
3301   for (int i = 0; i < args->length(); i++) {
3302     LIRItem* arg = args->at(i);
3303     LIR_Opr loc = cc->at(i);
3304     if (loc->is_register()) {
3305       arg->load_item_force(loc);
3306     } else {
3307       LIR_Address* addr = loc->as_address_ptr();
3308       arg->load_for_store(addr->type());
3309       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3310         __ unaligned_move(arg->result(), addr);
3311       } else {
3312         __ move(arg->result(), addr);
3313       }
3314     }
3315   }
3316 
3317   if (info) {
3318     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3319   } else {
3320     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3321   }
3322   if (result->is_valid()) {
3323     __ move(phys_reg, result);
3324   }
3325   return result;
3326 }
3327 
3328 void LIRGenerator::do_MemBar(MemBar* x) {
3329   if (os::is_MP()) {
3330     LIR_Code code = x->code();
3331     switch(code) {
3332       case lir_membar_acquire   : __ membar_acquire(); break;
3333       case lir_membar_release   : __ membar_release(); break;
3334       case lir_membar           : __ membar(); break;
3335       case lir_membar_loadload  : __ membar_loadload(); break;
3336       case lir_membar_storestore: __ membar_storestore(); break;
3337       case lir_membar_loadstore : __ membar_loadstore(); break;
3338       case lir_membar_storeload : __ membar_storeload(); break;
3339       default                   : ShouldNotReachHere(); break;
3340     }
3341   }
3342 }