1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "assembler_x86.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_bsd.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_bsd.inline.hpp"
  36 #include "nativeInst_x86.hpp"
  37 #include "os_share_bsd.hpp"
  38 #include "prims/jniFastGetField.hpp"
  39 #include "prims/jvm.h"
  40 #include "prims/jvm_misc.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "thread_bsd.inline.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 #ifdef COMPILER1
  56 #include "c1/c1_Runtime1.hpp"
  57 #endif
  58 #ifdef COMPILER2
  59 #include "opto/runtime.hpp"
  60 #endif
  61 
  62 // put OS-includes here
  63 # include <sys/types.h>
  64 # include <sys/mman.h>
  65 # include <pthread.h>
  66 # include <signal.h>
  67 # include <errno.h>
  68 # include <dlfcn.h>
  69 # include <stdlib.h>
  70 # include <stdio.h>
  71 # include <unistd.h>
  72 # include <sys/resource.h>
  73 # include <pthread.h>
  74 # include <sys/stat.h>
  75 # include <sys/time.h>
  76 # include <sys/utsname.h>
  77 # include <sys/socket.h>
  78 # include <sys/wait.h>
  79 # include <pwd.h>
  80 # include <poll.h>
  81 #ifndef __OpenBSD__
  82 # include <ucontext.h>
  83 #endif
  84 
  85 #if defined(_ALLBSD_SOURCE) && !defined(__APPLE__) && !defined(__NetBSD__)
  86 # include <pthread_np.h>
  87 #endif
  88 
  89 #ifdef AMD64
  90 #define SPELL_REG_SP "rsp"
  91 #define SPELL_REG_FP "rbp"
  92 #else
  93 #define SPELL_REG_SP "esp"
  94 #define SPELL_REG_FP "ebp"
  95 #endif // AMD64
  96 
  97 #ifdef __FreeBSD__
  98 # define context_trapno uc_mcontext.mc_trapno
  99 # ifdef AMD64
 100 #  define context_pc uc_mcontext.mc_rip
 101 #  define context_sp uc_mcontext.mc_rsp
 102 #  define context_fp uc_mcontext.mc_rbp
 103 #  define context_rip uc_mcontext.mc_rip
 104 #  define context_rsp uc_mcontext.mc_rsp
 105 #  define context_rbp uc_mcontext.mc_rbp
 106 #  define context_rax uc_mcontext.mc_rax
 107 #  define context_rbx uc_mcontext.mc_rbx
 108 #  define context_rcx uc_mcontext.mc_rcx
 109 #  define context_rdx uc_mcontext.mc_rdx
 110 #  define context_rsi uc_mcontext.mc_rsi
 111 #  define context_rdi uc_mcontext.mc_rdi
 112 #  define context_r8  uc_mcontext.mc_r8
 113 #  define context_r9  uc_mcontext.mc_r9
 114 #  define context_r10 uc_mcontext.mc_r10
 115 #  define context_r11 uc_mcontext.mc_r11
 116 #  define context_r12 uc_mcontext.mc_r12
 117 #  define context_r13 uc_mcontext.mc_r13
 118 #  define context_r14 uc_mcontext.mc_r14
 119 #  define context_r15 uc_mcontext.mc_r15
 120 #  define context_flags uc_mcontext.mc_flags
 121 #  define context_err uc_mcontext.mc_err
 122 # else
 123 #  define context_pc uc_mcontext.mc_eip
 124 #  define context_sp uc_mcontext.mc_esp
 125 #  define context_fp uc_mcontext.mc_ebp
 126 #  define context_eip uc_mcontext.mc_eip
 127 #  define context_esp uc_mcontext.mc_esp
 128 #  define context_eax uc_mcontext.mc_eax
 129 #  define context_ebx uc_mcontext.mc_ebx
 130 #  define context_ecx uc_mcontext.mc_ecx
 131 #  define context_edx uc_mcontext.mc_edx
 132 #  define context_ebp uc_mcontext.mc_ebp
 133 #  define context_esi uc_mcontext.mc_esi
 134 #  define context_edi uc_mcontext.mc_edi
 135 #  define context_eflags uc_mcontext.mc_eflags
 136 #  define context_trapno uc_mcontext.mc_trapno
 137 # endif
 138 #endif
 139 
 140 #ifdef __APPLE__
 141 # if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
 142   // 10.5 UNIX03 member name prefixes
 143   #define DU3_PREFIX(s, m) __ ## s.__ ## m
 144 # else
 145   #define DU3_PREFIX(s, m) s ## . ## m
 146 # endif
 147 
 148 # ifdef AMD64
 149 #  define context_pc context_rip
 150 #  define context_sp context_rsp
 151 #  define context_fp context_rbp
 152 #  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
 153 #  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
 154 #  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
 155 #  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
 156 #  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
 157 #  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
 158 #  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
 159 #  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
 160 #  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
 161 #  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
 162 #  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
 163 #  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
 164 #  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
 165 #  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
 166 #  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
 167 #  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
 168 #  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
 169 #  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
 170 #  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
 171 #  define context_err uc_mcontext->DU3_PREFIX(es,err)
 172 # else
 173 #  define context_pc context_eip
 174 #  define context_sp context_esp
 175 #  define context_fp context_ebp
 176 #  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
 177 #  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
 178 #  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
 179 #  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
 180 #  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
 181 #  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
 182 #  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
 183 #  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
 184 #  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
 185 #  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
 186 #  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
 187 # endif
 188 #endif
 189 
 190 #ifdef __OpenBSD__
 191 # define context_trapno sc_trapno
 192 # ifdef AMD64
 193 #  define context_pc sc_rip
 194 #  define context_sp sc_rsp
 195 #  define context_fp sc_rbp
 196 #  define context_rip sc_rip
 197 #  define context_rsp sc_rsp
 198 #  define context_rbp sc_rbp
 199 #  define context_rax sc_rax
 200 #  define context_rbx sc_rbx
 201 #  define context_rcx sc_rcx
 202 #  define context_rdx sc_rdx
 203 #  define context_rsi sc_rsi
 204 #  define context_rdi sc_rdi
 205 #  define context_r8  sc_r8
 206 #  define context_r9  sc_r9
 207 #  define context_r10 sc_r10
 208 #  define context_r11 sc_r11
 209 #  define context_r12 sc_r12
 210 #  define context_r13 sc_r13
 211 #  define context_r14 sc_r14
 212 #  define context_r15 sc_r15
 213 #  define context_flags sc_rflags
 214 #  define context_err sc_err
 215 # else
 216 #  define context_pc sc_eip
 217 #  define context_sp sc_esp
 218 #  define context_fp sc_ebp
 219 #  define context_eip sc_eip
 220 #  define context_esp sc_esp
 221 #  define context_eax sc_eax
 222 #  define context_ebx sc_ebx
 223 #  define context_ecx sc_ecx
 224 #  define context_edx sc_edx
 225 #  define context_ebp sc_ebp
 226 #  define context_esi sc_esi
 227 #  define context_edi sc_edi
 228 #  define context_eflags sc_eflags
 229 #  define context_trapno sc_trapno
 230 # endif
 231 #endif
 232 
 233 #ifdef __NetBSD__
 234 # define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
 235 # ifdef AMD64
 236 #  define __register_t __greg_t
 237 #  define context_pc uc_mcontext.__gregs[_REG_RIP]
 238 #  define context_sp uc_mcontext.__gregs[_REG_URSP]
 239 #  define context_fp uc_mcontext.__gregs[_REG_RBP]
 240 #  define context_rip uc_mcontext.__gregs[_REG_RIP]
 241 #  define context_rsp uc_mcontext.__gregs[_REG_URSP]
 242 #  define context_rax uc_mcontext.__gregs[_REG_RAX]
 243 #  define context_rbx uc_mcontext.__gregs[_REG_RBX]
 244 #  define context_rcx uc_mcontext.__gregs[_REG_RCX]
 245 #  define context_rdx uc_mcontext.__gregs[_REG_RDX]
 246 #  define context_rbp uc_mcontext.__gregs[_REG_RBP]
 247 #  define context_rsi uc_mcontext.__gregs[_REG_RSI]
 248 #  define context_rdi uc_mcontext.__gregs[_REG_RDI]
 249 #  define context_r8  uc_mcontext.__gregs[_REG_R8]
 250 #  define context_r9  uc_mcontext.__gregs[_REG_R9]
 251 #  define context_r10 uc_mcontext.__gregs[_REG_R10]
 252 #  define context_r11 uc_mcontext.__gregs[_REG_R11]
 253 #  define context_r12 uc_mcontext.__gregs[_REG_R12]
 254 #  define context_r13 uc_mcontext.__gregs[_REG_R13]
 255 #  define context_r14 uc_mcontext.__gregs[_REG_R14]
 256 #  define context_r15 uc_mcontext.__gregs[_REG_R15]
 257 #  define context_flags uc_mcontext.__gregs[_REG_RFL]
 258 #  define context_err uc_mcontext.__gregs[_REG_ERR]
 259 # else
 260 #  define context_pc uc_mcontext.__gregs[_REG_EIP]
 261 #  define context_sp uc_mcontext.__gregs[_REG_UESP]
 262 #  define context_fp uc_mcontext.__gregs[_REG_EBP]
 263 #  define context_eip uc_mcontext.__gregs[_REG_EIP]
 264 #  define context_esp uc_mcontext.__gregs[_REG_UESP]
 265 #  define context_eax uc_mcontext.__gregs[_REG_EAX]
 266 #  define context_ebx uc_mcontext.__gregs[_REG_EBX]
 267 #  define context_ecx uc_mcontext.__gregs[_REG_ECX]
 268 #  define context_edx uc_mcontext.__gregs[_REG_EDX]
 269 #  define context_ebp uc_mcontext.__gregs[_REG_EBP]
 270 #  define context_esi uc_mcontext.__gregs[_REG_ESI]
 271 #  define context_edi uc_mcontext.__gregs[_REG_EDI]
 272 #  define context_eflags uc_mcontext.__gregs[_REG_EFL]
 273 #  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
 274 # endif
 275 #endif
 276 
 277 address os::current_stack_pointer() {
 278 #if defined(__clang__) || defined(__llvm__)
 279   register void *esp;
 280   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
 281   return (address) esp;
 282 #elif defined(SPARC_WORKS)
 283   register void *esp;
 284   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
 285   return (address) ((char*)esp + sizeof(long)*2);
 286 #else
 287   register void *esp __asm__ (SPELL_REG_SP);
 288   return (address) esp;
 289 #endif
 290 }
 291 
 292 char* os::non_memory_address_word() {
 293   // Must never look like an address returned by reserve_memory,
 294   // even in its subfields (as defined by the CPU immediate fields,
 295   // if the CPU splits constants across multiple instructions).
 296 
 297   return (char*) -1;
 298 }
 299 
 300 void os::initialize_thread() {
 301 // Nothing to do.
 302 }
 303 
 304 address os::Bsd::ucontext_get_pc(ucontext_t * uc) {
 305   return (address)uc->context_pc;
 306 }
 307 
 308 intptr_t* os::Bsd::ucontext_get_sp(ucontext_t * uc) {
 309   return (intptr_t*)uc->context_sp;
 310 }
 311 
 312 intptr_t* os::Bsd::ucontext_get_fp(ucontext_t * uc) {
 313   return (intptr_t*)uc->context_fp;
 314 }
 315 
 316 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 317 // is currently interrupted by SIGPROF.
 318 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 319 // frames. Currently we don't do that on Bsd, so it's the same as
 320 // os::fetch_frame_from_context().
 321 ExtendedPC os::Bsd::fetch_frame_from_ucontext(Thread* thread,
 322   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 323 
 324   assert(thread != NULL, "just checking");
 325   assert(ret_sp != NULL, "just checking");
 326   assert(ret_fp != NULL, "just checking");
 327 
 328   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 329 }
 330 
 331 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 332                     intptr_t** ret_sp, intptr_t** ret_fp) {
 333 
 334   ExtendedPC  epc;
 335   ucontext_t* uc = (ucontext_t*)ucVoid;
 336 
 337   if (uc != NULL) {
 338     epc = ExtendedPC(os::Bsd::ucontext_get_pc(uc));
 339     if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
 340     if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
 341   } else {
 342     // construct empty ExtendedPC for return value checking
 343     epc = ExtendedPC(NULL);
 344     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 345     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 346   }
 347 
 348   return epc;
 349 }
 350 
 351 frame os::fetch_frame_from_context(void* ucVoid) {
 352   intptr_t* sp;
 353   intptr_t* fp;
 354   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 355   return frame(sp, fp, epc.pc());
 356 }
 357 
 358 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 359 // turned off by -fomit-frame-pointer,
 360 frame os::get_sender_for_C_frame(frame* fr) {
 361   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 362 }
 363 
 364 intptr_t* _get_previous_fp() {
 365 #if defined(SPARC_WORKS) || defined(__clang__) || defined(__llvm__)
 366   register intptr_t **ebp;
 367   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 368 #else
 369   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 370 #endif
 371   return (intptr_t*) *ebp;   // we want what it points to.
 372 }
 373 
 374 
 375 frame os::current_frame() {
 376   intptr_t* fp = _get_previous_fp();
 377   frame myframe((intptr_t*)os::current_stack_pointer(),
 378                 (intptr_t*)fp,
 379                 CAST_FROM_FN_PTR(address, os::current_frame));
 380   if (os::is_first_C_frame(&myframe)) {
 381     // stack is not walkable
 382     return frame(NULL, NULL, NULL);
 383   } else {
 384     return os::get_sender_for_C_frame(&myframe);
 385   }
 386 }
 387 
 388 // Utility functions
 389 
 390 // From IA32 System Programming Guide
 391 enum {
 392   trap_page_fault = 0xE
 393 };
 394 
 395 extern "C" void Fetch32PFI () ;
 396 extern "C" void Fetch32Resume () ;
 397 #ifdef AMD64
 398 extern "C" void FetchNPFI () ;
 399 extern "C" void FetchNResume () ;
 400 #endif // AMD64
 401 
 402 extern "C" JNIEXPORT int
 403 JVM_handle_bsd_signal(int sig,
 404                         siginfo_t* info,
 405                         void* ucVoid,
 406                         int abort_if_unrecognized) {
 407   ucontext_t* uc = (ucontext_t*) ucVoid;
 408 
 409   Thread* t = ThreadLocalStorage::get_thread_slow();
 410 
 411   SignalHandlerMark shm(t);
 412 
 413   // Note: it's not uncommon that JNI code uses signal/sigset to install
 414   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 415   // or have a SIGILL handler when detecting CPU type). When that happens,
 416   // JVM_handle_bsd_signal() might be invoked with junk info/ucVoid. To
 417   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 418   // that do not require siginfo/ucontext first.
 419 
 420   if (sig == SIGPIPE || sig == SIGXFSZ) {
 421     // allow chained handler to go first
 422     if (os::Bsd::chained_handler(sig, info, ucVoid)) {
 423       return true;
 424     } else {
 425       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 426         char buf[64];
 427         warning("Ignoring %s - see bugs 4229104 or 646499219",
 428                 os::exception_name(sig, buf, sizeof(buf)));
 429       }
 430       return true;
 431     }
 432   }
 433 
 434   JavaThread* thread = NULL;
 435   VMThread* vmthread = NULL;
 436   if (os::Bsd::signal_handlers_are_installed) {
 437     if (t != NULL ){
 438       if(t->is_Java_thread()) {
 439         thread = (JavaThread*)t;
 440       }
 441       else if(t->is_VM_thread()){
 442         vmthread = (VMThread *)t;
 443       }
 444     }
 445   }
 446 /*
 447   NOTE: does not seem to work on bsd.
 448   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 449     // can't decode this kind of signal
 450     info = NULL;
 451   } else {
 452     assert(sig == info->si_signo, "bad siginfo");
 453   }
 454 */
 455   // decide if this trap can be handled by a stub
 456   address stub = NULL;
 457 
 458   address pc          = NULL;
 459 
 460   //%note os_trap_1
 461   if (info != NULL && uc != NULL && thread != NULL) {
 462     pc = (address) os::Bsd::ucontext_get_pc(uc);
 463 
 464     if (pc == (address) Fetch32PFI) {
 465        uc->context_pc = intptr_t(Fetch32Resume) ;
 466        return 1 ;
 467     }
 468 #ifdef AMD64
 469     if (pc == (address) FetchNPFI) {
 470        uc->context_pc = intptr_t (FetchNResume) ;
 471        return 1 ;
 472     }
 473 #endif // AMD64
 474 
 475     // Handle ALL stack overflow variations here
 476     if (sig == SIGSEGV || sig == SIGBUS) {
 477       address addr = (address) info->si_addr;
 478 
 479       // check if fault address is within thread stack
 480       if (addr < thread->stack_base() &&
 481           addr >= thread->stack_base() - thread->stack_size()) {
 482         // stack overflow
 483         if (thread->in_stack_yellow_zone(addr)) {
 484           thread->disable_stack_yellow_zone();
 485           if (thread->thread_state() == _thread_in_Java) {
 486             // Throw a stack overflow exception.  Guard pages will be reenabled
 487             // while unwinding the stack.
 488             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 489           } else {
 490             // Thread was in the vm or native code.  Return and try to finish.
 491             return 1;
 492           }
 493         } else if (thread->in_stack_red_zone(addr)) {
 494           // Fatal red zone violation.  Disable the guard pages and fall through
 495           // to handle_unexpected_exception way down below.
 496           thread->disable_stack_red_zone();
 497           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 498 #ifndef _ALLBSD_SOURCE
 499         } else {
 500           // Accessing stack address below sp may cause SEGV if current
 501           // thread has MAP_GROWSDOWN stack. This should only happen when
 502           // current thread was created by user code with MAP_GROWSDOWN flag
 503           // and then attached to VM. See notes in os_bsd.cpp.
 504           if (thread->osthread()->expanding_stack() == 0) {
 505              thread->osthread()->set_expanding_stack();
 506              if (os::Bsd::manually_expand_stack(thread, addr)) {
 507                thread->osthread()->clear_expanding_stack();
 508                return 1;
 509              }
 510              thread->osthread()->clear_expanding_stack();
 511           } else {
 512              fatal("recursive segv. expanding stack.");
 513           }
 514 #endif
 515         }
 516       }
 517     }
 518 
 519     if (thread->thread_state() == _thread_in_Java) {
 520       // Java thread running in Java code => find exception handler if any
 521       // a fault inside compiled code, the interpreter, or a stub
 522 
 523       if ((sig == SIGSEGV || sig == SIGBUS) && os::is_poll_address((address)info->si_addr)) {
 524         stub = SharedRuntime::get_poll_stub(pc);
 525 #if defined(__APPLE__) && !defined(AMD64)
 526       // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
 527       // Catching SIGBUS here prevents the implicit SIGBUS NULL check below from
 528       // being called, so only do so if the implicit NULL check is not necessary.
 529       } else if (sig == SIGBUS && MacroAssembler::needs_explicit_null_check((int)info->si_addr)) {
 530 #else
 531       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 532 #endif
 533         // BugId 4454115: A read from a MappedByteBuffer can fault
 534         // here if the underlying file has been truncated.
 535         // Do not crash the VM in such a case.
 536         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 537         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 538         if (nm != NULL && nm->has_unsafe_access()) {
 539           stub = StubRoutines::handler_for_unsafe_access();
 540         }
 541       }
 542       else
 543 
 544 #ifdef AMD64
 545       if (sig == SIGFPE  &&
 546           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 547         stub =
 548           SharedRuntime::
 549           continuation_for_implicit_exception(thread,
 550                                               pc,
 551                                               SharedRuntime::
 552                                               IMPLICIT_DIVIDE_BY_ZERO);
 553 #ifdef __APPLE__
 554       } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
 555         int op = pc[0];
 556 
 557         // Skip REX
 558         if ((pc[0] & 0xf0) == 0x40) {
 559           op = pc[1];
 560         } else {
 561           op = pc[0];
 562         }
 563 
 564         // Check for IDIV
 565         if (op == 0xF7) {
 566           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
 567         } else {
 568           // TODO: handle more cases if we are using other x86 instructions
 569           //   that can generate SIGFPE signal.
 570           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 571           fatal("please update this code.");
 572         }
 573 #endif /* __APPLE__ */
 574 
 575 #else
 576       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 577         // HACK: si_code does not work on bsd 2.2.12-20!!!
 578         int op = pc[0];
 579         if (op == 0xDB) {
 580           // FIST
 581           // TODO: The encoding of D2I in i486.ad can cause an exception
 582           // prior to the fist instruction if there was an invalid operation
 583           // pending. We want to dismiss that exception. From the win_32
 584           // side it also seems that if it really was the fist causing
 585           // the exception that we do the d2i by hand with different
 586           // rounding. Seems kind of weird.
 587           // NOTE: that we take the exception at the NEXT floating point instruction.
 588           assert(pc[0] == 0xDB, "not a FIST opcode");
 589           assert(pc[1] == 0x14, "not a FIST opcode");
 590           assert(pc[2] == 0x24, "not a FIST opcode");
 591           return true;
 592         } else if (op == 0xF7) {
 593           // IDIV
 594           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 595         } else {
 596           // TODO: handle more cases if we are using other x86 instructions
 597           //   that can generate SIGFPE signal on bsd.
 598           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 599           fatal("please update this code.");
 600         }
 601 #endif // AMD64
 602       } else if ((sig == SIGSEGV || sig == SIGBUS) &&
 603                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 604           // Determination of interpreter/vtable stub/compiled code null exception
 605           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 606       }
 607     } else if (thread->thread_state() == _thread_in_vm &&
 608                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 609                thread->doing_unsafe_access()) {
 610         stub = StubRoutines::handler_for_unsafe_access();
 611     }
 612 
 613     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 614     // and the heap gets shrunk before the field access.
 615     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 616       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 617       if (addr != (address)-1) {
 618         stub = addr;
 619       }
 620     }
 621 
 622     // Check to see if we caught the safepoint code in the
 623     // process of write protecting the memory serialization page.
 624     // It write enables the page immediately after protecting it
 625     // so we can just return to retry the write.
 626     if ((sig == SIGSEGV || sig == SIGBUS) &&
 627         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 628       // Block current thread until the memory serialize page permission restored.
 629       os::block_on_serialize_page_trap();
 630       return true;
 631     }
 632   }
 633 
 634 #ifndef AMD64
 635   // Execution protection violation
 636   //
 637   // This should be kept as the last step in the triage.  We don't
 638   // have a dedicated trap number for a no-execute fault, so be
 639   // conservative and allow other handlers the first shot.
 640   //
 641   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 642   // this si_code is so generic that it is almost meaningless; and
 643   // the si_code for this condition may change in the future.
 644   // Furthermore, a false-positive should be harmless.
 645   if (UnguardOnExecutionViolation > 0 &&
 646       (sig == SIGSEGV || sig == SIGBUS) &&
 647       uc->context_trapno == trap_page_fault) {
 648     int page_size = os::vm_page_size();
 649     address addr = (address) info->si_addr;
 650     address pc = os::Bsd::ucontext_get_pc(uc);
 651     // Make sure the pc and the faulting address are sane.
 652     //
 653     // If an instruction spans a page boundary, and the page containing
 654     // the beginning of the instruction is executable but the following
 655     // page is not, the pc and the faulting address might be slightly
 656     // different - we still want to unguard the 2nd page in this case.
 657     //
 658     // 15 bytes seems to be a (very) safe value for max instruction size.
 659     bool pc_is_near_addr =
 660       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 661     bool instr_spans_page_boundary =
 662       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 663                        (intptr_t) page_size) > 0);
 664 
 665     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 666       static volatile address last_addr =
 667         (address) os::non_memory_address_word();
 668 
 669       // In conservative mode, don't unguard unless the address is in the VM
 670       if (addr != last_addr &&
 671           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 672 
 673         // Set memory to RWX and retry
 674         address page_start =
 675           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 676         bool res = os::protect_memory((char*) page_start, page_size,
 677                                       os::MEM_PROT_RWX);
 678 
 679         if (PrintMiscellaneous && Verbose) {
 680           char buf[256];
 681           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 682                        "at " INTPTR_FORMAT
 683                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 684                        page_start, (res ? "success" : "failed"), errno);
 685           tty->print_raw_cr(buf);
 686         }
 687         stub = pc;
 688 
 689         // Set last_addr so if we fault again at the same address, we don't end
 690         // up in an endless loop.
 691         //
 692         // There are two potential complications here.  Two threads trapping at
 693         // the same address at the same time could cause one of the threads to
 694         // think it already unguarded, and abort the VM.  Likely very rare.
 695         //
 696         // The other race involves two threads alternately trapping at
 697         // different addresses and failing to unguard the page, resulting in
 698         // an endless loop.  This condition is probably even more unlikely than
 699         // the first.
 700         //
 701         // Although both cases could be avoided by using locks or thread local
 702         // last_addr, these solutions are unnecessary complication: this
 703         // handler is a best-effort safety net, not a complete solution.  It is
 704         // disabled by default and should only be used as a workaround in case
 705         // we missed any no-execute-unsafe VM code.
 706 
 707         last_addr = addr;
 708       }
 709     }
 710   }
 711 #endif // !AMD64
 712 
 713   if (stub != NULL) {
 714     // save all thread context in case we need to restore it
 715     if (thread != NULL) thread->set_saved_exception_pc(pc);
 716 
 717     uc->context_pc = (intptr_t)stub;
 718     return true;
 719   }
 720 
 721   // signal-chaining
 722   if (os::Bsd::chained_handler(sig, info, ucVoid)) {
 723      return true;
 724   }
 725 
 726   if (!abort_if_unrecognized) {
 727     // caller wants another chance, so give it to him
 728     return false;
 729   }
 730 
 731   if (pc == NULL && uc != NULL) {
 732     pc = os::Bsd::ucontext_get_pc(uc);
 733   }
 734 
 735   // unmask current signal
 736   sigset_t newset;
 737   sigemptyset(&newset);
 738   sigaddset(&newset, sig);
 739   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 740 
 741   VMError err(t, sig, pc, info, ucVoid);
 742   err.report_and_die();
 743 
 744   ShouldNotReachHere();
 745 }
 746 
 747 #ifdef _ALLBSD_SOURCE
 748 // From solaris_i486.s ported to bsd_i486.s
 749 extern "C" void fixcw();
 750 #endif
 751 
 752 void os::Bsd::init_thread_fpu_state(void) {
 753 #ifndef AMD64
 754 # ifdef _ALLBSD_SOURCE
 755   // Set fpu to 53 bit precision. This happens too early to use a stub.
 756   fixcw();
 757 # else
 758   // set fpu to 53 bit precision
 759   set_fpu_control_word(0x27f);
 760 # endif
 761 #endif // !AMD64
 762 }
 763 
 764 #ifndef _ALLBSD_SOURCE
 765 int os::Bsd::get_fpu_control_word(void) {
 766 #ifdef AMD64
 767   return 0;
 768 #else
 769   int fpu_control;
 770   _FPU_GETCW(fpu_control);
 771   return fpu_control & 0xffff;
 772 #endif // AMD64
 773 }
 774 
 775 void os::Bsd::set_fpu_control_word(int fpu_control) {
 776 #ifndef AMD64
 777   _FPU_SETCW(fpu_control);
 778 #endif // !AMD64
 779 }
 780 #endif
 781 
 782 // Check that the bsd kernel version is 2.4 or higher since earlier
 783 // versions do not support SSE without patches.
 784 bool os::supports_sse() {
 785 #if defined(AMD64) || defined(_ALLBSD_SOURCE)
 786   return true;
 787 #else
 788   struct utsname uts;
 789   if( uname(&uts) != 0 ) return false; // uname fails?
 790   char *minor_string;
 791   int major = strtol(uts.release,&minor_string,10);
 792   int minor = strtol(minor_string+1,NULL,10);
 793   bool result = (major > 2 || (major==2 && minor >= 4));
 794 #ifndef PRODUCT
 795   if (PrintMiscellaneous && Verbose) {
 796     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
 797                major,minor, result ? "DOES" : "does NOT");
 798   }
 799 #endif
 800   return result;
 801 #endif // AMD64
 802 }
 803 
 804 bool os::is_allocatable(size_t bytes) {
 805 #ifdef AMD64
 806   // unused on amd64?
 807   return true;
 808 #else
 809 
 810   if (bytes < 2 * G) {
 811     return true;
 812   }
 813 
 814   char* addr = reserve_memory(bytes, NULL);
 815 
 816   if (addr != NULL) {
 817     release_memory(addr, bytes);
 818   }
 819 
 820   return addr != NULL;
 821 #endif // AMD64
 822 }
 823 
 824 ////////////////////////////////////////////////////////////////////////////////
 825 // thread stack
 826 
 827 #ifdef AMD64
 828 size_t os::Bsd::min_stack_allowed  = 64 * K;
 829 
 830 // amd64: pthread on amd64 is always in floating stack mode
 831 bool os::Bsd::supports_variable_stack_size() {  return true; }
 832 #else
 833 size_t os::Bsd::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 834 
 835 #ifdef __GNUC__
 836 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
 837 #endif
 838 
 839 #ifdef _ALLBSD_SOURCE
 840 bool os::Bsd::supports_variable_stack_size() { return true; }
 841 #else
 842 // Test if pthread library can support variable thread stack size. BsdThreads
 843 // in fixed stack mode allocates 2M fixed slot for each thread. BsdThreads
 844 // in floating stack mode and NPTL support variable stack size.
 845 bool os::Bsd::supports_variable_stack_size() {
 846   if (os::Bsd::is_NPTL()) {
 847      // NPTL, yes
 848      return true;
 849 
 850   } else {
 851     // Note: We can't control default stack size when creating a thread.
 852     // If we use non-default stack size (pthread_attr_setstacksize), both
 853     // floating stack and non-floating stack BsdThreads will return the
 854     // same value. This makes it impossible to implement this function by
 855     // detecting thread stack size directly.
 856     //
 857     // An alternative approach is to check %gs. Fixed-stack BsdThreads
 858     // do not use %gs, so its value is 0. Floating-stack BsdThreads use
 859     // %gs (either as LDT selector or GDT selector, depending on kernel)
 860     // to access thread specific data.
 861     //
 862     // Note that %gs is a reserved glibc register since early 2001, so
 863     // applications are not allowed to change its value (Ulrich Drepper from
 864     // Redhat confirmed that all known offenders have been modified to use
 865     // either %fs or TSD). In the worst case scenario, when VM is embedded in
 866     // a native application that plays with %gs, we might see non-zero %gs
 867     // even BsdThreads is running in fixed stack mode. As the result, we'll
 868     // return true and skip _thread_safety_check(), so we may not be able to
 869     // detect stack-heap collisions. But otherwise it's harmless.
 870     //
 871 #ifdef __GNUC__
 872     return (GET_GS() != 0);
 873 #else
 874     return false;
 875 #endif
 876   }
 877 }
 878 #endif
 879 #endif // AMD64
 880 
 881 // return default stack size for thr_type
 882 size_t os::Bsd::default_stack_size(os::ThreadType thr_type) {
 883   // default stack size (compiler thread needs larger stack)
 884 #ifdef AMD64
 885   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 886 #else
 887   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 888 #endif // AMD64
 889   return s;
 890 }
 891 
 892 size_t os::Bsd::default_guard_size(os::ThreadType thr_type) {
 893   // Creating guard page is very expensive. Java thread has HotSpot
 894   // guard page, only enable glibc guard page for non-Java threads.
 895   return (thr_type == java_thread ? 0 : page_size());
 896 }
 897 
 898 // Java thread:
 899 //
 900 //   Low memory addresses
 901 //    +------------------------+
 902 //    |                        |\  JavaThread created by VM does not have glibc
 903 //    |    glibc guard page    | - guard, attached Java thread usually has
 904 //    |                        |/  1 page glibc guard.
 905 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 906 //    |                        |\
 907 //    |  HotSpot Guard Pages   | - red and yellow pages
 908 //    |                        |/
 909 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 910 //    |                        |\
 911 //    |      Normal Stack      | -
 912 //    |                        |/
 913 // P2 +------------------------+ Thread::stack_base()
 914 //
 915 // Non-Java thread:
 916 //
 917 //   Low memory addresses
 918 //    +------------------------+
 919 //    |                        |\
 920 //    |  glibc guard page      | - usually 1 page
 921 //    |                        |/
 922 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 923 //    |                        |\
 924 //    |      Normal Stack      | -
 925 //    |                        |/
 926 // P2 +------------------------+ Thread::stack_base()
 927 //
 928 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 929 //    pthread_attr_getstack()
 930 
 931 static void current_stack_region(address * bottom, size_t * size) {
 932 #ifdef __APPLE__
 933   pthread_t self = pthread_self();
 934   void *stacktop = pthread_get_stackaddr_np(self);
 935   *size = pthread_get_stacksize_np(self);
 936   *bottom = (address) stacktop - *size;
 937 #elif defined(__OpenBSD__)
 938   stack_t ss;
 939   int rslt = pthread_stackseg_np(pthread_self(), &ss);
 940 
 941   if (rslt != 0)
 942     fatal(err_msg("pthread_stackseg_np failed with err = %d", rslt));
 943 
 944   *bottom = (address)((char *)ss.ss_sp - ss.ss_size);
 945   *size   = ss.ss_size;
 946 #elif defined(_ALLBSD_SOURCE)
 947   pthread_attr_t attr;
 948 
 949   int rslt = pthread_attr_init(&attr);
 950 
 951   // JVM needs to know exact stack location, abort if it fails
 952   if (rslt != 0)
 953     fatal(err_msg("pthread_attr_init failed with err = %d", rslt));
 954 
 955   rslt = pthread_attr_get_np(pthread_self(), &attr);
 956 
 957   if (rslt != 0)
 958     fatal(err_msg("pthread_attr_get_np failed with err = %d", rslt));
 959 
 960   if (pthread_attr_getstackaddr(&attr, (void **)bottom) != 0 ||
 961     pthread_attr_getstacksize(&attr, size) != 0) {
 962     fatal("Can not locate current stack attributes!");
 963   }
 964 
 965   pthread_attr_destroy(&attr);
 966 #else
 967   if (os::Bsd::is_initial_thread()) {
 968      // initial thread needs special handling because pthread_getattr_np()
 969      // may return bogus value.
 970      *bottom = os::Bsd::initial_thread_stack_bottom();
 971      *size   = os::Bsd::initial_thread_stack_size();
 972   } else {
 973      pthread_attr_t attr;
 974 
 975      int rslt = pthread_getattr_np(pthread_self(), &attr);
 976 
 977      // JVM needs to know exact stack location, abort if it fails
 978      if (rslt != 0) {
 979        if (rslt == ENOMEM) {
 980          vm_exit_out_of_memory(0, "pthread_getattr_np");
 981        } else {
 982          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
 983        }
 984      }
 985 
 986      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 987          fatal("Can not locate current stack attributes!");
 988      }
 989 
 990      pthread_attr_destroy(&attr);
 991 
 992   }
 993 #endif
 994   assert(os::current_stack_pointer() >= *bottom &&
 995          os::current_stack_pointer() < *bottom + *size, "just checking");
 996 }
 997 
 998 address os::current_stack_base() {
 999   address bottom;
1000   size_t size;
1001   current_stack_region(&bottom, &size);
1002   return (bottom + size);
1003 }
1004 
1005 size_t os::current_stack_size() {
1006   // stack size includes normal stack and HotSpot guard pages
1007   address bottom;
1008   size_t size;
1009   current_stack_region(&bottom, &size);
1010   return size;
1011 }
1012 
1013 /////////////////////////////////////////////////////////////////////////////
1014 // helper functions for fatal error handler
1015 
1016 void os::print_context(outputStream *st, void *context) {
1017   if (context == NULL) return;
1018 
1019   ucontext_t *uc = (ucontext_t*)context;
1020   st->print_cr("Registers:");
1021 #ifdef AMD64
1022   st->print(  "RAX=" INTPTR_FORMAT, uc->context_rax);
1023   st->print(", RBX=" INTPTR_FORMAT, uc->context_rbx);
1024   st->print(", RCX=" INTPTR_FORMAT, uc->context_rcx);
1025   st->print(", RDX=" INTPTR_FORMAT, uc->context_rdx);
1026   st->cr();
1027   st->print(  "RSP=" INTPTR_FORMAT, uc->context_rsp);
1028   st->print(", RBP=" INTPTR_FORMAT, uc->context_rbp);
1029   st->print(", RSI=" INTPTR_FORMAT, uc->context_rsi);
1030   st->print(", RDI=" INTPTR_FORMAT, uc->context_rdi);
1031   st->cr();
1032   st->print(  "R8 =" INTPTR_FORMAT, uc->context_r8);
1033   st->print(", R9 =" INTPTR_FORMAT, uc->context_r9);
1034   st->print(", R10=" INTPTR_FORMAT, uc->context_r10);
1035   st->print(", R11=" INTPTR_FORMAT, uc->context_r11);
1036   st->cr();
1037   st->print(  "R12=" INTPTR_FORMAT, uc->context_r12);
1038   st->print(", R13=" INTPTR_FORMAT, uc->context_r13);
1039   st->print(", R14=" INTPTR_FORMAT, uc->context_r14);
1040   st->print(", R15=" INTPTR_FORMAT, uc->context_r15);
1041   st->cr();
1042   st->print(  "RIP=" INTPTR_FORMAT, uc->context_rip);
1043   st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_flags);
1044   st->print(", ERR=" INTPTR_FORMAT, uc->context_err);
1045   st->cr();
1046   st->print("  TRAPNO=" INTPTR_FORMAT, uc->context_trapno);
1047 #else
1048   st->print(  "EAX=" INTPTR_FORMAT, uc->context_eax);
1049   st->print(", EBX=" INTPTR_FORMAT, uc->context_ebx);
1050   st->print(", ECX=" INTPTR_FORMAT, uc->context_ecx);
1051   st->print(", EDX=" INTPTR_FORMAT, uc->context_edx);
1052   st->cr();
1053   st->print(  "ESP=" INTPTR_FORMAT, uc->context_esp);
1054   st->print(", EBP=" INTPTR_FORMAT, uc->context_ebp);
1055   st->print(", ESI=" INTPTR_FORMAT, uc->context_esi);
1056   st->print(", EDI=" INTPTR_FORMAT, uc->context_edi);
1057   st->cr();
1058   st->print(  "EIP=" INTPTR_FORMAT, uc->context_eip);
1059   st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_eflags);
1060 #endif // AMD64
1061   st->cr();
1062   st->cr();
1063 
1064   intptr_t *sp = (intptr_t *)os::Bsd::ucontext_get_sp(uc);
1065   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
1066   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
1067   st->cr();
1068 
1069   // Note: it may be unsafe to inspect memory near pc. For example, pc may
1070   // point to garbage if entry point in an nmethod is corrupted. Leave
1071   // this at the end, and hope for the best.
1072   address pc = os::Bsd::ucontext_get_pc(uc);
1073   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
1074   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
1075 }
1076 
1077 void os::print_register_info(outputStream *st, void *context) {
1078   if (context == NULL) return;
1079 
1080   ucontext_t *uc = (ucontext_t*)context;
1081 
1082   st->print_cr("Register to memory mapping:");
1083   st->cr();
1084 
1085   // this is horrendously verbose but the layout of the registers in the
1086   // context does not match how we defined our abstract Register set, so
1087   // we can't just iterate through the gregs area
1088 
1089   // this is only for the "general purpose" registers
1090 
1091 #ifdef AMD64
1092   st->print("RAX="); print_location(st, uc->context_rax);
1093   st->print("RBX="); print_location(st, uc->context_rbx);
1094   st->print("RCX="); print_location(st, uc->context_rcx);
1095   st->print("RDX="); print_location(st, uc->context_rdx);
1096   st->print("RSP="); print_location(st, uc->context_rsp);
1097   st->print("RBP="); print_location(st, uc->context_rbp);
1098   st->print("RSI="); print_location(st, uc->context_rsi);
1099   st->print("RDI="); print_location(st, uc->context_rdi);
1100   st->print("R8 ="); print_location(st, uc->context_r8);
1101   st->print("R9 ="); print_location(st, uc->context_r9);
1102   st->print("R10="); print_location(st, uc->context_r10);
1103   st->print("R11="); print_location(st, uc->context_r11);
1104   st->print("R12="); print_location(st, uc->context_r12);
1105   st->print("R13="); print_location(st, uc->context_r13);
1106   st->print("R14="); print_location(st, uc->context_r14);
1107   st->print("R15="); print_location(st, uc->context_r15);
1108 #else
1109   st->print("EAX="); print_location(st, uc->context_eax);
1110   st->print("EBX="); print_location(st, uc->context_ebx);
1111   st->print("ECX="); print_location(st, uc->context_ecx);
1112   st->print("EDX="); print_location(st, uc->context_edx);
1113   st->print("ESP="); print_location(st, uc->context_esp);
1114   st->print("EBP="); print_location(st, uc->context_ebp);
1115   st->print("ESI="); print_location(st, uc->context_esi);
1116   st->print("EDI="); print_location(st, uc->context_edi);
1117 #endif // AMD64
1118 
1119   st->cr();
1120 }
1121 
1122 void os::setup_fpu() {
1123 #ifndef AMD64
1124   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
1125   __asm__ volatile (  "fldcw (%0)" :
1126                       : "r" (fpu_cntrl) : "memory");
1127 #endif // !AMD64
1128 }
1129 
1130 #ifndef PRODUCT
1131 void os::verify_stack_alignment() {
1132 }
1133 #endif