1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 class AbstractLockNode;
  39 class AddNode;
  40 class AddPNode;
  41 class AliasInfo;
  42 class AllocateArrayNode;
  43 class AllocateNode;
  44 class Block;
  45 class Block_Array;
  46 class BoolNode;
  47 class BoxLockNode;
  48 class CMoveNode;
  49 class CallDynamicJavaNode;
  50 class CallJavaNode;
  51 class CallLeafNode;
  52 class CallNode;
  53 class CallRuntimeNode;
  54 class CallStaticJavaNode;
  55 class CatchNode;
  56 class CatchProjNode;
  57 class CheckCastPPNode;
  58 class ClearArrayNode;
  59 class CmpNode;
  60 class CodeBuffer;
  61 class ConstraintCastNode;
  62 class ConNode;
  63 class CountedLoopNode;
  64 class CountedLoopEndNode;
  65 class DecodeNNode;
  66 class EncodePNode;
  67 class FastLockNode;
  68 class FastUnlockNode;
  69 class IfNode;
  70 class IfFalseNode;
  71 class IfTrueNode;
  72 class InitializeNode;
  73 class JVMState;
  74 class JumpNode;
  75 class JumpProjNode;
  76 class LoadNode;
  77 class LoadStoreNode;
  78 class LockNode;
  79 class LoopNode;
  80 class MachBranchNode;
  81 class MachCallDynamicJavaNode;
  82 class MachCallJavaNode;
  83 class MachCallLeafNode;
  84 class MachCallNode;
  85 class MachCallRuntimeNode;
  86 class MachCallStaticJavaNode;
  87 class MachConstantBaseNode;
  88 class MachConstantNode;
  89 class MachGotoNode;
  90 class MachIfNode;
  91 class MachNode;
  92 class MachNullCheckNode;
  93 class MachProjNode;
  94 class MachReturnNode;
  95 class MachSafePointNode;
  96 class MachSpillCopyNode;
  97 class MachTempNode;
  98 class Matcher;
  99 class MemBarNode;
 100 class MemBarStoreStoreNode;
 101 class MemNode;
 102 class MergeMemNode;
 103 class MultiNode;
 104 class MultiBranchNode;
 105 class NeverBranchNode;
 106 class Node;
 107 class Node_Array;
 108 class Node_List;
 109 class Node_Stack;
 110 class NullCheckNode;
 111 class OopMap;
 112 class ParmNode;
 113 class PCTableNode;
 114 class PhaseCCP;
 115 class PhaseGVN;
 116 class PhaseIterGVN;
 117 class PhaseRegAlloc;
 118 class PhaseTransform;
 119 class PhaseValues;
 120 class PhiNode;
 121 class Pipeline;
 122 class ProjNode;
 123 class RegMask;
 124 class RegionNode;
 125 class RootNode;
 126 class SafePointNode;
 127 class SafePointScalarObjectNode;
 128 class StartNode;
 129 class State;
 130 class StoreNode;
 131 class SubNode;
 132 class Type;
 133 class TypeNode;
 134 class UnlockNode;
 135 class VectorNode;
 136 class VectorLoadNode;
 137 class VectorStoreNode;
 138 class VectorSet;
 139 typedef void (*NFunc)(Node&,void*);
 140 extern "C" {
 141   typedef int (*C_sort_func_t)(const void *, const void *);
 142 }
 143 
 144 // The type of all node counts and indexes.
 145 // It must hold at least 16 bits, but must also be fast to load and store.
 146 // This type, if less than 32 bits, could limit the number of possible nodes.
 147 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 148 typedef unsigned int node_idx_t;
 149 
 150 
 151 #ifndef OPTO_DU_ITERATOR_ASSERT
 152 #ifdef ASSERT
 153 #define OPTO_DU_ITERATOR_ASSERT 1
 154 #else
 155 #define OPTO_DU_ITERATOR_ASSERT 0
 156 #endif
 157 #endif //OPTO_DU_ITERATOR_ASSERT
 158 
 159 #if OPTO_DU_ITERATOR_ASSERT
 160 class DUIterator;
 161 class DUIterator_Fast;
 162 class DUIterator_Last;
 163 #else
 164 typedef uint   DUIterator;
 165 typedef Node** DUIterator_Fast;
 166 typedef Node** DUIterator_Last;
 167 #endif
 168 
 169 // Node Sentinel
 170 #define NodeSentinel (Node*)-1
 171 
 172 // Unknown count frequency
 173 #define COUNT_UNKNOWN (-1.0f)
 174 
 175 //------------------------------Node-------------------------------------------
 176 // Nodes define actions in the program.  They create values, which have types.
 177 // They are both vertices in a directed graph and program primitives.  Nodes
 178 // are labeled; the label is the "opcode", the primitive function in the lambda
 179 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 180 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 181 // the Node's function.  These inputs also define a Type equation for the Node.
 182 // Solving these Type equations amounts to doing dataflow analysis.
 183 // Control and data are uniformly represented in the graph.  Finally, Nodes
 184 // have a unique dense integer index which is used to index into side arrays
 185 // whenever I have phase-specific information.
 186 
 187 class Node {
 188   friend class VMStructs;
 189 
 190   // Lots of restrictions on cloning Nodes
 191   Node(const Node&);            // not defined; linker error to use these
 192   Node &operator=(const Node &rhs);
 193 
 194 public:
 195   friend class Compile;
 196   #if OPTO_DU_ITERATOR_ASSERT
 197   friend class DUIterator_Common;
 198   friend class DUIterator;
 199   friend class DUIterator_Fast;
 200   friend class DUIterator_Last;
 201   #endif
 202 
 203   // Because Nodes come and go, I define an Arena of Node structures to pull
 204   // from.  This should allow fast access to node creation & deletion.  This
 205   // field is a local cache of a value defined in some "program fragment" for
 206   // which these Nodes are just a part of.
 207 
 208   // New Operator that takes a Compile pointer, this will eventually
 209   // be the "new" New operator.
 210   inline void* operator new( size_t x, Compile* C) {
 211     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 212 #ifdef ASSERT
 213     n->_in = (Node**)n; // magic cookie for assertion check
 214 #endif
 215     n->_out = (Node**)C;
 216     return (void*)n;
 217   }
 218 
 219   // New Operator that takes a Compile pointer, this will eventually
 220   // be the "new" New operator.
 221   inline void* operator new( size_t x, Compile* C, int y) {
 222     Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
 223     n->_in = (Node**)(((char*)n) + x);
 224 #ifdef ASSERT
 225     n->_in[y-1] = n; // magic cookie for assertion check
 226 #endif
 227     n->_out = (Node**)C;
 228     return (void*)n;
 229   }
 230 
 231   // Delete is a NOP
 232   void operator delete( void *ptr ) {}
 233   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 234   void destruct();
 235 
 236   // Create a new Node.  Required is the number is of inputs required for
 237   // semantic correctness.
 238   Node( uint required );
 239 
 240   // Create a new Node with given input edges.
 241   // This version requires use of the "edge-count" new.
 242   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 243   Node( Node *n0 );
 244   Node( Node *n0, Node *n1 );
 245   Node( Node *n0, Node *n1, Node *n2 );
 246   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 247   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 248   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 249   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 250             Node *n4, Node *n5, Node *n6 );
 251 
 252   // Clone an inherited Node given only the base Node type.
 253   Node* clone() const;
 254 
 255   // Clone a Node, immediately supplying one or two new edges.
 256   // The first and second arguments, if non-null, replace in(1) and in(2),
 257   // respectively.
 258   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 259     Node* nn = clone();
 260     if (in1 != NULL)  nn->set_req(1, in1);
 261     if (in2 != NULL)  nn->set_req(2, in2);
 262     return nn;
 263   }
 264 
 265 private:
 266   // Shared setup for the above constructors.
 267   // Handles all interactions with Compile::current.
 268   // Puts initial values in all Node fields except _idx.
 269   // Returns the initial value for _idx, which cannot
 270   // be initialized by assignment.
 271   inline int Init(int req, Compile* C);
 272 
 273 //----------------- input edge handling
 274 protected:
 275   friend class PhaseCFG;        // Access to address of _in array elements
 276   Node **_in;                   // Array of use-def references to Nodes
 277   Node **_out;                  // Array of def-use references to Nodes
 278 
 279   // Input edges are split into two categories.  Required edges are required
 280   // for semantic correctness; order is important and NULLs are allowed.
 281   // Precedence edges are used to help determine execution order and are
 282   // added, e.g., for scheduling purposes.  They are unordered and not
 283   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 284   // are required, from _cnt to _max-1 are precedence edges.
 285   node_idx_t _cnt;              // Total number of required Node inputs.
 286 
 287   node_idx_t _max;              // Actual length of input array.
 288 
 289   // Output edges are an unordered list of def-use edges which exactly
 290   // correspond to required input edges which point from other nodes
 291   // to this one.  Thus the count of the output edges is the number of
 292   // users of this node.
 293   node_idx_t _outcnt;           // Total number of Node outputs.
 294 
 295   node_idx_t _outmax;           // Actual length of output array.
 296 
 297   // Grow the actual input array to the next larger power-of-2 bigger than len.
 298   void grow( uint len );
 299   // Grow the output array to the next larger power-of-2 bigger than len.
 300   void out_grow( uint len );
 301 
 302  public:
 303   // Each Node is assigned a unique small/dense number.  This number is used
 304   // to index into auxiliary arrays of data and bitvectors.
 305   // It is declared const to defend against inadvertant assignment,
 306   // since it is used by clients as a naked field.
 307   const node_idx_t _idx;
 308 
 309   // Get the (read-only) number of input edges
 310   uint req() const { return _cnt; }
 311   uint len() const { return _max; }
 312   // Get the (read-only) number of output edges
 313   uint outcnt() const { return _outcnt; }
 314 
 315 #if OPTO_DU_ITERATOR_ASSERT
 316   // Iterate over the out-edges of this node.  Deletions are illegal.
 317   inline DUIterator outs() const;
 318   // Use this when the out array might have changed to suppress asserts.
 319   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 320   // Does the node have an out at this position?  (Used for iteration.)
 321   inline bool has_out(DUIterator& i) const;
 322   inline Node*    out(DUIterator& i) const;
 323   // Iterate over the out-edges of this node.  All changes are illegal.
 324   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 325   inline Node*    fast_out(DUIterator_Fast& i) const;
 326   // Iterate over the out-edges of this node, deleting one at a time.
 327   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 328   inline Node*    last_out(DUIterator_Last& i) const;
 329   // The inline bodies of all these methods are after the iterator definitions.
 330 #else
 331   // Iterate over the out-edges of this node.  Deletions are illegal.
 332   // This iteration uses integral indexes, to decouple from array reallocations.
 333   DUIterator outs() const  { return 0; }
 334   // Use this when the out array might have changed to suppress asserts.
 335   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 336 
 337   // Reference to the i'th output Node.  Error if out of bounds.
 338   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 339   // Does the node have an out at this position?  (Used for iteration.)
 340   bool has_out(DUIterator i) const { return i < _outcnt; }
 341 
 342   // Iterate over the out-edges of this node.  All changes are illegal.
 343   // This iteration uses a pointer internal to the out array.
 344   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 345     Node** out = _out;
 346     // Assign a limit pointer to the reference argument:
 347     max = out + (ptrdiff_t)_outcnt;
 348     // Return the base pointer:
 349     return out;
 350   }
 351   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 352   // Iterate over the out-edges of this node, deleting one at a time.
 353   // This iteration uses a pointer internal to the out array.
 354   DUIterator_Last last_outs(DUIterator_Last& min) const {
 355     Node** out = _out;
 356     // Assign a limit pointer to the reference argument:
 357     min = out;
 358     // Return the pointer to the start of the iteration:
 359     return out + (ptrdiff_t)_outcnt - 1;
 360   }
 361   Node*    last_out(DUIterator_Last i) const  { return *i; }
 362 #endif
 363 
 364   // Reference to the i'th input Node.  Error if out of bounds.
 365   Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
 366   // Reference to the i'th output Node.  Error if out of bounds.
 367   // Use this accessor sparingly.  We are going trying to use iterators instead.
 368   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 369   // Return the unique out edge.
 370   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 371   // Delete out edge at position 'i' by moving last out edge to position 'i'
 372   void  raw_del_out(uint i) {
 373     assert(i < _outcnt,"oob");
 374     assert(_outcnt > 0,"oob");
 375     #if OPTO_DU_ITERATOR_ASSERT
 376     // Record that a change happened here.
 377     debug_only(_last_del = _out[i]; ++_del_tick);
 378     #endif
 379     _out[i] = _out[--_outcnt];
 380     // Smash the old edge so it can't be used accidentally.
 381     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 382   }
 383 
 384 #ifdef ASSERT
 385   bool is_dead() const;
 386 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 387 #endif
 388 
 389   // Set a required input edge, also updates corresponding output edge
 390   void add_req( Node *n ); // Append a NEW required input
 391   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 392   void del_req( uint idx ); // Delete required edge & compact
 393   void ins_req( uint i, Node *n ); // Insert a NEW required input
 394   void set_req( uint i, Node *n ) {
 395     assert( is_not_dead(n), "can not use dead node");
 396     assert( i < _cnt, "oob");
 397     assert( !VerifyHashTableKeys || _hash_lock == 0,
 398             "remove node from hash table before modifying it");
 399     Node** p = &_in[i];    // cache this._in, across the del_out call
 400     if (*p != NULL)  (*p)->del_out((Node *)this);
 401     (*p) = n;
 402     if (n != NULL)      n->add_out((Node *)this);
 403   }
 404   // Light version of set_req() to init inputs after node creation.
 405   void init_req( uint i, Node *n ) {
 406     assert( i == 0 && this == n ||
 407             is_not_dead(n), "can not use dead node");
 408     assert( i < _cnt, "oob");
 409     assert( !VerifyHashTableKeys || _hash_lock == 0,
 410             "remove node from hash table before modifying it");
 411     assert( _in[i] == NULL, "sanity");
 412     _in[i] = n;
 413     if (n != NULL)      n->add_out((Node *)this);
 414   }
 415   // Find first occurrence of n among my edges:
 416   int find_edge(Node* n);
 417   int replace_edge(Node* old, Node* neww);
 418   // NULL out all inputs to eliminate incoming Def-Use edges.
 419   // Return the number of edges between 'n' and 'this'
 420   int  disconnect_inputs(Node *n);
 421 
 422   // Quickly, return true if and only if I am Compile::current()->top().
 423   bool is_top() const {
 424     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 425     return (_out == NULL);
 426   }
 427   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 428   void setup_is_top();
 429 
 430   // Strip away casting.  (It is depth-limited.)
 431   Node* uncast() const;
 432   // Return whether two Nodes are equivalent, after stripping casting.
 433   bool eqv_uncast(const Node* n) const {
 434     return (this->uncast() == n->uncast());
 435   }
 436 
 437 private:
 438   static Node* uncast_helper(const Node* n);
 439 
 440   // Add an output edge to the end of the list
 441   void add_out( Node *n ) {
 442     if (is_top())  return;
 443     if( _outcnt == _outmax ) out_grow(_outcnt);
 444     _out[_outcnt++] = n;
 445   }
 446   // Delete an output edge
 447   void del_out( Node *n ) {
 448     if (is_top())  return;
 449     Node** outp = &_out[_outcnt];
 450     // Find and remove n
 451     do {
 452       assert(outp > _out, "Missing Def-Use edge");
 453     } while (*--outp != n);
 454     *outp = _out[--_outcnt];
 455     // Smash the old edge so it can't be used accidentally.
 456     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 457     // Record that a change happened here.
 458     #if OPTO_DU_ITERATOR_ASSERT
 459     debug_only(_last_del = n; ++_del_tick);
 460     #endif
 461   }
 462 
 463 public:
 464   // Globally replace this node by a given new node, updating all uses.
 465   void replace_by(Node* new_node);
 466   // Globally replace this node by a given new node, updating all uses
 467   // and cutting input edges of old node.
 468   void subsume_by(Node* new_node) {
 469     replace_by(new_node);
 470     disconnect_inputs(NULL);
 471   }
 472   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 473   // Find the one non-null required input.  RegionNode only
 474   Node *nonnull_req() const;
 475   // Add or remove precedence edges
 476   void add_prec( Node *n );
 477   void rm_prec( uint i );
 478   void set_prec( uint i, Node *n ) {
 479     assert( is_not_dead(n), "can not use dead node");
 480     assert( i >= _cnt, "not a precedence edge");
 481     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 482     _in[i] = n;
 483     if (n != NULL) n->add_out((Node *)this);
 484   }
 485   // Set this node's index, used by cisc_version to replace current node
 486   void set_idx(uint new_idx) {
 487     const node_idx_t* ref = &_idx;
 488     *(node_idx_t*)ref = new_idx;
 489   }
 490   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 491   void swap_edges(uint i1, uint i2) {
 492     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 493     // Def-Use info is unchanged
 494     Node* n1 = in(i1);
 495     Node* n2 = in(i2);
 496     _in[i1] = n2;
 497     _in[i2] = n1;
 498     // If this node is in the hash table, make sure it doesn't need a rehash.
 499     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 500   }
 501 
 502   // Iterators over input Nodes for a Node X are written as:
 503   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 504   // NOTE: Required edges can contain embedded NULL pointers.
 505 
 506 //----------------- Other Node Properties
 507 
 508   // Generate class id for some ideal nodes to avoid virtual query
 509   // methods is_<Node>().
 510   // Class id is the set of bits corresponded to the node class and all its
 511   // super classes so that queries for super classes are also valid.
 512   // Subclasses of the same super class have different assigned bit
 513   // (the third parameter in the macro DEFINE_CLASS_ID).
 514   // Classes with deeper hierarchy are declared first.
 515   // Classes with the same hierarchy depth are sorted by usage frequency.
 516   //
 517   // The query method masks the bits to cut off bits of subclasses
 518   // and then compare the result with the class id
 519   // (see the macro DEFINE_CLASS_QUERY below).
 520   //
 521   //  Class_MachCall=30, ClassMask_MachCall=31
 522   // 12               8               4               0
 523   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 524   //                                  |   |   |   |
 525   //                                  |   |   |   Bit_Mach=2
 526   //                                  |   |   Bit_MachReturn=4
 527   //                                  |   Bit_MachSafePoint=8
 528   //                                  Bit_MachCall=16
 529   //
 530   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 531   // 12               8               4               0
 532   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 533   //                              |   |   |
 534   //                              |   |   Bit_Region=8
 535   //                              |   Bit_Loop=16
 536   //                              Bit_CountedLoop=32
 537 
 538   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 539   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 540   Class_##cl = Class_##supcl + Bit_##cl , \
 541   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 542 
 543   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 544   // so that it's values fits into 16 bits.
 545   enum NodeClasses {
 546     Bit_Node   = 0x0000,
 547     Class_Node = 0x0000,
 548     ClassMask_Node = 0xFFFF,
 549 
 550     DEFINE_CLASS_ID(Multi, Node, 0)
 551       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 552         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 553           DEFINE_CLASS_ID(CallJava,         Call, 0)
 554             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 555             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 556           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 557             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 558           DEFINE_CLASS_ID(Allocate,         Call, 2)
 559             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 560           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 561             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 562             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 563       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 564         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 565           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 566           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 567         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 568           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 569         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 570       DEFINE_CLASS_ID(Start,       Multi, 2)
 571       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 572         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 573         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 574 
 575     DEFINE_CLASS_ID(Mach,  Node, 1)
 576       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 577         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 578           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 579             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 580               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 581               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 582             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 583               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 584       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 585         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 586         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 587         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 588       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 589       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 590       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 591       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 592 
 593     DEFINE_CLASS_ID(Type,  Node, 2)
 594       DEFINE_CLASS_ID(Phi,   Type, 0)
 595       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 596       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 597       DEFINE_CLASS_ID(CMove, Type, 3)
 598       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 599       DEFINE_CLASS_ID(DecodeN, Type, 5)
 600       DEFINE_CLASS_ID(EncodeP, Type, 6)
 601 
 602     DEFINE_CLASS_ID(Proj,  Node, 3)
 603       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 604       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 605       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 606       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 607       DEFINE_CLASS_ID(Parm,      Proj, 4)
 608       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 609 
 610     DEFINE_CLASS_ID(Mem,   Node, 4)
 611       DEFINE_CLASS_ID(Load,  Mem, 0)
 612         DEFINE_CLASS_ID(VectorLoad,  Load, 0)
 613       DEFINE_CLASS_ID(Store, Mem, 1)
 614         DEFINE_CLASS_ID(VectorStore, Store, 0)
 615       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 616 
 617     DEFINE_CLASS_ID(Region, Node, 5)
 618       DEFINE_CLASS_ID(Loop, Region, 0)
 619         DEFINE_CLASS_ID(Root,        Loop, 0)
 620         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 621 
 622     DEFINE_CLASS_ID(Sub,   Node, 6)
 623       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 624         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 625         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 626 
 627     DEFINE_CLASS_ID(MergeMem, Node, 7)
 628     DEFINE_CLASS_ID(Bool,     Node, 8)
 629     DEFINE_CLASS_ID(AddP,     Node, 9)
 630     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 631     DEFINE_CLASS_ID(Add,      Node, 11)
 632     DEFINE_CLASS_ID(Vector,   Node, 12)
 633     DEFINE_CLASS_ID(ClearArray, Node, 13)
 634 
 635     _max_classes  = ClassMask_ClearArray
 636   };
 637   #undef DEFINE_CLASS_ID
 638 
 639   // Flags are sorted by usage frequency.
 640   enum NodeFlags {
 641     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
 642     Flag_rematerialize       = Flag_is_Copy << 1,
 643     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 644     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
 645     Flag_is_Con              = Flag_is_macro << 1,
 646     Flag_is_cisc_alternate   = Flag_is_Con << 1,
 647     Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
 648     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
 649     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
 650     Flag_has_call            = Flag_avoid_back_to_back << 1,
 651     _max_flags = (Flag_has_call << 1) - 1 // allow flags combination
 652   };
 653 
 654 private:
 655   jushort _class_id;
 656   jushort _flags;
 657 
 658 protected:
 659   // These methods should be called from constructors only.
 660   void init_class_id(jushort c) {
 661     assert(c <= _max_classes, "invalid node class");
 662     _class_id = c; // cast out const
 663   }
 664   void init_flags(jushort fl) {
 665     assert(fl <= _max_flags, "invalid node flag");
 666     _flags |= fl;
 667   }
 668   void clear_flag(jushort fl) {
 669     assert(fl <= _max_flags, "invalid node flag");
 670     _flags &= ~fl;
 671   }
 672 
 673 public:
 674   const jushort class_id() const { return _class_id; }
 675 
 676   const jushort flags() const { return _flags; }
 677 
 678   // Return a dense integer opcode number
 679   virtual int Opcode() const;
 680 
 681   // Virtual inherited Node size
 682   virtual uint size_of() const;
 683 
 684   // Other interesting Node properties
 685   #define DEFINE_CLASS_QUERY(type)                           \
 686   bool is_##type() const {                                   \
 687     return ((_class_id & ClassMask_##type) == Class_##type); \
 688   }                                                          \
 689   type##Node *as_##type() const {                            \
 690     assert(is_##type(), "invalid node class");               \
 691     return (type##Node*)this;                                \
 692   }                                                          \
 693   type##Node* isa_##type() const {                           \
 694     return (is_##type()) ? as_##type() : NULL;               \
 695   }
 696 
 697   DEFINE_CLASS_QUERY(AbstractLock)
 698   DEFINE_CLASS_QUERY(Add)
 699   DEFINE_CLASS_QUERY(AddP)
 700   DEFINE_CLASS_QUERY(Allocate)
 701   DEFINE_CLASS_QUERY(AllocateArray)
 702   DEFINE_CLASS_QUERY(Bool)
 703   DEFINE_CLASS_QUERY(BoxLock)
 704   DEFINE_CLASS_QUERY(Call)
 705   DEFINE_CLASS_QUERY(CallDynamicJava)
 706   DEFINE_CLASS_QUERY(CallJava)
 707   DEFINE_CLASS_QUERY(CallLeaf)
 708   DEFINE_CLASS_QUERY(CallRuntime)
 709   DEFINE_CLASS_QUERY(CallStaticJava)
 710   DEFINE_CLASS_QUERY(Catch)
 711   DEFINE_CLASS_QUERY(CatchProj)
 712   DEFINE_CLASS_QUERY(CheckCastPP)
 713   DEFINE_CLASS_QUERY(ConstraintCast)
 714   DEFINE_CLASS_QUERY(ClearArray)
 715   DEFINE_CLASS_QUERY(CMove)
 716   DEFINE_CLASS_QUERY(Cmp)
 717   DEFINE_CLASS_QUERY(CountedLoop)
 718   DEFINE_CLASS_QUERY(CountedLoopEnd)
 719   DEFINE_CLASS_QUERY(DecodeN)
 720   DEFINE_CLASS_QUERY(EncodeP)
 721   DEFINE_CLASS_QUERY(FastLock)
 722   DEFINE_CLASS_QUERY(FastUnlock)
 723   DEFINE_CLASS_QUERY(If)
 724   DEFINE_CLASS_QUERY(IfFalse)
 725   DEFINE_CLASS_QUERY(IfTrue)
 726   DEFINE_CLASS_QUERY(Initialize)
 727   DEFINE_CLASS_QUERY(Jump)
 728   DEFINE_CLASS_QUERY(JumpProj)
 729   DEFINE_CLASS_QUERY(Load)
 730   DEFINE_CLASS_QUERY(LoadStore)
 731   DEFINE_CLASS_QUERY(Lock)
 732   DEFINE_CLASS_QUERY(Loop)
 733   DEFINE_CLASS_QUERY(Mach)
 734   DEFINE_CLASS_QUERY(MachBranch)
 735   DEFINE_CLASS_QUERY(MachCall)
 736   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 737   DEFINE_CLASS_QUERY(MachCallJava)
 738   DEFINE_CLASS_QUERY(MachCallLeaf)
 739   DEFINE_CLASS_QUERY(MachCallRuntime)
 740   DEFINE_CLASS_QUERY(MachCallStaticJava)
 741   DEFINE_CLASS_QUERY(MachConstantBase)
 742   DEFINE_CLASS_QUERY(MachConstant)
 743   DEFINE_CLASS_QUERY(MachGoto)
 744   DEFINE_CLASS_QUERY(MachIf)
 745   DEFINE_CLASS_QUERY(MachNullCheck)
 746   DEFINE_CLASS_QUERY(MachProj)
 747   DEFINE_CLASS_QUERY(MachReturn)
 748   DEFINE_CLASS_QUERY(MachSafePoint)
 749   DEFINE_CLASS_QUERY(MachSpillCopy)
 750   DEFINE_CLASS_QUERY(MachTemp)
 751   DEFINE_CLASS_QUERY(Mem)
 752   DEFINE_CLASS_QUERY(MemBar)
 753   DEFINE_CLASS_QUERY(MemBarStoreStore)
 754   DEFINE_CLASS_QUERY(MergeMem)
 755   DEFINE_CLASS_QUERY(Multi)
 756   DEFINE_CLASS_QUERY(MultiBranch)
 757   DEFINE_CLASS_QUERY(Parm)
 758   DEFINE_CLASS_QUERY(PCTable)
 759   DEFINE_CLASS_QUERY(Phi)
 760   DEFINE_CLASS_QUERY(Proj)
 761   DEFINE_CLASS_QUERY(Region)
 762   DEFINE_CLASS_QUERY(Root)
 763   DEFINE_CLASS_QUERY(SafePoint)
 764   DEFINE_CLASS_QUERY(SafePointScalarObject)
 765   DEFINE_CLASS_QUERY(Start)
 766   DEFINE_CLASS_QUERY(Store)
 767   DEFINE_CLASS_QUERY(Sub)
 768   DEFINE_CLASS_QUERY(Type)
 769   DEFINE_CLASS_QUERY(Vector)
 770   DEFINE_CLASS_QUERY(VectorLoad)
 771   DEFINE_CLASS_QUERY(VectorStore)
 772   DEFINE_CLASS_QUERY(Unlock)
 773 
 774   #undef DEFINE_CLASS_QUERY
 775 
 776   // duplicate of is_MachSpillCopy()
 777   bool is_SpillCopy () const {
 778     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 779   }
 780 
 781   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 782   // The data node which is safe to leave in dead loop during IGVN optimization.
 783   bool is_dead_loop_safe() const {
 784     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 785            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 786             (!is_Proj() || !in(0)->is_Allocate()));
 787   }
 788 
 789   // is_Copy() returns copied edge index (0 or 1)
 790   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 791 
 792   virtual bool is_CFG() const { return false; }
 793 
 794   // If this node is control-dependent on a test, can it be
 795   // rerouted to a dominating equivalent test?  This is usually
 796   // true of non-CFG nodes, but can be false for operations which
 797   // depend for their correct sequencing on more than one test.
 798   // (In that case, hoisting to a dominating test may silently
 799   // skip some other important test.)
 800   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 801 
 802   // When building basic blocks, I need to have a notion of block beginning
 803   // Nodes, next block selector Nodes (block enders), and next block
 804   // projections.  These calls need to work on their machine equivalents.  The
 805   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 806   bool is_block_start() const {
 807     if ( is_Region() )
 808       return this == (const Node*)in(0);
 809     else
 810       return is_Start();
 811   }
 812 
 813   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 814   // Goto and Return.  This call also returns the block ending Node.
 815   virtual const Node *is_block_proj() const;
 816 
 817   // The node is a "macro" node which needs to be expanded before matching
 818   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 819 
 820 //----------------- Optimization
 821 
 822   // Get the worst-case Type output for this Node.
 823   virtual const class Type *bottom_type() const;
 824 
 825   // If we find a better type for a node, try to record it permanently.
 826   // Return true if this node actually changed.
 827   // Be sure to do the hash_delete game in the "rehash" variant.
 828   void raise_bottom_type(const Type* new_type);
 829 
 830   // Get the address type with which this node uses and/or defs memory,
 831   // or NULL if none.  The address type is conservatively wide.
 832   // Returns non-null for calls, membars, loads, stores, etc.
 833   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 834   virtual const class TypePtr *adr_type() const { return NULL; }
 835 
 836   // Return an existing node which computes the same function as this node.
 837   // The optimistic combined algorithm requires this to return a Node which
 838   // is a small number of steps away (e.g., one of my inputs).
 839   virtual Node *Identity( PhaseTransform *phase );
 840 
 841   // Return the set of values this Node can take on at runtime.
 842   virtual const Type *Value( PhaseTransform *phase ) const;
 843 
 844   // Return a node which is more "ideal" than the current node.
 845   // The invariants on this call are subtle.  If in doubt, read the
 846   // treatise in node.cpp above the default implemention AND TEST WITH
 847   // +VerifyIterativeGVN!
 848   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 849 
 850   // Some nodes have specific Ideal subgraph transformations only if they are
 851   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 852   // for the transformations to happen.
 853   bool has_special_unique_user() const;
 854 
 855   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 856   Node* find_exact_control(Node* ctrl);
 857 
 858   // Check if 'this' node dominates or equal to 'sub'.
 859   bool dominates(Node* sub, Node_List &nlist);
 860 
 861 protected:
 862   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 863 public:
 864 
 865   // Idealize graph, using DU info.  Done after constant propagation
 866   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 867 
 868   // See if there is valid pipeline info
 869   static  const Pipeline *pipeline_class();
 870   virtual const Pipeline *pipeline() const;
 871 
 872   // Compute the latency from the def to this instruction of the ith input node
 873   uint latency(uint i);
 874 
 875   // Hash & compare functions, for pessimistic value numbering
 876 
 877   // If the hash function returns the special sentinel value NO_HASH,
 878   // the node is guaranteed never to compare equal to any other node.
 879   // If we accidentally generate a hash with value NO_HASH the node
 880   // won't go into the table and we'll lose a little optimization.
 881   enum { NO_HASH = 0 };
 882   virtual uint hash() const;
 883   virtual uint cmp( const Node &n ) const;
 884 
 885   // Operation appears to be iteratively computed (such as an induction variable)
 886   // It is possible for this operation to return false for a loop-varying
 887   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 888   bool is_iteratively_computed();
 889 
 890   // Determine if a node is Counted loop induction variable.
 891   // The method is defined in loopnode.cpp.
 892   const Node* is_loop_iv() const;
 893 
 894   // Return a node with opcode "opc" and same inputs as "this" if one can
 895   // be found; Otherwise return NULL;
 896   Node* find_similar(int opc);
 897 
 898   // Return the unique control out if only one. Null if none or more than one.
 899   Node* unique_ctrl_out();
 900 
 901 //----------------- Code Generation
 902 
 903   // Ideal register class for Matching.  Zero means unmatched instruction
 904   // (these are cloned instead of converted to machine nodes).
 905   virtual uint ideal_reg() const;
 906 
 907   static const uint NotAMachineReg;   // must be > max. machine register
 908 
 909   // Do we Match on this edge index or not?  Generally false for Control
 910   // and true for everything else.  Weird for calls & returns.
 911   virtual uint match_edge(uint idx) const;
 912 
 913   // Register class output is returned in
 914   virtual const RegMask &out_RegMask() const;
 915   // Register class input is expected in
 916   virtual const RegMask &in_RegMask(uint) const;
 917   // Should we clone rather than spill this instruction?
 918   bool rematerialize() const;
 919 
 920   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 921   virtual JVMState* jvms() const;
 922 
 923   // Print as assembly
 924   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 925   // Emit bytes starting at parameter 'ptr'
 926   // Bump 'ptr' by the number of output bytes
 927   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 928   // Size of instruction in bytes
 929   virtual uint size(PhaseRegAlloc *ra_) const;
 930 
 931   // Convenience function to extract an integer constant from a node.
 932   // If it is not an integer constant (either Con, CastII, or Mach),
 933   // return value_if_unknown.
 934   jint find_int_con(jint value_if_unknown) const {
 935     const TypeInt* t = find_int_type();
 936     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 937   }
 938   // Return the constant, knowing it is an integer constant already
 939   jint get_int() const {
 940     const TypeInt* t = find_int_type();
 941     guarantee(t != NULL, "must be con");
 942     return t->get_con();
 943   }
 944   // Here's where the work is done.  Can produce non-constant int types too.
 945   const TypeInt* find_int_type() const;
 946 
 947   // Same thing for long (and intptr_t, via type.hpp):
 948   jlong get_long() const {
 949     const TypeLong* t = find_long_type();
 950     guarantee(t != NULL, "must be con");
 951     return t->get_con();
 952   }
 953   jlong find_long_con(jint value_if_unknown) const {
 954     const TypeLong* t = find_long_type();
 955     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 956   }
 957   const TypeLong* find_long_type() const;
 958 
 959   // These guys are called by code generated by ADLC:
 960   intptr_t get_ptr() const;
 961   intptr_t get_narrowcon() const;
 962   jdouble getd() const;
 963   jfloat getf() const;
 964 
 965   // Nodes which are pinned into basic blocks
 966   virtual bool pinned() const { return false; }
 967 
 968   // Nodes which use memory without consuming it, hence need antidependences
 969   // More specifically, needs_anti_dependence_check returns true iff the node
 970   // (a) does a load, and (b) does not perform a store (except perhaps to a
 971   // stack slot or some other unaliased location).
 972   bool needs_anti_dependence_check() const;
 973 
 974   // Return which operand this instruction may cisc-spill. In other words,
 975   // return operand position that can convert from reg to memory access
 976   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
 977   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
 978 
 979 //----------------- Graph walking
 980 public:
 981   // Walk and apply member functions recursively.
 982   // Supplied (this) pointer is root.
 983   void walk(NFunc pre, NFunc post, void *env);
 984   static void nop(Node &, void*); // Dummy empty function
 985   static void packregion( Node &n, void* );
 986 private:
 987   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
 988 
 989 //----------------- Printing, etc
 990 public:
 991 #ifndef PRODUCT
 992   Node* find(int idx) const;         // Search the graph for the given idx.
 993   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
 994   void dump() const;                 // Print this node,
 995   void dump(int depth) const;        // Print this node, recursively to depth d
 996   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
 997   virtual void dump_req() const;     // Print required-edge info
 998   virtual void dump_prec() const;    // Print precedence-edge info
 999   virtual void dump_out() const;     // Print the output edge info
1000   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1001   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1002   void verify() const;               // Check Def-Use info for my subgraph
1003   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1004 
1005   // This call defines a class-unique string used to identify class instances
1006   virtual const char *Name() const;
1007 
1008   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1009   // RegMask Print Functions
1010   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1011   void dump_out_regmask() { out_RegMask().dump(); }
1012   static int _in_dump_cnt;
1013   static bool in_dump() { return _in_dump_cnt > 0; }
1014   void fast_dump() const {
1015     tty->print("%4d: %-17s", _idx, Name());
1016     for (uint i = 0; i < len(); i++)
1017       if (in(i))
1018         tty->print(" %4d", in(i)->_idx);
1019       else
1020         tty->print(" NULL");
1021     tty->print("\n");
1022   }
1023 #endif
1024 #ifdef ASSERT
1025   void verify_construction();
1026   bool verify_jvms(const JVMState* jvms) const;
1027   int  _debug_idx;                     // Unique value assigned to every node.
1028   int   debug_idx() const              { return _debug_idx; }
1029   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1030 
1031   Node* _debug_orig;                   // Original version of this, if any.
1032   Node*  debug_orig() const            { return _debug_orig; }
1033   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1034 
1035   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1036   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1037   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1038 
1039   static void init_NodeProperty();
1040 
1041   #if OPTO_DU_ITERATOR_ASSERT
1042   const Node* _last_del;               // The last deleted node.
1043   uint        _del_tick;               // Bumped when a deletion happens..
1044   #endif
1045 #endif
1046 };
1047 
1048 //-----------------------------------------------------------------------------
1049 // Iterators over DU info, and associated Node functions.
1050 
1051 #if OPTO_DU_ITERATOR_ASSERT
1052 
1053 // Common code for assertion checking on DU iterators.
1054 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1055 #ifdef ASSERT
1056  protected:
1057   bool         _vdui;               // cached value of VerifyDUIterators
1058   const Node*  _node;               // the node containing the _out array
1059   uint         _outcnt;             // cached node->_outcnt
1060   uint         _del_tick;           // cached node->_del_tick
1061   Node*        _last;               // last value produced by the iterator
1062 
1063   void sample(const Node* node);    // used by c'tor to set up for verifies
1064   void verify(const Node* node, bool at_end_ok = false);
1065   void verify_resync();
1066   void reset(const DUIterator_Common& that);
1067 
1068 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1069   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1070 #else
1071   #define I_VDUI_ONLY(i,x) { }
1072 #endif //ASSERT
1073 };
1074 
1075 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1076 
1077 // Default DU iterator.  Allows appends onto the out array.
1078 // Allows deletion from the out array only at the current point.
1079 // Usage:
1080 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1081 //    Node* y = x->out(i);
1082 //    ...
1083 //  }
1084 // Compiles in product mode to a unsigned integer index, which indexes
1085 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1086 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1087 // before continuing the loop.  You must delete only the last-produced
1088 // edge.  You must delete only a single copy of the last-produced edge,
1089 // or else you must delete all copies at once (the first time the edge
1090 // is produced by the iterator).
1091 class DUIterator : public DUIterator_Common {
1092   friend class Node;
1093 
1094   // This is the index which provides the product-mode behavior.
1095   // Whatever the product-mode version of the system does to the
1096   // DUI index is done to this index.  All other fields in
1097   // this class are used only for assertion checking.
1098   uint         _idx;
1099 
1100   #ifdef ASSERT
1101   uint         _refresh_tick;    // Records the refresh activity.
1102 
1103   void sample(const Node* node); // Initialize _refresh_tick etc.
1104   void verify(const Node* node, bool at_end_ok = false);
1105   void verify_increment();       // Verify an increment operation.
1106   void verify_resync();          // Verify that we can back up over a deletion.
1107   void verify_finish();          // Verify that the loop terminated properly.
1108   void refresh();                // Resample verification info.
1109   void reset(const DUIterator& that);  // Resample after assignment.
1110   #endif
1111 
1112   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1113     { _idx = 0;                         debug_only(sample(node)); }
1114 
1115  public:
1116   // initialize to garbage; clear _vdui to disable asserts
1117   DUIterator()
1118     { /*initialize to garbage*/         debug_only(_vdui = false); }
1119 
1120   void operator++(int dummy_to_specify_postfix_op)
1121     { _idx++;                           VDUI_ONLY(verify_increment()); }
1122 
1123   void operator--()
1124     { VDUI_ONLY(verify_resync());       --_idx; }
1125 
1126   ~DUIterator()
1127     { VDUI_ONLY(verify_finish()); }
1128 
1129   void operator=(const DUIterator& that)
1130     { _idx = that._idx;                 debug_only(reset(that)); }
1131 };
1132 
1133 DUIterator Node::outs() const
1134   { return DUIterator(this, 0); }
1135 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1136   { I_VDUI_ONLY(i, i.refresh());        return i; }
1137 bool Node::has_out(DUIterator& i) const
1138   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1139 Node*    Node::out(DUIterator& i) const
1140   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1141 
1142 
1143 // Faster DU iterator.  Disallows insertions into the out array.
1144 // Allows deletion from the out array only at the current point.
1145 // Usage:
1146 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1147 //    Node* y = x->fast_out(i);
1148 //    ...
1149 //  }
1150 // Compiles in product mode to raw Node** pointer arithmetic, with
1151 // no reloading of pointers from the original node x.  If you delete,
1152 // you must perform "--i; --imax" just before continuing the loop.
1153 // If you delete multiple copies of the same edge, you must decrement
1154 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1155 class DUIterator_Fast : public DUIterator_Common {
1156   friend class Node;
1157   friend class DUIterator_Last;
1158 
1159   // This is the pointer which provides the product-mode behavior.
1160   // Whatever the product-mode version of the system does to the
1161   // DUI pointer is done to this pointer.  All other fields in
1162   // this class are used only for assertion checking.
1163   Node**       _outp;
1164 
1165   #ifdef ASSERT
1166   void verify(const Node* node, bool at_end_ok = false);
1167   void verify_limit();
1168   void verify_resync();
1169   void verify_relimit(uint n);
1170   void reset(const DUIterator_Fast& that);
1171   #endif
1172 
1173   // Note:  offset must be signed, since -1 is sometimes passed
1174   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1175     { _outp = node->_out + offset;      debug_only(sample(node)); }
1176 
1177  public:
1178   // initialize to garbage; clear _vdui to disable asserts
1179   DUIterator_Fast()
1180     { /*initialize to garbage*/         debug_only(_vdui = false); }
1181 
1182   void operator++(int dummy_to_specify_postfix_op)
1183     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1184 
1185   void operator--()
1186     { VDUI_ONLY(verify_resync());       --_outp; }
1187 
1188   void operator-=(uint n)   // applied to the limit only
1189     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1190 
1191   bool operator<(DUIterator_Fast& limit) {
1192     I_VDUI_ONLY(*this, this->verify(_node, true));
1193     I_VDUI_ONLY(limit, limit.verify_limit());
1194     return _outp < limit._outp;
1195   }
1196 
1197   void operator=(const DUIterator_Fast& that)
1198     { _outp = that._outp;               debug_only(reset(that)); }
1199 };
1200 
1201 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1202   // Assign a limit pointer to the reference argument:
1203   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1204   // Return the base pointer:
1205   return DUIterator_Fast(this, 0);
1206 }
1207 Node* Node::fast_out(DUIterator_Fast& i) const {
1208   I_VDUI_ONLY(i, i.verify(this));
1209   return debug_only(i._last=) *i._outp;
1210 }
1211 
1212 
1213 // Faster DU iterator.  Requires each successive edge to be removed.
1214 // Does not allow insertion of any edges.
1215 // Usage:
1216 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1217 //    Node* y = x->last_out(i);
1218 //    ...
1219 //  }
1220 // Compiles in product mode to raw Node** pointer arithmetic, with
1221 // no reloading of pointers from the original node x.
1222 class DUIterator_Last : private DUIterator_Fast {
1223   friend class Node;
1224 
1225   #ifdef ASSERT
1226   void verify(const Node* node, bool at_end_ok = false);
1227   void verify_limit();
1228   void verify_step(uint num_edges);
1229   #endif
1230 
1231   // Note:  offset must be signed, since -1 is sometimes passed
1232   DUIterator_Last(const Node* node, ptrdiff_t offset)
1233     : DUIterator_Fast(node, offset) { }
1234 
1235   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1236   void operator<(int)                              {} // do not use
1237 
1238  public:
1239   DUIterator_Last() { }
1240   // initialize to garbage
1241 
1242   void operator--()
1243     { _outp--;              VDUI_ONLY(verify_step(1));  }
1244 
1245   void operator-=(uint n)
1246     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1247 
1248   bool operator>=(DUIterator_Last& limit) {
1249     I_VDUI_ONLY(*this, this->verify(_node, true));
1250     I_VDUI_ONLY(limit, limit.verify_limit());
1251     return _outp >= limit._outp;
1252   }
1253 
1254   void operator=(const DUIterator_Last& that)
1255     { DUIterator_Fast::operator=(that); }
1256 };
1257 
1258 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1259   // Assign a limit pointer to the reference argument:
1260   imin = DUIterator_Last(this, 0);
1261   // Return the initial pointer:
1262   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1263 }
1264 Node* Node::last_out(DUIterator_Last& i) const {
1265   I_VDUI_ONLY(i, i.verify(this));
1266   return debug_only(i._last=) *i._outp;
1267 }
1268 
1269 #endif //OPTO_DU_ITERATOR_ASSERT
1270 
1271 #undef I_VDUI_ONLY
1272 #undef VDUI_ONLY
1273 
1274 // An Iterator that truly follows the iterator pattern.  Doesn't
1275 // support deletion but could be made to.
1276 //
1277 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1278 //     Node* m = i.get();
1279 //
1280 class SimpleDUIterator : public StackObj {
1281  private:
1282   Node* node;
1283   DUIterator_Fast i;
1284   DUIterator_Fast imax;
1285  public:
1286   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1287   bool has_next() { return i < imax; }
1288   void next() { i++; }
1289   Node* get() { return node->fast_out(i); }
1290 };
1291 
1292 
1293 //-----------------------------------------------------------------------------
1294 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1295 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1296 // Note that the constructor just zeros things, and since I use Arena
1297 // allocation I do not need a destructor to reclaim storage.
1298 class Node_Array : public ResourceObj {
1299   friend class VMStructs;
1300 protected:
1301   Arena *_a;                    // Arena to allocate in
1302   uint   _max;
1303   Node **_nodes;
1304   void   grow( uint i );        // Grow array node to fit
1305 public:
1306   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1307     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1308     for( int i = 0; i < OptoNodeListSize; i++ ) {
1309       _nodes[i] = NULL;
1310     }
1311   }
1312 
1313   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1314   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1315   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1316   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1317   Node **adr() { return _nodes; }
1318   // Extend the mapping: index i maps to Node *n.
1319   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1320   void insert( uint i, Node *n );
1321   void remove( uint i );        // Remove, preserving order
1322   void sort( C_sort_func_t func);
1323   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1324   void clear();                 // Set all entries to NULL, keep storage
1325   uint Size() const { return _max; }
1326   void dump() const;
1327 };
1328 
1329 class Node_List : public Node_Array {
1330   friend class VMStructs;
1331   uint _cnt;
1332 public:
1333   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1334   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1335   bool contains(Node* n) {
1336     for (uint e = 0; e < size(); e++) {
1337       if (at(e) == n) return true;
1338     }
1339     return false;
1340   }
1341   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1342   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1343   void push( Node *b ) { map(_cnt++,b); }
1344   void yank( Node *n );         // Find and remove
1345   Node *pop() { return _nodes[--_cnt]; }
1346   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1347   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1348   uint size() const { return _cnt; }
1349   void dump() const;
1350 };
1351 
1352 //------------------------------Unique_Node_List-------------------------------
1353 class Unique_Node_List : public Node_List {
1354   friend class VMStructs;
1355   VectorSet _in_worklist;
1356   uint _clock_index;            // Index in list where to pop from next
1357 public:
1358   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1359   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1360 
1361   void remove( Node *n );
1362   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1363   VectorSet &member_set(){ return _in_worklist; }
1364 
1365   void push( Node *b ) {
1366     if( !_in_worklist.test_set(b->_idx) )
1367       Node_List::push(b);
1368   }
1369   Node *pop() {
1370     if( _clock_index >= size() ) _clock_index = 0;
1371     Node *b = at(_clock_index);
1372     map( _clock_index, Node_List::pop());
1373     if (size() != 0) _clock_index++; // Always start from 0
1374     _in_worklist >>= b->_idx;
1375     return b;
1376   }
1377   Node *remove( uint i ) {
1378     Node *b = Node_List::at(i);
1379     _in_worklist >>= b->_idx;
1380     map(i,Node_List::pop());
1381     return b;
1382   }
1383   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1384   void  clear() {
1385     _in_worklist.Clear();        // Discards storage but grows automatically
1386     Node_List::clear();
1387     _clock_index = 0;
1388   }
1389 
1390   // Used after parsing to remove useless nodes before Iterative GVN
1391   void remove_useless_nodes(VectorSet &useful);
1392 
1393 #ifndef PRODUCT
1394   void print_set() const { _in_worklist.print(); }
1395 #endif
1396 };
1397 
1398 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1399 inline void Compile::record_for_igvn(Node* n) {
1400   _for_igvn->push(n);
1401 }
1402 
1403 //------------------------------Node_Stack-------------------------------------
1404 class Node_Stack {
1405   friend class VMStructs;
1406 protected:
1407   struct INode {
1408     Node *node; // Processed node
1409     uint  indx; // Index of next node's child
1410   };
1411   INode *_inode_top; // tos, stack grows up
1412   INode *_inode_max; // End of _inodes == _inodes + _max
1413   INode *_inodes;    // Array storage for the stack
1414   Arena *_a;         // Arena to allocate in
1415   void grow();
1416 public:
1417   Node_Stack(int size) {
1418     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1419     _a = Thread::current()->resource_area();
1420     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1421     _inode_max = _inodes + max;
1422     _inode_top = _inodes - 1; // stack is empty
1423   }
1424 
1425   Node_Stack(Arena *a, int size) : _a(a) {
1426     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1427     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1428     _inode_max = _inodes + max;
1429     _inode_top = _inodes - 1; // stack is empty
1430   }
1431 
1432   void pop() {
1433     assert(_inode_top >= _inodes, "node stack underflow");
1434     --_inode_top;
1435   }
1436   void push(Node *n, uint i) {
1437     ++_inode_top;
1438     if (_inode_top >= _inode_max) grow();
1439     INode *top = _inode_top; // optimization
1440     top->node = n;
1441     top->indx = i;
1442   }
1443   Node *node() const {
1444     return _inode_top->node;
1445   }
1446   Node* node_at(uint i) const {
1447     assert(_inodes + i <= _inode_top, "in range");
1448     return _inodes[i].node;
1449   }
1450   uint index() const {
1451     return _inode_top->indx;
1452   }
1453   uint index_at(uint i) const {
1454     assert(_inodes + i <= _inode_top, "in range");
1455     return _inodes[i].indx;
1456   }
1457   void set_node(Node *n) {
1458     _inode_top->node = n;
1459   }
1460   void set_index(uint i) {
1461     _inode_top->indx = i;
1462   }
1463   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1464   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1465   bool is_nonempty() const { return (_inode_top >= _inodes); }
1466   bool is_empty() const { return (_inode_top < _inodes); }
1467   void clear() { _inode_top = _inodes - 1; } // retain storage
1468 
1469   // Node_Stack is used to map nodes.
1470   Node* find(uint idx) const;
1471 };
1472 
1473 
1474 //-----------------------------Node_Notes--------------------------------------
1475 // Debugging or profiling annotations loosely and sparsely associated
1476 // with some nodes.  See Compile::node_notes_at for the accessor.
1477 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1478   friend class VMStructs;
1479   JVMState* _jvms;
1480 
1481 public:
1482   Node_Notes(JVMState* jvms = NULL) {
1483     _jvms = jvms;
1484   }
1485 
1486   JVMState* jvms()            { return _jvms; }
1487   void  set_jvms(JVMState* x) {        _jvms = x; }
1488 
1489   // True if there is nothing here.
1490   bool is_clear() {
1491     return (_jvms == NULL);
1492   }
1493 
1494   // Make there be nothing here.
1495   void clear() {
1496     _jvms = NULL;
1497   }
1498 
1499   // Make a new, clean node notes.
1500   static Node_Notes* make(Compile* C) {
1501     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1502     nn->clear();
1503     return nn;
1504   }
1505 
1506   Node_Notes* clone(Compile* C) {
1507     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1508     (*nn) = (*this);
1509     return nn;
1510   }
1511 
1512   // Absorb any information from source.
1513   bool update_from(Node_Notes* source) {
1514     bool changed = false;
1515     if (source != NULL) {
1516       if (source->jvms() != NULL) {
1517         set_jvms(source->jvms());
1518         changed = true;
1519       }
1520     }
1521     return changed;
1522   }
1523 };
1524 
1525 // Inlined accessors for Compile::node_nodes that require the preceding class:
1526 inline Node_Notes*
1527 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1528                            int idx, bool can_grow) {
1529   assert(idx >= 0, "oob");
1530   int block_idx = (idx >> _log2_node_notes_block_size);
1531   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1532   if (grow_by >= 0) {
1533     if (!can_grow)  return NULL;
1534     grow_node_notes(arr, grow_by + 1);
1535   }
1536   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1537   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1538 }
1539 
1540 inline bool
1541 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1542   if (value == NULL || value->is_clear())
1543     return false;  // nothing to write => write nothing
1544   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1545   assert(loc != NULL, "");
1546   return loc->update_from(value);
1547 }
1548 
1549 
1550 //------------------------------TypeNode---------------------------------------
1551 // Node with a Type constant.
1552 class TypeNode : public Node {
1553 protected:
1554   virtual uint hash() const;    // Check the type
1555   virtual uint cmp( const Node &n ) const;
1556   virtual uint size_of() const; // Size is bigger
1557   const Type* const _type;
1558 public:
1559   void set_type(const Type* t) {
1560     assert(t != NULL, "sanity");
1561     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1562     *(const Type**)&_type = t;   // cast away const-ness
1563     // If this node is in the hash table, make sure it doesn't need a rehash.
1564     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1565   }
1566   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1567   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1568     init_class_id(Class_Type);
1569   }
1570   virtual const Type *Value( PhaseTransform *phase ) const;
1571   virtual const Type *bottom_type() const;
1572   virtual       uint  ideal_reg() const;
1573 #ifndef PRODUCT
1574   virtual void dump_spec(outputStream *st) const;
1575 #endif
1576 };
1577 
1578 #endif // SHARE_VM_OPTO_NODE_HPP