1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/countbitsnode.hpp"
  37 #include "opto/intrinsicnode.hpp"
  38 #include "opto/idealKit.hpp"
  39 #include "opto/mathexactnode.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/subnode.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "trace/traceMacros.hpp"
  49 
  50 class LibraryIntrinsic : public InlineCallGenerator {
  51   // Extend the set of intrinsics known to the runtime:
  52  public:
  53  private:
  54   bool             _is_virtual;
  55   bool             _does_virtual_dispatch;
  56   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  57   int8_t           _last_predicate; // Last generated predicate
  58   vmIntrinsics::ID _intrinsic_id;
  59 
  60  public:
  61   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  62     : InlineCallGenerator(m),
  63       _is_virtual(is_virtual),
  64       _does_virtual_dispatch(does_virtual_dispatch),
  65       _predicates_count((int8_t)predicates_count),
  66       _last_predicate((int8_t)-1),
  67       _intrinsic_id(id)
  68   {
  69   }
  70   virtual bool is_intrinsic() const { return true; }
  71   virtual bool is_virtual()   const { return _is_virtual; }
  72   virtual bool is_predicated() const { return _predicates_count > 0; }
  73   virtual int  predicates_count() const { return _predicates_count; }
  74   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  75   virtual JVMState* generate(JVMState* jvms);
  76   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  77   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  78 };
  79 
  80 
  81 // Local helper class for LibraryIntrinsic:
  82 class LibraryCallKit : public GraphKit {
  83  private:
  84   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  85   Node*             _result;        // the result node, if any
  86   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  87 
  88   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  89 
  90  public:
  91   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  92     : GraphKit(jvms),
  93       _intrinsic(intrinsic),
  94       _result(NULL)
  95   {
  96     // Check if this is a root compile.  In that case we don't have a caller.
  97     if (!jvms->has_method()) {
  98       _reexecute_sp = sp();
  99     } else {
 100       // Find out how many arguments the interpreter needs when deoptimizing
 101       // and save the stack pointer value so it can used by uncommon_trap.
 102       // We find the argument count by looking at the declared signature.
 103       bool ignored_will_link;
 104       ciSignature* declared_signature = NULL;
 105       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 106       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 107       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 108     }
 109   }
 110 
 111   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 112 
 113   ciMethod*         caller()    const    { return jvms()->method(); }
 114   int               bci()       const    { return jvms()->bci(); }
 115   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 116   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 117   ciMethod*         callee()    const    { return _intrinsic->method(); }
 118 
 119   bool  try_to_inline(int predicate);
 120   Node* try_to_predicate(int predicate);
 121 
 122   void push_result() {
 123     // Push the result onto the stack.
 124     if (!stopped() && result() != NULL) {
 125       BasicType bt = result()->bottom_type()->basic_type();
 126       push_node(bt, result());
 127     }
 128   }
 129 
 130  private:
 131   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 132     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 133   }
 134 
 135   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 136   void  set_result(RegionNode* region, PhiNode* value);
 137   Node*     result() { return _result; }
 138 
 139   virtual int reexecute_sp() { return _reexecute_sp; }
 140 
 141   // Helper functions to inline natives
 142   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 143   Node* generate_slow_guard(Node* test, RegionNode* region);
 144   Node* generate_fair_guard(Node* test, RegionNode* region);
 145   Node* generate_negative_guard(Node* index, RegionNode* region,
 146                                 // resulting CastII of index:
 147                                 Node* *pos_index = NULL);
 148   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 149                              Node* array_length,
 150                              RegionNode* region);
 151   Node* generate_current_thread(Node* &tls_output);
 152   Node* load_mirror_from_klass(Node* klass);
 153   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 154                                       RegionNode* region, int null_path,
 155                                       int offset);
 156   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 157                                RegionNode* region, int null_path) {
 158     int offset = java_lang_Class::klass_offset_in_bytes();
 159     return load_klass_from_mirror_common(mirror, never_see_null,
 160                                          region, null_path,
 161                                          offset);
 162   }
 163   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 164                                      RegionNode* region, int null_path) {
 165     int offset = java_lang_Class::array_klass_offset_in_bytes();
 166     return load_klass_from_mirror_common(mirror, never_see_null,
 167                                          region, null_path,
 168                                          offset);
 169   }
 170   Node* generate_access_flags_guard(Node* kls,
 171                                     int modifier_mask, int modifier_bits,
 172                                     RegionNode* region);
 173   Node* generate_interface_guard(Node* kls, RegionNode* region);
 174   Node* generate_array_guard(Node* kls, RegionNode* region) {
 175     return generate_array_guard_common(kls, region, false, false);
 176   }
 177   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 178     return generate_array_guard_common(kls, region, false, true);
 179   }
 180   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, true, false);
 182   }
 183   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, true, true);
 185   }
 186   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 187                                     bool obj_array, bool not_array);
 188   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 189   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 190                                      bool is_virtual = false, bool is_static = false);
 191   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 192     return generate_method_call(method_id, false, true);
 193   }
 194   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 195     return generate_method_call(method_id, true, false);
 196   }
 197   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 198 
 199   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 200   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 201   bool inline_string_compareTo();
 202   bool inline_string_indexOf();
 203   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 204   bool inline_string_equals();
 205   Node* round_double_node(Node* n);
 206   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 207   bool inline_math_native(vmIntrinsics::ID id);
 208   bool inline_trig(vmIntrinsics::ID id);
 209   bool inline_math(vmIntrinsics::ID id);
 210   template <typename OverflowOp>
 211   bool inline_math_overflow(Node* arg1, Node* arg2);
 212   void inline_math_mathExact(Node* math, Node* test);
 213   bool inline_math_addExactI(bool is_increment);
 214   bool inline_math_addExactL(bool is_increment);
 215   bool inline_math_multiplyExactI();
 216   bool inline_math_multiplyExactL();
 217   bool inline_math_negateExactI();
 218   bool inline_math_negateExactL();
 219   bool inline_math_subtractExactI(bool is_decrement);
 220   bool inline_math_subtractExactL(bool is_decrement);
 221   bool inline_exp();
 222   bool inline_pow();
 223   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 224   bool inline_min_max(vmIntrinsics::ID id);
 225   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 226   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 227   int classify_unsafe_addr(Node* &base, Node* &offset);
 228   Node* make_unsafe_address(Node* base, Node* offset);
 229   // Helper for inline_unsafe_access.
 230   // Generates the guards that check whether the result of
 231   // Unsafe.getObject should be recorded in an SATB log buffer.
 232   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 233   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 234   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 235   static bool klass_needs_init_guard(Node* kls);
 236   bool inline_unsafe_allocate();
 237   bool inline_unsafe_copyMemory();
 238   bool inline_native_currentThread();
 239 #ifdef TRACE_HAVE_INTRINSICS
 240   bool inline_native_classID();
 241   bool inline_native_threadID();
 242 #endif
 243   bool inline_native_time_funcs(address method, const char* funcName);
 244   bool inline_native_isInterrupted();
 245   bool inline_native_Class_query(vmIntrinsics::ID id);
 246   bool inline_native_subtype_check();
 247 
 248   bool inline_native_newArray();
 249   bool inline_native_getLength();
 250   bool inline_array_copyOf(bool is_copyOfRange);
 251   bool inline_array_equals();
 252   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 253   bool inline_native_clone(bool is_virtual);
 254   bool inline_native_Reflection_getCallerClass();
 255   // Helper function for inlining native object hash method
 256   bool inline_native_hashcode(bool is_virtual, bool is_static);
 257   bool inline_native_getClass();
 258 
 259   // Helper functions for inlining arraycopy
 260   bool inline_arraycopy();
 261   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 262                                                 RegionNode* slow_region);
 263   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 264   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 265   bool inline_unsafe_ordered_store(BasicType type);
 266   bool inline_unsafe_fence(vmIntrinsics::ID id);
 267   bool inline_fp_conversions(vmIntrinsics::ID id);
 268   bool inline_number_methods(vmIntrinsics::ID id);
 269   bool inline_reference_get();
 270   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 271   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 272   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 273   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 274   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 275   bool inline_sha_implCompress(vmIntrinsics::ID id);
 276   bool inline_digestBase_implCompressMB(int predicate);
 277   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 278                                  bool long_state, address stubAddr, const char *stubName,
 279                                  Node* src_start, Node* ofs, Node* limit);
 280   Node* get_state_from_sha_object(Node *sha_object);
 281   Node* get_state_from_sha5_object(Node *sha_object);
 282   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 283   bool inline_encodeISOArray();
 284   bool inline_updateCRC32();
 285   bool inline_updateBytesCRC32();
 286   bool inline_updateByteBufferCRC32();
 287 };
 288 
 289 
 290 //---------------------------make_vm_intrinsic----------------------------
 291 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 292   vmIntrinsics::ID id = m->intrinsic_id();
 293   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 294 
 295   if (DisableIntrinsic[0] != '\0'
 296       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 297     // disabled by a user request on the command line:
 298     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 299     return NULL;
 300   }
 301 
 302   if (!m->is_loaded()) {
 303     // do not attempt to inline unloaded methods
 304     return NULL;
 305   }
 306 
 307   // Only a few intrinsics implement a virtual dispatch.
 308   // They are expensive calls which are also frequently overridden.
 309   if (is_virtual) {
 310     switch (id) {
 311     case vmIntrinsics::_hashCode:
 312     case vmIntrinsics::_clone:
 313       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 314       break;
 315     default:
 316       return NULL;
 317     }
 318   }
 319 
 320   // -XX:-InlineNatives disables nearly all intrinsics:
 321   if (!InlineNatives) {
 322     switch (id) {
 323     case vmIntrinsics::_indexOf:
 324     case vmIntrinsics::_compareTo:
 325     case vmIntrinsics::_equals:
 326     case vmIntrinsics::_equalsC:
 327     case vmIntrinsics::_getAndAddInt:
 328     case vmIntrinsics::_getAndAddLong:
 329     case vmIntrinsics::_getAndSetInt:
 330     case vmIntrinsics::_getAndSetLong:
 331     case vmIntrinsics::_getAndSetObject:
 332     case vmIntrinsics::_loadFence:
 333     case vmIntrinsics::_storeFence:
 334     case vmIntrinsics::_fullFence:
 335       break;  // InlineNatives does not control String.compareTo
 336     case vmIntrinsics::_Reference_get:
 337       break;  // InlineNatives does not control Reference.get
 338     default:
 339       return NULL;
 340     }
 341   }
 342 
 343   int predicates = 0;
 344   bool does_virtual_dispatch = false;
 345 
 346   switch (id) {
 347   case vmIntrinsics::_compareTo:
 348     if (!SpecialStringCompareTo)  return NULL;
 349     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 350     break;
 351   case vmIntrinsics::_indexOf:
 352     if (!SpecialStringIndexOf)  return NULL;
 353     break;
 354   case vmIntrinsics::_equals:
 355     if (!SpecialStringEquals)  return NULL;
 356     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 357     break;
 358   case vmIntrinsics::_equalsC:
 359     if (!SpecialArraysEquals)  return NULL;
 360     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 361     break;
 362   case vmIntrinsics::_arraycopy:
 363     if (!InlineArrayCopy)  return NULL;
 364     break;
 365   case vmIntrinsics::_copyMemory:
 366     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 367     if (!InlineArrayCopy)  return NULL;
 368     break;
 369   case vmIntrinsics::_hashCode:
 370     if (!InlineObjectHash)  return NULL;
 371     does_virtual_dispatch = true;
 372     break;
 373   case vmIntrinsics::_clone:
 374     does_virtual_dispatch = true;
 375   case vmIntrinsics::_copyOf:
 376   case vmIntrinsics::_copyOfRange:
 377     if (!InlineObjectCopy)  return NULL;
 378     // These also use the arraycopy intrinsic mechanism:
 379     if (!InlineArrayCopy)  return NULL;
 380     break;
 381   case vmIntrinsics::_encodeISOArray:
 382     if (!SpecialEncodeISOArray)  return NULL;
 383     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 384     break;
 385   case vmIntrinsics::_checkIndex:
 386     // We do not intrinsify this.  The optimizer does fine with it.
 387     return NULL;
 388 
 389   case vmIntrinsics::_getCallerClass:
 390     if (!InlineReflectionGetCallerClass)  return NULL;
 391     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 392     break;
 393 
 394   case vmIntrinsics::_bitCount_i:
 395     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 396     break;
 397 
 398   case vmIntrinsics::_bitCount_l:
 399     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 400     break;
 401 
 402   case vmIntrinsics::_numberOfLeadingZeros_i:
 403     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 404     break;
 405 
 406   case vmIntrinsics::_numberOfLeadingZeros_l:
 407     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 408     break;
 409 
 410   case vmIntrinsics::_numberOfTrailingZeros_i:
 411     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 412     break;
 413 
 414   case vmIntrinsics::_numberOfTrailingZeros_l:
 415     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 416     break;
 417 
 418   case vmIntrinsics::_reverseBytes_c:
 419     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 420     break;
 421   case vmIntrinsics::_reverseBytes_s:
 422     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 423     break;
 424   case vmIntrinsics::_reverseBytes_i:
 425     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 426     break;
 427   case vmIntrinsics::_reverseBytes_l:
 428     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 429     break;
 430 
 431   case vmIntrinsics::_Reference_get:
 432     // Use the intrinsic version of Reference.get() so that the value in
 433     // the referent field can be registered by the G1 pre-barrier code.
 434     // Also add memory barrier to prevent commoning reads from this field
 435     // across safepoint since GC can change it value.
 436     break;
 437 
 438   case vmIntrinsics::_compareAndSwapObject:
 439 #ifdef _LP64
 440     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 441 #endif
 442     break;
 443 
 444   case vmIntrinsics::_compareAndSwapLong:
 445     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 446     break;
 447 
 448   case vmIntrinsics::_getAndAddInt:
 449     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 450     break;
 451 
 452   case vmIntrinsics::_getAndAddLong:
 453     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 454     break;
 455 
 456   case vmIntrinsics::_getAndSetInt:
 457     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 458     break;
 459 
 460   case vmIntrinsics::_getAndSetLong:
 461     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 462     break;
 463 
 464   case vmIntrinsics::_getAndSetObject:
 465 #ifdef _LP64
 466     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 467     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 468     break;
 469 #else
 470     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 471     break;
 472 #endif
 473 
 474   case vmIntrinsics::_aescrypt_encryptBlock:
 475   case vmIntrinsics::_aescrypt_decryptBlock:
 476     if (!UseAESIntrinsics) return NULL;
 477     break;
 478 
 479   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 480   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 481     if (!UseAESIntrinsics) return NULL;
 482     // these two require the predicated logic
 483     predicates = 1;
 484     break;
 485 
 486   case vmIntrinsics::_sha_implCompress:
 487     if (!UseSHA1Intrinsics) return NULL;
 488     break;
 489 
 490   case vmIntrinsics::_sha2_implCompress:
 491     if (!UseSHA256Intrinsics) return NULL;
 492     break;
 493 
 494   case vmIntrinsics::_sha5_implCompress:
 495     if (!UseSHA512Intrinsics) return NULL;
 496     break;
 497 
 498   case vmIntrinsics::_digestBase_implCompressMB:
 499     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 500     predicates = 3;
 501     break;
 502 
 503   case vmIntrinsics::_updateCRC32:
 504   case vmIntrinsics::_updateBytesCRC32:
 505   case vmIntrinsics::_updateByteBufferCRC32:
 506     if (!UseCRC32Intrinsics) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_incrementExactI:
 510   case vmIntrinsics::_addExactI:
 511     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 512     break;
 513   case vmIntrinsics::_incrementExactL:
 514   case vmIntrinsics::_addExactL:
 515     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 516     break;
 517   case vmIntrinsics::_decrementExactI:
 518   case vmIntrinsics::_subtractExactI:
 519     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 520     break;
 521   case vmIntrinsics::_decrementExactL:
 522   case vmIntrinsics::_subtractExactL:
 523     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 524     break;
 525   case vmIntrinsics::_negateExactI:
 526     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 527     break;
 528   case vmIntrinsics::_negateExactL:
 529     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 530     break;
 531   case vmIntrinsics::_multiplyExactI:
 532     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_multiplyExactL:
 535     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 536     break;
 537 
 538  default:
 539     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 540     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 541     break;
 542   }
 543 
 544   // -XX:-InlineClassNatives disables natives from the Class class.
 545   // The flag applies to all reflective calls, notably Array.newArray
 546   // (visible to Java programmers as Array.newInstance).
 547   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 548       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 549     if (!InlineClassNatives)  return NULL;
 550   }
 551 
 552   // -XX:-InlineThreadNatives disables natives from the Thread class.
 553   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 554     if (!InlineThreadNatives)  return NULL;
 555   }
 556 
 557   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 558   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 559       m->holder()->name() == ciSymbol::java_lang_Float() ||
 560       m->holder()->name() == ciSymbol::java_lang_Double()) {
 561     if (!InlineMathNatives)  return NULL;
 562   }
 563 
 564   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 565   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 566     if (!InlineUnsafeOps)  return NULL;
 567   }
 568 
 569   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 570 }
 571 
 572 //----------------------register_library_intrinsics-----------------------
 573 // Initialize this file's data structures, for each Compile instance.
 574 void Compile::register_library_intrinsics() {
 575   // Nothing to do here.
 576 }
 577 
 578 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 579   LibraryCallKit kit(jvms, this);
 580   Compile* C = kit.C;
 581   int nodes = C->unique();
 582 #ifndef PRODUCT
 583   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 584     char buf[1000];
 585     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 586     tty->print_cr("Intrinsic %s", str);
 587   }
 588 #endif
 589   ciMethod* callee = kit.callee();
 590   const int bci    = kit.bci();
 591 
 592   // Try to inline the intrinsic.
 593   if (kit.try_to_inline(_last_predicate)) {
 594     if (C->print_intrinsics() || C->print_inlining()) {
 595       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 596     }
 597     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 598     if (C->log()) {
 599       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 600                      vmIntrinsics::name_at(intrinsic_id()),
 601                      (is_virtual() ? " virtual='1'" : ""),
 602                      C->unique() - nodes);
 603     }
 604     // Push the result from the inlined method onto the stack.
 605     kit.push_result();
 606     C->print_inlining_update(this);
 607     return kit.transfer_exceptions_into_jvms();
 608   }
 609 
 610   // The intrinsic bailed out
 611   if (C->print_intrinsics() || C->print_inlining()) {
 612     if (jvms->has_method()) {
 613       // Not a root compile.
 614       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 615       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 616     } else {
 617       // Root compile
 618       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 619                vmIntrinsics::name_at(intrinsic_id()),
 620                (is_virtual() ? " (virtual)" : ""), bci);
 621     }
 622   }
 623   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 624   C->print_inlining_update(this);
 625   return NULL;
 626 }
 627 
 628 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 629   LibraryCallKit kit(jvms, this);
 630   Compile* C = kit.C;
 631   int nodes = C->unique();
 632   _last_predicate = predicate;
 633 #ifndef PRODUCT
 634   assert(is_predicated() && predicate < predicates_count(), "sanity");
 635   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 636     char buf[1000];
 637     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 638     tty->print_cr("Predicate for intrinsic %s", str);
 639   }
 640 #endif
 641   ciMethod* callee = kit.callee();
 642   const int bci    = kit.bci();
 643 
 644   Node* slow_ctl = kit.try_to_predicate(predicate);
 645   if (!kit.failing()) {
 646     if (C->print_intrinsics() || C->print_inlining()) {
 647       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 648     }
 649     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 650     if (C->log()) {
 651       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 652                      vmIntrinsics::name_at(intrinsic_id()),
 653                      (is_virtual() ? " virtual='1'" : ""),
 654                      C->unique() - nodes);
 655     }
 656     return slow_ctl; // Could be NULL if the check folds.
 657   }
 658 
 659   // The intrinsic bailed out
 660   if (C->print_intrinsics() || C->print_inlining()) {
 661     if (jvms->has_method()) {
 662       // Not a root compile.
 663       const char* msg = "failed to generate predicate for intrinsic";
 664       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 665     } else {
 666       // Root compile
 667       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 668                                         vmIntrinsics::name_at(intrinsic_id()),
 669                                         (is_virtual() ? " (virtual)" : ""), bci);
 670     }
 671   }
 672   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 673   return NULL;
 674 }
 675 
 676 bool LibraryCallKit::try_to_inline(int predicate) {
 677   // Handle symbolic names for otherwise undistinguished boolean switches:
 678   const bool is_store       = true;
 679   const bool is_native_ptr  = true;
 680   const bool is_static      = true;
 681   const bool is_volatile    = true;
 682 
 683   if (!jvms()->has_method()) {
 684     // Root JVMState has a null method.
 685     assert(map()->memory()->Opcode() == Op_Parm, "");
 686     // Insert the memory aliasing node
 687     set_all_memory(reset_memory());
 688   }
 689   assert(merged_memory(), "");
 690 
 691 
 692   switch (intrinsic_id()) {
 693   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 694   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 695   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 696 
 697   case vmIntrinsics::_dsin:
 698   case vmIntrinsics::_dcos:
 699   case vmIntrinsics::_dtan:
 700   case vmIntrinsics::_dabs:
 701   case vmIntrinsics::_datan2:
 702   case vmIntrinsics::_dsqrt:
 703   case vmIntrinsics::_dexp:
 704   case vmIntrinsics::_dlog:
 705   case vmIntrinsics::_dlog10:
 706   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 707 
 708   case vmIntrinsics::_min:
 709   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 710 
 711   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 712   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 713   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 714   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 715   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 716   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 717   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 718   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 719   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 720   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 721   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 722   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 723 
 724   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 725 
 726   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 727   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 728   case vmIntrinsics::_equals:                   return inline_string_equals();
 729 
 730   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 731   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 732   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 733   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 734   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 735   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 736   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 737   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 738   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 739 
 740   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 741   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 742   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 743   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 744   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 745   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 746   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 747   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 748   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 749 
 750   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 751   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 752   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 753   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 754   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 755   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 756   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 757   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 758 
 759   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 760   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 761   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 762   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 763   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 764   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 765   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 766   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 767 
 768   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 769   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 770   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 771   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 772   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 773   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 774   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 775   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 776   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 777 
 778   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 779   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 780   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 781   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 782   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 783   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 784   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 785   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 786   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 787 
 788   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 789   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 790   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 791   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 792 
 793   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 794   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 795   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 796 
 797   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 798   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 799   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 800 
 801   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 802   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 803   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 804   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 805   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 806 
 807   case vmIntrinsics::_loadFence:
 808   case vmIntrinsics::_storeFence:
 809   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 810 
 811   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 812   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 813 
 814 #ifdef TRACE_HAVE_INTRINSICS
 815   case vmIntrinsics::_classID:                  return inline_native_classID();
 816   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 817   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 818 #endif
 819   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 820   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 821   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 822   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 823   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 824   case vmIntrinsics::_getLength:                return inline_native_getLength();
 825   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 826   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 827   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 828   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 829 
 830   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 831 
 832   case vmIntrinsics::_isInstance:
 833   case vmIntrinsics::_getModifiers:
 834   case vmIntrinsics::_isInterface:
 835   case vmIntrinsics::_isArray:
 836   case vmIntrinsics::_isPrimitive:
 837   case vmIntrinsics::_getSuperclass:
 838   case vmIntrinsics::_getComponentType:
 839   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 840 
 841   case vmIntrinsics::_floatToRawIntBits:
 842   case vmIntrinsics::_floatToIntBits:
 843   case vmIntrinsics::_intBitsToFloat:
 844   case vmIntrinsics::_doubleToRawLongBits:
 845   case vmIntrinsics::_doubleToLongBits:
 846   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 847 
 848   case vmIntrinsics::_numberOfLeadingZeros_i:
 849   case vmIntrinsics::_numberOfLeadingZeros_l:
 850   case vmIntrinsics::_numberOfTrailingZeros_i:
 851   case vmIntrinsics::_numberOfTrailingZeros_l:
 852   case vmIntrinsics::_bitCount_i:
 853   case vmIntrinsics::_bitCount_l:
 854   case vmIntrinsics::_reverseBytes_i:
 855   case vmIntrinsics::_reverseBytes_l:
 856   case vmIntrinsics::_reverseBytes_s:
 857   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 858 
 859   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 860 
 861   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 862 
 863   case vmIntrinsics::_aescrypt_encryptBlock:
 864   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 865 
 866   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 867   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 868     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 869 
 870   case vmIntrinsics::_sha_implCompress:
 871   case vmIntrinsics::_sha2_implCompress:
 872   case vmIntrinsics::_sha5_implCompress:
 873     return inline_sha_implCompress(intrinsic_id());
 874 
 875   case vmIntrinsics::_digestBase_implCompressMB:
 876     return inline_digestBase_implCompressMB(predicate);
 877 
 878   case vmIntrinsics::_encodeISOArray:
 879     return inline_encodeISOArray();
 880 
 881   case vmIntrinsics::_updateCRC32:
 882     return inline_updateCRC32();
 883   case vmIntrinsics::_updateBytesCRC32:
 884     return inline_updateBytesCRC32();
 885   case vmIntrinsics::_updateByteBufferCRC32:
 886     return inline_updateByteBufferCRC32();
 887 
 888   default:
 889     // If you get here, it may be that someone has added a new intrinsic
 890     // to the list in vmSymbols.hpp without implementing it here.
 891 #ifndef PRODUCT
 892     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 893       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 894                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 895     }
 896 #endif
 897     return false;
 898   }
 899 }
 900 
 901 Node* LibraryCallKit::try_to_predicate(int predicate) {
 902   if (!jvms()->has_method()) {
 903     // Root JVMState has a null method.
 904     assert(map()->memory()->Opcode() == Op_Parm, "");
 905     // Insert the memory aliasing node
 906     set_all_memory(reset_memory());
 907   }
 908   assert(merged_memory(), "");
 909 
 910   switch (intrinsic_id()) {
 911   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 912     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 913   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 914     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 915   case vmIntrinsics::_digestBase_implCompressMB:
 916     return inline_digestBase_implCompressMB_predicate(predicate);
 917 
 918   default:
 919     // If you get here, it may be that someone has added a new intrinsic
 920     // to the list in vmSymbols.hpp without implementing it here.
 921 #ifndef PRODUCT
 922     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 923       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 924                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 925     }
 926 #endif
 927     Node* slow_ctl = control();
 928     set_control(top()); // No fast path instrinsic
 929     return slow_ctl;
 930   }
 931 }
 932 
 933 //------------------------------set_result-------------------------------
 934 // Helper function for finishing intrinsics.
 935 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 936   record_for_igvn(region);
 937   set_control(_gvn.transform(region));
 938   set_result( _gvn.transform(value));
 939   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 940 }
 941 
 942 //------------------------------generate_guard---------------------------
 943 // Helper function for generating guarded fast-slow graph structures.
 944 // The given 'test', if true, guards a slow path.  If the test fails
 945 // then a fast path can be taken.  (We generally hope it fails.)
 946 // In all cases, GraphKit::control() is updated to the fast path.
 947 // The returned value represents the control for the slow path.
 948 // The return value is never 'top'; it is either a valid control
 949 // or NULL if it is obvious that the slow path can never be taken.
 950 // Also, if region and the slow control are not NULL, the slow edge
 951 // is appended to the region.
 952 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 953   if (stopped()) {
 954     // Already short circuited.
 955     return NULL;
 956   }
 957 
 958   // Build an if node and its projections.
 959   // If test is true we take the slow path, which we assume is uncommon.
 960   if (_gvn.type(test) == TypeInt::ZERO) {
 961     // The slow branch is never taken.  No need to build this guard.
 962     return NULL;
 963   }
 964 
 965   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 966 
 967   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 968   if (if_slow == top()) {
 969     // The slow branch is never taken.  No need to build this guard.
 970     return NULL;
 971   }
 972 
 973   if (region != NULL)
 974     region->add_req(if_slow);
 975 
 976   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 977   set_control(if_fast);
 978 
 979   return if_slow;
 980 }
 981 
 982 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 983   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 984 }
 985 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 986   return generate_guard(test, region, PROB_FAIR);
 987 }
 988 
 989 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 990                                                      Node* *pos_index) {
 991   if (stopped())
 992     return NULL;                // already stopped
 993   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 994     return NULL;                // index is already adequately typed
 995   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 996   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 997   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 998   if (is_neg != NULL && pos_index != NULL) {
 999     // Emulate effect of Parse::adjust_map_after_if.
1000     Node* ccast = new CastIINode(index, TypeInt::POS);
1001     ccast->set_req(0, control());
1002     (*pos_index) = _gvn.transform(ccast);
1003   }
1004   return is_neg;
1005 }
1006 
1007 // Make sure that 'position' is a valid limit index, in [0..length].
1008 // There are two equivalent plans for checking this:
1009 //   A. (offset + copyLength)  unsigned<=  arrayLength
1010 //   B. offset  <=  (arrayLength - copyLength)
1011 // We require that all of the values above, except for the sum and
1012 // difference, are already known to be non-negative.
1013 // Plan A is robust in the face of overflow, if offset and copyLength
1014 // are both hugely positive.
1015 //
1016 // Plan B is less direct and intuitive, but it does not overflow at
1017 // all, since the difference of two non-negatives is always
1018 // representable.  Whenever Java methods must perform the equivalent
1019 // check they generally use Plan B instead of Plan A.
1020 // For the moment we use Plan A.
1021 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1022                                                   Node* subseq_length,
1023                                                   Node* array_length,
1024                                                   RegionNode* region) {
1025   if (stopped())
1026     return NULL;                // already stopped
1027   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1028   if (zero_offset && subseq_length->eqv_uncast(array_length))
1029     return NULL;                // common case of whole-array copy
1030   Node* last = subseq_length;
1031   if (!zero_offset)             // last += offset
1032     last = _gvn.transform(new AddINode(last, offset));
1033   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1034   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1035   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1036   return is_over;
1037 }
1038 
1039 
1040 //--------------------------generate_current_thread--------------------
1041 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1042   ciKlass*    thread_klass = env()->Thread_klass();
1043   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1044   Node* thread = _gvn.transform(new ThreadLocalNode());
1045   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1046   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1047   tls_output = thread;
1048   return threadObj;
1049 }
1050 
1051 
1052 //------------------------------make_string_method_node------------------------
1053 // Helper method for String intrinsic functions. This version is called
1054 // with str1 and str2 pointing to String object nodes.
1055 //
1056 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1057   Node* no_ctrl = NULL;
1058 
1059   // Get start addr of string
1060   Node* str1_value   = load_String_value(no_ctrl, str1);
1061   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1062   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1063 
1064   // Get length of string 1
1065   Node* str1_len  = load_String_length(no_ctrl, str1);
1066 
1067   Node* str2_value   = load_String_value(no_ctrl, str2);
1068   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1069   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1070 
1071   Node* str2_len = NULL;
1072   Node* result = NULL;
1073 
1074   switch (opcode) {
1075   case Op_StrIndexOf:
1076     // Get length of string 2
1077     str2_len = load_String_length(no_ctrl, str2);
1078 
1079     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1080                                 str1_start, str1_len, str2_start, str2_len);
1081     break;
1082   case Op_StrComp:
1083     // Get length of string 2
1084     str2_len = load_String_length(no_ctrl, str2);
1085 
1086     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1087                              str1_start, str1_len, str2_start, str2_len);
1088     break;
1089   case Op_StrEquals:
1090     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1091                                str1_start, str2_start, str1_len);
1092     break;
1093   default:
1094     ShouldNotReachHere();
1095     return NULL;
1096   }
1097 
1098   // All these intrinsics have checks.
1099   C->set_has_split_ifs(true); // Has chance for split-if optimization
1100 
1101   return _gvn.transform(result);
1102 }
1103 
1104 // Helper method for String intrinsic functions. This version is called
1105 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1106 // to Int nodes containing the lenghts of str1 and str2.
1107 //
1108 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1109   Node* result = NULL;
1110   switch (opcode) {
1111   case Op_StrIndexOf:
1112     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1113                                 str1_start, cnt1, str2_start, cnt2);
1114     break;
1115   case Op_StrComp:
1116     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1117                              str1_start, cnt1, str2_start, cnt2);
1118     break;
1119   case Op_StrEquals:
1120     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1121                                str1_start, str2_start, cnt1);
1122     break;
1123   default:
1124     ShouldNotReachHere();
1125     return NULL;
1126   }
1127 
1128   // All these intrinsics have checks.
1129   C->set_has_split_ifs(true); // Has chance for split-if optimization
1130 
1131   return _gvn.transform(result);
1132 }
1133 
1134 //------------------------------inline_string_compareTo------------------------
1135 // public int java.lang.String.compareTo(String anotherString);
1136 bool LibraryCallKit::inline_string_compareTo() {
1137   Node* receiver = null_check(argument(0));
1138   Node* arg      = null_check(argument(1));
1139   if (stopped()) {
1140     return true;
1141   }
1142   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1143   return true;
1144 }
1145 
1146 //------------------------------inline_string_equals------------------------
1147 bool LibraryCallKit::inline_string_equals() {
1148   Node* receiver = null_check_receiver();
1149   // NOTE: Do not null check argument for String.equals() because spec
1150   // allows to specify NULL as argument.
1151   Node* argument = this->argument(1);
1152   if (stopped()) {
1153     return true;
1154   }
1155 
1156   // paths (plus control) merge
1157   RegionNode* region = new RegionNode(5);
1158   Node* phi = new PhiNode(region, TypeInt::BOOL);
1159 
1160   // does source == target string?
1161   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1162   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1163 
1164   Node* if_eq = generate_slow_guard(bol, NULL);
1165   if (if_eq != NULL) {
1166     // receiver == argument
1167     phi->init_req(2, intcon(1));
1168     region->init_req(2, if_eq);
1169   }
1170 
1171   // get String klass for instanceOf
1172   ciInstanceKlass* klass = env()->String_klass();
1173 
1174   if (!stopped()) {
1175     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1176     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1177     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1178 
1179     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1180     //instanceOf == true, fallthrough
1181 
1182     if (inst_false != NULL) {
1183       phi->init_req(3, intcon(0));
1184       region->init_req(3, inst_false);
1185     }
1186   }
1187 
1188   if (!stopped()) {
1189     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1190 
1191     // Properly cast the argument to String
1192     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1193     // This path is taken only when argument's type is String:NotNull.
1194     argument = cast_not_null(argument, false);
1195 
1196     Node* no_ctrl = NULL;
1197 
1198     // Get start addr of receiver
1199     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1200     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1201     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1202 
1203     // Get length of receiver
1204     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1205 
1206     // Get start addr of argument
1207     Node* argument_val    = load_String_value(no_ctrl, argument);
1208     Node* argument_offset = load_String_offset(no_ctrl, argument);
1209     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1210 
1211     // Get length of argument
1212     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1213 
1214     // Check for receiver count != argument count
1215     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1216     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1217     Node* if_ne = generate_slow_guard(bol, NULL);
1218     if (if_ne != NULL) {
1219       phi->init_req(4, intcon(0));
1220       region->init_req(4, if_ne);
1221     }
1222 
1223     // Check for count == 0 is done by assembler code for StrEquals.
1224 
1225     if (!stopped()) {
1226       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1227       phi->init_req(1, equals);
1228       region->init_req(1, control());
1229     }
1230   }
1231 
1232   // post merge
1233   set_control(_gvn.transform(region));
1234   record_for_igvn(region);
1235 
1236   set_result(_gvn.transform(phi));
1237   return true;
1238 }
1239 
1240 //------------------------------inline_array_equals----------------------------
1241 bool LibraryCallKit::inline_array_equals() {
1242   Node* arg1 = argument(0);
1243   Node* arg2 = argument(1);
1244   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1245   return true;
1246 }
1247 
1248 // Java version of String.indexOf(constant string)
1249 // class StringDecl {
1250 //   StringDecl(char[] ca) {
1251 //     offset = 0;
1252 //     count = ca.length;
1253 //     value = ca;
1254 //   }
1255 //   int offset;
1256 //   int count;
1257 //   char[] value;
1258 // }
1259 //
1260 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1261 //                             int targetOffset, int cache_i, int md2) {
1262 //   int cache = cache_i;
1263 //   int sourceOffset = string_object.offset;
1264 //   int sourceCount = string_object.count;
1265 //   int targetCount = target_object.length;
1266 //
1267 //   int targetCountLess1 = targetCount - 1;
1268 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1269 //
1270 //   char[] source = string_object.value;
1271 //   char[] target = target_object;
1272 //   int lastChar = target[targetCountLess1];
1273 //
1274 //  outer_loop:
1275 //   for (int i = sourceOffset; i < sourceEnd; ) {
1276 //     int src = source[i + targetCountLess1];
1277 //     if (src == lastChar) {
1278 //       // With random strings and a 4-character alphabet,
1279 //       // reverse matching at this point sets up 0.8% fewer
1280 //       // frames, but (paradoxically) makes 0.3% more probes.
1281 //       // Since those probes are nearer the lastChar probe,
1282 //       // there is may be a net D$ win with reverse matching.
1283 //       // But, reversing loop inhibits unroll of inner loop
1284 //       // for unknown reason.  So, does running outer loop from
1285 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1286 //       for (int j = 0; j < targetCountLess1; j++) {
1287 //         if (target[targetOffset + j] != source[i+j]) {
1288 //           if ((cache & (1 << source[i+j])) == 0) {
1289 //             if (md2 < j+1) {
1290 //               i += j+1;
1291 //               continue outer_loop;
1292 //             }
1293 //           }
1294 //           i += md2;
1295 //           continue outer_loop;
1296 //         }
1297 //       }
1298 //       return i - sourceOffset;
1299 //     }
1300 //     if ((cache & (1 << src)) == 0) {
1301 //       i += targetCountLess1;
1302 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1303 //     i++;
1304 //   }
1305 //   return -1;
1306 // }
1307 
1308 //------------------------------string_indexOf------------------------
1309 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1310                                      jint cache_i, jint md2_i) {
1311 
1312   Node* no_ctrl  = NULL;
1313   float likely   = PROB_LIKELY(0.9);
1314   float unlikely = PROB_UNLIKELY(0.9);
1315 
1316   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1317 
1318   Node* source        = load_String_value(no_ctrl, string_object);
1319   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1320   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1321 
1322   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1323   jint target_length = target_array->length();
1324   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1325   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1326 
1327   // String.value field is known to be @Stable.
1328   if (UseImplicitStableValues) {
1329     target = cast_array_to_stable(target, target_type);
1330   }
1331 
1332   IdealKit kit(this, false, true);
1333 #define __ kit.
1334   Node* zero             = __ ConI(0);
1335   Node* one              = __ ConI(1);
1336   Node* cache            = __ ConI(cache_i);
1337   Node* md2              = __ ConI(md2_i);
1338   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1339   Node* targetCount      = __ ConI(target_length);
1340   Node* targetCountLess1 = __ ConI(target_length - 1);
1341   Node* targetOffset     = __ ConI(targetOffset_i);
1342   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1343 
1344   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1345   Node* outer_loop = __ make_label(2 /* goto */);
1346   Node* return_    = __ make_label(1);
1347 
1348   __ set(rtn,__ ConI(-1));
1349   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1350        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1351        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1352        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1353        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1354          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1355               Node* tpj = __ AddI(targetOffset, __ value(j));
1356               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1357               Node* ipj  = __ AddI(__ value(i), __ value(j));
1358               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1359               __ if_then(targ, BoolTest::ne, src2); {
1360                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1361                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1362                     __ increment(i, __ AddI(__ value(j), one));
1363                     __ goto_(outer_loop);
1364                   } __ end_if(); __ dead(j);
1365                 }__ end_if(); __ dead(j);
1366                 __ increment(i, md2);
1367                 __ goto_(outer_loop);
1368               }__ end_if();
1369               __ increment(j, one);
1370          }__ end_loop(); __ dead(j);
1371          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1372          __ goto_(return_);
1373        }__ end_if();
1374        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1375          __ increment(i, targetCountLess1);
1376        }__ end_if();
1377        __ increment(i, one);
1378        __ bind(outer_loop);
1379   }__ end_loop(); __ dead(i);
1380   __ bind(return_);
1381 
1382   // Final sync IdealKit and GraphKit.
1383   final_sync(kit);
1384   Node* result = __ value(rtn);
1385 #undef __
1386   C->set_has_loops(true);
1387   return result;
1388 }
1389 
1390 //------------------------------inline_string_indexOf------------------------
1391 bool LibraryCallKit::inline_string_indexOf() {
1392   Node* receiver = argument(0);
1393   Node* arg      = argument(1);
1394 
1395   Node* result;
1396   // Disable the use of pcmpestri until it can be guaranteed that
1397   // the load doesn't cross into the uncommited space.
1398   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1399       UseSSE42Intrinsics) {
1400     // Generate SSE4.2 version of indexOf
1401     // We currently only have match rules that use SSE4.2
1402 
1403     receiver = null_check(receiver);
1404     arg      = null_check(arg);
1405     if (stopped()) {
1406       return true;
1407     }
1408 
1409     ciInstanceKlass* str_klass = env()->String_klass();
1410     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1411 
1412     // Make the merge point
1413     RegionNode* result_rgn = new RegionNode(4);
1414     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1415     Node* no_ctrl  = NULL;
1416 
1417     // Get start addr of source string
1418     Node* source = load_String_value(no_ctrl, receiver);
1419     Node* source_offset = load_String_offset(no_ctrl, receiver);
1420     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1421 
1422     // Get length of source string
1423     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1424 
1425     // Get start addr of substring
1426     Node* substr = load_String_value(no_ctrl, arg);
1427     Node* substr_offset = load_String_offset(no_ctrl, arg);
1428     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1429 
1430     // Get length of source string
1431     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1432 
1433     // Check for substr count > string count
1434     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1435     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1436     Node* if_gt = generate_slow_guard(bol, NULL);
1437     if (if_gt != NULL) {
1438       result_phi->init_req(2, intcon(-1));
1439       result_rgn->init_req(2, if_gt);
1440     }
1441 
1442     if (!stopped()) {
1443       // Check for substr count == 0
1444       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1445       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1446       Node* if_zero = generate_slow_guard(bol, NULL);
1447       if (if_zero != NULL) {
1448         result_phi->init_req(3, intcon(0));
1449         result_rgn->init_req(3, if_zero);
1450       }
1451     }
1452 
1453     if (!stopped()) {
1454       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1455       result_phi->init_req(1, result);
1456       result_rgn->init_req(1, control());
1457     }
1458     set_control(_gvn.transform(result_rgn));
1459     record_for_igvn(result_rgn);
1460     result = _gvn.transform(result_phi);
1461 
1462   } else { // Use LibraryCallKit::string_indexOf
1463     // don't intrinsify if argument isn't a constant string.
1464     if (!arg->is_Con()) {
1465      return false;
1466     }
1467     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1468     if (str_type == NULL) {
1469       return false;
1470     }
1471     ciInstanceKlass* klass = env()->String_klass();
1472     ciObject* str_const = str_type->const_oop();
1473     if (str_const == NULL || str_const->klass() != klass) {
1474       return false;
1475     }
1476     ciInstance* str = str_const->as_instance();
1477     assert(str != NULL, "must be instance");
1478 
1479     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1480     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1481 
1482     int o;
1483     int c;
1484     if (java_lang_String::has_offset_field()) {
1485       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1486       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1487     } else {
1488       o = 0;
1489       c = pat->length();
1490     }
1491 
1492     // constant strings have no offset and count == length which
1493     // simplifies the resulting code somewhat so lets optimize for that.
1494     if (o != 0 || c != pat->length()) {
1495      return false;
1496     }
1497 
1498     receiver = null_check(receiver, T_OBJECT);
1499     // NOTE: No null check on the argument is needed since it's a constant String oop.
1500     if (stopped()) {
1501       return true;
1502     }
1503 
1504     // The null string as a pattern always returns 0 (match at beginning of string)
1505     if (c == 0) {
1506       set_result(intcon(0));
1507       return true;
1508     }
1509 
1510     // Generate default indexOf
1511     jchar lastChar = pat->char_at(o + (c - 1));
1512     int cache = 0;
1513     int i;
1514     for (i = 0; i < c - 1; i++) {
1515       assert(i < pat->length(), "out of range");
1516       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1517     }
1518 
1519     int md2 = c;
1520     for (i = 0; i < c - 1; i++) {
1521       assert(i < pat->length(), "out of range");
1522       if (pat->char_at(o + i) == lastChar) {
1523         md2 = (c - 1) - i;
1524       }
1525     }
1526 
1527     result = string_indexOf(receiver, pat, o, cache, md2);
1528   }
1529   set_result(result);
1530   return true;
1531 }
1532 
1533 //--------------------------round_double_node--------------------------------
1534 // Round a double node if necessary.
1535 Node* LibraryCallKit::round_double_node(Node* n) {
1536   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1537     n = _gvn.transform(new RoundDoubleNode(0, n));
1538   return n;
1539 }
1540 
1541 //------------------------------inline_math-----------------------------------
1542 // public static double Math.abs(double)
1543 // public static double Math.sqrt(double)
1544 // public static double Math.log(double)
1545 // public static double Math.log10(double)
1546 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1547   Node* arg = round_double_node(argument(0));
1548   Node* n;
1549   switch (id) {
1550   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1551   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1552   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1553   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1554   default:  fatal_unexpected_iid(id);  break;
1555   }
1556   set_result(_gvn.transform(n));
1557   return true;
1558 }
1559 
1560 //------------------------------inline_trig----------------------------------
1561 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1562 // argument reduction which will turn into a fast/slow diamond.
1563 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1564   Node* arg = round_double_node(argument(0));
1565   Node* n = NULL;
1566 
1567   switch (id) {
1568   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1569   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1570   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1571   default:  fatal_unexpected_iid(id);  break;
1572   }
1573   n = _gvn.transform(n);
1574 
1575   // Rounding required?  Check for argument reduction!
1576   if (Matcher::strict_fp_requires_explicit_rounding) {
1577     static const double     pi_4 =  0.7853981633974483;
1578     static const double neg_pi_4 = -0.7853981633974483;
1579     // pi/2 in 80-bit extended precision
1580     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1581     // -pi/2 in 80-bit extended precision
1582     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1583     // Cutoff value for using this argument reduction technique
1584     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1585     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1586 
1587     // Pseudocode for sin:
1588     // if (x <= Math.PI / 4.0) {
1589     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1590     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1591     // } else {
1592     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1593     // }
1594     // return StrictMath.sin(x);
1595 
1596     // Pseudocode for cos:
1597     // if (x <= Math.PI / 4.0) {
1598     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1599     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1600     // } else {
1601     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1602     // }
1603     // return StrictMath.cos(x);
1604 
1605     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1606     // requires a special machine instruction to load it.  Instead we'll try
1607     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1608     // probably do the math inside the SIN encoding.
1609 
1610     // Make the merge point
1611     RegionNode* r = new RegionNode(3);
1612     Node* phi = new PhiNode(r, Type::DOUBLE);
1613 
1614     // Flatten arg so we need only 1 test
1615     Node *abs = _gvn.transform(new AbsDNode(arg));
1616     // Node for PI/4 constant
1617     Node *pi4 = makecon(TypeD::make(pi_4));
1618     // Check PI/4 : abs(arg)
1619     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1620     // Check: If PI/4 < abs(arg) then go slow
1621     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1622     // Branch either way
1623     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1624     set_control(opt_iff(r,iff));
1625 
1626     // Set fast path result
1627     phi->init_req(2, n);
1628 
1629     // Slow path - non-blocking leaf call
1630     Node* call = NULL;
1631     switch (id) {
1632     case vmIntrinsics::_dsin:
1633       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1634                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1635                                "Sin", NULL, arg, top());
1636       break;
1637     case vmIntrinsics::_dcos:
1638       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1639                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1640                                "Cos", NULL, arg, top());
1641       break;
1642     case vmIntrinsics::_dtan:
1643       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1644                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1645                                "Tan", NULL, arg, top());
1646       break;
1647     }
1648     assert(control()->in(0) == call, "");
1649     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1650     r->init_req(1, control());
1651     phi->init_req(1, slow_result);
1652 
1653     // Post-merge
1654     set_control(_gvn.transform(r));
1655     record_for_igvn(r);
1656     n = _gvn.transform(phi);
1657 
1658     C->set_has_split_ifs(true); // Has chance for split-if optimization
1659   }
1660   set_result(n);
1661   return true;
1662 }
1663 
1664 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1665   //-------------------
1666   //result=(result.isNaN())? funcAddr():result;
1667   // Check: If isNaN() by checking result!=result? then either trap
1668   // or go to runtime
1669   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1670   // Build the boolean node
1671   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1672 
1673   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1674     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1675       // The pow or exp intrinsic returned a NaN, which requires a call
1676       // to the runtime.  Recompile with the runtime call.
1677       uncommon_trap(Deoptimization::Reason_intrinsic,
1678                     Deoptimization::Action_make_not_entrant);
1679     }
1680     return result;
1681   } else {
1682     // If this inlining ever returned NaN in the past, we compile a call
1683     // to the runtime to properly handle corner cases
1684 
1685     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1686     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1687     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1688 
1689     if (!if_slow->is_top()) {
1690       RegionNode* result_region = new RegionNode(3);
1691       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1692 
1693       result_region->init_req(1, if_fast);
1694       result_val->init_req(1, result);
1695 
1696       set_control(if_slow);
1697 
1698       const TypePtr* no_memory_effects = NULL;
1699       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1700                                    no_memory_effects,
1701                                    x, top(), y, y ? top() : NULL);
1702       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1703 #ifdef ASSERT
1704       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1705       assert(value_top == top(), "second value must be top");
1706 #endif
1707 
1708       result_region->init_req(2, control());
1709       result_val->init_req(2, value);
1710       set_control(_gvn.transform(result_region));
1711       return _gvn.transform(result_val);
1712     } else {
1713       return result;
1714     }
1715   }
1716 }
1717 
1718 //------------------------------inline_exp-------------------------------------
1719 // Inline exp instructions, if possible.  The Intel hardware only misses
1720 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1721 bool LibraryCallKit::inline_exp() {
1722   Node* arg = round_double_node(argument(0));
1723   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1724 
1725   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1726   set_result(n);
1727 
1728   C->set_has_split_ifs(true); // Has chance for split-if optimization
1729   return true;
1730 }
1731 
1732 //------------------------------inline_pow-------------------------------------
1733 // Inline power instructions, if possible.
1734 bool LibraryCallKit::inline_pow() {
1735   // Pseudocode for pow
1736   // if (y == 2) {
1737   //   return x * x;
1738   // } else {
1739   //   if (x <= 0.0) {
1740   //     long longy = (long)y;
1741   //     if ((double)longy == y) { // if y is long
1742   //       if (y + 1 == y) longy = 0; // huge number: even
1743   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1744   //     } else {
1745   //       result = NaN;
1746   //     }
1747   //   } else {
1748   //     result = DPow(x,y);
1749   //   }
1750   //   if (result != result)?  {
1751   //     result = uncommon_trap() or runtime_call();
1752   //   }
1753   //   return result;
1754   // }
1755 
1756   Node* x = round_double_node(argument(0));
1757   Node* y = round_double_node(argument(2));
1758 
1759   Node* result = NULL;
1760 
1761   Node*   const_two_node = makecon(TypeD::make(2.0));
1762   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1763   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1764   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1765   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1766   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1767 
1768   RegionNode* region_node = new RegionNode(3);
1769   region_node->init_req(1, if_true);
1770 
1771   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1772   // special case for x^y where y == 2, we can convert it to x * x
1773   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1774 
1775   // set control to if_false since we will now process the false branch
1776   set_control(if_false);
1777 
1778   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1779     // Short form: skip the fancy tests and just check for NaN result.
1780     result = _gvn.transform(new PowDNode(C, control(), x, y));
1781   } else {
1782     // If this inlining ever returned NaN in the past, include all
1783     // checks + call to the runtime.
1784 
1785     // Set the merge point for If node with condition of (x <= 0.0)
1786     // There are four possible paths to region node and phi node
1787     RegionNode *r = new RegionNode(4);
1788     Node *phi = new PhiNode(r, Type::DOUBLE);
1789 
1790     // Build the first if node: if (x <= 0.0)
1791     // Node for 0 constant
1792     Node *zeronode = makecon(TypeD::ZERO);
1793     // Check x:0
1794     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1795     // Check: If (x<=0) then go complex path
1796     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1797     // Branch either way
1798     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1799     // Fast path taken; set region slot 3
1800     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1801     r->init_req(3,fast_taken); // Capture fast-control
1802 
1803     // Fast path not-taken, i.e. slow path
1804     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1805 
1806     // Set fast path result
1807     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1808     phi->init_req(3, fast_result);
1809 
1810     // Complex path
1811     // Build the second if node (if y is long)
1812     // Node for (long)y
1813     Node *longy = _gvn.transform(new ConvD2LNode(y));
1814     // Node for (double)((long) y)
1815     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1816     // Check (double)((long) y) : y
1817     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1818     // Check if (y isn't long) then go to slow path
1819 
1820     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1821     // Branch either way
1822     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1823     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1824 
1825     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1826 
1827     // Calculate DPow(abs(x), y)*(1 & (long)y)
1828     // Node for constant 1
1829     Node *conone = longcon(1);
1830     // 1& (long)y
1831     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1832 
1833     // A huge number is always even. Detect a huge number by checking
1834     // if y + 1 == y and set integer to be tested for parity to 0.
1835     // Required for corner case:
1836     // (long)9.223372036854776E18 = max_jlong
1837     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1838     // max_jlong is odd but 9.223372036854776E18 is even
1839     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1840     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1841     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1842     Node* correctedsign = NULL;
1843     if (ConditionalMoveLimit != 0) {
1844       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1845     } else {
1846       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1847       RegionNode *r = new RegionNode(3);
1848       Node *phi = new PhiNode(r, TypeLong::LONG);
1849       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1850       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1851       phi->init_req(1, signnode);
1852       phi->init_req(2, longcon(0));
1853       correctedsign = _gvn.transform(phi);
1854       ylong_path = _gvn.transform(r);
1855       record_for_igvn(r);
1856     }
1857 
1858     // zero node
1859     Node *conzero = longcon(0);
1860     // Check (1&(long)y)==0?
1861     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1862     // Check if (1&(long)y)!=0?, if so the result is negative
1863     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1864     // abs(x)
1865     Node *absx=_gvn.transform(new AbsDNode(x));
1866     // abs(x)^y
1867     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1868     // -abs(x)^y
1869     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1870     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1871     Node *signresult = NULL;
1872     if (ConditionalMoveLimit != 0) {
1873       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1874     } else {
1875       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1876       RegionNode *r = new RegionNode(3);
1877       Node *phi = new PhiNode(r, Type::DOUBLE);
1878       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1879       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1880       phi->init_req(1, absxpowy);
1881       phi->init_req(2, negabsxpowy);
1882       signresult = _gvn.transform(phi);
1883       ylong_path = _gvn.transform(r);
1884       record_for_igvn(r);
1885     }
1886     // Set complex path fast result
1887     r->init_req(2, ylong_path);
1888     phi->init_req(2, signresult);
1889 
1890     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1891     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1892     r->init_req(1,slow_path);
1893     phi->init_req(1,slow_result);
1894 
1895     // Post merge
1896     set_control(_gvn.transform(r));
1897     record_for_igvn(r);
1898     result = _gvn.transform(phi);
1899   }
1900 
1901   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1902 
1903   // control from finish_pow_exp is now input to the region node
1904   region_node->set_req(2, control());
1905   // the result from finish_pow_exp is now input to the phi node
1906   phi_node->init_req(2, result);
1907   set_control(_gvn.transform(region_node));
1908   record_for_igvn(region_node);
1909   set_result(_gvn.transform(phi_node));
1910 
1911   C->set_has_split_ifs(true); // Has chance for split-if optimization
1912   return true;
1913 }
1914 
1915 //------------------------------runtime_math-----------------------------
1916 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1917   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1918          "must be (DD)D or (D)D type");
1919 
1920   // Inputs
1921   Node* a = round_double_node(argument(0));
1922   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1923 
1924   const TypePtr* no_memory_effects = NULL;
1925   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1926                                  no_memory_effects,
1927                                  a, top(), b, b ? top() : NULL);
1928   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1929 #ifdef ASSERT
1930   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1931   assert(value_top == top(), "second value must be top");
1932 #endif
1933 
1934   set_result(value);
1935   return true;
1936 }
1937 
1938 //------------------------------inline_math_native-----------------------------
1939 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1940 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1941   switch (id) {
1942     // These intrinsics are not properly supported on all hardware
1943   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1944     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1945   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1946     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1947   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1948     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1949 
1950   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1951     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1952   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1953     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1954 
1955     // These intrinsics are supported on all hardware
1956   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1957   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1958 
1959   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1960     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1961   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1962     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1963 #undef FN_PTR
1964 
1965    // These intrinsics are not yet correctly implemented
1966   case vmIntrinsics::_datan2:
1967     return false;
1968 
1969   default:
1970     fatal_unexpected_iid(id);
1971     return false;
1972   }
1973 }
1974 
1975 static bool is_simple_name(Node* n) {
1976   return (n->req() == 1         // constant
1977           || (n->is_Type() && n->as_Type()->type()->singleton())
1978           || n->is_Proj()       // parameter or return value
1979           || n->is_Phi()        // local of some sort
1980           );
1981 }
1982 
1983 //----------------------------inline_min_max-----------------------------------
1984 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1985   set_result(generate_min_max(id, argument(0), argument(1)));
1986   return true;
1987 }
1988 
1989 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1990   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1991   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1992   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1993   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1994 
1995   {
1996     PreserveJVMState pjvms(this);
1997     PreserveReexecuteState preexecs(this);
1998     jvms()->set_should_reexecute(true);
1999 
2000     set_control(slow_path);
2001     set_i_o(i_o());
2002 
2003     uncommon_trap(Deoptimization::Reason_intrinsic,
2004                   Deoptimization::Action_none);
2005   }
2006 
2007   set_control(fast_path);
2008   set_result(math);
2009 }
2010 
2011 template <typename OverflowOp>
2012 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2013   typedef typename OverflowOp::MathOp MathOp;
2014 
2015   MathOp* mathOp = new MathOp(arg1, arg2);
2016   Node* operation = _gvn.transform( mathOp );
2017   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2018   inline_math_mathExact(operation, ofcheck);
2019   return true;
2020 }
2021 
2022 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2023   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2024 }
2025 
2026 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2027   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2028 }
2029 
2030 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2031   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2032 }
2033 
2034 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2035   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2036 }
2037 
2038 bool LibraryCallKit::inline_math_negateExactI() {
2039   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2040 }
2041 
2042 bool LibraryCallKit::inline_math_negateExactL() {
2043   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2044 }
2045 
2046 bool LibraryCallKit::inline_math_multiplyExactI() {
2047   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2048 }
2049 
2050 bool LibraryCallKit::inline_math_multiplyExactL() {
2051   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2052 }
2053 
2054 Node*
2055 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2056   // These are the candidate return value:
2057   Node* xvalue = x0;
2058   Node* yvalue = y0;
2059 
2060   if (xvalue == yvalue) {
2061     return xvalue;
2062   }
2063 
2064   bool want_max = (id == vmIntrinsics::_max);
2065 
2066   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2067   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2068   if (txvalue == NULL || tyvalue == NULL)  return top();
2069   // This is not really necessary, but it is consistent with a
2070   // hypothetical MaxINode::Value method:
2071   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2072 
2073   // %%% This folding logic should (ideally) be in a different place.
2074   // Some should be inside IfNode, and there to be a more reliable
2075   // transformation of ?: style patterns into cmoves.  We also want
2076   // more powerful optimizations around cmove and min/max.
2077 
2078   // Try to find a dominating comparison of these guys.
2079   // It can simplify the index computation for Arrays.copyOf
2080   // and similar uses of System.arraycopy.
2081   // First, compute the normalized version of CmpI(x, y).
2082   int   cmp_op = Op_CmpI;
2083   Node* xkey = xvalue;
2084   Node* ykey = yvalue;
2085   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2086   if (ideal_cmpxy->is_Cmp()) {
2087     // E.g., if we have CmpI(length - offset, count),
2088     // it might idealize to CmpI(length, count + offset)
2089     cmp_op = ideal_cmpxy->Opcode();
2090     xkey = ideal_cmpxy->in(1);
2091     ykey = ideal_cmpxy->in(2);
2092   }
2093 
2094   // Start by locating any relevant comparisons.
2095   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2096   Node* cmpxy = NULL;
2097   Node* cmpyx = NULL;
2098   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2099     Node* cmp = start_from->fast_out(k);
2100     if (cmp->outcnt() > 0 &&            // must have prior uses
2101         cmp->in(0) == NULL &&           // must be context-independent
2102         cmp->Opcode() == cmp_op) {      // right kind of compare
2103       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2104       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2105     }
2106   }
2107 
2108   const int NCMPS = 2;
2109   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2110   int cmpn;
2111   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2112     if (cmps[cmpn] != NULL)  break;     // find a result
2113   }
2114   if (cmpn < NCMPS) {
2115     // Look for a dominating test that tells us the min and max.
2116     int depth = 0;                // Limit search depth for speed
2117     Node* dom = control();
2118     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2119       if (++depth >= 100)  break;
2120       Node* ifproj = dom;
2121       if (!ifproj->is_Proj())  continue;
2122       Node* iff = ifproj->in(0);
2123       if (!iff->is_If())  continue;
2124       Node* bol = iff->in(1);
2125       if (!bol->is_Bool())  continue;
2126       Node* cmp = bol->in(1);
2127       if (cmp == NULL)  continue;
2128       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2129         if (cmps[cmpn] == cmp)  break;
2130       if (cmpn == NCMPS)  continue;
2131       BoolTest::mask btest = bol->as_Bool()->_test._test;
2132       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2133       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2134       // At this point, we know that 'x btest y' is true.
2135       switch (btest) {
2136       case BoolTest::eq:
2137         // They are proven equal, so we can collapse the min/max.
2138         // Either value is the answer.  Choose the simpler.
2139         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2140           return yvalue;
2141         return xvalue;
2142       case BoolTest::lt:          // x < y
2143       case BoolTest::le:          // x <= y
2144         return (want_max ? yvalue : xvalue);
2145       case BoolTest::gt:          // x > y
2146       case BoolTest::ge:          // x >= y
2147         return (want_max ? xvalue : yvalue);
2148       }
2149     }
2150   }
2151 
2152   // We failed to find a dominating test.
2153   // Let's pick a test that might GVN with prior tests.
2154   Node*          best_bol   = NULL;
2155   BoolTest::mask best_btest = BoolTest::illegal;
2156   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2157     Node* cmp = cmps[cmpn];
2158     if (cmp == NULL)  continue;
2159     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2160       Node* bol = cmp->fast_out(j);
2161       if (!bol->is_Bool())  continue;
2162       BoolTest::mask btest = bol->as_Bool()->_test._test;
2163       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2164       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2165       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2166         best_bol   = bol->as_Bool();
2167         best_btest = btest;
2168       }
2169     }
2170   }
2171 
2172   Node* answer_if_true  = NULL;
2173   Node* answer_if_false = NULL;
2174   switch (best_btest) {
2175   default:
2176     if (cmpxy == NULL)
2177       cmpxy = ideal_cmpxy;
2178     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2179     // and fall through:
2180   case BoolTest::lt:          // x < y
2181   case BoolTest::le:          // x <= y
2182     answer_if_true  = (want_max ? yvalue : xvalue);
2183     answer_if_false = (want_max ? xvalue : yvalue);
2184     break;
2185   case BoolTest::gt:          // x > y
2186   case BoolTest::ge:          // x >= y
2187     answer_if_true  = (want_max ? xvalue : yvalue);
2188     answer_if_false = (want_max ? yvalue : xvalue);
2189     break;
2190   }
2191 
2192   jint hi, lo;
2193   if (want_max) {
2194     // We can sharpen the minimum.
2195     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2196     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2197   } else {
2198     // We can sharpen the maximum.
2199     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2200     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2201   }
2202 
2203   // Use a flow-free graph structure, to avoid creating excess control edges
2204   // which could hinder other optimizations.
2205   // Since Math.min/max is often used with arraycopy, we want
2206   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2207   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2208                                answer_if_false, answer_if_true,
2209                                TypeInt::make(lo, hi, widen));
2210 
2211   return _gvn.transform(cmov);
2212 
2213   /*
2214   // This is not as desirable as it may seem, since Min and Max
2215   // nodes do not have a full set of optimizations.
2216   // And they would interfere, anyway, with 'if' optimizations
2217   // and with CMoveI canonical forms.
2218   switch (id) {
2219   case vmIntrinsics::_min:
2220     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2221   case vmIntrinsics::_max:
2222     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2223   default:
2224     ShouldNotReachHere();
2225   }
2226   */
2227 }
2228 
2229 inline int
2230 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2231   const TypePtr* base_type = TypePtr::NULL_PTR;
2232   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2233   if (base_type == NULL) {
2234     // Unknown type.
2235     return Type::AnyPtr;
2236   } else if (base_type == TypePtr::NULL_PTR) {
2237     // Since this is a NULL+long form, we have to switch to a rawptr.
2238     base   = _gvn.transform(new CastX2PNode(offset));
2239     offset = MakeConX(0);
2240     return Type::RawPtr;
2241   } else if (base_type->base() == Type::RawPtr) {
2242     return Type::RawPtr;
2243   } else if (base_type->isa_oopptr()) {
2244     // Base is never null => always a heap address.
2245     if (base_type->ptr() == TypePtr::NotNull) {
2246       return Type::OopPtr;
2247     }
2248     // Offset is small => always a heap address.
2249     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2250     if (offset_type != NULL &&
2251         base_type->offset() == 0 &&     // (should always be?)
2252         offset_type->_lo >= 0 &&
2253         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2254       return Type::OopPtr;
2255     }
2256     // Otherwise, it might either be oop+off or NULL+addr.
2257     return Type::AnyPtr;
2258   } else {
2259     // No information:
2260     return Type::AnyPtr;
2261   }
2262 }
2263 
2264 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2265   int kind = classify_unsafe_addr(base, offset);
2266   if (kind == Type::RawPtr) {
2267     return basic_plus_adr(top(), base, offset);
2268   } else {
2269     return basic_plus_adr(base, offset);
2270   }
2271 }
2272 
2273 //--------------------------inline_number_methods-----------------------------
2274 // inline int     Integer.numberOfLeadingZeros(int)
2275 // inline int        Long.numberOfLeadingZeros(long)
2276 //
2277 // inline int     Integer.numberOfTrailingZeros(int)
2278 // inline int        Long.numberOfTrailingZeros(long)
2279 //
2280 // inline int     Integer.bitCount(int)
2281 // inline int        Long.bitCount(long)
2282 //
2283 // inline char  Character.reverseBytes(char)
2284 // inline short     Short.reverseBytes(short)
2285 // inline int     Integer.reverseBytes(int)
2286 // inline long       Long.reverseBytes(long)
2287 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2288   Node* arg = argument(0);
2289   Node* n;
2290   switch (id) {
2291   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2292   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2293   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2294   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2295   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2296   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2297   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2298   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2299   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2300   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2301   default:  fatal_unexpected_iid(id);  break;
2302   }
2303   set_result(_gvn.transform(n));
2304   return true;
2305 }
2306 
2307 //----------------------------inline_unsafe_access----------------------------
2308 
2309 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2310 
2311 // Helper that guards and inserts a pre-barrier.
2312 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2313                                         Node* pre_val, bool need_mem_bar) {
2314   // We could be accessing the referent field of a reference object. If so, when G1
2315   // is enabled, we need to log the value in the referent field in an SATB buffer.
2316   // This routine performs some compile time filters and generates suitable
2317   // runtime filters that guard the pre-barrier code.
2318   // Also add memory barrier for non volatile load from the referent field
2319   // to prevent commoning of loads across safepoint.
2320   if (!UseG1GC && !need_mem_bar)
2321     return;
2322 
2323   // Some compile time checks.
2324 
2325   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2326   const TypeX* otype = offset->find_intptr_t_type();
2327   if (otype != NULL && otype->is_con() &&
2328       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2329     // Constant offset but not the reference_offset so just return
2330     return;
2331   }
2332 
2333   // We only need to generate the runtime guards for instances.
2334   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2335   if (btype != NULL) {
2336     if (btype->isa_aryptr()) {
2337       // Array type so nothing to do
2338       return;
2339     }
2340 
2341     const TypeInstPtr* itype = btype->isa_instptr();
2342     if (itype != NULL) {
2343       // Can the klass of base_oop be statically determined to be
2344       // _not_ a sub-class of Reference and _not_ Object?
2345       ciKlass* klass = itype->klass();
2346       if ( klass->is_loaded() &&
2347           !klass->is_subtype_of(env()->Reference_klass()) &&
2348           !env()->Object_klass()->is_subtype_of(klass)) {
2349         return;
2350       }
2351     }
2352   }
2353 
2354   // The compile time filters did not reject base_oop/offset so
2355   // we need to generate the following runtime filters
2356   //
2357   // if (offset == java_lang_ref_Reference::_reference_offset) {
2358   //   if (instance_of(base, java.lang.ref.Reference)) {
2359   //     pre_barrier(_, pre_val, ...);
2360   //   }
2361   // }
2362 
2363   float likely   = PROB_LIKELY(  0.999);
2364   float unlikely = PROB_UNLIKELY(0.999);
2365 
2366   IdealKit ideal(this);
2367 #define __ ideal.
2368 
2369   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2370 
2371   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2372       // Update graphKit memory and control from IdealKit.
2373       sync_kit(ideal);
2374 
2375       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2376       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2377 
2378       // Update IdealKit memory and control from graphKit.
2379       __ sync_kit(this);
2380 
2381       Node* one = __ ConI(1);
2382       // is_instof == 0 if base_oop == NULL
2383       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2384 
2385         // Update graphKit from IdeakKit.
2386         sync_kit(ideal);
2387 
2388         // Use the pre-barrier to record the value in the referent field
2389         pre_barrier(false /* do_load */,
2390                     __ ctrl(),
2391                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2392                     pre_val /* pre_val */,
2393                     T_OBJECT);
2394         if (need_mem_bar) {
2395           // Add memory barrier to prevent commoning reads from this field
2396           // across safepoint since GC can change its value.
2397           insert_mem_bar(Op_MemBarCPUOrder);
2398         }
2399         // Update IdealKit from graphKit.
2400         __ sync_kit(this);
2401 
2402       } __ end_if(); // _ref_type != ref_none
2403   } __ end_if(); // offset == referent_offset
2404 
2405   // Final sync IdealKit and GraphKit.
2406   final_sync(ideal);
2407 #undef __
2408 }
2409 
2410 
2411 // Interpret Unsafe.fieldOffset cookies correctly:
2412 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2413 
2414 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2415   // Attempt to infer a sharper value type from the offset and base type.
2416   ciKlass* sharpened_klass = NULL;
2417 
2418   // See if it is an instance field, with an object type.
2419   if (alias_type->field() != NULL) {
2420     assert(!is_native_ptr, "native pointer op cannot use a java address");
2421     if (alias_type->field()->type()->is_klass()) {
2422       sharpened_klass = alias_type->field()->type()->as_klass();
2423     }
2424   }
2425 
2426   // See if it is a narrow oop array.
2427   if (adr_type->isa_aryptr()) {
2428     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2429       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2430       if (elem_type != NULL) {
2431         sharpened_klass = elem_type->klass();
2432       }
2433     }
2434   }
2435 
2436   // The sharpened class might be unloaded if there is no class loader
2437   // contraint in place.
2438   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2439     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2440 
2441 #ifndef PRODUCT
2442     if (C->print_intrinsics() || C->print_inlining()) {
2443       tty->print("  from base type: ");  adr_type->dump();
2444       tty->print("  sharpened value: ");  tjp->dump();
2445     }
2446 #endif
2447     // Sharpen the value type.
2448     return tjp;
2449   }
2450   return NULL;
2451 }
2452 
2453 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2454   if (callee()->is_static())  return false;  // caller must have the capability!
2455 
2456 #ifndef PRODUCT
2457   {
2458     ResourceMark rm;
2459     // Check the signatures.
2460     ciSignature* sig = callee()->signature();
2461 #ifdef ASSERT
2462     if (!is_store) {
2463       // Object getObject(Object base, int/long offset), etc.
2464       BasicType rtype = sig->return_type()->basic_type();
2465       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2466           rtype = T_ADDRESS;  // it is really a C void*
2467       assert(rtype == type, "getter must return the expected value");
2468       if (!is_native_ptr) {
2469         assert(sig->count() == 2, "oop getter has 2 arguments");
2470         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2471         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2472       } else {
2473         assert(sig->count() == 1, "native getter has 1 argument");
2474         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2475       }
2476     } else {
2477       // void putObject(Object base, int/long offset, Object x), etc.
2478       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2479       if (!is_native_ptr) {
2480         assert(sig->count() == 3, "oop putter has 3 arguments");
2481         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2482         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2483       } else {
2484         assert(sig->count() == 2, "native putter has 2 arguments");
2485         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2486       }
2487       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2488       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2489         vtype = T_ADDRESS;  // it is really a C void*
2490       assert(vtype == type, "putter must accept the expected value");
2491     }
2492 #endif // ASSERT
2493  }
2494 #endif //PRODUCT
2495 
2496   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2497 
2498   Node* receiver = argument(0);  // type: oop
2499 
2500   // Build address expression.  See the code in inline_unsafe_prefetch.
2501   Node* adr;
2502   Node* heap_base_oop = top();
2503   Node* offset = top();
2504   Node* val;
2505 
2506   if (!is_native_ptr) {
2507     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2508     Node* base = argument(1);  // type: oop
2509     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2510     offset = argument(2);  // type: long
2511     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2512     // to be plain byte offsets, which are also the same as those accepted
2513     // by oopDesc::field_base.
2514     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2515            "fieldOffset must be byte-scaled");
2516     // 32-bit machines ignore the high half!
2517     offset = ConvL2X(offset);
2518     adr = make_unsafe_address(base, offset);
2519     heap_base_oop = base;
2520     val = is_store ? argument(4) : NULL;
2521   } else {
2522     Node* ptr = argument(1);  // type: long
2523     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2524     adr = make_unsafe_address(NULL, ptr);
2525     val = is_store ? argument(3) : NULL;
2526   }
2527 
2528   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2529 
2530   // First guess at the value type.
2531   const Type *value_type = Type::get_const_basic_type(type);
2532 
2533   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2534   // there was not enough information to nail it down.
2535   Compile::AliasType* alias_type = C->alias_type(adr_type);
2536   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2537 
2538   // We will need memory barriers unless we can determine a unique
2539   // alias category for this reference.  (Note:  If for some reason
2540   // the barriers get omitted and the unsafe reference begins to "pollute"
2541   // the alias analysis of the rest of the graph, either Compile::can_alias
2542   // or Compile::must_alias will throw a diagnostic assert.)
2543   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2544 
2545   // If we are reading the value of the referent field of a Reference
2546   // object (either by using Unsafe directly or through reflection)
2547   // then, if G1 is enabled, we need to record the referent in an
2548   // SATB log buffer using the pre-barrier mechanism.
2549   // Also we need to add memory barrier to prevent commoning reads
2550   // from this field across safepoint since GC can change its value.
2551   bool need_read_barrier = !is_native_ptr && !is_store &&
2552                            offset != top() && heap_base_oop != top();
2553 
2554   if (!is_store && type == T_OBJECT) {
2555     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2556     if (tjp != NULL) {
2557       value_type = tjp;
2558     }
2559   }
2560 
2561   receiver = null_check(receiver);
2562   if (stopped()) {
2563     return true;
2564   }
2565   // Heap pointers get a null-check from the interpreter,
2566   // as a courtesy.  However, this is not guaranteed by Unsafe,
2567   // and it is not possible to fully distinguish unintended nulls
2568   // from intended ones in this API.
2569 
2570   if (is_volatile) {
2571     // We need to emit leading and trailing CPU membars (see below) in
2572     // addition to memory membars when is_volatile. This is a little
2573     // too strong, but avoids the need to insert per-alias-type
2574     // volatile membars (for stores; compare Parse::do_put_xxx), which
2575     // we cannot do effectively here because we probably only have a
2576     // rough approximation of type.
2577     need_mem_bar = true;
2578     // For Stores, place a memory ordering barrier now.
2579     if (is_store) {
2580       insert_mem_bar(Op_MemBarRelease);
2581     } else {
2582       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2583         insert_mem_bar(Op_MemBarVolatile);
2584       }
2585     }
2586   }
2587 
2588   // Memory barrier to prevent normal and 'unsafe' accesses from
2589   // bypassing each other.  Happens after null checks, so the
2590   // exception paths do not take memory state from the memory barrier,
2591   // so there's no problems making a strong assert about mixing users
2592   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2593   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2594   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2595 
2596   if (!is_store) {
2597     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2598     // load value
2599     switch (type) {
2600     case T_BOOLEAN:
2601     case T_CHAR:
2602     case T_BYTE:
2603     case T_SHORT:
2604     case T_INT:
2605     case T_LONG:
2606     case T_FLOAT:
2607     case T_DOUBLE:
2608       break;
2609     case T_OBJECT:
2610       if (need_read_barrier) {
2611         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2612       }
2613       break;
2614     case T_ADDRESS:
2615       // Cast to an int type.
2616       p = _gvn.transform(new CastP2XNode(NULL, p));
2617       p = ConvX2UL(p);
2618       break;
2619     default:
2620       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2621       break;
2622     }
2623     // The load node has the control of the preceding MemBarCPUOrder.  All
2624     // following nodes will have the control of the MemBarCPUOrder inserted at
2625     // the end of this method.  So, pushing the load onto the stack at a later
2626     // point is fine.
2627     set_result(p);
2628   } else {
2629     // place effect of store into memory
2630     switch (type) {
2631     case T_DOUBLE:
2632       val = dstore_rounding(val);
2633       break;
2634     case T_ADDRESS:
2635       // Repackage the long as a pointer.
2636       val = ConvL2X(val);
2637       val = _gvn.transform(new CastX2PNode(val));
2638       break;
2639     }
2640 
2641     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2642     if (type != T_OBJECT ) {
2643       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2644     } else {
2645       // Possibly an oop being stored to Java heap or native memory
2646       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2647         // oop to Java heap.
2648         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2649       } else {
2650         // We can't tell at compile time if we are storing in the Java heap or outside
2651         // of it. So we need to emit code to conditionally do the proper type of
2652         // store.
2653 
2654         IdealKit ideal(this);
2655 #define __ ideal.
2656         // QQQ who knows what probability is here??
2657         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2658           // Sync IdealKit and graphKit.
2659           sync_kit(ideal);
2660           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2661           // Update IdealKit memory.
2662           __ sync_kit(this);
2663         } __ else_(); {
2664           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2665         } __ end_if();
2666         // Final sync IdealKit and GraphKit.
2667         final_sync(ideal);
2668 #undef __
2669       }
2670     }
2671   }
2672 
2673   if (is_volatile) {
2674     if (!is_store) {
2675       insert_mem_bar(Op_MemBarAcquire);
2676     } else {
2677       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2678         insert_mem_bar(Op_MemBarVolatile);
2679       }
2680     }
2681   }
2682 
2683   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2684 
2685   return true;
2686 }
2687 
2688 //----------------------------inline_unsafe_prefetch----------------------------
2689 
2690 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2691 #ifndef PRODUCT
2692   {
2693     ResourceMark rm;
2694     // Check the signatures.
2695     ciSignature* sig = callee()->signature();
2696 #ifdef ASSERT
2697     // Object getObject(Object base, int/long offset), etc.
2698     BasicType rtype = sig->return_type()->basic_type();
2699     if (!is_native_ptr) {
2700       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2701       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2702       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2703     } else {
2704       assert(sig->count() == 1, "native prefetch has 1 argument");
2705       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2706     }
2707 #endif // ASSERT
2708   }
2709 #endif // !PRODUCT
2710 
2711   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2712 
2713   const int idx = is_static ? 0 : 1;
2714   if (!is_static) {
2715     null_check_receiver();
2716     if (stopped()) {
2717       return true;
2718     }
2719   }
2720 
2721   // Build address expression.  See the code in inline_unsafe_access.
2722   Node *adr;
2723   if (!is_native_ptr) {
2724     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2725     Node* base   = argument(idx + 0);  // type: oop
2726     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2727     Node* offset = argument(idx + 1);  // type: long
2728     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2729     // to be plain byte offsets, which are also the same as those accepted
2730     // by oopDesc::field_base.
2731     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2732            "fieldOffset must be byte-scaled");
2733     // 32-bit machines ignore the high half!
2734     offset = ConvL2X(offset);
2735     adr = make_unsafe_address(base, offset);
2736   } else {
2737     Node* ptr = argument(idx + 0);  // type: long
2738     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2739     adr = make_unsafe_address(NULL, ptr);
2740   }
2741 
2742   // Generate the read or write prefetch
2743   Node *prefetch;
2744   if (is_store) {
2745     prefetch = new PrefetchWriteNode(i_o(), adr);
2746   } else {
2747     prefetch = new PrefetchReadNode(i_o(), adr);
2748   }
2749   prefetch->init_req(0, control());
2750   set_i_o(_gvn.transform(prefetch));
2751 
2752   return true;
2753 }
2754 
2755 //----------------------------inline_unsafe_load_store----------------------------
2756 // This method serves a couple of different customers (depending on LoadStoreKind):
2757 //
2758 // LS_cmpxchg:
2759 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2760 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2761 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2762 //
2763 // LS_xadd:
2764 //   public int  getAndAddInt( Object o, long offset, int  delta)
2765 //   public long getAndAddLong(Object o, long offset, long delta)
2766 //
2767 // LS_xchg:
2768 //   int    getAndSet(Object o, long offset, int    newValue)
2769 //   long   getAndSet(Object o, long offset, long   newValue)
2770 //   Object getAndSet(Object o, long offset, Object newValue)
2771 //
2772 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2773   // This basic scheme here is the same as inline_unsafe_access, but
2774   // differs in enough details that combining them would make the code
2775   // overly confusing.  (This is a true fact! I originally combined
2776   // them, but even I was confused by it!) As much code/comments as
2777   // possible are retained from inline_unsafe_access though to make
2778   // the correspondences clearer. - dl
2779 
2780   if (callee()->is_static())  return false;  // caller must have the capability!
2781 
2782 #ifndef PRODUCT
2783   BasicType rtype;
2784   {
2785     ResourceMark rm;
2786     // Check the signatures.
2787     ciSignature* sig = callee()->signature();
2788     rtype = sig->return_type()->basic_type();
2789     if (kind == LS_xadd || kind == LS_xchg) {
2790       // Check the signatures.
2791 #ifdef ASSERT
2792       assert(rtype == type, "get and set must return the expected type");
2793       assert(sig->count() == 3, "get and set has 3 arguments");
2794       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2795       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2796       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2797 #endif // ASSERT
2798     } else if (kind == LS_cmpxchg) {
2799       // Check the signatures.
2800 #ifdef ASSERT
2801       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2802       assert(sig->count() == 4, "CAS has 4 arguments");
2803       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2804       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2805 #endif // ASSERT
2806     } else {
2807       ShouldNotReachHere();
2808     }
2809   }
2810 #endif //PRODUCT
2811 
2812   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2813 
2814   // Get arguments:
2815   Node* receiver = NULL;
2816   Node* base     = NULL;
2817   Node* offset   = NULL;
2818   Node* oldval   = NULL;
2819   Node* newval   = NULL;
2820   if (kind == LS_cmpxchg) {
2821     const bool two_slot_type = type2size[type] == 2;
2822     receiver = argument(0);  // type: oop
2823     base     = argument(1);  // type: oop
2824     offset   = argument(2);  // type: long
2825     oldval   = argument(4);  // type: oop, int, or long
2826     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2827   } else if (kind == LS_xadd || kind == LS_xchg){
2828     receiver = argument(0);  // type: oop
2829     base     = argument(1);  // type: oop
2830     offset   = argument(2);  // type: long
2831     oldval   = NULL;
2832     newval   = argument(4);  // type: oop, int, or long
2833   }
2834 
2835   // Null check receiver.
2836   receiver = null_check(receiver);
2837   if (stopped()) {
2838     return true;
2839   }
2840 
2841   // Build field offset expression.
2842   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2843   // to be plain byte offsets, which are also the same as those accepted
2844   // by oopDesc::field_base.
2845   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2846   // 32-bit machines ignore the high half of long offsets
2847   offset = ConvL2X(offset);
2848   Node* adr = make_unsafe_address(base, offset);
2849   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2850 
2851   // For CAS, unlike inline_unsafe_access, there seems no point in
2852   // trying to refine types. Just use the coarse types here.
2853   const Type *value_type = Type::get_const_basic_type(type);
2854   Compile::AliasType* alias_type = C->alias_type(adr_type);
2855   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2856 
2857   if (kind == LS_xchg && type == T_OBJECT) {
2858     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2859     if (tjp != NULL) {
2860       value_type = tjp;
2861     }
2862   }
2863 
2864   int alias_idx = C->get_alias_index(adr_type);
2865 
2866   // Memory-model-wise, a LoadStore acts like a little synchronized
2867   // block, so needs barriers on each side.  These don't translate
2868   // into actual barriers on most machines, but we still need rest of
2869   // compiler to respect ordering.
2870 
2871   insert_mem_bar(Op_MemBarRelease);
2872   insert_mem_bar(Op_MemBarCPUOrder);
2873 
2874   // 4984716: MemBars must be inserted before this
2875   //          memory node in order to avoid a false
2876   //          dependency which will confuse the scheduler.
2877   Node *mem = memory(alias_idx);
2878 
2879   // For now, we handle only those cases that actually exist: ints,
2880   // longs, and Object. Adding others should be straightforward.
2881   Node* load_store;
2882   switch(type) {
2883   case T_INT:
2884     if (kind == LS_xadd) {
2885       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2886     } else if (kind == LS_xchg) {
2887       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2888     } else if (kind == LS_cmpxchg) {
2889       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2890     } else {
2891       ShouldNotReachHere();
2892     }
2893     break;
2894   case T_LONG:
2895     if (kind == LS_xadd) {
2896       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2897     } else if (kind == LS_xchg) {
2898       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2899     } else if (kind == LS_cmpxchg) {
2900       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2901     } else {
2902       ShouldNotReachHere();
2903     }
2904     break;
2905   case T_OBJECT:
2906     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2907     // could be delayed during Parse (for example, in adjust_map_after_if()).
2908     // Execute transformation here to avoid barrier generation in such case.
2909     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2910       newval = _gvn.makecon(TypePtr::NULL_PTR);
2911 
2912     // Reference stores need a store barrier.
2913     if (kind == LS_xchg) {
2914       // If pre-barrier must execute before the oop store, old value will require do_load here.
2915       if (!can_move_pre_barrier()) {
2916         pre_barrier(true /* do_load*/,
2917                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2918                     NULL /* pre_val*/,
2919                     T_OBJECT);
2920       } // Else move pre_barrier to use load_store value, see below.
2921     } else if (kind == LS_cmpxchg) {
2922       // Same as for newval above:
2923       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2924         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2925       }
2926       // The only known value which might get overwritten is oldval.
2927       pre_barrier(false /* do_load */,
2928                   control(), NULL, NULL, max_juint, NULL, NULL,
2929                   oldval /* pre_val */,
2930                   T_OBJECT);
2931     } else {
2932       ShouldNotReachHere();
2933     }
2934 
2935 #ifdef _LP64
2936     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2937       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2938       if (kind == LS_xchg) {
2939         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2940                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2941       } else {
2942         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2943         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2944         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2945                                                                 newval_enc, oldval_enc));
2946       }
2947     } else
2948 #endif
2949     {
2950       if (kind == LS_xchg) {
2951         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2952       } else {
2953         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2954         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2955       }
2956     }
2957     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2958     break;
2959   default:
2960     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2961     break;
2962   }
2963 
2964   // SCMemProjNodes represent the memory state of a LoadStore. Their
2965   // main role is to prevent LoadStore nodes from being optimized away
2966   // when their results aren't used.
2967   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2968   set_memory(proj, alias_idx);
2969 
2970   if (type == T_OBJECT && kind == LS_xchg) {
2971 #ifdef _LP64
2972     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2973       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2974     }
2975 #endif
2976     if (can_move_pre_barrier()) {
2977       // Don't need to load pre_val. The old value is returned by load_store.
2978       // The pre_barrier can execute after the xchg as long as no safepoint
2979       // gets inserted between them.
2980       pre_barrier(false /* do_load */,
2981                   control(), NULL, NULL, max_juint, NULL, NULL,
2982                   load_store /* pre_val */,
2983                   T_OBJECT);
2984     }
2985   }
2986 
2987   // Add the trailing membar surrounding the access
2988   insert_mem_bar(Op_MemBarCPUOrder);
2989   insert_mem_bar(Op_MemBarAcquire);
2990 
2991   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2992   set_result(load_store);
2993   return true;
2994 }
2995 
2996 //----------------------------inline_unsafe_ordered_store----------------------
2997 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2998 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2999 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3000 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3001   // This is another variant of inline_unsafe_access, differing in
3002   // that it always issues store-store ("release") barrier and ensures
3003   // store-atomicity (which only matters for "long").
3004 
3005   if (callee()->is_static())  return false;  // caller must have the capability!
3006 
3007 #ifndef PRODUCT
3008   {
3009     ResourceMark rm;
3010     // Check the signatures.
3011     ciSignature* sig = callee()->signature();
3012 #ifdef ASSERT
3013     BasicType rtype = sig->return_type()->basic_type();
3014     assert(rtype == T_VOID, "must return void");
3015     assert(sig->count() == 3, "has 3 arguments");
3016     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3017     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3018 #endif // ASSERT
3019   }
3020 #endif //PRODUCT
3021 
3022   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3023 
3024   // Get arguments:
3025   Node* receiver = argument(0);  // type: oop
3026   Node* base     = argument(1);  // type: oop
3027   Node* offset   = argument(2);  // type: long
3028   Node* val      = argument(4);  // type: oop, int, or long
3029 
3030   // Null check receiver.
3031   receiver = null_check(receiver);
3032   if (stopped()) {
3033     return true;
3034   }
3035 
3036   // Build field offset expression.
3037   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3038   // 32-bit machines ignore the high half of long offsets
3039   offset = ConvL2X(offset);
3040   Node* adr = make_unsafe_address(base, offset);
3041   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3042   const Type *value_type = Type::get_const_basic_type(type);
3043   Compile::AliasType* alias_type = C->alias_type(adr_type);
3044 
3045   insert_mem_bar(Op_MemBarRelease);
3046   insert_mem_bar(Op_MemBarCPUOrder);
3047   // Ensure that the store is atomic for longs:
3048   const bool require_atomic_access = true;
3049   Node* store;
3050   if (type == T_OBJECT) // reference stores need a store barrier.
3051     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3052   else {
3053     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3054   }
3055   insert_mem_bar(Op_MemBarCPUOrder);
3056   return true;
3057 }
3058 
3059 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3060   // Regardless of form, don't allow previous ld/st to move down,
3061   // then issue acquire, release, or volatile mem_bar.
3062   insert_mem_bar(Op_MemBarCPUOrder);
3063   switch(id) {
3064     case vmIntrinsics::_loadFence:
3065       insert_mem_bar(Op_LoadFence);
3066       return true;
3067     case vmIntrinsics::_storeFence:
3068       insert_mem_bar(Op_StoreFence);
3069       return true;
3070     case vmIntrinsics::_fullFence:
3071       insert_mem_bar(Op_MemBarVolatile);
3072       return true;
3073     default:
3074       fatal_unexpected_iid(id);
3075       return false;
3076   }
3077 }
3078 
3079 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3080   if (!kls->is_Con()) {
3081     return true;
3082   }
3083   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3084   if (klsptr == NULL) {
3085     return true;
3086   }
3087   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3088   // don't need a guard for a klass that is already initialized
3089   return !ik->is_initialized();
3090 }
3091 
3092 //----------------------------inline_unsafe_allocate---------------------------
3093 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3094 bool LibraryCallKit::inline_unsafe_allocate() {
3095   if (callee()->is_static())  return false;  // caller must have the capability!
3096 
3097   null_check_receiver();  // null-check, then ignore
3098   Node* cls = null_check(argument(1));
3099   if (stopped())  return true;
3100 
3101   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3102   kls = null_check(kls);
3103   if (stopped())  return true;  // argument was like int.class
3104 
3105   Node* test = NULL;
3106   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3107     // Note:  The argument might still be an illegal value like
3108     // Serializable.class or Object[].class.   The runtime will handle it.
3109     // But we must make an explicit check for initialization.
3110     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3111     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3112     // can generate code to load it as unsigned byte.
3113     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3114     Node* bits = intcon(InstanceKlass::fully_initialized);
3115     test = _gvn.transform(new SubINode(inst, bits));
3116     // The 'test' is non-zero if we need to take a slow path.
3117   }
3118 
3119   Node* obj = new_instance(kls, test);
3120   set_result(obj);
3121   return true;
3122 }
3123 
3124 #ifdef TRACE_HAVE_INTRINSICS
3125 /*
3126  * oop -> myklass
3127  * myklass->trace_id |= USED
3128  * return myklass->trace_id & ~0x3
3129  */
3130 bool LibraryCallKit::inline_native_classID() {
3131   null_check_receiver();  // null-check, then ignore
3132   Node* cls = null_check(argument(1), T_OBJECT);
3133   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3134   kls = null_check(kls, T_OBJECT);
3135   ByteSize offset = TRACE_ID_OFFSET;
3136   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3137   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3138   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3139   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3140   Node* clsused = longcon(0x01l); // set the class bit
3141   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3142 
3143   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3144   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3145   set_result(andl);
3146   return true;
3147 }
3148 
3149 bool LibraryCallKit::inline_native_threadID() {
3150   Node* tls_ptr = NULL;
3151   Node* cur_thr = generate_current_thread(tls_ptr);
3152   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3153   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3154   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3155 
3156   Node* threadid = NULL;
3157   size_t thread_id_size = OSThread::thread_id_size();
3158   if (thread_id_size == (size_t) BytesPerLong) {
3159     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3160   } else if (thread_id_size == (size_t) BytesPerInt) {
3161     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3162   } else {
3163     ShouldNotReachHere();
3164   }
3165   set_result(threadid);
3166   return true;
3167 }
3168 #endif
3169 
3170 //------------------------inline_native_time_funcs--------------
3171 // inline code for System.currentTimeMillis() and System.nanoTime()
3172 // these have the same type and signature
3173 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3174   const TypeFunc* tf = OptoRuntime::void_long_Type();
3175   const TypePtr* no_memory_effects = NULL;
3176   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3177   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3178 #ifdef ASSERT
3179   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3180   assert(value_top == top(), "second value must be top");
3181 #endif
3182   set_result(value);
3183   return true;
3184 }
3185 
3186 //------------------------inline_native_currentThread------------------
3187 bool LibraryCallKit::inline_native_currentThread() {
3188   Node* junk = NULL;
3189   set_result(generate_current_thread(junk));
3190   return true;
3191 }
3192 
3193 //------------------------inline_native_isInterrupted------------------
3194 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3195 bool LibraryCallKit::inline_native_isInterrupted() {
3196   // Add a fast path to t.isInterrupted(clear_int):
3197   //   (t == Thread.current() &&
3198   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3199   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3200   // So, in the common case that the interrupt bit is false,
3201   // we avoid making a call into the VM.  Even if the interrupt bit
3202   // is true, if the clear_int argument is false, we avoid the VM call.
3203   // However, if the receiver is not currentThread, we must call the VM,
3204   // because there must be some locking done around the operation.
3205 
3206   // We only go to the fast case code if we pass two guards.
3207   // Paths which do not pass are accumulated in the slow_region.
3208 
3209   enum {
3210     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3211     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3212     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3213     PATH_LIMIT
3214   };
3215 
3216   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3217   // out of the function.
3218   insert_mem_bar(Op_MemBarCPUOrder);
3219 
3220   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3221   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3222 
3223   RegionNode* slow_region = new RegionNode(1);
3224   record_for_igvn(slow_region);
3225 
3226   // (a) Receiving thread must be the current thread.
3227   Node* rec_thr = argument(0);
3228   Node* tls_ptr = NULL;
3229   Node* cur_thr = generate_current_thread(tls_ptr);
3230   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3231   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3232 
3233   generate_slow_guard(bol_thr, slow_region);
3234 
3235   // (b) Interrupt bit on TLS must be false.
3236   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3237   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3238   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3239 
3240   // Set the control input on the field _interrupted read to prevent it floating up.
3241   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3242   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3243   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3244 
3245   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3246 
3247   // First fast path:  if (!TLS._interrupted) return false;
3248   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3249   result_rgn->init_req(no_int_result_path, false_bit);
3250   result_val->init_req(no_int_result_path, intcon(0));
3251 
3252   // drop through to next case
3253   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3254 
3255 #ifndef TARGET_OS_FAMILY_windows
3256   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3257   Node* clr_arg = argument(1);
3258   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3259   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3260   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3261 
3262   // Second fast path:  ... else if (!clear_int) return true;
3263   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3264   result_rgn->init_req(no_clear_result_path, false_arg);
3265   result_val->init_req(no_clear_result_path, intcon(1));
3266 
3267   // drop through to next case
3268   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3269 #else
3270   // To return true on Windows you must read the _interrupted field
3271   // and check the the event state i.e. take the slow path.
3272 #endif // TARGET_OS_FAMILY_windows
3273 
3274   // (d) Otherwise, go to the slow path.
3275   slow_region->add_req(control());
3276   set_control( _gvn.transform(slow_region));
3277 
3278   if (stopped()) {
3279     // There is no slow path.
3280     result_rgn->init_req(slow_result_path, top());
3281     result_val->init_req(slow_result_path, top());
3282   } else {
3283     // non-virtual because it is a private non-static
3284     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3285 
3286     Node* slow_val = set_results_for_java_call(slow_call);
3287     // this->control() comes from set_results_for_java_call
3288 
3289     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3290     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3291 
3292     // These two phis are pre-filled with copies of of the fast IO and Memory
3293     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3294     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3295 
3296     result_rgn->init_req(slow_result_path, control());
3297     result_io ->init_req(slow_result_path, i_o());
3298     result_mem->init_req(slow_result_path, reset_memory());
3299     result_val->init_req(slow_result_path, slow_val);
3300 
3301     set_all_memory(_gvn.transform(result_mem));
3302     set_i_o(       _gvn.transform(result_io));
3303   }
3304 
3305   C->set_has_split_ifs(true); // Has chance for split-if optimization
3306   set_result(result_rgn, result_val);
3307   return true;
3308 }
3309 
3310 //---------------------------load_mirror_from_klass----------------------------
3311 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3312 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3313   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3314   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3315 }
3316 
3317 //-----------------------load_klass_from_mirror_common-------------------------
3318 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3319 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3320 // and branch to the given path on the region.
3321 // If never_see_null, take an uncommon trap on null, so we can optimistically
3322 // compile for the non-null case.
3323 // If the region is NULL, force never_see_null = true.
3324 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3325                                                     bool never_see_null,
3326                                                     RegionNode* region,
3327                                                     int null_path,
3328                                                     int offset) {
3329   if (region == NULL)  never_see_null = true;
3330   Node* p = basic_plus_adr(mirror, offset);
3331   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3332   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3333   Node* null_ctl = top();
3334   kls = null_check_oop(kls, &null_ctl, never_see_null);
3335   if (region != NULL) {
3336     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3337     region->init_req(null_path, null_ctl);
3338   } else {
3339     assert(null_ctl == top(), "no loose ends");
3340   }
3341   return kls;
3342 }
3343 
3344 //--------------------(inline_native_Class_query helpers)---------------------
3345 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3346 // Fall through if (mods & mask) == bits, take the guard otherwise.
3347 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3348   // Branch around if the given klass has the given modifier bit set.
3349   // Like generate_guard, adds a new path onto the region.
3350   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3351   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3352   Node* mask = intcon(modifier_mask);
3353   Node* bits = intcon(modifier_bits);
3354   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3355   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3356   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3357   return generate_fair_guard(bol, region);
3358 }
3359 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3360   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3361 }
3362 
3363 //-------------------------inline_native_Class_query-------------------
3364 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3365   const Type* return_type = TypeInt::BOOL;
3366   Node* prim_return_value = top();  // what happens if it's a primitive class?
3367   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3368   bool expect_prim = false;     // most of these guys expect to work on refs
3369 
3370   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3371 
3372   Node* mirror = argument(0);
3373   Node* obj    = top();
3374 
3375   switch (id) {
3376   case vmIntrinsics::_isInstance:
3377     // nothing is an instance of a primitive type
3378     prim_return_value = intcon(0);
3379     obj = argument(1);
3380     break;
3381   case vmIntrinsics::_getModifiers:
3382     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3383     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3384     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3385     break;
3386   case vmIntrinsics::_isInterface:
3387     prim_return_value = intcon(0);
3388     break;
3389   case vmIntrinsics::_isArray:
3390     prim_return_value = intcon(0);
3391     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3392     break;
3393   case vmIntrinsics::_isPrimitive:
3394     prim_return_value = intcon(1);
3395     expect_prim = true;  // obviously
3396     break;
3397   case vmIntrinsics::_getSuperclass:
3398     prim_return_value = null();
3399     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3400     break;
3401   case vmIntrinsics::_getComponentType:
3402     prim_return_value = null();
3403     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3404     break;
3405   case vmIntrinsics::_getClassAccessFlags:
3406     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3407     return_type = TypeInt::INT;  // not bool!  6297094
3408     break;
3409   default:
3410     fatal_unexpected_iid(id);
3411     break;
3412   }
3413 
3414   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3415   if (mirror_con == NULL)  return false;  // cannot happen?
3416 
3417 #ifndef PRODUCT
3418   if (C->print_intrinsics() || C->print_inlining()) {
3419     ciType* k = mirror_con->java_mirror_type();
3420     if (k) {
3421       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3422       k->print_name();
3423       tty->cr();
3424     }
3425   }
3426 #endif
3427 
3428   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3429   RegionNode* region = new RegionNode(PATH_LIMIT);
3430   record_for_igvn(region);
3431   PhiNode* phi = new PhiNode(region, return_type);
3432 
3433   // The mirror will never be null of Reflection.getClassAccessFlags, however
3434   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3435   // if it is. See bug 4774291.
3436 
3437   // For Reflection.getClassAccessFlags(), the null check occurs in
3438   // the wrong place; see inline_unsafe_access(), above, for a similar
3439   // situation.
3440   mirror = null_check(mirror);
3441   // If mirror or obj is dead, only null-path is taken.
3442   if (stopped())  return true;
3443 
3444   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3445 
3446   // Now load the mirror's klass metaobject, and null-check it.
3447   // Side-effects region with the control path if the klass is null.
3448   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3449   // If kls is null, we have a primitive mirror.
3450   phi->init_req(_prim_path, prim_return_value);
3451   if (stopped()) { set_result(region, phi); return true; }
3452   bool safe_for_replace = (region->in(_prim_path) == top());
3453 
3454   Node* p;  // handy temp
3455   Node* null_ctl;
3456 
3457   // Now that we have the non-null klass, we can perform the real query.
3458   // For constant classes, the query will constant-fold in LoadNode::Value.
3459   Node* query_value = top();
3460   switch (id) {
3461   case vmIntrinsics::_isInstance:
3462     // nothing is an instance of a primitive type
3463     query_value = gen_instanceof(obj, kls, safe_for_replace);
3464     break;
3465 
3466   case vmIntrinsics::_getModifiers:
3467     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3468     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3469     break;
3470 
3471   case vmIntrinsics::_isInterface:
3472     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3473     if (generate_interface_guard(kls, region) != NULL)
3474       // A guard was added.  If the guard is taken, it was an interface.
3475       phi->add_req(intcon(1));
3476     // If we fall through, it's a plain class.
3477     query_value = intcon(0);
3478     break;
3479 
3480   case vmIntrinsics::_isArray:
3481     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3482     if (generate_array_guard(kls, region) != NULL)
3483       // A guard was added.  If the guard is taken, it was an array.
3484       phi->add_req(intcon(1));
3485     // If we fall through, it's a plain class.
3486     query_value = intcon(0);
3487     break;
3488 
3489   case vmIntrinsics::_isPrimitive:
3490     query_value = intcon(0); // "normal" path produces false
3491     break;
3492 
3493   case vmIntrinsics::_getSuperclass:
3494     // The rules here are somewhat unfortunate, but we can still do better
3495     // with random logic than with a JNI call.
3496     // Interfaces store null or Object as _super, but must report null.
3497     // Arrays store an intermediate super as _super, but must report Object.
3498     // Other types can report the actual _super.
3499     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3500     if (generate_interface_guard(kls, region) != NULL)
3501       // A guard was added.  If the guard is taken, it was an interface.
3502       phi->add_req(null());
3503     if (generate_array_guard(kls, region) != NULL)
3504       // A guard was added.  If the guard is taken, it was an array.
3505       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3506     // If we fall through, it's a plain class.  Get its _super.
3507     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3508     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3509     null_ctl = top();
3510     kls = null_check_oop(kls, &null_ctl);
3511     if (null_ctl != top()) {
3512       // If the guard is taken, Object.superClass is null (both klass and mirror).
3513       region->add_req(null_ctl);
3514       phi   ->add_req(null());
3515     }
3516     if (!stopped()) {
3517       query_value = load_mirror_from_klass(kls);
3518     }
3519     break;
3520 
3521   case vmIntrinsics::_getComponentType:
3522     if (generate_array_guard(kls, region) != NULL) {
3523       // Be sure to pin the oop load to the guard edge just created:
3524       Node* is_array_ctrl = region->in(region->req()-1);
3525       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3526       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3527       phi->add_req(cmo);
3528     }
3529     query_value = null();  // non-array case is null
3530     break;
3531 
3532   case vmIntrinsics::_getClassAccessFlags:
3533     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3534     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3535     break;
3536 
3537   default:
3538     fatal_unexpected_iid(id);
3539     break;
3540   }
3541 
3542   // Fall-through is the normal case of a query to a real class.
3543   phi->init_req(1, query_value);
3544   region->init_req(1, control());
3545 
3546   C->set_has_split_ifs(true); // Has chance for split-if optimization
3547   set_result(region, phi);
3548   return true;
3549 }
3550 
3551 //--------------------------inline_native_subtype_check------------------------
3552 // This intrinsic takes the JNI calls out of the heart of
3553 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3554 bool LibraryCallKit::inline_native_subtype_check() {
3555   // Pull both arguments off the stack.
3556   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3557   args[0] = argument(0);
3558   args[1] = argument(1);
3559   Node* klasses[2];             // corresponding Klasses: superk, subk
3560   klasses[0] = klasses[1] = top();
3561 
3562   enum {
3563     // A full decision tree on {superc is prim, subc is prim}:
3564     _prim_0_path = 1,           // {P,N} => false
3565                                 // {P,P} & superc!=subc => false
3566     _prim_same_path,            // {P,P} & superc==subc => true
3567     _prim_1_path,               // {N,P} => false
3568     _ref_subtype_path,          // {N,N} & subtype check wins => true
3569     _both_ref_path,             // {N,N} & subtype check loses => false
3570     PATH_LIMIT
3571   };
3572 
3573   RegionNode* region = new RegionNode(PATH_LIMIT);
3574   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3575   record_for_igvn(region);
3576 
3577   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3578   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3579   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3580 
3581   // First null-check both mirrors and load each mirror's klass metaobject.
3582   int which_arg;
3583   for (which_arg = 0; which_arg <= 1; which_arg++) {
3584     Node* arg = args[which_arg];
3585     arg = null_check(arg);
3586     if (stopped())  break;
3587     args[which_arg] = arg;
3588 
3589     Node* p = basic_plus_adr(arg, class_klass_offset);
3590     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3591     klasses[which_arg] = _gvn.transform(kls);
3592   }
3593 
3594   // Having loaded both klasses, test each for null.
3595   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3596   for (which_arg = 0; which_arg <= 1; which_arg++) {
3597     Node* kls = klasses[which_arg];
3598     Node* null_ctl = top();
3599     kls = null_check_oop(kls, &null_ctl, never_see_null);
3600     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3601     region->init_req(prim_path, null_ctl);
3602     if (stopped())  break;
3603     klasses[which_arg] = kls;
3604   }
3605 
3606   if (!stopped()) {
3607     // now we have two reference types, in klasses[0..1]
3608     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3609     Node* superk = klasses[0];  // the receiver
3610     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3611     // now we have a successful reference subtype check
3612     region->set_req(_ref_subtype_path, control());
3613   }
3614 
3615   // If both operands are primitive (both klasses null), then
3616   // we must return true when they are identical primitives.
3617   // It is convenient to test this after the first null klass check.
3618   set_control(region->in(_prim_0_path)); // go back to first null check
3619   if (!stopped()) {
3620     // Since superc is primitive, make a guard for the superc==subc case.
3621     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3622     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3623     generate_guard(bol_eq, region, PROB_FAIR);
3624     if (region->req() == PATH_LIMIT+1) {
3625       // A guard was added.  If the added guard is taken, superc==subc.
3626       region->swap_edges(PATH_LIMIT, _prim_same_path);
3627       region->del_req(PATH_LIMIT);
3628     }
3629     region->set_req(_prim_0_path, control()); // Not equal after all.
3630   }
3631 
3632   // these are the only paths that produce 'true':
3633   phi->set_req(_prim_same_path,   intcon(1));
3634   phi->set_req(_ref_subtype_path, intcon(1));
3635 
3636   // pull together the cases:
3637   assert(region->req() == PATH_LIMIT, "sane region");
3638   for (uint i = 1; i < region->req(); i++) {
3639     Node* ctl = region->in(i);
3640     if (ctl == NULL || ctl == top()) {
3641       region->set_req(i, top());
3642       phi   ->set_req(i, top());
3643     } else if (phi->in(i) == NULL) {
3644       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3645     }
3646   }
3647 
3648   set_control(_gvn.transform(region));
3649   set_result(_gvn.transform(phi));
3650   return true;
3651 }
3652 
3653 //---------------------generate_array_guard_common------------------------
3654 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3655                                                   bool obj_array, bool not_array) {
3656   // If obj_array/non_array==false/false:
3657   // Branch around if the given klass is in fact an array (either obj or prim).
3658   // If obj_array/non_array==false/true:
3659   // Branch around if the given klass is not an array klass of any kind.
3660   // If obj_array/non_array==true/true:
3661   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3662   // If obj_array/non_array==true/false:
3663   // Branch around if the kls is an oop array (Object[] or subtype)
3664   //
3665   // Like generate_guard, adds a new path onto the region.
3666   jint  layout_con = 0;
3667   Node* layout_val = get_layout_helper(kls, layout_con);
3668   if (layout_val == NULL) {
3669     bool query = (obj_array
3670                   ? Klass::layout_helper_is_objArray(layout_con)
3671                   : Klass::layout_helper_is_array(layout_con));
3672     if (query == not_array) {
3673       return NULL;                       // never a branch
3674     } else {                             // always a branch
3675       Node* always_branch = control();
3676       if (region != NULL)
3677         region->add_req(always_branch);
3678       set_control(top());
3679       return always_branch;
3680     }
3681   }
3682   // Now test the correct condition.
3683   jint  nval = (obj_array
3684                 ? ((jint)Klass::_lh_array_tag_type_value
3685                    <<    Klass::_lh_array_tag_shift)
3686                 : Klass::_lh_neutral_value);
3687   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3688   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3689   // invert the test if we are looking for a non-array
3690   if (not_array)  btest = BoolTest(btest).negate();
3691   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3692   return generate_fair_guard(bol, region);
3693 }
3694 
3695 
3696 //-----------------------inline_native_newArray--------------------------
3697 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3698 bool LibraryCallKit::inline_native_newArray() {
3699   Node* mirror    = argument(0);
3700   Node* count_val = argument(1);
3701 
3702   mirror = null_check(mirror);
3703   // If mirror or obj is dead, only null-path is taken.
3704   if (stopped())  return true;
3705 
3706   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3707   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3708   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3709   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3710   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3711 
3712   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3713   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3714                                                   result_reg, _slow_path);
3715   Node* normal_ctl   = control();
3716   Node* no_array_ctl = result_reg->in(_slow_path);
3717 
3718   // Generate code for the slow case.  We make a call to newArray().
3719   set_control(no_array_ctl);
3720   if (!stopped()) {
3721     // Either the input type is void.class, or else the
3722     // array klass has not yet been cached.  Either the
3723     // ensuing call will throw an exception, or else it
3724     // will cache the array klass for next time.
3725     PreserveJVMState pjvms(this);
3726     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3727     Node* slow_result = set_results_for_java_call(slow_call);
3728     // this->control() comes from set_results_for_java_call
3729     result_reg->set_req(_slow_path, control());
3730     result_val->set_req(_slow_path, slow_result);
3731     result_io ->set_req(_slow_path, i_o());
3732     result_mem->set_req(_slow_path, reset_memory());
3733   }
3734 
3735   set_control(normal_ctl);
3736   if (!stopped()) {
3737     // Normal case:  The array type has been cached in the java.lang.Class.
3738     // The following call works fine even if the array type is polymorphic.
3739     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3740     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3741     result_reg->init_req(_normal_path, control());
3742     result_val->init_req(_normal_path, obj);
3743     result_io ->init_req(_normal_path, i_o());
3744     result_mem->init_req(_normal_path, reset_memory());
3745   }
3746 
3747   // Return the combined state.
3748   set_i_o(        _gvn.transform(result_io)  );
3749   set_all_memory( _gvn.transform(result_mem));
3750 
3751   C->set_has_split_ifs(true); // Has chance for split-if optimization
3752   set_result(result_reg, result_val);
3753   return true;
3754 }
3755 
3756 //----------------------inline_native_getLength--------------------------
3757 // public static native int java.lang.reflect.Array.getLength(Object array);
3758 bool LibraryCallKit::inline_native_getLength() {
3759   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3760 
3761   Node* array = null_check(argument(0));
3762   // If array is dead, only null-path is taken.
3763   if (stopped())  return true;
3764 
3765   // Deoptimize if it is a non-array.
3766   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3767 
3768   if (non_array != NULL) {
3769     PreserveJVMState pjvms(this);
3770     set_control(non_array);
3771     uncommon_trap(Deoptimization::Reason_intrinsic,
3772                   Deoptimization::Action_maybe_recompile);
3773   }
3774 
3775   // If control is dead, only non-array-path is taken.
3776   if (stopped())  return true;
3777 
3778   // The works fine even if the array type is polymorphic.
3779   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3780   Node* result = load_array_length(array);
3781 
3782   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3783   set_result(result);
3784   return true;
3785 }
3786 
3787 //------------------------inline_array_copyOf----------------------------
3788 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3789 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3790 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3791   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3792 
3793   // Get the arguments.
3794   Node* original          = argument(0);
3795   Node* start             = is_copyOfRange? argument(1): intcon(0);
3796   Node* end               = is_copyOfRange? argument(2): argument(1);
3797   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3798 
3799   Node* newcopy;
3800 
3801   // Set the original stack and the reexecute bit for the interpreter to reexecute
3802   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3803   { PreserveReexecuteState preexecs(this);
3804     jvms()->set_should_reexecute(true);
3805 
3806     array_type_mirror = null_check(array_type_mirror);
3807     original          = null_check(original);
3808 
3809     // Check if a null path was taken unconditionally.
3810     if (stopped())  return true;
3811 
3812     Node* orig_length = load_array_length(original);
3813 
3814     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3815     klass_node = null_check(klass_node);
3816 
3817     RegionNode* bailout = new RegionNode(1);
3818     record_for_igvn(bailout);
3819 
3820     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3821     // Bail out if that is so.
3822     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3823     if (not_objArray != NULL) {
3824       // Improve the klass node's type from the new optimistic assumption:
3825       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3826       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3827       Node* cast = new CastPPNode(klass_node, akls);
3828       cast->init_req(0, control());
3829       klass_node = _gvn.transform(cast);
3830     }
3831 
3832     // Bail out if either start or end is negative.
3833     generate_negative_guard(start, bailout, &start);
3834     generate_negative_guard(end,   bailout, &end);
3835 
3836     Node* length = end;
3837     if (_gvn.type(start) != TypeInt::ZERO) {
3838       length = _gvn.transform(new SubINode(end, start));
3839     }
3840 
3841     // Bail out if length is negative.
3842     // Without this the new_array would throw
3843     // NegativeArraySizeException but IllegalArgumentException is what
3844     // should be thrown
3845     generate_negative_guard(length, bailout, &length);
3846 
3847     if (bailout->req() > 1) {
3848       PreserveJVMState pjvms(this);
3849       set_control(_gvn.transform(bailout));
3850       uncommon_trap(Deoptimization::Reason_intrinsic,
3851                     Deoptimization::Action_maybe_recompile);
3852     }
3853 
3854     if (!stopped()) {
3855       // How many elements will we copy from the original?
3856       // The answer is MinI(orig_length - start, length).
3857       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3858       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3859 
3860       newcopy = new_array(klass_node, length, 0);  // no argments to push
3861 
3862       // Generate a direct call to the right arraycopy function(s).
3863       // We know the copy is disjoint but we might not know if the
3864       // oop stores need checking.
3865       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3866       // This will fail a store-check if x contains any non-nulls.
3867 
3868       Node* alloc = tightly_coupled_allocation(newcopy, NULL);
3869 
3870       ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, alloc != NULL);
3871       if (!is_copyOfRange) {
3872         ac->set_copyof();
3873       } else {
3874         ac->set_copyofrange();
3875       }
3876       Node* n = _gvn.transform(ac);
3877       assert(n == ac, "cannot disappear");
3878       ac->connect_outputs(this);
3879     }
3880   } // original reexecute is set back here
3881 
3882   C->set_has_split_ifs(true); // Has chance for split-if optimization
3883   if (!stopped()) {
3884     set_result(newcopy);
3885   }
3886   return true;
3887 }
3888 
3889 
3890 //----------------------generate_virtual_guard---------------------------
3891 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3892 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3893                                              RegionNode* slow_region) {
3894   ciMethod* method = callee();
3895   int vtable_index = method->vtable_index();
3896   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3897          err_msg_res("bad index %d", vtable_index));
3898   // Get the Method* out of the appropriate vtable entry.
3899   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3900                      vtable_index*vtableEntry::size()) * wordSize +
3901                      vtableEntry::method_offset_in_bytes();
3902   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3903   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3904 
3905   // Compare the target method with the expected method (e.g., Object.hashCode).
3906   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3907 
3908   Node* native_call = makecon(native_call_addr);
3909   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3910   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3911 
3912   return generate_slow_guard(test_native, slow_region);
3913 }
3914 
3915 //-----------------------generate_method_call----------------------------
3916 // Use generate_method_call to make a slow-call to the real
3917 // method if the fast path fails.  An alternative would be to
3918 // use a stub like OptoRuntime::slow_arraycopy_Java.
3919 // This only works for expanding the current library call,
3920 // not another intrinsic.  (E.g., don't use this for making an
3921 // arraycopy call inside of the copyOf intrinsic.)
3922 CallJavaNode*
3923 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3924   // When compiling the intrinsic method itself, do not use this technique.
3925   guarantee(callee() != C->method(), "cannot make slow-call to self");
3926 
3927   ciMethod* method = callee();
3928   // ensure the JVMS we have will be correct for this call
3929   guarantee(method_id == method->intrinsic_id(), "must match");
3930 
3931   const TypeFunc* tf = TypeFunc::make(method);
3932   CallJavaNode* slow_call;
3933   if (is_static) {
3934     assert(!is_virtual, "");
3935     slow_call = new CallStaticJavaNode(C, tf,
3936                            SharedRuntime::get_resolve_static_call_stub(),
3937                            method, bci());
3938   } else if (is_virtual) {
3939     null_check_receiver();
3940     int vtable_index = Method::invalid_vtable_index;
3941     if (UseInlineCaches) {
3942       // Suppress the vtable call
3943     } else {
3944       // hashCode and clone are not a miranda methods,
3945       // so the vtable index is fixed.
3946       // No need to use the linkResolver to get it.
3947        vtable_index = method->vtable_index();
3948        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3949               err_msg_res("bad index %d", vtable_index));
3950     }
3951     slow_call = new CallDynamicJavaNode(tf,
3952                           SharedRuntime::get_resolve_virtual_call_stub(),
3953                           method, vtable_index, bci());
3954   } else {  // neither virtual nor static:  opt_virtual
3955     null_check_receiver();
3956     slow_call = new CallStaticJavaNode(C, tf,
3957                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3958                                 method, bci());
3959     slow_call->set_optimized_virtual(true);
3960   }
3961   set_arguments_for_java_call(slow_call);
3962   set_edges_for_java_call(slow_call);
3963   return slow_call;
3964 }
3965 
3966 
3967 /**
3968  * Build special case code for calls to hashCode on an object. This call may
3969  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3970  * slightly different code.
3971  */
3972 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3973   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3974   assert(!(is_virtual && is_static), "either virtual, special, or static");
3975 
3976   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3977 
3978   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3979   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3980   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3981   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3982   Node* obj = NULL;
3983   if (!is_static) {
3984     // Check for hashing null object
3985     obj = null_check_receiver();
3986     if (stopped())  return true;        // unconditionally null
3987     result_reg->init_req(_null_path, top());
3988     result_val->init_req(_null_path, top());
3989   } else {
3990     // Do a null check, and return zero if null.
3991     // System.identityHashCode(null) == 0
3992     obj = argument(0);
3993     Node* null_ctl = top();
3994     obj = null_check_oop(obj, &null_ctl);
3995     result_reg->init_req(_null_path, null_ctl);
3996     result_val->init_req(_null_path, _gvn.intcon(0));
3997   }
3998 
3999   // Unconditionally null?  Then return right away.
4000   if (stopped()) {
4001     set_control( result_reg->in(_null_path));
4002     if (!stopped())
4003       set_result(result_val->in(_null_path));
4004     return true;
4005   }
4006 
4007   // We only go to the fast case code if we pass a number of guards.  The
4008   // paths which do not pass are accumulated in the slow_region.
4009   RegionNode* slow_region = new RegionNode(1);
4010   record_for_igvn(slow_region);
4011 
4012   // If this is a virtual call, we generate a funny guard.  We pull out
4013   // the vtable entry corresponding to hashCode() from the target object.
4014   // If the target method which we are calling happens to be the native
4015   // Object hashCode() method, we pass the guard.  We do not need this
4016   // guard for non-virtual calls -- the caller is known to be the native
4017   // Object hashCode().
4018   if (is_virtual) {
4019     // After null check, get the object's klass.
4020     Node* obj_klass = load_object_klass(obj);
4021     generate_virtual_guard(obj_klass, slow_region);
4022   }
4023 
4024   // Get the header out of the object, use LoadMarkNode when available
4025   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4026   // The control of the load must be NULL. Otherwise, the load can move before
4027   // the null check after castPP removal.
4028   Node* no_ctrl = NULL;
4029   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4030 
4031   // Test the header to see if it is unlocked.
4032   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4033   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4034   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4035   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4036   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4037 
4038   generate_slow_guard(test_unlocked, slow_region);
4039 
4040   // Get the hash value and check to see that it has been properly assigned.
4041   // We depend on hash_mask being at most 32 bits and avoid the use of
4042   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4043   // vm: see markOop.hpp.
4044   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4045   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4046   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4047   // This hack lets the hash bits live anywhere in the mark object now, as long
4048   // as the shift drops the relevant bits into the low 32 bits.  Note that
4049   // Java spec says that HashCode is an int so there's no point in capturing
4050   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4051   hshifted_header      = ConvX2I(hshifted_header);
4052   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4053 
4054   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4055   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4056   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4057 
4058   generate_slow_guard(test_assigned, slow_region);
4059 
4060   Node* init_mem = reset_memory();
4061   // fill in the rest of the null path:
4062   result_io ->init_req(_null_path, i_o());
4063   result_mem->init_req(_null_path, init_mem);
4064 
4065   result_val->init_req(_fast_path, hash_val);
4066   result_reg->init_req(_fast_path, control());
4067   result_io ->init_req(_fast_path, i_o());
4068   result_mem->init_req(_fast_path, init_mem);
4069 
4070   // Generate code for the slow case.  We make a call to hashCode().
4071   set_control(_gvn.transform(slow_region));
4072   if (!stopped()) {
4073     // No need for PreserveJVMState, because we're using up the present state.
4074     set_all_memory(init_mem);
4075     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4076     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4077     Node* slow_result = set_results_for_java_call(slow_call);
4078     // this->control() comes from set_results_for_java_call
4079     result_reg->init_req(_slow_path, control());
4080     result_val->init_req(_slow_path, slow_result);
4081     result_io  ->set_req(_slow_path, i_o());
4082     result_mem ->set_req(_slow_path, reset_memory());
4083   }
4084 
4085   // Return the combined state.
4086   set_i_o(        _gvn.transform(result_io)  );
4087   set_all_memory( _gvn.transform(result_mem));
4088 
4089   set_result(result_reg, result_val);
4090   return true;
4091 }
4092 
4093 //---------------------------inline_native_getClass----------------------------
4094 // public final native Class<?> java.lang.Object.getClass();
4095 //
4096 // Build special case code for calls to getClass on an object.
4097 bool LibraryCallKit::inline_native_getClass() {
4098   Node* obj = null_check_receiver();
4099   if (stopped())  return true;
4100   set_result(load_mirror_from_klass(load_object_klass(obj)));
4101   return true;
4102 }
4103 
4104 //-----------------inline_native_Reflection_getCallerClass---------------------
4105 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4106 //
4107 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4108 //
4109 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4110 // in that it must skip particular security frames and checks for
4111 // caller sensitive methods.
4112 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4113 #ifndef PRODUCT
4114   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4115     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4116   }
4117 #endif
4118 
4119   if (!jvms()->has_method()) {
4120 #ifndef PRODUCT
4121     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4122       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4123     }
4124 #endif
4125     return false;
4126   }
4127 
4128   // Walk back up the JVM state to find the caller at the required
4129   // depth.
4130   JVMState* caller_jvms = jvms();
4131 
4132   // Cf. JVM_GetCallerClass
4133   // NOTE: Start the loop at depth 1 because the current JVM state does
4134   // not include the Reflection.getCallerClass() frame.
4135   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4136     ciMethod* m = caller_jvms->method();
4137     switch (n) {
4138     case 0:
4139       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4140       break;
4141     case 1:
4142       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4143       if (!m->caller_sensitive()) {
4144 #ifndef PRODUCT
4145         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4146           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4147         }
4148 #endif
4149         return false;  // bail-out; let JVM_GetCallerClass do the work
4150       }
4151       break;
4152     default:
4153       if (!m->is_ignored_by_security_stack_walk()) {
4154         // We have reached the desired frame; return the holder class.
4155         // Acquire method holder as java.lang.Class and push as constant.
4156         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4157         ciInstance* caller_mirror = caller_klass->java_mirror();
4158         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4159 
4160 #ifndef PRODUCT
4161         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4162           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4163           tty->print_cr("  JVM state at this point:");
4164           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4165             ciMethod* m = jvms()->of_depth(i)->method();
4166             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4167           }
4168         }
4169 #endif
4170         return true;
4171       }
4172       break;
4173     }
4174   }
4175 
4176 #ifndef PRODUCT
4177   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4178     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4179     tty->print_cr("  JVM state at this point:");
4180     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4181       ciMethod* m = jvms()->of_depth(i)->method();
4182       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4183     }
4184   }
4185 #endif
4186 
4187   return false;  // bail-out; let JVM_GetCallerClass do the work
4188 }
4189 
4190 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4191   Node* arg = argument(0);
4192   Node* result;
4193 
4194   switch (id) {
4195   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4196   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4197   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4198   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4199 
4200   case vmIntrinsics::_doubleToLongBits: {
4201     // two paths (plus control) merge in a wood
4202     RegionNode *r = new RegionNode(3);
4203     Node *phi = new PhiNode(r, TypeLong::LONG);
4204 
4205     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4206     // Build the boolean node
4207     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4208 
4209     // Branch either way.
4210     // NaN case is less traveled, which makes all the difference.
4211     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4212     Node *opt_isnan = _gvn.transform(ifisnan);
4213     assert( opt_isnan->is_If(), "Expect an IfNode");
4214     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4215     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4216 
4217     set_control(iftrue);
4218 
4219     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4220     Node *slow_result = longcon(nan_bits); // return NaN
4221     phi->init_req(1, _gvn.transform( slow_result ));
4222     r->init_req(1, iftrue);
4223 
4224     // Else fall through
4225     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4226     set_control(iffalse);
4227 
4228     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4229     r->init_req(2, iffalse);
4230 
4231     // Post merge
4232     set_control(_gvn.transform(r));
4233     record_for_igvn(r);
4234 
4235     C->set_has_split_ifs(true); // Has chance for split-if optimization
4236     result = phi;
4237     assert(result->bottom_type()->isa_long(), "must be");
4238     break;
4239   }
4240 
4241   case vmIntrinsics::_floatToIntBits: {
4242     // two paths (plus control) merge in a wood
4243     RegionNode *r = new RegionNode(3);
4244     Node *phi = new PhiNode(r, TypeInt::INT);
4245 
4246     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4247     // Build the boolean node
4248     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4249 
4250     // Branch either way.
4251     // NaN case is less traveled, which makes all the difference.
4252     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4253     Node *opt_isnan = _gvn.transform(ifisnan);
4254     assert( opt_isnan->is_If(), "Expect an IfNode");
4255     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4256     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4257 
4258     set_control(iftrue);
4259 
4260     static const jint nan_bits = 0x7fc00000;
4261     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4262     phi->init_req(1, _gvn.transform( slow_result ));
4263     r->init_req(1, iftrue);
4264 
4265     // Else fall through
4266     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4267     set_control(iffalse);
4268 
4269     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4270     r->init_req(2, iffalse);
4271 
4272     // Post merge
4273     set_control(_gvn.transform(r));
4274     record_for_igvn(r);
4275 
4276     C->set_has_split_ifs(true); // Has chance for split-if optimization
4277     result = phi;
4278     assert(result->bottom_type()->isa_int(), "must be");
4279     break;
4280   }
4281 
4282   default:
4283     fatal_unexpected_iid(id);
4284     break;
4285   }
4286   set_result(_gvn.transform(result));
4287   return true;
4288 }
4289 
4290 #ifdef _LP64
4291 #define XTOP ,top() /*additional argument*/
4292 #else  //_LP64
4293 #define XTOP        /*no additional argument*/
4294 #endif //_LP64
4295 
4296 //----------------------inline_unsafe_copyMemory-------------------------
4297 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4298 bool LibraryCallKit::inline_unsafe_copyMemory() {
4299   if (callee()->is_static())  return false;  // caller must have the capability!
4300   null_check_receiver();  // null-check receiver
4301   if (stopped())  return true;
4302 
4303   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4304 
4305   Node* src_ptr =         argument(1);   // type: oop
4306   Node* src_off = ConvL2X(argument(2));  // type: long
4307   Node* dst_ptr =         argument(4);   // type: oop
4308   Node* dst_off = ConvL2X(argument(5));  // type: long
4309   Node* size    = ConvL2X(argument(7));  // type: long
4310 
4311   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4312          "fieldOffset must be byte-scaled");
4313 
4314   Node* src = make_unsafe_address(src_ptr, src_off);
4315   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4316 
4317   // Conservatively insert a memory barrier on all memory slices.
4318   // Do not let writes of the copy source or destination float below the copy.
4319   insert_mem_bar(Op_MemBarCPUOrder);
4320 
4321   // Call it.  Note that the length argument is not scaled.
4322   make_runtime_call(RC_LEAF|RC_NO_FP,
4323                     OptoRuntime::fast_arraycopy_Type(),
4324                     StubRoutines::unsafe_arraycopy(),
4325                     "unsafe_arraycopy",
4326                     TypeRawPtr::BOTTOM,
4327                     src, dst, size XTOP);
4328 
4329   // Do not let reads of the copy destination float above the copy.
4330   insert_mem_bar(Op_MemBarCPUOrder);
4331 
4332   return true;
4333 }
4334 
4335 //------------------------clone_coping-----------------------------------
4336 // Helper function for inline_native_clone.
4337 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4338   assert(obj_size != NULL, "");
4339   Node* raw_obj = alloc_obj->in(1);
4340   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4341 
4342   AllocateNode* alloc = NULL;
4343   if (ReduceBulkZeroing) {
4344     // We will be completely responsible for initializing this object -
4345     // mark Initialize node as complete.
4346     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4347     // The object was just allocated - there should be no any stores!
4348     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4349     // Mark as complete_with_arraycopy so that on AllocateNode
4350     // expansion, we know this AllocateNode is initialized by an array
4351     // copy and a StoreStore barrier exists after the array copy.
4352     alloc->initialization()->set_complete_with_arraycopy();
4353   }
4354 
4355   // Copy the fastest available way.
4356   // TODO: generate fields copies for small objects instead.
4357   Node* src  = obj;
4358   Node* dest = alloc_obj;
4359   Node* size = _gvn.transform(obj_size);
4360 
4361   // Exclude the header but include array length to copy by 8 bytes words.
4362   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4363   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4364                             instanceOopDesc::base_offset_in_bytes();
4365   // base_off:
4366   // 8  - 32-bit VM
4367   // 12 - 64-bit VM, compressed klass
4368   // 16 - 64-bit VM, normal klass
4369   if (base_off % BytesPerLong != 0) {
4370     assert(UseCompressedClassPointers, "");
4371     if (is_array) {
4372       // Exclude length to copy by 8 bytes words.
4373       base_off += sizeof(int);
4374     } else {
4375       // Include klass to copy by 8 bytes words.
4376       base_off = instanceOopDesc::klass_offset_in_bytes();
4377     }
4378     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4379   }
4380   src  = basic_plus_adr(src,  base_off);
4381   dest = basic_plus_adr(dest, base_off);
4382 
4383   // Compute the length also, if needed:
4384   Node* countx = size;
4385   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4386   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4387 
4388   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4389 
4390   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4391   ac->set_clonebasic();
4392   Node* n = _gvn.transform(ac);
4393   assert(n == ac, "cannot disappear");
4394   set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4395 
4396   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4397   if (card_mark) {
4398     assert(!is_array, "");
4399     // Put in store barrier for any and all oops we are sticking
4400     // into this object.  (We could avoid this if we could prove
4401     // that the object type contains no oop fields at all.)
4402     Node* no_particular_value = NULL;
4403     Node* no_particular_field = NULL;
4404     int raw_adr_idx = Compile::AliasIdxRaw;
4405     post_barrier(control(),
4406                  memory(raw_adr_type),
4407                  alloc_obj,
4408                  no_particular_field,
4409                  raw_adr_idx,
4410                  no_particular_value,
4411                  T_OBJECT,
4412                  false);
4413   }
4414 
4415   // Do not let reads from the cloned object float above the arraycopy.
4416   if (alloc != NULL) {
4417     // Do not let stores that initialize this object be reordered with
4418     // a subsequent store that would make this object accessible by
4419     // other threads.
4420     // Record what AllocateNode this StoreStore protects so that
4421     // escape analysis can go from the MemBarStoreStoreNode to the
4422     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4423     // based on the escape status of the AllocateNode.
4424     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4425   } else {
4426     insert_mem_bar(Op_MemBarCPUOrder);
4427   }
4428 }
4429 
4430 //------------------------inline_native_clone----------------------------
4431 // protected native Object java.lang.Object.clone();
4432 //
4433 // Here are the simple edge cases:
4434 //  null receiver => normal trap
4435 //  virtual and clone was overridden => slow path to out-of-line clone
4436 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4437 //
4438 // The general case has two steps, allocation and copying.
4439 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4440 //
4441 // Copying also has two cases, oop arrays and everything else.
4442 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4443 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4444 //
4445 // These steps fold up nicely if and when the cloned object's klass
4446 // can be sharply typed as an object array, a type array, or an instance.
4447 //
4448 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4449   PhiNode* result_val;
4450 
4451   // Set the reexecute bit for the interpreter to reexecute
4452   // the bytecode that invokes Object.clone if deoptimization happens.
4453   { PreserveReexecuteState preexecs(this);
4454     jvms()->set_should_reexecute(true);
4455 
4456     Node* obj = null_check_receiver();
4457     if (stopped())  return true;
4458 
4459     Node* obj_klass = load_object_klass(obj);
4460     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4461     const TypeOopPtr*   toop   = ((tklass != NULL)
4462                                 ? tklass->as_instance_type()
4463                                 : TypeInstPtr::NOTNULL);
4464 
4465     // Conservatively insert a memory barrier on all memory slices.
4466     // Do not let writes into the original float below the clone.
4467     insert_mem_bar(Op_MemBarCPUOrder);
4468 
4469     // paths into result_reg:
4470     enum {
4471       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4472       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4473       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4474       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4475       PATH_LIMIT
4476     };
4477     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4478     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4479     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4480     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4481     record_for_igvn(result_reg);
4482 
4483     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4484     int raw_adr_idx = Compile::AliasIdxRaw;
4485 
4486     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4487     if (array_ctl != NULL) {
4488       // It's an array.
4489       PreserveJVMState pjvms(this);
4490       set_control(array_ctl);
4491       Node* obj_length = load_array_length(obj);
4492       Node* obj_size  = NULL;
4493       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4494 
4495       if (!use_ReduceInitialCardMarks()) {
4496         // If it is an oop array, it requires very special treatment,
4497         // because card marking is required on each card of the array.
4498         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4499         if (is_obja != NULL) {
4500           PreserveJVMState pjvms2(this);
4501           set_control(is_obja);
4502           // Generate a direct call to the right arraycopy function(s).
4503           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4504           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4505           ac->set_cloneoop();
4506           Node* n = _gvn.transform(ac);
4507           assert(n == ac, "cannot disappear");
4508           ac->connect_outputs(this);
4509 
4510           result_reg->init_req(_objArray_path, control());
4511           result_val->init_req(_objArray_path, alloc_obj);
4512           result_i_o ->set_req(_objArray_path, i_o());
4513           result_mem ->set_req(_objArray_path, reset_memory());
4514         }
4515       }
4516       // Otherwise, there are no card marks to worry about.
4517       // (We can dispense with card marks if we know the allocation
4518       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4519       //  causes the non-eden paths to take compensating steps to
4520       //  simulate a fresh allocation, so that no further
4521       //  card marks are required in compiled code to initialize
4522       //  the object.)
4523 
4524       if (!stopped()) {
4525         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4526 
4527         // Present the results of the copy.
4528         result_reg->init_req(_array_path, control());
4529         result_val->init_req(_array_path, alloc_obj);
4530         result_i_o ->set_req(_array_path, i_o());
4531         result_mem ->set_req(_array_path, reset_memory());
4532       }
4533     }
4534 
4535     // We only go to the instance fast case code if we pass a number of guards.
4536     // The paths which do not pass are accumulated in the slow_region.
4537     RegionNode* slow_region = new RegionNode(1);
4538     record_for_igvn(slow_region);
4539     if (!stopped()) {
4540       // It's an instance (we did array above).  Make the slow-path tests.
4541       // If this is a virtual call, we generate a funny guard.  We grab
4542       // the vtable entry corresponding to clone() from the target object.
4543       // If the target method which we are calling happens to be the
4544       // Object clone() method, we pass the guard.  We do not need this
4545       // guard for non-virtual calls; the caller is known to be the native
4546       // Object clone().
4547       if (is_virtual) {
4548         generate_virtual_guard(obj_klass, slow_region);
4549       }
4550 
4551       // The object must be cloneable and must not have a finalizer.
4552       // Both of these conditions may be checked in a single test.
4553       // We could optimize the cloneable test further, but we don't care.
4554       generate_access_flags_guard(obj_klass,
4555                                   // Test both conditions:
4556                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4557                                   // Must be cloneable but not finalizer:
4558                                   JVM_ACC_IS_CLONEABLE,
4559                                   slow_region);
4560     }
4561 
4562     if (!stopped()) {
4563       // It's an instance, and it passed the slow-path tests.
4564       PreserveJVMState pjvms(this);
4565       Node* obj_size  = NULL;
4566       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4567       // is reexecuted if deoptimization occurs and there could be problems when merging
4568       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4569       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4570 
4571       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4572 
4573       // Present the results of the slow call.
4574       result_reg->init_req(_instance_path, control());
4575       result_val->init_req(_instance_path, alloc_obj);
4576       result_i_o ->set_req(_instance_path, i_o());
4577       result_mem ->set_req(_instance_path, reset_memory());
4578     }
4579 
4580     // Generate code for the slow case.  We make a call to clone().
4581     set_control(_gvn.transform(slow_region));
4582     if (!stopped()) {
4583       PreserveJVMState pjvms(this);
4584       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4585       Node* slow_result = set_results_for_java_call(slow_call);
4586       // this->control() comes from set_results_for_java_call
4587       result_reg->init_req(_slow_path, control());
4588       result_val->init_req(_slow_path, slow_result);
4589       result_i_o ->set_req(_slow_path, i_o());
4590       result_mem ->set_req(_slow_path, reset_memory());
4591     }
4592 
4593     // Return the combined state.
4594     set_control(    _gvn.transform(result_reg));
4595     set_i_o(        _gvn.transform(result_i_o));
4596     set_all_memory( _gvn.transform(result_mem));
4597   } // original reexecute is set back here
4598 
4599   set_result(_gvn.transform(result_val));
4600   return true;
4601 }
4602 
4603 //------------------------------inline_arraycopy-----------------------
4604 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4605 //                                                      Object dest, int destPos,
4606 //                                                      int length);
4607 bool LibraryCallKit::inline_arraycopy() {
4608   // Get the arguments.
4609   Node* src         = argument(0);  // type: oop
4610   Node* src_offset  = argument(1);  // type: int
4611   Node* dest        = argument(2);  // type: oop
4612   Node* dest_offset = argument(3);  // type: int
4613   Node* length      = argument(4);  // type: int
4614 
4615   // The following tests must be performed
4616   // (1) src and dest are arrays.
4617   // (2) src and dest arrays must have elements of the same BasicType
4618   // (3) src and dest must not be null.
4619   // (4) src_offset must not be negative.
4620   // (5) dest_offset must not be negative.
4621   // (6) length must not be negative.
4622   // (7) src_offset + length must not exceed length of src.
4623   // (8) dest_offset + length must not exceed length of dest.
4624   // (9) each element of an oop array must be assignable
4625 
4626   // (3) src and dest must not be null.
4627   // always do this here because we need the JVM state for uncommon traps
4628   src  = null_check(src,  T_ARRAY);
4629   dest = null_check(dest, T_ARRAY);
4630 
4631   bool notest = false;
4632 
4633   const Type* src_type  = _gvn.type(src);
4634   const Type* dest_type = _gvn.type(dest);
4635   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4636   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4637 
4638   // Do we have the type of src?
4639   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4640   // Do we have the type of dest?
4641   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4642   // Is the type for src from speculation?
4643   bool src_spec = false;
4644   // Is the type for dest from speculation?
4645   bool dest_spec = false;
4646 
4647   if (!has_src || !has_dest) {
4648     // We don't have sufficient type information, let's see if
4649     // speculative types can help. We need to have types for both src
4650     // and dest so that it pays off.
4651 
4652     // Do we already have or could we have type information for src
4653     bool could_have_src = has_src;
4654     // Do we already have or could we have type information for dest
4655     bool could_have_dest = has_dest;
4656 
4657     ciKlass* src_k = NULL;
4658     if (!has_src) {
4659       src_k = src_type->speculative_type_not_null();
4660       if (src_k != NULL && src_k->is_array_klass()) {
4661         could_have_src = true;
4662       }
4663     }
4664 
4665     ciKlass* dest_k = NULL;
4666     if (!has_dest) {
4667       dest_k = dest_type->speculative_type_not_null();
4668       if (dest_k != NULL && dest_k->is_array_klass()) {
4669         could_have_dest = true;
4670       }
4671     }
4672 
4673     if (could_have_src && could_have_dest) {
4674       // This is going to pay off so emit the required guards
4675       if (!has_src) {
4676         src = maybe_cast_profiled_obj(src, src_k);
4677         src_type  = _gvn.type(src);
4678         top_src  = src_type->isa_aryptr();
4679         has_src = (top_src != NULL && top_src->klass() != NULL);
4680         src_spec = true;
4681       }
4682       if (!has_dest) {
4683         dest = maybe_cast_profiled_obj(dest, dest_k);
4684         dest_type  = _gvn.type(dest);
4685         top_dest  = dest_type->isa_aryptr();
4686         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4687         dest_spec = true;
4688       }
4689     }
4690   }
4691 
4692   if (has_src && has_dest) {
4693     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4694     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4695     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4696     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4697   
4698     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4699       // If both arrays are object arrays then having the exact types
4700       // for both will remove the need for a subtype check at runtime
4701       // before the call and may make it possible to pick a faster copy
4702       // routine (without a subtype check on every element)
4703       // Do we have the exact type of src?
4704       bool could_have_src = src_spec;
4705       // Do we have the exact type of dest?
4706       bool could_have_dest = dest_spec;
4707       ciKlass* src_k = top_src->klass();
4708       ciKlass* dest_k = top_dest->klass();
4709       if (!src_spec) {
4710         src_k = src_type->speculative_type_not_null();
4711         if (src_k != NULL && src_k->is_array_klass()) {
4712           could_have_src = true;
4713         }
4714       }
4715       if (!dest_spec) {
4716         dest_k = dest_type->speculative_type_not_null();
4717         if (dest_k != NULL && dest_k->is_array_klass()) {
4718           could_have_dest = true;
4719         }
4720       }
4721       if (could_have_src && could_have_dest) {
4722         // If we can have both exact types, emit the missing guards
4723         if (could_have_src && !src_spec) {
4724           src = maybe_cast_profiled_obj(src, src_k);
4725         }
4726         if (could_have_dest && !dest_spec) {
4727           dest = maybe_cast_profiled_obj(dest, dest_k);
4728         }
4729       }
4730     }
4731   }
4732 
4733   if (!too_many_traps(Deoptimization::Reason_intrinsic) && !src->is_top() && !dest->is_top()) {
4734     // validate arguments: enables transformation the ArrayCopyNode
4735     notest = true;
4736 
4737     RegionNode* slow_region = new RegionNode(1);
4738     record_for_igvn(slow_region);
4739 
4740     // (1) src and dest are arrays.
4741     generate_non_array_guard(load_object_klass(src), slow_region);
4742     generate_non_array_guard(load_object_klass(dest), slow_region);
4743 
4744     // (2) src and dest arrays must have elements of the same BasicType
4745     // done at macro expansion or at Ideal transformation time
4746 
4747     // (4) src_offset must not be negative.
4748     generate_negative_guard(src_offset, slow_region);
4749 
4750     // (5) dest_offset must not be negative.
4751     generate_negative_guard(dest_offset, slow_region);
4752 
4753     // (7) src_offset + length must not exceed length of src.
4754     generate_limit_guard(src_offset, length,
4755                          load_array_length(src),
4756                          slow_region);
4757 
4758     // (8) dest_offset + length must not exceed length of dest.
4759     generate_limit_guard(dest_offset, length,
4760                          load_array_length(dest),
4761                          slow_region);
4762 
4763     // (9) each element of an oop array must be assignable
4764     Node* src_klass  = load_object_klass(src);
4765     Node* dest_klass = load_object_klass(dest);
4766     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4767 
4768     if (not_subtype_ctrl != top()) {
4769       PreserveJVMState pjvms(this);
4770       set_control(not_subtype_ctrl);
4771       uncommon_trap(Deoptimization::Reason_intrinsic,
4772                     Deoptimization::Action_make_not_entrant);
4773       assert(stopped(), "Should be stopped");
4774     }
4775     {
4776       PreserveJVMState pjvms(this);
4777       set_control(_gvn.transform(slow_region));
4778       uncommon_trap(Deoptimization::Reason_intrinsic,
4779                     Deoptimization::Action_make_not_entrant);
4780       assert(stopped(), "Should be stopped");
4781     }
4782   }
4783 
4784   if (stopped()) {
4785     return true;
4786   }
4787 
4788   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4789   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL);
4790 
4791   if (notest) {
4792     ac->set_arraycopy_notest();
4793   }
4794 
4795   Node* n = _gvn.transform(ac);
4796   assert(n == ac, "cannot disappear");
4797   ac->connect_outputs(this);
4798 
4799   return true;
4800 }
4801 
4802 
4803 // Helper function which determines if an arraycopy immediately follows
4804 // an allocation, with no intervening tests or other escapes for the object.
4805 AllocateArrayNode*
4806 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4807                                            RegionNode* slow_region) {
4808   if (stopped())             return NULL;  // no fast path
4809   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4810 
4811   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4812   if (alloc == NULL)  return NULL;
4813 
4814   Node* rawmem = memory(Compile::AliasIdxRaw);
4815   // Is the allocation's memory state untouched?
4816   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4817     // Bail out if there have been raw-memory effects since the allocation.
4818     // (Example:  There might have been a call or safepoint.)
4819     return NULL;
4820   }
4821   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4822   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4823     return NULL;
4824   }
4825 
4826   // There must be no unexpected observers of this allocation.
4827   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4828     Node* obs = ptr->fast_out(i);
4829     if (obs != this->map()) {
4830       return NULL;
4831     }
4832   }
4833 
4834   // This arraycopy must unconditionally follow the allocation of the ptr.
4835   Node* alloc_ctl = ptr->in(0);
4836   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4837 
4838   Node* ctl = control();
4839   while (ctl != alloc_ctl) {
4840     // There may be guards which feed into the slow_region.
4841     // Any other control flow means that we might not get a chance
4842     // to finish initializing the allocated object.
4843     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4844       IfNode* iff = ctl->in(0)->as_If();
4845       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4846       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4847       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4848         ctl = iff->in(0);       // This test feeds the known slow_region.
4849         continue;
4850       }
4851       // One more try:  Various low-level checks bottom out in
4852       // uncommon traps.  If the debug-info of the trap omits
4853       // any reference to the allocation, as we've already
4854       // observed, then there can be no objection to the trap.
4855       bool found_trap = false;
4856       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4857         Node* obs = not_ctl->fast_out(j);
4858         if (obs->in(0) == not_ctl && obs->is_Call() &&
4859             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4860           found_trap = true; break;
4861         }
4862       }
4863       if (found_trap) {
4864         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4865         continue;
4866       }
4867     }
4868     return NULL;
4869   }
4870 
4871   // If we get this far, we have an allocation which immediately
4872   // precedes the arraycopy, and we can take over zeroing the new object.
4873   // The arraycopy will finish the initialization, and provide
4874   // a new control state to which we will anchor the destination pointer.
4875 
4876   return alloc;
4877 }
4878 
4879 //-------------inline_encodeISOArray-----------------------------------
4880 // encode char[] to byte[] in ISO_8859_1
4881 bool LibraryCallKit::inline_encodeISOArray() {
4882   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
4883   // no receiver since it is static method
4884   Node *src         = argument(0);
4885   Node *src_offset  = argument(1);
4886   Node *dst         = argument(2);
4887   Node *dst_offset  = argument(3);
4888   Node *length      = argument(4);
4889 
4890   const Type* src_type = src->Value(&_gvn);
4891   const Type* dst_type = dst->Value(&_gvn);
4892   const TypeAryPtr* top_src = src_type->isa_aryptr();
4893   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
4894   if (top_src  == NULL || top_src->klass()  == NULL ||
4895       top_dest == NULL || top_dest->klass() == NULL) {
4896     // failed array check
4897     return false;
4898   }
4899 
4900   // Figure out the size and type of the elements we will be copying.
4901   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4902   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4903   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
4904     return false;
4905   }
4906   Node* src_start = array_element_address(src, src_offset, src_elem);
4907   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
4908   // 'src_start' points to src array + scaled offset
4909   // 'dst_start' points to dst array + scaled offset
4910 
4911   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
4912   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
4913   enc = _gvn.transform(enc);
4914   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
4915   set_memory(res_mem, mtype);
4916   set_result(enc);
4917   return true;
4918 }
4919 
4920 /**
4921  * Calculate CRC32 for byte.
4922  * int java.util.zip.CRC32.update(int crc, int b)
4923  */
4924 bool LibraryCallKit::inline_updateCRC32() {
4925   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
4926   assert(callee()->signature()->size() == 2, "update has 2 parameters");
4927   // no receiver since it is static method
4928   Node* crc  = argument(0); // type: int
4929   Node* b    = argument(1); // type: int
4930 
4931   /*
4932    *    int c = ~ crc;
4933    *    b = timesXtoThe32[(b ^ c) & 0xFF];
4934    *    b = b ^ (c >>> 8);
4935    *    crc = ~b;
4936    */
4937 
4938   Node* M1 = intcon(-1);
4939   crc = _gvn.transform(new XorINode(crc, M1));
4940   Node* result = _gvn.transform(new XorINode(crc, b));
4941   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
4942 
4943   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
4944   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
4945   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
4946   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
4947 
4948   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
4949   result = _gvn.transform(new XorINode(crc, result));
4950   result = _gvn.transform(new XorINode(result, M1));
4951   set_result(result);
4952   return true;
4953 }
4954 
4955 /**
4956  * Calculate CRC32 for byte[] array.
4957  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
4958  */
4959 bool LibraryCallKit::inline_updateBytesCRC32() {
4960   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
4961   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
4962   // no receiver since it is static method
4963   Node* crc     = argument(0); // type: int
4964   Node* src     = argument(1); // type: oop
4965   Node* offset  = argument(2); // type: int
4966   Node* length  = argument(3); // type: int
4967 
4968   const Type* src_type = src->Value(&_gvn);
4969   const TypeAryPtr* top_src = src_type->isa_aryptr();
4970   if (top_src  == NULL || top_src->klass()  == NULL) {
4971     // failed array check
4972     return false;
4973   }
4974 
4975   // Figure out the size and type of the elements we will be copying.
4976   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4977   if (src_elem != T_BYTE) {
4978     return false;
4979   }
4980 
4981   // 'src_start' points to src array + scaled offset
4982   Node* src_start = array_element_address(src, offset, src_elem);
4983 
4984   // We assume that range check is done by caller.
4985   // TODO: generate range check (offset+length < src.length) in debug VM.
4986 
4987   // Call the stub.
4988   address stubAddr = StubRoutines::updateBytesCRC32();
4989   const char *stubName = "updateBytesCRC32";
4990 
4991   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
4992                                  stubAddr, stubName, TypePtr::BOTTOM,
4993                                  crc, src_start, length);
4994   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
4995   set_result(result);
4996   return true;
4997 }
4998 
4999 /**
5000  * Calculate CRC32 for ByteBuffer.
5001  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5002  */
5003 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5004   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5005   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5006   // no receiver since it is static method
5007   Node* crc     = argument(0); // type: int
5008   Node* src     = argument(1); // type: long
5009   Node* offset  = argument(3); // type: int
5010   Node* length  = argument(4); // type: int
5011 
5012   src = ConvL2X(src);  // adjust Java long to machine word
5013   Node* base = _gvn.transform(new CastX2PNode(src));
5014   offset = ConvI2X(offset);
5015 
5016   // 'src_start' points to src array + scaled offset
5017   Node* src_start = basic_plus_adr(top(), base, offset);
5018 
5019   // Call the stub.
5020   address stubAddr = StubRoutines::updateBytesCRC32();
5021   const char *stubName = "updateBytesCRC32";
5022 
5023   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5024                                  stubAddr, stubName, TypePtr::BOTTOM,
5025                                  crc, src_start, length);
5026   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5027   set_result(result);
5028   return true;
5029 }
5030 
5031 //----------------------------inline_reference_get----------------------------
5032 // public T java.lang.ref.Reference.get();
5033 bool LibraryCallKit::inline_reference_get() {
5034   const int referent_offset = java_lang_ref_Reference::referent_offset;
5035   guarantee(referent_offset > 0, "should have already been set");
5036 
5037   // Get the argument:
5038   Node* reference_obj = null_check_receiver();
5039   if (stopped()) return true;
5040 
5041   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5042 
5043   ciInstanceKlass* klass = env()->Object_klass();
5044   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5045 
5046   Node* no_ctrl = NULL;
5047   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5048 
5049   // Use the pre-barrier to record the value in the referent field
5050   pre_barrier(false /* do_load */,
5051               control(),
5052               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5053               result /* pre_val */,
5054               T_OBJECT);
5055 
5056   // Add memory barrier to prevent commoning reads from this field
5057   // across safepoint since GC can change its value.
5058   insert_mem_bar(Op_MemBarCPUOrder);
5059 
5060   set_result(result);
5061   return true;
5062 }
5063 
5064 
5065 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5066                                               bool is_exact=true, bool is_static=false) {
5067 
5068   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5069   assert(tinst != NULL, "obj is null");
5070   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5071   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5072 
5073   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5074                                                                           ciSymbol::make(fieldTypeString),
5075                                                                           is_static);
5076   if (field == NULL) return (Node *) NULL;
5077   assert (field != NULL, "undefined field");
5078 
5079   // Next code  copied from Parse::do_get_xxx():
5080 
5081   // Compute address and memory type.
5082   int offset  = field->offset_in_bytes();
5083   bool is_vol = field->is_volatile();
5084   ciType* field_klass = field->type();
5085   assert(field_klass->is_loaded(), "should be loaded");
5086   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5087   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5088   BasicType bt = field->layout_type();
5089 
5090   // Build the resultant type of the load
5091   const Type *type;
5092   if (bt == T_OBJECT) {
5093     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5094   } else {
5095     type = Type::get_const_basic_type(bt);
5096   }
5097 
5098   // Build the load.
5099   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5100   return loadedField;
5101 }
5102 
5103 
5104 //------------------------------inline_aescrypt_Block-----------------------
5105 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5106   address stubAddr;
5107   const char *stubName;
5108   assert(UseAES, "need AES instruction support");
5109 
5110   switch(id) {
5111   case vmIntrinsics::_aescrypt_encryptBlock:
5112     stubAddr = StubRoutines::aescrypt_encryptBlock();
5113     stubName = "aescrypt_encryptBlock";
5114     break;
5115   case vmIntrinsics::_aescrypt_decryptBlock:
5116     stubAddr = StubRoutines::aescrypt_decryptBlock();
5117     stubName = "aescrypt_decryptBlock";
5118     break;
5119   }
5120   if (stubAddr == NULL) return false;
5121 
5122   Node* aescrypt_object = argument(0);
5123   Node* src             = argument(1);
5124   Node* src_offset      = argument(2);
5125   Node* dest            = argument(3);
5126   Node* dest_offset     = argument(4);
5127 
5128   // (1) src and dest are arrays.
5129   const Type* src_type = src->Value(&_gvn);
5130   const Type* dest_type = dest->Value(&_gvn);
5131   const TypeAryPtr* top_src = src_type->isa_aryptr();
5132   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5133   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5134 
5135   // for the quick and dirty code we will skip all the checks.
5136   // we are just trying to get the call to be generated.
5137   Node* src_start  = src;
5138   Node* dest_start = dest;
5139   if (src_offset != NULL || dest_offset != NULL) {
5140     assert(src_offset != NULL && dest_offset != NULL, "");
5141     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5142     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5143   }
5144 
5145   // now need to get the start of its expanded key array
5146   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5147   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5148   if (k_start == NULL) return false;
5149 
5150   if (Matcher::pass_original_key_for_aes()) {
5151     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5152     // compatibility issues between Java key expansion and SPARC crypto instructions
5153     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5154     if (original_k_start == NULL) return false;
5155 
5156     // Call the stub.
5157     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5158                       stubAddr, stubName, TypePtr::BOTTOM,
5159                       src_start, dest_start, k_start, original_k_start);
5160   } else {
5161     // Call the stub.
5162     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5163                       stubAddr, stubName, TypePtr::BOTTOM,
5164                       src_start, dest_start, k_start);
5165   }
5166 
5167   return true;
5168 }
5169 
5170 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5171 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5172   address stubAddr;
5173   const char *stubName;
5174 
5175   assert(UseAES, "need AES instruction support");
5176 
5177   switch(id) {
5178   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5179     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5180     stubName = "cipherBlockChaining_encryptAESCrypt";
5181     break;
5182   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5183     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5184     stubName = "cipherBlockChaining_decryptAESCrypt";
5185     break;
5186   }
5187   if (stubAddr == NULL) return false;
5188 
5189   Node* cipherBlockChaining_object = argument(0);
5190   Node* src                        = argument(1);
5191   Node* src_offset                 = argument(2);
5192   Node* len                        = argument(3);
5193   Node* dest                       = argument(4);
5194   Node* dest_offset                = argument(5);
5195 
5196   // (1) src and dest are arrays.
5197   const Type* src_type = src->Value(&_gvn);
5198   const Type* dest_type = dest->Value(&_gvn);
5199   const TypeAryPtr* top_src = src_type->isa_aryptr();
5200   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5201   assert (top_src  != NULL && top_src->klass()  != NULL
5202           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5203 
5204   // checks are the responsibility of the caller
5205   Node* src_start  = src;
5206   Node* dest_start = dest;
5207   if (src_offset != NULL || dest_offset != NULL) {
5208     assert(src_offset != NULL && dest_offset != NULL, "");
5209     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5210     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5211   }
5212 
5213   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5214   // (because of the predicated logic executed earlier).
5215   // so we cast it here safely.
5216   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5217 
5218   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5219   if (embeddedCipherObj == NULL) return false;
5220 
5221   // cast it to what we know it will be at runtime
5222   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5223   assert(tinst != NULL, "CBC obj is null");
5224   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5225   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5226   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5227 
5228   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5229   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5230   const TypeOopPtr* xtype = aklass->as_instance_type();
5231   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5232   aescrypt_object = _gvn.transform(aescrypt_object);
5233 
5234   // we need to get the start of the aescrypt_object's expanded key array
5235   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5236   if (k_start == NULL) return false;
5237 
5238   // similarly, get the start address of the r vector
5239   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5240   if (objRvec == NULL) return false;
5241   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5242 
5243   Node* cbcCrypt;
5244   if (Matcher::pass_original_key_for_aes()) {
5245     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5246     // compatibility issues between Java key expansion and SPARC crypto instructions
5247     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5248     if (original_k_start == NULL) return false;
5249 
5250     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5251     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5252                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5253                                  stubAddr, stubName, TypePtr::BOTTOM,
5254                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5255   } else {
5256     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5257     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5258                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5259                                  stubAddr, stubName, TypePtr::BOTTOM,
5260                                  src_start, dest_start, k_start, r_start, len);
5261   }
5262 
5263   // return cipher length (int)
5264   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5265   set_result(retvalue);
5266   return true;
5267 }
5268 
5269 //------------------------------get_key_start_from_aescrypt_object-----------------------
5270 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5271   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5272   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5273   if (objAESCryptKey == NULL) return (Node *) NULL;
5274 
5275   // now have the array, need to get the start address of the K array
5276   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5277   return k_start;
5278 }
5279 
5280 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5281 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5282   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5283   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5284   if (objAESCryptKey == NULL) return (Node *) NULL;
5285 
5286   // now have the array, need to get the start address of the lastKey array
5287   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5288   return original_k_start;
5289 }
5290 
5291 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5292 // Return node representing slow path of predicate check.
5293 // the pseudo code we want to emulate with this predicate is:
5294 // for encryption:
5295 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5296 // for decryption:
5297 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5298 //    note cipher==plain is more conservative than the original java code but that's OK
5299 //
5300 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5301   // The receiver was checked for NULL already.
5302   Node* objCBC = argument(0);
5303 
5304   // Load embeddedCipher field of CipherBlockChaining object.
5305   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5306 
5307   // get AESCrypt klass for instanceOf check
5308   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5309   // will have same classloader as CipherBlockChaining object
5310   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5311   assert(tinst != NULL, "CBCobj is null");
5312   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5313 
5314   // we want to do an instanceof comparison against the AESCrypt class
5315   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5316   if (!klass_AESCrypt->is_loaded()) {
5317     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5318     Node* ctrl = control();
5319     set_control(top()); // no regular fast path
5320     return ctrl;
5321   }
5322   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5323 
5324   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5325   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5326   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5327 
5328   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5329 
5330   // for encryption, we are done
5331   if (!decrypting)
5332     return instof_false;  // even if it is NULL
5333 
5334   // for decryption, we need to add a further check to avoid
5335   // taking the intrinsic path when cipher and plain are the same
5336   // see the original java code for why.
5337   RegionNode* region = new RegionNode(3);
5338   region->init_req(1, instof_false);
5339   Node* src = argument(1);
5340   Node* dest = argument(4);
5341   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5342   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5343   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5344   region->init_req(2, src_dest_conjoint);
5345 
5346   record_for_igvn(region);
5347   return _gvn.transform(region);
5348 }
5349 
5350 //------------------------------inline_sha_implCompress-----------------------
5351 //
5352 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5353 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5354 //
5355 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5356 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5357 //
5358 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5359 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5360 //
5361 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5362   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5363 
5364   Node* sha_obj = argument(0);
5365   Node* src     = argument(1); // type oop
5366   Node* ofs     = argument(2); // type int
5367 
5368   const Type* src_type = src->Value(&_gvn);
5369   const TypeAryPtr* top_src = src_type->isa_aryptr();
5370   if (top_src  == NULL || top_src->klass()  == NULL) {
5371     // failed array check
5372     return false;
5373   }
5374   // Figure out the size and type of the elements we will be copying.
5375   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5376   if (src_elem != T_BYTE) {
5377     return false;
5378   }
5379   // 'src_start' points to src array + offset
5380   Node* src_start = array_element_address(src, ofs, src_elem);
5381   Node* state = NULL;
5382   address stubAddr;
5383   const char *stubName;
5384 
5385   switch(id) {
5386   case vmIntrinsics::_sha_implCompress:
5387     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5388     state = get_state_from_sha_object(sha_obj);
5389     stubAddr = StubRoutines::sha1_implCompress();
5390     stubName = "sha1_implCompress";
5391     break;
5392   case vmIntrinsics::_sha2_implCompress:
5393     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5394     state = get_state_from_sha_object(sha_obj);
5395     stubAddr = StubRoutines::sha256_implCompress();
5396     stubName = "sha256_implCompress";
5397     break;
5398   case vmIntrinsics::_sha5_implCompress:
5399     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5400     state = get_state_from_sha5_object(sha_obj);
5401     stubAddr = StubRoutines::sha512_implCompress();
5402     stubName = "sha512_implCompress";
5403     break;
5404   default:
5405     fatal_unexpected_iid(id);
5406     return false;
5407   }
5408   if (state == NULL) return false;
5409 
5410   // Call the stub.
5411   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5412                                  stubAddr, stubName, TypePtr::BOTTOM,
5413                                  src_start, state);
5414 
5415   return true;
5416 }
5417 
5418 //------------------------------inline_digestBase_implCompressMB-----------------------
5419 //
5420 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5421 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5422 //
5423 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5424   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5425          "need SHA1/SHA256/SHA512 instruction support");
5426   assert((uint)predicate < 3, "sanity");
5427   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5428 
5429   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5430   Node* src            = argument(1); // byte[] array
5431   Node* ofs            = argument(2); // type int
5432   Node* limit          = argument(3); // type int
5433 
5434   const Type* src_type = src->Value(&_gvn);
5435   const TypeAryPtr* top_src = src_type->isa_aryptr();
5436   if (top_src  == NULL || top_src->klass()  == NULL) {
5437     // failed array check
5438     return false;
5439   }
5440   // Figure out the size and type of the elements we will be copying.
5441   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5442   if (src_elem != T_BYTE) {
5443     return false;
5444   }
5445   // 'src_start' points to src array + offset
5446   Node* src_start = array_element_address(src, ofs, src_elem);
5447 
5448   const char* klass_SHA_name = NULL;
5449   const char* stub_name = NULL;
5450   address     stub_addr = NULL;
5451   bool        long_state = false;
5452 
5453   switch (predicate) {
5454   case 0:
5455     if (UseSHA1Intrinsics) {
5456       klass_SHA_name = "sun/security/provider/SHA";
5457       stub_name = "sha1_implCompressMB";
5458       stub_addr = StubRoutines::sha1_implCompressMB();
5459     }
5460     break;
5461   case 1:
5462     if (UseSHA256Intrinsics) {
5463       klass_SHA_name = "sun/security/provider/SHA2";
5464       stub_name = "sha256_implCompressMB";
5465       stub_addr = StubRoutines::sha256_implCompressMB();
5466     }
5467     break;
5468   case 2:
5469     if (UseSHA512Intrinsics) {
5470       klass_SHA_name = "sun/security/provider/SHA5";
5471       stub_name = "sha512_implCompressMB";
5472       stub_addr = StubRoutines::sha512_implCompressMB();
5473       long_state = true;
5474     }
5475     break;
5476   default:
5477     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5478   }
5479   if (klass_SHA_name != NULL) {
5480     // get DigestBase klass to lookup for SHA klass
5481     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
5482     assert(tinst != NULL, "digestBase_obj is not instance???");
5483     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5484 
5485     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5486     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
5487     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5488     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
5489   }
5490   return false;
5491 }
5492 //------------------------------inline_sha_implCompressMB-----------------------
5493 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
5494                                                bool long_state, address stubAddr, const char *stubName,
5495                                                Node* src_start, Node* ofs, Node* limit) {
5496   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
5497   const TypeOopPtr* xtype = aklass->as_instance_type();
5498   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
5499   sha_obj = _gvn.transform(sha_obj);
5500 
5501   Node* state;
5502   if (long_state) {
5503     state = get_state_from_sha5_object(sha_obj);
5504   } else {
5505     state = get_state_from_sha_object(sha_obj);
5506   }
5507   if (state == NULL) return false;
5508 
5509   // Call the stub.
5510   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5511                                  OptoRuntime::digestBase_implCompressMB_Type(),
5512                                  stubAddr, stubName, TypePtr::BOTTOM,
5513                                  src_start, state, ofs, limit);
5514   // return ofs (int)
5515   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5516   set_result(result);
5517 
5518   return true;
5519 }
5520 
5521 //------------------------------get_state_from_sha_object-----------------------
5522 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
5523   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
5524   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
5525   if (sha_state == NULL) return (Node *) NULL;
5526 
5527   // now have the array, need to get the start address of the state array
5528   Node* state = array_element_address(sha_state, intcon(0), T_INT);
5529   return state;
5530 }
5531 
5532 //------------------------------get_state_from_sha5_object-----------------------
5533 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
5534   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
5535   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
5536   if (sha_state == NULL) return (Node *) NULL;
5537 
5538   // now have the array, need to get the start address of the state array
5539   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
5540   return state;
5541 }
5542 
5543 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
5544 // Return node representing slow path of predicate check.
5545 // the pseudo code we want to emulate with this predicate is:
5546 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
5547 //
5548 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
5549   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5550          "need SHA1/SHA256/SHA512 instruction support");
5551   assert((uint)predicate < 3, "sanity");
5552 
5553   // The receiver was checked for NULL already.
5554   Node* digestBaseObj = argument(0);
5555 
5556   // get DigestBase klass for instanceOf check
5557   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
5558   assert(tinst != NULL, "digestBaseObj is null");
5559   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5560 
5561   const char* klass_SHA_name = NULL;
5562   switch (predicate) {
5563   case 0:
5564     if (UseSHA1Intrinsics) {
5565       // we want to do an instanceof comparison against the SHA class
5566       klass_SHA_name = "sun/security/provider/SHA";
5567     }
5568     break;
5569   case 1:
5570     if (UseSHA256Intrinsics) {
5571       // we want to do an instanceof comparison against the SHA2 class
5572       klass_SHA_name = "sun/security/provider/SHA2";
5573     }
5574     break;
5575   case 2:
5576     if (UseSHA512Intrinsics) {
5577       // we want to do an instanceof comparison against the SHA5 class
5578       klass_SHA_name = "sun/security/provider/SHA5";
5579     }
5580     break;
5581   default:
5582     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5583   }
5584 
5585   ciKlass* klass_SHA = NULL;
5586   if (klass_SHA_name != NULL) {
5587     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5588   }
5589   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
5590     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
5591     Node* ctrl = control();
5592     set_control(top()); // no intrinsic path
5593     return ctrl;
5594   }
5595   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5596 
5597   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
5598   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
5599   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5600   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5601 
5602   return instof_false;  // even if it is NULL
5603 }