1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 class AbstractLockNode;
  38 class AddNode;
  39 class AddPNode;
  40 class AliasInfo;
  41 class AllocateArrayNode;
  42 class AllocateNode;
  43 class Block;
  44 class BoolNode;
  45 class BoxLockNode;
  46 class CMoveNode;
  47 class CallDynamicJavaNode;
  48 class CallJavaNode;
  49 class CallLeafNode;
  50 class CallNode;
  51 class CallRuntimeNode;
  52 class CallStaticJavaNode;
  53 class CatchNode;
  54 class CatchProjNode;
  55 class CheckCastPPNode;
  56 class ClearArrayNode;
  57 class CmpNode;
  58 class CodeBuffer;
  59 class ConstraintCastNode;
  60 class ConNode;
  61 class CountedLoopNode;
  62 class CountedLoopEndNode;
  63 class DecodeNarrowPtrNode;
  64 class DecodeNNode;
  65 class DecodeNKlassNode;
  66 class EncodeNarrowPtrNode;
  67 class EncodePNode;
  68 class EncodePKlassNode;
  69 class FastLockNode;
  70 class FastUnlockNode;
  71 class IfNode;
  72 class IfFalseNode;
  73 class IfTrueNode;
  74 class InitializeNode;
  75 class JVMState;
  76 class JumpNode;
  77 class JumpProjNode;
  78 class LoadNode;
  79 class LoadStoreNode;
  80 class LockNode;
  81 class LoopNode;
  82 class MachBranchNode;
  83 class MachCallDynamicJavaNode;
  84 class MachCallJavaNode;
  85 class MachCallLeafNode;
  86 class MachCallNode;
  87 class MachCallRuntimeNode;
  88 class MachCallStaticJavaNode;
  89 class MachConstantBaseNode;
  90 class MachConstantNode;
  91 class MachGotoNode;
  92 class MachIfNode;
  93 class MachNode;
  94 class MachNullCheckNode;
  95 class MachProjNode;
  96 class MachReturnNode;
  97 class MachSafePointNode;
  98 class MachSpillCopyNode;
  99 class MachTempNode;
 100 class Matcher;
 101 class MemBarNode;
 102 class MemBarStoreStoreNode;
 103 class MemNode;
 104 class MergeMemNode;
 105 class MulNode;
 106 class MultiNode;
 107 class MultiBranchNode;
 108 class NeverBranchNode;
 109 class Node;
 110 class Node_Array;
 111 class Node_List;
 112 class Node_Stack;
 113 class NullCheckNode;
 114 class OopMap;
 115 class ParmNode;
 116 class PCTableNode;
 117 class PhaseCCP;
 118 class PhaseGVN;
 119 class PhaseIterGVN;
 120 class PhaseRegAlloc;
 121 class PhaseTransform;
 122 class PhaseValues;
 123 class PhiNode;
 124 class Pipeline;
 125 class ProjNode;
 126 class RegMask;
 127 class RegionNode;
 128 class RootNode;
 129 class SafePointNode;
 130 class SafePointScalarObjectNode;
 131 class StartNode;
 132 class State;
 133 class StoreNode;
 134 class SubNode;
 135 class Type;
 136 class TypeNode;
 137 class UnlockNode;
 138 class VectorNode;
 139 class LoadVectorNode;
 140 class StoreVectorNode;
 141 class VectorSet;
 142 typedef void (*NFunc)(Node&,void*);
 143 extern "C" {
 144   typedef int (*C_sort_func_t)(const void *, const void *);
 145 }
 146 
 147 // The type of all node counts and indexes.
 148 // It must hold at least 16 bits, but must also be fast to load and store.
 149 // This type, if less than 32 bits, could limit the number of possible nodes.
 150 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 151 typedef unsigned int node_idx_t;
 152 
 153 
 154 #ifndef OPTO_DU_ITERATOR_ASSERT
 155 #ifdef ASSERT
 156 #define OPTO_DU_ITERATOR_ASSERT 1
 157 #else
 158 #define OPTO_DU_ITERATOR_ASSERT 0
 159 #endif
 160 #endif //OPTO_DU_ITERATOR_ASSERT
 161 
 162 #if OPTO_DU_ITERATOR_ASSERT
 163 class DUIterator;
 164 class DUIterator_Fast;
 165 class DUIterator_Last;
 166 #else
 167 typedef uint   DUIterator;
 168 typedef Node** DUIterator_Fast;
 169 typedef Node** DUIterator_Last;
 170 #endif
 171 
 172 // Node Sentinel
 173 #define NodeSentinel (Node*)-1
 174 
 175 // Unknown count frequency
 176 #define COUNT_UNKNOWN (-1.0f)
 177 
 178 //------------------------------Node-------------------------------------------
 179 // Nodes define actions in the program.  They create values, which have types.
 180 // They are both vertices in a directed graph and program primitives.  Nodes
 181 // are labeled; the label is the "opcode", the primitive function in the lambda
 182 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 183 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 184 // the Node's function.  These inputs also define a Type equation for the Node.
 185 // Solving these Type equations amounts to doing dataflow analysis.
 186 // Control and data are uniformly represented in the graph.  Finally, Nodes
 187 // have a unique dense integer index which is used to index into side arrays
 188 // whenever I have phase-specific information.
 189 
 190 class Node {
 191   friend class VMStructs;
 192 
 193   // Lots of restrictions on cloning Nodes
 194   Node(const Node&);            // not defined; linker error to use these
 195   Node &operator=(const Node &rhs);
 196 
 197 public:
 198   friend class Compile;
 199   #if OPTO_DU_ITERATOR_ASSERT
 200   friend class DUIterator_Common;
 201   friend class DUIterator;
 202   friend class DUIterator_Fast;
 203   friend class DUIterator_Last;
 204   #endif
 205 
 206   // Because Nodes come and go, I define an Arena of Node structures to pull
 207   // from.  This should allow fast access to node creation & deletion.  This
 208   // field is a local cache of a value defined in some "program fragment" for
 209   // which these Nodes are just a part of.
 210 
 211   inline void* operator new(size_t x) throw() {
 212     Compile* C = Compile::current();
 213     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 214 #ifdef ASSERT
 215     n->_in = (Node**)n; // magic cookie for assertion check
 216 #endif
 217     return (void*)n;
 218   }
 219 
 220   // Delete is a NOP
 221   void operator delete( void *ptr ) {}
 222   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 223   void destruct();
 224 
 225   // Create a new Node.  Required is the number is of inputs required for
 226   // semantic correctness.
 227   Node( uint required );
 228 
 229   // Create a new Node with given input edges.
 230   // This version requires use of the "edge-count" new.
 231   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 232   Node( Node *n0 );
 233   Node( Node *n0, Node *n1 );
 234   Node( Node *n0, Node *n1, Node *n2 );
 235   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 236   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 237   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 238   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 239             Node *n4, Node *n5, Node *n6 );
 240 
 241   // Clone an inherited Node given only the base Node type.
 242   Node* clone() const;
 243 
 244   // Clone a Node, immediately supplying one or two new edges.
 245   // The first and second arguments, if non-null, replace in(1) and in(2),
 246   // respectively.
 247   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 248     Node* nn = clone();
 249     if (in1 != NULL)  nn->set_req(1, in1);
 250     if (in2 != NULL)  nn->set_req(2, in2);
 251     return nn;
 252   }
 253 
 254 private:
 255   // Shared setup for the above constructors.
 256   // Handles all interactions with Compile::current.
 257   // Puts initial values in all Node fields except _idx.
 258   // Returns the initial value for _idx, which cannot
 259   // be initialized by assignment.
 260   inline int Init(int req);
 261 
 262 //----------------- input edge handling
 263 protected:
 264   friend class PhaseCFG;        // Access to address of _in array elements
 265   Node **_in;                   // Array of use-def references to Nodes
 266   Node **_out;                  // Array of def-use references to Nodes
 267 
 268   // Input edges are split into two categories.  Required edges are required
 269   // for semantic correctness; order is important and NULLs are allowed.
 270   // Precedence edges are used to help determine execution order and are
 271   // added, e.g., for scheduling purposes.  They are unordered and not
 272   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 273   // are required, from _cnt to _max-1 are precedence edges.
 274   node_idx_t _cnt;              // Total number of required Node inputs.
 275 
 276   node_idx_t _max;              // Actual length of input array.
 277 
 278   // Output edges are an unordered list of def-use edges which exactly
 279   // correspond to required input edges which point from other nodes
 280   // to this one.  Thus the count of the output edges is the number of
 281   // users of this node.
 282   node_idx_t _outcnt;           // Total number of Node outputs.
 283 
 284   node_idx_t _outmax;           // Actual length of output array.
 285 
 286   // Grow the actual input array to the next larger power-of-2 bigger than len.
 287   void grow( uint len );
 288   // Grow the output array to the next larger power-of-2 bigger than len.
 289   void out_grow( uint len );
 290 
 291  public:
 292   // Each Node is assigned a unique small/dense number.  This number is used
 293   // to index into auxiliary arrays of data and bitvectors.
 294   // It is declared const to defend against inadvertant assignment,
 295   // since it is used by clients as a naked field.
 296   const node_idx_t _idx;
 297 
 298   // Get the (read-only) number of input edges
 299   uint req() const { return _cnt; }
 300   uint len() const { return _max; }
 301   // Get the (read-only) number of output edges
 302   uint outcnt() const { return _outcnt; }
 303 
 304 #if OPTO_DU_ITERATOR_ASSERT
 305   // Iterate over the out-edges of this node.  Deletions are illegal.
 306   inline DUIterator outs() const;
 307   // Use this when the out array might have changed to suppress asserts.
 308   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 309   // Does the node have an out at this position?  (Used for iteration.)
 310   inline bool has_out(DUIterator& i) const;
 311   inline Node*    out(DUIterator& i) const;
 312   // Iterate over the out-edges of this node.  All changes are illegal.
 313   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 314   inline Node*    fast_out(DUIterator_Fast& i) const;
 315   // Iterate over the out-edges of this node, deleting one at a time.
 316   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 317   inline Node*    last_out(DUIterator_Last& i) const;
 318   // The inline bodies of all these methods are after the iterator definitions.
 319 #else
 320   // Iterate over the out-edges of this node.  Deletions are illegal.
 321   // This iteration uses integral indexes, to decouple from array reallocations.
 322   DUIterator outs() const  { return 0; }
 323   // Use this when the out array might have changed to suppress asserts.
 324   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 325 
 326   // Reference to the i'th output Node.  Error if out of bounds.
 327   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 328   // Does the node have an out at this position?  (Used for iteration.)
 329   bool has_out(DUIterator i) const { return i < _outcnt; }
 330 
 331   // Iterate over the out-edges of this node.  All changes are illegal.
 332   // This iteration uses a pointer internal to the out array.
 333   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 334     Node** out = _out;
 335     // Assign a limit pointer to the reference argument:
 336     max = out + (ptrdiff_t)_outcnt;
 337     // Return the base pointer:
 338     return out;
 339   }
 340   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 341   // Iterate over the out-edges of this node, deleting one at a time.
 342   // This iteration uses a pointer internal to the out array.
 343   DUIterator_Last last_outs(DUIterator_Last& min) const {
 344     Node** out = _out;
 345     // Assign a limit pointer to the reference argument:
 346     min = out;
 347     // Return the pointer to the start of the iteration:
 348     return out + (ptrdiff_t)_outcnt - 1;
 349   }
 350   Node*    last_out(DUIterator_Last i) const  { return *i; }
 351 #endif
 352 
 353   // Reference to the i'th input Node.  Error if out of bounds.
 354   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
 355   // Reference to the i'th input Node.  NULL if out of bounds.
 356   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 357   // Reference to the i'th output Node.  Error if out of bounds.
 358   // Use this accessor sparingly.  We are going trying to use iterators instead.
 359   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 360   // Return the unique out edge.
 361   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 362   // Delete out edge at position 'i' by moving last out edge to position 'i'
 363   void  raw_del_out(uint i) {
 364     assert(i < _outcnt,"oob");
 365     assert(_outcnt > 0,"oob");
 366     #if OPTO_DU_ITERATOR_ASSERT
 367     // Record that a change happened here.
 368     debug_only(_last_del = _out[i]; ++_del_tick);
 369     #endif
 370     _out[i] = _out[--_outcnt];
 371     // Smash the old edge so it can't be used accidentally.
 372     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 373   }
 374 
 375 #ifdef ASSERT
 376   bool is_dead() const;
 377 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 378 #endif
 379   // Check whether node has become unreachable
 380   bool is_unreachable(PhaseIterGVN &igvn) const;
 381 
 382   // Set a required input edge, also updates corresponding output edge
 383   void add_req( Node *n ); // Append a NEW required input
 384   void add_req( Node *n0, Node *n1 ) {
 385     add_req(n0); add_req(n1); }
 386   void add_req( Node *n0, Node *n1, Node *n2 ) {
 387     add_req(n0); add_req(n1); add_req(n2); }
 388   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 389   void del_req( uint idx ); // Delete required edge & compact
 390   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 391   void ins_req( uint i, Node *n ); // Insert a NEW required input
 392   void set_req( uint i, Node *n ) {
 393     assert( is_not_dead(n), "can not use dead node");
 394     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
 395     assert( !VerifyHashTableKeys || _hash_lock == 0,
 396             "remove node from hash table before modifying it");
 397     Node** p = &_in[i];    // cache this._in, across the del_out call
 398     if (*p != NULL)  (*p)->del_out((Node *)this);
 399     (*p) = n;
 400     if (n != NULL)      n->add_out((Node *)this);
 401   }
 402   // Light version of set_req() to init inputs after node creation.
 403   void init_req( uint i, Node *n ) {
 404     assert( i == 0 && this == n ||
 405             is_not_dead(n), "can not use dead node");
 406     assert( i < _cnt, "oob");
 407     assert( !VerifyHashTableKeys || _hash_lock == 0,
 408             "remove node from hash table before modifying it");
 409     assert( _in[i] == NULL, "sanity");
 410     _in[i] = n;
 411     if (n != NULL)      n->add_out((Node *)this);
 412   }
 413   // Find first occurrence of n among my edges:
 414   int find_edge(Node* n);
 415   int replace_edge(Node* old, Node* neww);
 416   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 417   // NULL out all inputs to eliminate incoming Def-Use edges.
 418   // Return the number of edges between 'n' and 'this'
 419   int  disconnect_inputs(Node *n, Compile *c);
 420 
 421   // Quickly, return true if and only if I am Compile::current()->top().
 422   bool is_top() const {
 423     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 424     return (_out == NULL);
 425   }
 426   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 427   void setup_is_top();
 428 
 429   // Strip away casting.  (It is depth-limited.)
 430   Node* uncast() const;
 431   // Return whether two Nodes are equivalent, after stripping casting.
 432   bool eqv_uncast(const Node* n) const {
 433     return (this->uncast() == n->uncast());
 434   }
 435 
 436 private:
 437   static Node* uncast_helper(const Node* n);
 438 
 439   // Add an output edge to the end of the list
 440   void add_out( Node *n ) {
 441     if (is_top())  return;
 442     if( _outcnt == _outmax ) out_grow(_outcnt);
 443     _out[_outcnt++] = n;
 444   }
 445   // Delete an output edge
 446   void del_out( Node *n ) {
 447     if (is_top())  return;
 448     Node** outp = &_out[_outcnt];
 449     // Find and remove n
 450     do {
 451       assert(outp > _out, "Missing Def-Use edge");
 452     } while (*--outp != n);
 453     *outp = _out[--_outcnt];
 454     // Smash the old edge so it can't be used accidentally.
 455     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 456     // Record that a change happened here.
 457     #if OPTO_DU_ITERATOR_ASSERT
 458     debug_only(_last_del = n; ++_del_tick);
 459     #endif
 460   }
 461 
 462 public:
 463   // Globally replace this node by a given new node, updating all uses.
 464   void replace_by(Node* new_node);
 465   // Globally replace this node by a given new node, updating all uses
 466   // and cutting input edges of old node.
 467   void subsume_by(Node* new_node, Compile* c) {
 468     replace_by(new_node);
 469     disconnect_inputs(NULL, c);
 470   }
 471   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 472   // Find the one non-null required input.  RegionNode only
 473   Node *nonnull_req() const;
 474   // Add or remove precedence edges
 475   void add_prec( Node *n );
 476   void rm_prec( uint i );
 477   void set_prec( uint i, Node *n ) {
 478     assert( is_not_dead(n), "can not use dead node");
 479     assert( i >= _cnt, "not a precedence edge");
 480     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 481     _in[i] = n;
 482     if (n != NULL) n->add_out((Node *)this);
 483   }
 484   // Set this node's index, used by cisc_version to replace current node
 485   void set_idx(uint new_idx) {
 486     const node_idx_t* ref = &_idx;
 487     *(node_idx_t*)ref = new_idx;
 488   }
 489   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 490   void swap_edges(uint i1, uint i2) {
 491     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 492     // Def-Use info is unchanged
 493     Node* n1 = in(i1);
 494     Node* n2 = in(i2);
 495     _in[i1] = n2;
 496     _in[i2] = n1;
 497     // If this node is in the hash table, make sure it doesn't need a rehash.
 498     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 499   }
 500 
 501   // Iterators over input Nodes for a Node X are written as:
 502   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 503   // NOTE: Required edges can contain embedded NULL pointers.
 504 
 505 //----------------- Other Node Properties
 506 
 507   // Generate class id for some ideal nodes to avoid virtual query
 508   // methods is_<Node>().
 509   // Class id is the set of bits corresponded to the node class and all its
 510   // super classes so that queries for super classes are also valid.
 511   // Subclasses of the same super class have different assigned bit
 512   // (the third parameter in the macro DEFINE_CLASS_ID).
 513   // Classes with deeper hierarchy are declared first.
 514   // Classes with the same hierarchy depth are sorted by usage frequency.
 515   //
 516   // The query method masks the bits to cut off bits of subclasses
 517   // and then compare the result with the class id
 518   // (see the macro DEFINE_CLASS_QUERY below).
 519   //
 520   //  Class_MachCall=30, ClassMask_MachCall=31
 521   // 12               8               4               0
 522   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 523   //                                  |   |   |   |
 524   //                                  |   |   |   Bit_Mach=2
 525   //                                  |   |   Bit_MachReturn=4
 526   //                                  |   Bit_MachSafePoint=8
 527   //                                  Bit_MachCall=16
 528   //
 529   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 530   // 12               8               4               0
 531   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 532   //                              |   |   |
 533   //                              |   |   Bit_Region=8
 534   //                              |   Bit_Loop=16
 535   //                              Bit_CountedLoop=32
 536 
 537   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 538   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 539   Class_##cl = Class_##supcl + Bit_##cl , \
 540   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 541 
 542   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 543   // so that it's values fits into 16 bits.
 544   enum NodeClasses {
 545     Bit_Node   = 0x0000,
 546     Class_Node = 0x0000,
 547     ClassMask_Node = 0xFFFF,
 548 
 549     DEFINE_CLASS_ID(Multi, Node, 0)
 550       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 551         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 552           DEFINE_CLASS_ID(CallJava,         Call, 0)
 553             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 554             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 555           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 556             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 557           DEFINE_CLASS_ID(Allocate,         Call, 2)
 558             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 559           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 560             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 561             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 562       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 563         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 564           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 565           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 566         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 567           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 568         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 569       DEFINE_CLASS_ID(Start,       Multi, 2)
 570       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 571         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 572         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 573 
 574     DEFINE_CLASS_ID(Mach,  Node, 1)
 575       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 576         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 577           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 578             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 579               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 580               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 581             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 582               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 583       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 584         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 585         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 586         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 587       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 588       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 589       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 590       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 591 
 592     DEFINE_CLASS_ID(Type,  Node, 2)
 593       DEFINE_CLASS_ID(Phi,   Type, 0)
 594       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 595       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 596       DEFINE_CLASS_ID(CMove, Type, 3)
 597       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 598       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 599         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 600         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 601       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 602         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 603         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 604 
 605     DEFINE_CLASS_ID(Proj,  Node, 3)
 606       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 607       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 608       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 609       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 610       DEFINE_CLASS_ID(Parm,      Proj, 4)
 611       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 612 
 613     DEFINE_CLASS_ID(Mem,   Node, 4)
 614       DEFINE_CLASS_ID(Load,  Mem, 0)
 615         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 616       DEFINE_CLASS_ID(Store, Mem, 1)
 617         DEFINE_CLASS_ID(StoreVector, Store, 0)
 618       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 619 
 620     DEFINE_CLASS_ID(Region, Node, 5)
 621       DEFINE_CLASS_ID(Loop, Region, 0)
 622         DEFINE_CLASS_ID(Root,        Loop, 0)
 623         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 624 
 625     DEFINE_CLASS_ID(Sub,   Node, 6)
 626       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 627         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 628         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 629 
 630     DEFINE_CLASS_ID(MergeMem, Node, 7)
 631     DEFINE_CLASS_ID(Bool,     Node, 8)
 632     DEFINE_CLASS_ID(AddP,     Node, 9)
 633     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 634     DEFINE_CLASS_ID(Add,      Node, 11)
 635     DEFINE_CLASS_ID(Mul,      Node, 12)
 636     DEFINE_CLASS_ID(Vector,   Node, 13)
 637     DEFINE_CLASS_ID(ClearArray, Node, 14)
 638 
 639     _max_classes  = ClassMask_ClearArray
 640   };
 641   #undef DEFINE_CLASS_ID
 642 
 643   // Flags are sorted by usage frequency.
 644   enum NodeFlags {
 645     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 646     Flag_rematerialize               = Flag_is_Copy << 1,
 647     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 648     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 649     Flag_is_Con                      = Flag_is_macro << 1,
 650     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 651     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 652     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 653     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 654     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 655     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 656     Flag_is_expensive                = Flag_has_call << 1,
 657     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 658   };
 659 
 660 private:
 661   jushort _class_id;
 662   jushort _flags;
 663 
 664 protected:
 665   // These methods should be called from constructors only.
 666   void init_class_id(jushort c) {
 667     assert(c <= _max_classes, "invalid node class");
 668     _class_id = c; // cast out const
 669   }
 670   void init_flags(jushort fl) {
 671     assert(fl <= _max_flags, "invalid node flag");
 672     _flags |= fl;
 673   }
 674   void clear_flag(jushort fl) {
 675     assert(fl <= _max_flags, "invalid node flag");
 676     _flags &= ~fl;
 677   }
 678 
 679 public:
 680   const jushort class_id() const { return _class_id; }
 681 
 682   const jushort flags() const { return _flags; }
 683 
 684   // Return a dense integer opcode number
 685   virtual int Opcode() const;
 686 
 687   // Virtual inherited Node size
 688   virtual uint size_of() const;
 689 
 690   // Other interesting Node properties
 691   #define DEFINE_CLASS_QUERY(type)                           \
 692   bool is_##type() const {                                   \
 693     return ((_class_id & ClassMask_##type) == Class_##type); \
 694   }                                                          \
 695   type##Node *as_##type() const {                            \
 696     assert(is_##type(), "invalid node class");               \
 697     return (type##Node*)this;                                \
 698   }                                                          \
 699   type##Node* isa_##type() const {                           \
 700     return (is_##type()) ? as_##type() : NULL;               \
 701   }
 702 
 703   DEFINE_CLASS_QUERY(AbstractLock)
 704   DEFINE_CLASS_QUERY(Add)
 705   DEFINE_CLASS_QUERY(AddP)
 706   DEFINE_CLASS_QUERY(Allocate)
 707   DEFINE_CLASS_QUERY(AllocateArray)
 708   DEFINE_CLASS_QUERY(Bool)
 709   DEFINE_CLASS_QUERY(BoxLock)
 710   DEFINE_CLASS_QUERY(Call)
 711   DEFINE_CLASS_QUERY(CallDynamicJava)
 712   DEFINE_CLASS_QUERY(CallJava)
 713   DEFINE_CLASS_QUERY(CallLeaf)
 714   DEFINE_CLASS_QUERY(CallRuntime)
 715   DEFINE_CLASS_QUERY(CallStaticJava)
 716   DEFINE_CLASS_QUERY(Catch)
 717   DEFINE_CLASS_QUERY(CatchProj)
 718   DEFINE_CLASS_QUERY(CheckCastPP)
 719   DEFINE_CLASS_QUERY(ConstraintCast)
 720   DEFINE_CLASS_QUERY(ClearArray)
 721   DEFINE_CLASS_QUERY(CMove)
 722   DEFINE_CLASS_QUERY(Cmp)
 723   DEFINE_CLASS_QUERY(CountedLoop)
 724   DEFINE_CLASS_QUERY(CountedLoopEnd)
 725   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 726   DEFINE_CLASS_QUERY(DecodeN)
 727   DEFINE_CLASS_QUERY(DecodeNKlass)
 728   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 729   DEFINE_CLASS_QUERY(EncodeP)
 730   DEFINE_CLASS_QUERY(EncodePKlass)
 731   DEFINE_CLASS_QUERY(FastLock)
 732   DEFINE_CLASS_QUERY(FastUnlock)
 733   DEFINE_CLASS_QUERY(If)
 734   DEFINE_CLASS_QUERY(IfFalse)
 735   DEFINE_CLASS_QUERY(IfTrue)
 736   DEFINE_CLASS_QUERY(Initialize)
 737   DEFINE_CLASS_QUERY(Jump)
 738   DEFINE_CLASS_QUERY(JumpProj)
 739   DEFINE_CLASS_QUERY(Load)
 740   DEFINE_CLASS_QUERY(LoadStore)
 741   DEFINE_CLASS_QUERY(Lock)
 742   DEFINE_CLASS_QUERY(Loop)
 743   DEFINE_CLASS_QUERY(Mach)
 744   DEFINE_CLASS_QUERY(MachBranch)
 745   DEFINE_CLASS_QUERY(MachCall)
 746   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 747   DEFINE_CLASS_QUERY(MachCallJava)
 748   DEFINE_CLASS_QUERY(MachCallLeaf)
 749   DEFINE_CLASS_QUERY(MachCallRuntime)
 750   DEFINE_CLASS_QUERY(MachCallStaticJava)
 751   DEFINE_CLASS_QUERY(MachConstantBase)
 752   DEFINE_CLASS_QUERY(MachConstant)
 753   DEFINE_CLASS_QUERY(MachGoto)
 754   DEFINE_CLASS_QUERY(MachIf)
 755   DEFINE_CLASS_QUERY(MachNullCheck)
 756   DEFINE_CLASS_QUERY(MachProj)
 757   DEFINE_CLASS_QUERY(MachReturn)
 758   DEFINE_CLASS_QUERY(MachSafePoint)
 759   DEFINE_CLASS_QUERY(MachSpillCopy)
 760   DEFINE_CLASS_QUERY(MachTemp)
 761   DEFINE_CLASS_QUERY(Mem)
 762   DEFINE_CLASS_QUERY(MemBar)
 763   DEFINE_CLASS_QUERY(MemBarStoreStore)
 764   DEFINE_CLASS_QUERY(MergeMem)
 765   DEFINE_CLASS_QUERY(Mul)
 766   DEFINE_CLASS_QUERY(Multi)
 767   DEFINE_CLASS_QUERY(MultiBranch)
 768   DEFINE_CLASS_QUERY(Parm)
 769   DEFINE_CLASS_QUERY(PCTable)
 770   DEFINE_CLASS_QUERY(Phi)
 771   DEFINE_CLASS_QUERY(Proj)
 772   DEFINE_CLASS_QUERY(Region)
 773   DEFINE_CLASS_QUERY(Root)
 774   DEFINE_CLASS_QUERY(SafePoint)
 775   DEFINE_CLASS_QUERY(SafePointScalarObject)
 776   DEFINE_CLASS_QUERY(Start)
 777   DEFINE_CLASS_QUERY(Store)
 778   DEFINE_CLASS_QUERY(Sub)
 779   DEFINE_CLASS_QUERY(Type)
 780   DEFINE_CLASS_QUERY(Vector)
 781   DEFINE_CLASS_QUERY(LoadVector)
 782   DEFINE_CLASS_QUERY(StoreVector)
 783   DEFINE_CLASS_QUERY(Unlock)
 784 
 785   #undef DEFINE_CLASS_QUERY
 786 
 787   // duplicate of is_MachSpillCopy()
 788   bool is_SpillCopy () const {
 789     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 790   }
 791 
 792   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 793   // The data node which is safe to leave in dead loop during IGVN optimization.
 794   bool is_dead_loop_safe() const {
 795     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 796            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 797             (!is_Proj() || !in(0)->is_Allocate()));
 798   }
 799 
 800   // is_Copy() returns copied edge index (0 or 1)
 801   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 802 
 803   virtual bool is_CFG() const { return false; }
 804 
 805   // If this node is control-dependent on a test, can it be
 806   // rerouted to a dominating equivalent test?  This is usually
 807   // true of non-CFG nodes, but can be false for operations which
 808   // depend for their correct sequencing on more than one test.
 809   // (In that case, hoisting to a dominating test may silently
 810   // skip some other important test.)
 811   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 812 
 813   // When building basic blocks, I need to have a notion of block beginning
 814   // Nodes, next block selector Nodes (block enders), and next block
 815   // projections.  These calls need to work on their machine equivalents.  The
 816   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 817   bool is_block_start() const {
 818     if ( is_Region() )
 819       return this == (const Node*)in(0);
 820     else
 821       return is_Start();
 822   }
 823 
 824   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 825   // Goto and Return.  This call also returns the block ending Node.
 826   virtual const Node *is_block_proj() const;
 827 
 828   // The node is a "macro" node which needs to be expanded before matching
 829   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 830   // The node is expensive: the best control is set during loop opts
 831   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 832 
 833 //----------------- Optimization
 834 
 835   // Get the worst-case Type output for this Node.
 836   virtual const class Type *bottom_type() const;
 837 
 838   // If we find a better type for a node, try to record it permanently.
 839   // Return true if this node actually changed.
 840   // Be sure to do the hash_delete game in the "rehash" variant.
 841   void raise_bottom_type(const Type* new_type);
 842 
 843   // Get the address type with which this node uses and/or defs memory,
 844   // or NULL if none.  The address type is conservatively wide.
 845   // Returns non-null for calls, membars, loads, stores, etc.
 846   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 847   virtual const class TypePtr *adr_type() const { return NULL; }
 848 
 849   // Return an existing node which computes the same function as this node.
 850   // The optimistic combined algorithm requires this to return a Node which
 851   // is a small number of steps away (e.g., one of my inputs).
 852   virtual Node *Identity( PhaseTransform *phase );
 853 
 854   // Return the set of values this Node can take on at runtime.
 855   virtual const Type *Value( PhaseTransform *phase ) const;
 856 
 857   // Return a node which is more "ideal" than the current node.
 858   // The invariants on this call are subtle.  If in doubt, read the
 859   // treatise in node.cpp above the default implemention AND TEST WITH
 860   // +VerifyIterativeGVN!
 861   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 862 
 863   // Some nodes have specific Ideal subgraph transformations only if they are
 864   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 865   // for the transformations to happen.
 866   bool has_special_unique_user() const;
 867 
 868   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 869   Node* find_exact_control(Node* ctrl);
 870 
 871   // Check if 'this' node dominates or equal to 'sub'.
 872   bool dominates(Node* sub, Node_List &nlist);
 873 
 874 protected:
 875   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 876 public:
 877 
 878   // Idealize graph, using DU info.  Done after constant propagation
 879   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 880 
 881   // See if there is valid pipeline info
 882   static  const Pipeline *pipeline_class();
 883   virtual const Pipeline *pipeline() const;
 884 
 885   // Compute the latency from the def to this instruction of the ith input node
 886   uint latency(uint i);
 887 
 888   // Hash & compare functions, for pessimistic value numbering
 889 
 890   // If the hash function returns the special sentinel value NO_HASH,
 891   // the node is guaranteed never to compare equal to any other node.
 892   // If we accidentally generate a hash with value NO_HASH the node
 893   // won't go into the table and we'll lose a little optimization.
 894   enum { NO_HASH = 0 };
 895   virtual uint hash() const;
 896   virtual uint cmp( const Node &n ) const;
 897 
 898   // Operation appears to be iteratively computed (such as an induction variable)
 899   // It is possible for this operation to return false for a loop-varying
 900   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 901   bool is_iteratively_computed();
 902 
 903   // Determine if a node is Counted loop induction variable.
 904   // The method is defined in loopnode.cpp.
 905   const Node* is_loop_iv() const;
 906 
 907   // Return a node with opcode "opc" and same inputs as "this" if one can
 908   // be found; Otherwise return NULL;
 909   Node* find_similar(int opc);
 910 
 911   // Return the unique control out if only one. Null if none or more than one.
 912   Node* unique_ctrl_out();
 913 
 914 //----------------- Code Generation
 915 
 916   // Ideal register class for Matching.  Zero means unmatched instruction
 917   // (these are cloned instead of converted to machine nodes).
 918   virtual uint ideal_reg() const;
 919 
 920   static const uint NotAMachineReg;   // must be > max. machine register
 921 
 922   // Do we Match on this edge index or not?  Generally false for Control
 923   // and true for everything else.  Weird for calls & returns.
 924   virtual uint match_edge(uint idx) const;
 925 
 926   // Register class output is returned in
 927   virtual const RegMask &out_RegMask() const;
 928   // Register class input is expected in
 929   virtual const RegMask &in_RegMask(uint) const;
 930   // Should we clone rather than spill this instruction?
 931   bool rematerialize() const;
 932 
 933   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 934   virtual JVMState* jvms() const;
 935 
 936   // Print as assembly
 937   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 938   // Emit bytes starting at parameter 'ptr'
 939   // Bump 'ptr' by the number of output bytes
 940   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 941   // Size of instruction in bytes
 942   virtual uint size(PhaseRegAlloc *ra_) const;
 943 
 944   // Convenience function to extract an integer constant from a node.
 945   // If it is not an integer constant (either Con, CastII, or Mach),
 946   // return value_if_unknown.
 947   jint find_int_con(jint value_if_unknown) const {
 948     const TypeInt* t = find_int_type();
 949     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 950   }
 951   // Return the constant, knowing it is an integer constant already
 952   jint get_int() const {
 953     const TypeInt* t = find_int_type();
 954     guarantee(t != NULL, "must be con");
 955     return t->get_con();
 956   }
 957   // Here's where the work is done.  Can produce non-constant int types too.
 958   const TypeInt* find_int_type() const;
 959 
 960   // Same thing for long (and intptr_t, via type.hpp):
 961   jlong get_long() const {
 962     const TypeLong* t = find_long_type();
 963     guarantee(t != NULL, "must be con");
 964     return t->get_con();
 965   }
 966   jlong find_long_con(jint value_if_unknown) const {
 967     const TypeLong* t = find_long_type();
 968     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 969   }
 970   const TypeLong* find_long_type() const;
 971 
 972   const TypePtr* get_ptr_type() const;
 973 
 974   // These guys are called by code generated by ADLC:
 975   intptr_t get_ptr() const;
 976   intptr_t get_narrowcon() const;
 977   jdouble getd() const;
 978   jfloat getf() const;
 979 
 980   // Nodes which are pinned into basic blocks
 981   virtual bool pinned() const { return false; }
 982 
 983   // Nodes which use memory without consuming it, hence need antidependences
 984   // More specifically, needs_anti_dependence_check returns true iff the node
 985   // (a) does a load, and (b) does not perform a store (except perhaps to a
 986   // stack slot or some other unaliased location).
 987   bool needs_anti_dependence_check() const;
 988 
 989   // Return which operand this instruction may cisc-spill. In other words,
 990   // return operand position that can convert from reg to memory access
 991   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
 992   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
 993 
 994 //----------------- Graph walking
 995 public:
 996   // Walk and apply member functions recursively.
 997   // Supplied (this) pointer is root.
 998   void walk(NFunc pre, NFunc post, void *env);
 999   static void nop(Node &, void*); // Dummy empty function
1000   static void packregion( Node &n, void* );
1001 private:
1002   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1003 
1004 //----------------- Printing, etc
1005 public:
1006 #ifndef PRODUCT
1007   Node* find(int idx) const;         // Search the graph for the given idx.
1008   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1009   void dump() const { dump("\n"); }  // Print this node.
1010   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
1011   void dump(int depth) const;        // Print this node, recursively to depth d
1012   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1013   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
1014   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
1015   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
1016   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1017   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1018   void verify() const;               // Check Def-Use info for my subgraph
1019   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1020 
1021   // This call defines a class-unique string used to identify class instances
1022   virtual const char *Name() const;
1023 
1024   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1025   // RegMask Print Functions
1026   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1027   void dump_out_regmask() { out_RegMask().dump(); }
1028   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1029   void fast_dump() const {
1030     tty->print("%4d: %-17s", _idx, Name());
1031     for (uint i = 0; i < len(); i++)
1032       if (in(i))
1033         tty->print(" %4d", in(i)->_idx);
1034       else
1035         tty->print(" NULL");
1036     tty->print("\n");
1037   }
1038 #endif
1039 #ifdef ASSERT
1040   void verify_construction();
1041   bool verify_jvms(const JVMState* jvms) const;
1042   int  _debug_idx;                     // Unique value assigned to every node.
1043   int   debug_idx() const              { return _debug_idx; }
1044   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1045 
1046   Node* _debug_orig;                   // Original version of this, if any.
1047   Node*  debug_orig() const            { return _debug_orig; }
1048   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1049 
1050   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1051   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1052   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1053 
1054   static void init_NodeProperty();
1055 
1056   #if OPTO_DU_ITERATOR_ASSERT
1057   const Node* _last_del;               // The last deleted node.
1058   uint        _del_tick;               // Bumped when a deletion happens..
1059   #endif
1060 #endif
1061 };
1062 
1063 //-----------------------------------------------------------------------------
1064 // Iterators over DU info, and associated Node functions.
1065 
1066 #if OPTO_DU_ITERATOR_ASSERT
1067 
1068 // Common code for assertion checking on DU iterators.
1069 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1070 #ifdef ASSERT
1071  protected:
1072   bool         _vdui;               // cached value of VerifyDUIterators
1073   const Node*  _node;               // the node containing the _out array
1074   uint         _outcnt;             // cached node->_outcnt
1075   uint         _del_tick;           // cached node->_del_tick
1076   Node*        _last;               // last value produced by the iterator
1077 
1078   void sample(const Node* node);    // used by c'tor to set up for verifies
1079   void verify(const Node* node, bool at_end_ok = false);
1080   void verify_resync();
1081   void reset(const DUIterator_Common& that);
1082 
1083 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1084   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1085 #else
1086   #define I_VDUI_ONLY(i,x) { }
1087 #endif //ASSERT
1088 };
1089 
1090 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1091 
1092 // Default DU iterator.  Allows appends onto the out array.
1093 // Allows deletion from the out array only at the current point.
1094 // Usage:
1095 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1096 //    Node* y = x->out(i);
1097 //    ...
1098 //  }
1099 // Compiles in product mode to a unsigned integer index, which indexes
1100 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1101 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1102 // before continuing the loop.  You must delete only the last-produced
1103 // edge.  You must delete only a single copy of the last-produced edge,
1104 // or else you must delete all copies at once (the first time the edge
1105 // is produced by the iterator).
1106 class DUIterator : public DUIterator_Common {
1107   friend class Node;
1108 
1109   // This is the index which provides the product-mode behavior.
1110   // Whatever the product-mode version of the system does to the
1111   // DUI index is done to this index.  All other fields in
1112   // this class are used only for assertion checking.
1113   uint         _idx;
1114 
1115   #ifdef ASSERT
1116   uint         _refresh_tick;    // Records the refresh activity.
1117 
1118   void sample(const Node* node); // Initialize _refresh_tick etc.
1119   void verify(const Node* node, bool at_end_ok = false);
1120   void verify_increment();       // Verify an increment operation.
1121   void verify_resync();          // Verify that we can back up over a deletion.
1122   void verify_finish();          // Verify that the loop terminated properly.
1123   void refresh();                // Resample verification info.
1124   void reset(const DUIterator& that);  // Resample after assignment.
1125   #endif
1126 
1127   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1128     { _idx = 0;                         debug_only(sample(node)); }
1129 
1130  public:
1131   // initialize to garbage; clear _vdui to disable asserts
1132   DUIterator()
1133     { /*initialize to garbage*/         debug_only(_vdui = false); }
1134 
1135   void operator++(int dummy_to_specify_postfix_op)
1136     { _idx++;                           VDUI_ONLY(verify_increment()); }
1137 
1138   void operator--()
1139     { VDUI_ONLY(verify_resync());       --_idx; }
1140 
1141   ~DUIterator()
1142     { VDUI_ONLY(verify_finish()); }
1143 
1144   void operator=(const DUIterator& that)
1145     { _idx = that._idx;                 debug_only(reset(that)); }
1146 };
1147 
1148 DUIterator Node::outs() const
1149   { return DUIterator(this, 0); }
1150 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1151   { I_VDUI_ONLY(i, i.refresh());        return i; }
1152 bool Node::has_out(DUIterator& i) const
1153   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1154 Node*    Node::out(DUIterator& i) const
1155   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1156 
1157 
1158 // Faster DU iterator.  Disallows insertions into the out array.
1159 // Allows deletion from the out array only at the current point.
1160 // Usage:
1161 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1162 //    Node* y = x->fast_out(i);
1163 //    ...
1164 //  }
1165 // Compiles in product mode to raw Node** pointer arithmetic, with
1166 // no reloading of pointers from the original node x.  If you delete,
1167 // you must perform "--i; --imax" just before continuing the loop.
1168 // If you delete multiple copies of the same edge, you must decrement
1169 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1170 class DUIterator_Fast : public DUIterator_Common {
1171   friend class Node;
1172   friend class DUIterator_Last;
1173 
1174   // This is the pointer which provides the product-mode behavior.
1175   // Whatever the product-mode version of the system does to the
1176   // DUI pointer is done to this pointer.  All other fields in
1177   // this class are used only for assertion checking.
1178   Node**       _outp;
1179 
1180   #ifdef ASSERT
1181   void verify(const Node* node, bool at_end_ok = false);
1182   void verify_limit();
1183   void verify_resync();
1184   void verify_relimit(uint n);
1185   void reset(const DUIterator_Fast& that);
1186   #endif
1187 
1188   // Note:  offset must be signed, since -1 is sometimes passed
1189   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1190     { _outp = node->_out + offset;      debug_only(sample(node)); }
1191 
1192  public:
1193   // initialize to garbage; clear _vdui to disable asserts
1194   DUIterator_Fast()
1195     { /*initialize to garbage*/         debug_only(_vdui = false); }
1196 
1197   void operator++(int dummy_to_specify_postfix_op)
1198     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1199 
1200   void operator--()
1201     { VDUI_ONLY(verify_resync());       --_outp; }
1202 
1203   void operator-=(uint n)   // applied to the limit only
1204     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1205 
1206   bool operator<(DUIterator_Fast& limit) {
1207     I_VDUI_ONLY(*this, this->verify(_node, true));
1208     I_VDUI_ONLY(limit, limit.verify_limit());
1209     return _outp < limit._outp;
1210   }
1211 
1212   void operator=(const DUIterator_Fast& that)
1213     { _outp = that._outp;               debug_only(reset(that)); }
1214 };
1215 
1216 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1217   // Assign a limit pointer to the reference argument:
1218   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1219   // Return the base pointer:
1220   return DUIterator_Fast(this, 0);
1221 }
1222 Node* Node::fast_out(DUIterator_Fast& i) const {
1223   I_VDUI_ONLY(i, i.verify(this));
1224   return debug_only(i._last=) *i._outp;
1225 }
1226 
1227 
1228 // Faster DU iterator.  Requires each successive edge to be removed.
1229 // Does not allow insertion of any edges.
1230 // Usage:
1231 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1232 //    Node* y = x->last_out(i);
1233 //    ...
1234 //  }
1235 // Compiles in product mode to raw Node** pointer arithmetic, with
1236 // no reloading of pointers from the original node x.
1237 class DUIterator_Last : private DUIterator_Fast {
1238   friend class Node;
1239 
1240   #ifdef ASSERT
1241   void verify(const Node* node, bool at_end_ok = false);
1242   void verify_limit();
1243   void verify_step(uint num_edges);
1244   #endif
1245 
1246   // Note:  offset must be signed, since -1 is sometimes passed
1247   DUIterator_Last(const Node* node, ptrdiff_t offset)
1248     : DUIterator_Fast(node, offset) { }
1249 
1250   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1251   void operator<(int)                              {} // do not use
1252 
1253  public:
1254   DUIterator_Last() { }
1255   // initialize to garbage
1256 
1257   void operator--()
1258     { _outp--;              VDUI_ONLY(verify_step(1));  }
1259 
1260   void operator-=(uint n)
1261     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1262 
1263   bool operator>=(DUIterator_Last& limit) {
1264     I_VDUI_ONLY(*this, this->verify(_node, true));
1265     I_VDUI_ONLY(limit, limit.verify_limit());
1266     return _outp >= limit._outp;
1267   }
1268 
1269   void operator=(const DUIterator_Last& that)
1270     { DUIterator_Fast::operator=(that); }
1271 };
1272 
1273 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1274   // Assign a limit pointer to the reference argument:
1275   imin = DUIterator_Last(this, 0);
1276   // Return the initial pointer:
1277   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1278 }
1279 Node* Node::last_out(DUIterator_Last& i) const {
1280   I_VDUI_ONLY(i, i.verify(this));
1281   return debug_only(i._last=) *i._outp;
1282 }
1283 
1284 #endif //OPTO_DU_ITERATOR_ASSERT
1285 
1286 #undef I_VDUI_ONLY
1287 #undef VDUI_ONLY
1288 
1289 // An Iterator that truly follows the iterator pattern.  Doesn't
1290 // support deletion but could be made to.
1291 //
1292 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1293 //     Node* m = i.get();
1294 //
1295 class SimpleDUIterator : public StackObj {
1296  private:
1297   Node* node;
1298   DUIterator_Fast i;
1299   DUIterator_Fast imax;
1300  public:
1301   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1302   bool has_next() { return i < imax; }
1303   void next() { i++; }
1304   Node* get() { return node->fast_out(i); }
1305 };
1306 
1307 
1308 //-----------------------------------------------------------------------------
1309 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1310 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1311 // Note that the constructor just zeros things, and since I use Arena
1312 // allocation I do not need a destructor to reclaim storage.
1313 class Node_Array : public ResourceObj {
1314   friend class VMStructs;
1315 protected:
1316   Arena *_a;                    // Arena to allocate in
1317   uint   _max;
1318   Node **_nodes;
1319   void   grow( uint i );        // Grow array node to fit
1320 public:
1321   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1322     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1323     for( int i = 0; i < OptoNodeListSize; i++ ) {
1324       _nodes[i] = NULL;
1325     }
1326   }
1327 
1328   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1329   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1330   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1331   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1332   Node **adr() { return _nodes; }
1333   // Extend the mapping: index i maps to Node *n.
1334   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1335   void insert( uint i, Node *n );
1336   void remove( uint i );        // Remove, preserving order
1337   void sort( C_sort_func_t func);
1338   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1339   void clear();                 // Set all entries to NULL, keep storage
1340   uint Size() const { return _max; }
1341   void dump() const;
1342 };
1343 
1344 class Node_List : public Node_Array {
1345   friend class VMStructs;
1346   uint _cnt;
1347 public:
1348   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1349   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1350   bool contains(const Node* n) const {
1351     for (uint e = 0; e < size(); e++) {
1352       if (at(e) == n) return true;
1353     }
1354     return false;
1355   }
1356   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1357   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1358   void push( Node *b ) { map(_cnt++,b); }
1359   void yank( Node *n );         // Find and remove
1360   Node *pop() { return _nodes[--_cnt]; }
1361   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1362   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1363   uint size() const { return _cnt; }
1364   void dump() const;
1365 };
1366 
1367 //------------------------------Unique_Node_List-------------------------------
1368 class Unique_Node_List : public Node_List {
1369   friend class VMStructs;
1370   VectorSet _in_worklist;
1371   uint _clock_index;            // Index in list where to pop from next
1372 public:
1373   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1374   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1375 
1376   void remove( Node *n );
1377   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1378   VectorSet &member_set(){ return _in_worklist; }
1379 
1380   void push( Node *b ) {
1381     if( !_in_worklist.test_set(b->_idx) )
1382       Node_List::push(b);
1383   }
1384   Node *pop() {
1385     if( _clock_index >= size() ) _clock_index = 0;
1386     Node *b = at(_clock_index);
1387     map( _clock_index, Node_List::pop());
1388     if (size() != 0) _clock_index++; // Always start from 0
1389     _in_worklist >>= b->_idx;
1390     return b;
1391   }
1392   Node *remove( uint i ) {
1393     Node *b = Node_List::at(i);
1394     _in_worklist >>= b->_idx;
1395     map(i,Node_List::pop());
1396     return b;
1397   }
1398   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1399   void  clear() {
1400     _in_worklist.Clear();        // Discards storage but grows automatically
1401     Node_List::clear();
1402     _clock_index = 0;
1403   }
1404 
1405   // Used after parsing to remove useless nodes before Iterative GVN
1406   void remove_useless_nodes(VectorSet &useful);
1407 
1408 #ifndef PRODUCT
1409   void print_set() const { _in_worklist.print(); }
1410 #endif
1411 };
1412 
1413 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1414 inline void Compile::record_for_igvn(Node* n) {
1415   _for_igvn->push(n);
1416 }
1417 
1418 //------------------------------Node_Stack-------------------------------------
1419 class Node_Stack {
1420   friend class VMStructs;
1421 protected:
1422   struct INode {
1423     Node *node; // Processed node
1424     uint  indx; // Index of next node's child
1425   };
1426   INode *_inode_top; // tos, stack grows up
1427   INode *_inode_max; // End of _inodes == _inodes + _max
1428   INode *_inodes;    // Array storage for the stack
1429   Arena *_a;         // Arena to allocate in
1430   void grow();
1431 public:
1432   Node_Stack(int size) {
1433     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1434     _a = Thread::current()->resource_area();
1435     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1436     _inode_max = _inodes + max;
1437     _inode_top = _inodes - 1; // stack is empty
1438   }
1439 
1440   Node_Stack(Arena *a, int size) : _a(a) {
1441     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1442     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1443     _inode_max = _inodes + max;
1444     _inode_top = _inodes - 1; // stack is empty
1445   }
1446 
1447   void pop() {
1448     assert(_inode_top >= _inodes, "node stack underflow");
1449     --_inode_top;
1450   }
1451   void push(Node *n, uint i) {
1452     ++_inode_top;
1453     if (_inode_top >= _inode_max) grow();
1454     INode *top = _inode_top; // optimization
1455     top->node = n;
1456     top->indx = i;
1457   }
1458   Node *node() const {
1459     return _inode_top->node;
1460   }
1461   Node* node_at(uint i) const {
1462     assert(_inodes + i <= _inode_top, "in range");
1463     return _inodes[i].node;
1464   }
1465   uint index() const {
1466     return _inode_top->indx;
1467   }
1468   uint index_at(uint i) const {
1469     assert(_inodes + i <= _inode_top, "in range");
1470     return _inodes[i].indx;
1471   }
1472   void set_node(Node *n) {
1473     _inode_top->node = n;
1474   }
1475   void set_index(uint i) {
1476     _inode_top->indx = i;
1477   }
1478   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1479   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1480   bool is_nonempty() const { return (_inode_top >= _inodes); }
1481   bool is_empty() const { return (_inode_top < _inodes); }
1482   void clear() { _inode_top = _inodes - 1; } // retain storage
1483 
1484   // Node_Stack is used to map nodes.
1485   Node* find(uint idx) const;
1486 };
1487 
1488 
1489 //-----------------------------Node_Notes--------------------------------------
1490 // Debugging or profiling annotations loosely and sparsely associated
1491 // with some nodes.  See Compile::node_notes_at for the accessor.
1492 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1493   friend class VMStructs;
1494   JVMState* _jvms;
1495 
1496 public:
1497   Node_Notes(JVMState* jvms = NULL) {
1498     _jvms = jvms;
1499   }
1500 
1501   JVMState* jvms()            { return _jvms; }
1502   void  set_jvms(JVMState* x) {        _jvms = x; }
1503 
1504   // True if there is nothing here.
1505   bool is_clear() {
1506     return (_jvms == NULL);
1507   }
1508 
1509   // Make there be nothing here.
1510   void clear() {
1511     _jvms = NULL;
1512   }
1513 
1514   // Make a new, clean node notes.
1515   static Node_Notes* make(Compile* C) {
1516     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1517     nn->clear();
1518     return nn;
1519   }
1520 
1521   Node_Notes* clone(Compile* C) {
1522     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1523     (*nn) = (*this);
1524     return nn;
1525   }
1526 
1527   // Absorb any information from source.
1528   bool update_from(Node_Notes* source) {
1529     bool changed = false;
1530     if (source != NULL) {
1531       if (source->jvms() != NULL) {
1532         set_jvms(source->jvms());
1533         changed = true;
1534       }
1535     }
1536     return changed;
1537   }
1538 };
1539 
1540 // Inlined accessors for Compile::node_nodes that require the preceding class:
1541 inline Node_Notes*
1542 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1543                            int idx, bool can_grow) {
1544   assert(idx >= 0, "oob");
1545   int block_idx = (idx >> _log2_node_notes_block_size);
1546   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1547   if (grow_by >= 0) {
1548     if (!can_grow)  return NULL;
1549     grow_node_notes(arr, grow_by + 1);
1550   }
1551   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1552   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1553 }
1554 
1555 inline bool
1556 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1557   if (value == NULL || value->is_clear())
1558     return false;  // nothing to write => write nothing
1559   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1560   assert(loc != NULL, "");
1561   return loc->update_from(value);
1562 }
1563 
1564 
1565 //------------------------------TypeNode---------------------------------------
1566 // Node with a Type constant.
1567 class TypeNode : public Node {
1568 protected:
1569   virtual uint hash() const;    // Check the type
1570   virtual uint cmp( const Node &n ) const;
1571   virtual uint size_of() const; // Size is bigger
1572   const Type* const _type;
1573 public:
1574   void set_type(const Type* t) {
1575     assert(t != NULL, "sanity");
1576     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1577     *(const Type**)&_type = t;   // cast away const-ness
1578     // If this node is in the hash table, make sure it doesn't need a rehash.
1579     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1580   }
1581   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1582   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1583     init_class_id(Class_Type);
1584   }
1585   virtual const Type *Value( PhaseTransform *phase ) const;
1586   virtual const Type *bottom_type() const;
1587   virtual       uint  ideal_reg() const;
1588 #ifndef PRODUCT
1589   virtual void dump_spec(outputStream *st) const;
1590 #endif
1591 };
1592 
1593 #endif // SHARE_VM_OPTO_NODE_HPP