--- /dev/null 2014-06-17 14:40:17.837204769 +0200 +++ new/src/share/vm/opto/macroArrayCopy.cpp 2014-08-02 06:38:32.742219040 +0200 @@ -0,0 +1,1245 @@ +/* + * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "oops/objArrayKlass.hpp" +#include "opto/convertnode.hpp" +#include "opto/graphKit.hpp" +#include "opto/macro.hpp" +#include "opto/runtime.hpp" + + +void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) { + MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); + mb->init_req(TypeFunc::Control, *ctrl); + mb->init_req(TypeFunc::Memory, *mem); + transform_later(mb); + *ctrl = new ProjNode(mb,TypeFunc::Control); + transform_later(*ctrl); + Node* mem_proj = new ProjNode(mb,TypeFunc::Memory); + transform_later(mem_proj); + *mem = mem_proj; +} + +Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) { + uint shift = exact_log2(type2aelembytes(elembt)); + uint header = arrayOopDesc::base_offset_in_bytes(elembt); + Node* base = basic_plus_adr(ary, header); +#ifdef _LP64 + // see comment in GraphKit::array_element_address + int index_max = max_jint - 1; // array size is max_jint, index is one less + const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax); + idx = transform_later( new ConvI2LNode(idx, lidxtype) ); +#endif + Node* scale = new LShiftXNode(idx, intcon(shift)); + transform_later(scale); + return basic_plus_adr(ary, base, scale); +} + +Node* PhaseMacroExpand::ConvI2L(Node* offset) { + return transform_later(new ConvI2LNode(offset)); +} + +Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem, + const TypeFunc* call_type, address call_addr, + const char* call_name, + const TypePtr* adr_type, + Node* parm0, Node* parm1, + Node* parm2, Node* parm3, + Node* parm4, Node* parm5, + Node* parm6, Node* parm7) { + int size = call_type->domain()->cnt(); + Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); + call->init_req(TypeFunc::Control, ctrl); + call->init_req(TypeFunc::I_O , top()); + call->init_req(TypeFunc::Memory , mem); + call->init_req(TypeFunc::ReturnAdr, top()); + call->init_req(TypeFunc::FramePtr, top()); + + // Hook each parm in order. Stop looking at the first NULL. + if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0); + if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1); + if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2); + if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3); + if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4); + if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5); + if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6); + if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7); + /* close each nested if ===> */ } } } } } } } } + assert(call->in(call->req()-1) != NULL, "must initialize all parms"); + + return call; +} + + +//------------------------------generate_guard--------------------------- +// Helper function for generating guarded fast-slow graph structures. +// The given 'test', if true, guards a slow path. If the test fails +// then a fast path can be taken. (We generally hope it fails.) +// In all cases, GraphKit::control() is updated to the fast path. +// The returned value represents the control for the slow path. +// The return value is never 'top'; it is either a valid control +// or NULL if it is obvious that the slow path can never be taken. +// Also, if region and the slow control are not NULL, the slow edge +// is appended to the region. +Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) { + if ((*ctrl)->is_top()) { + // Already short circuited. + return NULL; + } + // Build an if node and its projections. + // If test is true we take the slow path, which we assume is uncommon. + if (_igvn.type(test) == TypeInt::ZERO) { + // The slow branch is never taken. No need to build this guard. + return NULL; + } + + IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN); + transform_later(iff); + + Node* if_slow = new IfTrueNode(iff); + transform_later(if_slow); + + if (region != NULL) { + region->add_req(if_slow); + } + + Node* if_fast = new IfFalseNode(iff); + transform_later(if_fast); + + *ctrl = if_fast; + + return if_slow; +} + +inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) { + return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3)); +} + +void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) { + if ((*ctrl)->is_top()) + return; // already stopped + if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] + return; // index is already adequately typed + Node* cmp_lt = new CmpINode(index, intcon(0)); + transform_later(cmp_lt); + Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); + transform_later(bol_lt); + generate_guard(ctrl, bol_lt, region, PROB_MIN); +} + +void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) { + if ((*ctrl)->is_top()) + return; // already stopped + bool zero_offset = _igvn.type(offset) == TypeInt::ZERO; + if (zero_offset && subseq_length->eqv_uncast(array_length)) + return; // common case of whole-array copy + Node* last = subseq_length; + if (!zero_offset) { // last += offset + last = new AddINode(last, offset); + transform_later(last); + } + Node* cmp_lt = new CmpUNode(array_length, last); + transform_later(cmp_lt); + Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); + transform_later(bol_lt); + generate_guard(ctrl, bol_lt, region, PROB_MIN); +} + +Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) { + if ((*ctrl)->is_top()) return NULL; + + if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint] + return NULL; // index is already adequately typed + Node* cmp_le = new CmpINode(index, intcon(0)); + transform_later(cmp_le); + BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le); + Node* bol_le = new BoolNode(cmp_le, le_or_eq); + transform_later(bol_le); + Node* is_notp = generate_guard(ctrl, bol_le, NULL, PROB_MIN); + + return is_notp; +} + +void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) { + transform_later(call); + + *ctrl = new ProjNode(call,TypeFunc::Control); + transform_later(*ctrl); + Node* newmem = new ProjNode(call, TypeFunc::Memory); + transform_later(newmem); + + uint alias_idx = C->get_alias_index(adr_type); + if (alias_idx != Compile::AliasIdxBot) { + *mem = MergeMemNode::make(C, *mem); + (*mem)->set_memory_at(alias_idx, newmem); + } else { + *mem = MergeMemNode::make(C, newmem); + } + transform_later(*mem); +} + +address PhaseMacroExpand::basictype2arraycopy(BasicType t, + Node* src_offset, + Node* dest_offset, + bool disjoint_bases, + const char* &name, + bool dest_uninitialized) { + const TypeInt* src_offset_inttype = _igvn.find_int_type(src_offset);; + const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset);; + + bool aligned = false; + bool disjoint = disjoint_bases; + + // if the offsets are the same, we can treat the memory regions as + // disjoint, because either the memory regions are in different arrays, + // or they are identical (which we can treat as disjoint.) We can also + // treat a copy with a destination index less that the source index + // as disjoint since a low->high copy will work correctly in this case. + if (src_offset_inttype != NULL && src_offset_inttype->is_con() && + dest_offset_inttype != NULL && dest_offset_inttype->is_con()) { + // both indices are constants + int s_offs = src_offset_inttype->get_con(); + int d_offs = dest_offset_inttype->get_con(); + int element_size = type2aelembytes(t); + aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && + ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0); + if (s_offs >= d_offs) disjoint = true; + } else if (src_offset == dest_offset && src_offset != NULL) { + // This can occur if the offsets are identical non-constants. + disjoint = true; + } + + return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized); +} + +#define COMMA , +#define XTOP LP64_ONLY(COMMA top()) + +// Generate an optimized call to arraycopy. +// Caller must guard against non-arrays. +// Caller must determine a common array basic-type for both arrays. +// Caller must validate offsets against array bounds. +// The slow_region has already collected guard failure paths +// (such as out of bounds length or non-conformable array types). +// The generated code has this shape, in general: +// +// if (length == 0) return // via zero_path +// slowval = -1 +// if (types unknown) { +// slowval = call generic copy loop +// if (slowval == 0) return // via checked_path +// } else if (indexes in bounds) { +// if ((is object array) && !(array type check)) { +// slowval = call checked copy loop +// if (slowval == 0) return // via checked_path +// } else { +// call bulk copy loop +// return // via fast_path +// } +// } +// // adjust params for remaining work: +// if (slowval != -1) { +// n = -1^slowval; src_offset += n; dest_offset += n; length -= n +// } +// slow_region: +// call slow arraycopy(src, src_offset, dest, dest_offset, length) +// return // via slow_call_path +// +// This routine is used from several intrinsics: System.arraycopy, +// Object.clone (the array subcase), and Arrays.copyOf[Range]. +// +Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc, + Node** ctrl, MergeMemNode* mem, Node** io, + const TypePtr* adr_type, + BasicType basic_elem_type, + Node* src, Node* src_offset, + Node* dest, Node* dest_offset, + Node* copy_length, + bool disjoint_bases, + bool length_never_negative, + RegionNode* slow_region) { + if (slow_region == NULL) { + slow_region = new RegionNode(1); + transform_later(slow_region); + } + + Node* original_dest = dest; + bool dest_uninitialized = false; + + // See if this is the initialization of a newly-allocated array. + // If so, we will take responsibility here for initializing it to zero. + // (Note: Because tightly_coupled_allocation performs checks on the + // out-edges of the dest, we need to avoid making derived pointers + // from it until we have checked its uses.) + if (ReduceBulkZeroing + && !ZeroTLAB // pointless if already zeroed + && basic_elem_type != T_CONFLICT // avoid corner case + && !src->eqv_uncast(dest) + && alloc != NULL + && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0 + && alloc->maybe_set_complete(&_igvn)) { + // "You break it, you buy it." + InitializeNode* init = alloc->initialization(); + assert(init->is_complete(), "we just did this"); + init->set_complete_with_arraycopy(); + assert(dest->is_CheckCastPP(), "sanity"); + assert(dest->in(0)->in(0) == init, "dest pinned"); + adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory + // From this point on, every exit path is responsible for + // initializing any non-copied parts of the object to zero. + // Also, if this flag is set we make sure that arraycopy interacts properly + // with G1, eliding pre-barriers. See CR 6627983. + dest_uninitialized = true; + } else { + // No zeroing elimination here. + alloc = NULL; + //original_dest = dest; + //dest_uninitialized = false; + } + + uint alias_idx = C->get_alias_index(adr_type); + + // Results are placed here: + enum { fast_path = 1, // normal void-returning assembly stub + checked_path = 2, // special assembly stub with cleanup + slow_call_path = 3, // something went wrong; call the VM + zero_path = 4, // bypass when length of copy is zero + bcopy_path = 5, // copy primitive array by 64-bit blocks + PATH_LIMIT = 6 + }; + RegionNode* result_region = new RegionNode(PATH_LIMIT); + PhiNode* result_i_o = new PhiNode(result_region, Type::ABIO); + PhiNode* result_memory = new PhiNode(result_region, Type::MEMORY, adr_type); + assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice"); + transform_later(result_region); + transform_later(result_i_o); + transform_later(result_memory); + + // The slow_control path: + Node* slow_control; + Node* slow_i_o = *io; + Node* slow_mem = mem->memory_at(alias_idx); + DEBUG_ONLY(slow_control = (Node*) badAddress); + + // Checked control path: + Node* checked_control = top(); + Node* checked_mem = NULL; + Node* checked_i_o = NULL; + Node* checked_value = NULL; + + if (basic_elem_type == T_CONFLICT) { + assert(!dest_uninitialized, ""); + Node* cv = generate_generic_arraycopy(ctrl, &mem, + adr_type, + src, src_offset, dest, dest_offset, + copy_length, dest_uninitialized); + if (cv == NULL) cv = intcon(-1); // failure (no stub available) + checked_control = *ctrl; + checked_i_o = *io; + checked_mem = mem->memory_at(alias_idx); + checked_value = cv; + *ctrl = top(); + } + + Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative); + if (not_pos != NULL) { + Node* local_ctrl = not_pos, *local_io = *io; + MergeMemNode* local_mem = MergeMemNode::make(C, mem); + transform_later(local_mem); + + // (6) length must not be negative. + if (!length_never_negative) { + generate_negative_guard(&local_ctrl, copy_length, slow_region); + } + + // copy_length is 0. + if (dest_uninitialized) { + assert(!local_ctrl->is_top(), "no ctrl?"); + Node* dest_length = alloc->in(AllocateNode::ALength); + if (copy_length->eqv_uncast(dest_length) + || _igvn.find_int_con(dest_length, 1) <= 0) { + // There is no zeroing to do. No need for a secondary raw memory barrier. + } else { + // Clear the whole thing since there are no source elements to copy. + generate_clear_array(local_ctrl, local_mem, + adr_type, dest, basic_elem_type, + intcon(0), NULL, + alloc->in(AllocateNode::AllocSize)); + // Use a secondary InitializeNode as raw memory barrier. + // Currently it is needed only on this path since other + // paths have stub or runtime calls as raw memory barriers. + MemBarNode* mb = MemBarNode::make(C, Op_Initialize, + Compile::AliasIdxRaw, + top()); + transform_later(mb); + mb->set_req(TypeFunc::Control,local_ctrl); + mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw)); + local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control)); + local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory))); + + InitializeNode* init = mb->as_Initialize(); + init->set_complete(&_igvn); // (there is no corresponding AllocateNode) + } + } + + // Present the results of the fast call. + result_region->init_req(zero_path, local_ctrl); + result_i_o ->init_req(zero_path, local_io); + result_memory->init_req(zero_path, local_mem->memory_at(alias_idx)); + } + + if (!(*ctrl)->is_top() && dest_uninitialized) { + // We have to initialize the *uncopied* part of the array to zero. + // The copy destination is the slice dest[off..off+len]. The other slices + // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length]. + Node* dest_size = alloc->in(AllocateNode::AllocSize); + Node* dest_length = alloc->in(AllocateNode::ALength); + Node* dest_tail = transform_later( new AddINode(dest_offset, copy_length)); + + // If there is a head section that needs zeroing, do it now. + if (_igvn.find_int_con(dest_offset, -1) != 0) { + generate_clear_array(*ctrl, mem, + adr_type, dest, basic_elem_type, + intcon(0), dest_offset, + NULL); + } + + // Next, perform a dynamic check on the tail length. + // It is often zero, and we can win big if we prove this. + // There are two wins: Avoid generating the ClearArray + // with its attendant messy index arithmetic, and upgrade + // the copy to a more hardware-friendly word size of 64 bits. + Node* tail_ctl = NULL; + if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) { + Node* cmp_lt = transform_later( new CmpINode(dest_tail, dest_length) ); + Node* bol_lt = transform_later( new BoolNode(cmp_lt, BoolTest::lt) ); + tail_ctl = generate_slow_guard(ctrl, bol_lt, NULL); + assert(tail_ctl != NULL || !(*ctrl)->is_top(), "must be an outcome"); + } + + // At this point, let's assume there is no tail. + if (!(*ctrl)->is_top() && alloc != NULL && basic_elem_type != T_OBJECT) { + // There is no tail. Try an upgrade to a 64-bit copy. + bool didit = false; + { + Node* local_ctrl = *ctrl, *local_io = *io; + MergeMemNode* local_mem = MergeMemNode::make(C, mem); + transform_later(local_mem); + + didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io, + adr_type, basic_elem_type, alloc, + src, src_offset, dest, dest_offset, + dest_size, dest_uninitialized); + if (didit) { + // Present the results of the block-copying fast call. + result_region->init_req(bcopy_path, local_ctrl); + result_i_o ->init_req(bcopy_path, local_io); + result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx)); + } + } + if (didit) { + *ctrl = top(); // no regular fast path + } + } + + // Clear the tail, if any. + if (tail_ctl != NULL) { + Node* notail_ctl = (*ctrl)->is_top() ? NULL : *ctrl; + *ctrl = tail_ctl; + if (notail_ctl == NULL) { + generate_clear_array(*ctrl, mem, + adr_type, dest, basic_elem_type, + dest_tail, NULL, + dest_size); + } else { + // Make a local merge. + Node* done_ctl = transform_later(new RegionNode(3)); + Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type)); + done_ctl->init_req(1, notail_ctl); + done_mem->init_req(1, mem->memory_at(alias_idx)); + generate_clear_array(*ctrl, mem, + adr_type, dest, basic_elem_type, + dest_tail, NULL, + dest_size); + done_ctl->init_req(2, *ctrl); + done_mem->init_req(2, mem->memory_at(alias_idx)); + *ctrl = done_ctl; + mem->set_memory_at(alias_idx, done_mem); + } + } + } + + BasicType copy_type = basic_elem_type; + assert(basic_elem_type != T_ARRAY, "caller must fix this"); + if (!(*ctrl)->is_top() && copy_type == T_OBJECT) { + // If src and dest have compatible element types, we can copy bits. + // Types S[] and D[] are compatible if D is a supertype of S. + // + // If they are not, we will use checked_oop_disjoint_arraycopy, + // which performs a fast optimistic per-oop check, and backs off + // further to JVM_ArrayCopy on the first per-oop check that fails. + // (Actually, we don't move raw bits only; the GC requires card marks.) + + // Get the klass* for both src and dest + Node* k_adr = new AddPNode(src, src, MakeConX(oopDesc::klass_offset_in_bytes())); + transform_later(k_adr); + Node* src_klass = LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS); + transform_later(src_klass); + k_adr = new AddPNode(dest, dest, MakeConX(oopDesc::klass_offset_in_bytes())); + transform_later(k_adr); + Node* dest_klass = LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS); + transform_later(dest_klass); + + // Generate the subtype check. + // This might fold up statically, or then again it might not. + // + // Non-static example: Copying List.elements to a new String[]. + // The backing store for a List is always an Object[], + // but its elements are always type String, if the generic types + // are correct at the source level. + // + // Test S[] against D[], not S against D, because (probably) + // the secondary supertype cache is less busy for S[] than S. + // This usually only matters when D is an interface. + Node* not_subtype_ctrl = ac->is_arraycopy_notest() ? top() : Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, &_igvn); + // Plug failing path into checked_oop_disjoint_arraycopy + if (not_subtype_ctrl != top()) { + Node* local_ctrl = not_subtype_ctrl; + MergeMemNode* local_mem = MergeMemNode::make(C, mem); + transform_later(local_mem); + + // (At this point we can assume disjoint_bases, since types differ.) + int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); + Node* p1 = basic_plus_adr(dest_klass, ek_offset); + Node* n1 = LoadKlassNode::make(_igvn, C->immutable_memory(), p1, TypeRawPtr::BOTTOM); + Node* dest_elem_klass = transform_later(n1); + Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem, + adr_type, + dest_elem_klass, + src, src_offset, dest, dest_offset, + ConvI2X(copy_length), dest_uninitialized); + if (cv == NULL) cv = intcon(-1); // failure (no stub available) + checked_control = local_ctrl; + checked_i_o = *io; + checked_mem = local_mem->memory_at(alias_idx); + checked_value = cv; + } + // At this point we know we do not need type checks on oop stores. + + // Let's see if we need card marks: + if (alloc != NULL && GraphKit::use_ReduceInitialCardMarks()) { + // If we do not need card marks, copy using the jint or jlong stub. + copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT); + assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type), + "sizes agree"); + } + } + + if (!(*ctrl)->is_top()) { + // Generate the fast path, if possible. + Node* local_ctrl = *ctrl; + MergeMemNode* local_mem = MergeMemNode::make(C, mem); + transform_later(local_mem); + + generate_unchecked_arraycopy(&local_ctrl, &local_mem, + adr_type, copy_type, disjoint_bases, + src, src_offset, dest, dest_offset, + ConvI2X(copy_length), dest_uninitialized); + + // Present the results of the fast call. + result_region->init_req(fast_path, local_ctrl); + result_i_o ->init_req(fast_path, *io); + result_memory->init_req(fast_path, local_mem->memory_at(alias_idx)); + } + + // Here are all the slow paths up to this point, in one bundle: + assert(slow_region != NULL, "allocated on entry"); + slow_control = slow_region; + DEBUG_ONLY(slow_region = (RegionNode*)badAddress); + + *ctrl = checked_control; + if (!(*ctrl)->is_top()) { + // Clean up after the checked call. + // The returned value is either 0 or -1^K, + // where K = number of partially transferred array elements. + Node* cmp = new CmpINode(checked_value, intcon(0)); + transform_later(cmp); + Node* bol = new BoolNode(cmp, BoolTest::eq); + transform_later(bol); + IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN); + transform_later(iff); + + // If it is 0, we are done, so transfer to the end. + Node* checks_done = new IfTrueNode(iff); + transform_later(checks_done); + result_region->init_req(checked_path, checks_done); + result_i_o ->init_req(checked_path, checked_i_o); + result_memory->init_req(checked_path, checked_mem); + + // If it is not zero, merge into the slow call. + *ctrl = new IfFalseNode(iff); + transform_later(*ctrl); + RegionNode* slow_reg2 = new RegionNode(3); + PhiNode* slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO); + PhiNode* slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type); + transform_later(slow_reg2); + transform_later(slow_i_o2); + transform_later(slow_mem2); + slow_reg2 ->init_req(1, slow_control); + slow_i_o2 ->init_req(1, slow_i_o); + slow_mem2 ->init_req(1, slow_mem); + slow_reg2 ->init_req(2, *ctrl); + slow_i_o2 ->init_req(2, checked_i_o); + slow_mem2 ->init_req(2, checked_mem); + + slow_control = slow_reg2; + slow_i_o = slow_i_o2; + slow_mem = slow_mem2; + + if (alloc != NULL) { + // We'll restart from the very beginning, after zeroing the whole thing. + // This can cause double writes, but that's OK since dest is brand new. + // So we ignore the low 31 bits of the value returned from the stub. + } else { + // We must continue the copy exactly where it failed, or else + // another thread might see the wrong number of writes to dest. + Node* checked_offset = new XorINode(checked_value, intcon(-1)); + Node* slow_offset = new PhiNode(slow_reg2, TypeInt::INT); + transform_later(checked_offset); + transform_later(slow_offset); + slow_offset->init_req(1, intcon(0)); + slow_offset->init_req(2, checked_offset); + + // Adjust the arguments by the conditionally incoming offset. + Node* src_off_plus = new AddINode(src_offset, slow_offset); + transform_later(src_off_plus); + Node* dest_off_plus = new AddINode(dest_offset, slow_offset); + transform_later(dest_off_plus); + Node* length_minus = new SubINode(copy_length, slow_offset); + transform_later(length_minus); + + // Tweak the node variables to adjust the code produced below: + src_offset = src_off_plus; + dest_offset = dest_off_plus; + copy_length = length_minus; + } + } + *ctrl = slow_control; + if (!(*ctrl)->is_top()) { + Node* local_ctrl = *ctrl, *local_io = slow_i_o; + MergeMemNode* local_mem = MergeMemNode::make(C, mem); + transform_later(local_mem); + + // Generate the slow path, if needed. + local_mem->set_memory_at(alias_idx, slow_mem); + + if (dest_uninitialized) { + generate_clear_array(local_ctrl, local_mem, + adr_type, dest, basic_elem_type, + intcon(0), NULL, + alloc->in(AllocateNode::AllocSize)); + } + + local_mem = generate_slow_arraycopy(ac, + &local_ctrl, local_mem, &local_io, + adr_type, + src, src_offset, dest, dest_offset, + copy_length, /*dest_uninitialized*/false); + + result_region->init_req(slow_call_path, local_ctrl); + result_i_o ->init_req(slow_call_path, local_io); + result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx)); + } else { + ShouldNotReachHere(); // no call to generate_slow_arraycopy: + // projections were not extracted + } + + // Remove unused edges. + for (uint i = 1; i < result_region->req(); i++) { + if (result_region->in(i) == NULL) { + result_region->init_req(i, top()); + } + } + + // Finished; return the combined state. + *ctrl = result_region; + *io = result_i_o; + mem->set_memory_at(alias_idx, result_memory); + + // mem no longer guaranteed to stay a MergeMemNode + Node* out_mem = mem; + DEBUG_ONLY(mem = NULL); + + // The memory edges above are precise in order to model effects around + // array copies accurately to allow value numbering of field loads around + // arraycopy. Such field loads, both before and after, are common in Java + // collections and similar classes involving header/array data structures. + // + // But with low number of register or when some registers are used or killed + // by arraycopy calls it causes registers spilling on stack. See 6544710. + // The next memory barrier is added to avoid it. If the arraycopy can be + // optimized away (which it can, sometimes) then we can manually remove + // the membar also. + // + // Do not let reads from the cloned object float above the arraycopy. + if (alloc != NULL && !alloc->initialization()->does_not_escape()) { + // Do not let stores that initialize this object be reordered with + // a subsequent store that would make this object accessible by + // other threads. + insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore); + } else if (InsertMemBarAfterArraycopy) { + insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder); + } + + _igvn.replace_node(_memproj_fallthrough, out_mem); + _igvn.replace_node(_ioproj_fallthrough, *io); + _igvn.replace_node(_fallthroughcatchproj, *ctrl); + + return out_mem; +} + +// Helper for initialization of arrays, creating a ClearArray. +// It writes zero bits in [start..end), within the body of an array object. +// The memory effects are all chained onto the 'adr_type' alias category. +// +// Since the object is otherwise uninitialized, we are free +// to put a little "slop" around the edges of the cleared area, +// as long as it does not go back into the array's header, +// or beyond the array end within the heap. +// +// The lower edge can be rounded down to the nearest jint and the +// upper edge can be rounded up to the nearest MinObjAlignmentInBytes. +// +// Arguments: +// adr_type memory slice where writes are generated +// dest oop of the destination array +// basic_elem_type element type of the destination +// slice_idx array index of first element to store +// slice_len number of elements to store (or NULL) +// dest_size total size in bytes of the array object +// +// Exactly one of slice_len or dest_size must be non-NULL. +// If dest_size is non-NULL, zeroing extends to the end of the object. +// If slice_len is non-NULL, the slice_idx value must be a constant. +void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem, + const TypePtr* adr_type, + Node* dest, + BasicType basic_elem_type, + Node* slice_idx, + Node* slice_len, + Node* dest_size) { + // one or the other but not both of slice_len and dest_size: + assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, ""); + if (slice_len == NULL) slice_len = top(); + if (dest_size == NULL) dest_size = top(); + + uint alias_idx = C->get_alias_index(adr_type); + + // operate on this memory slice: + Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on + + // scaling and rounding of indexes: + int scale = exact_log2(type2aelembytes(basic_elem_type)); + int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); + int clear_low = (-1 << scale) & (BytesPerInt - 1); + int bump_bit = (-1 << scale) & BytesPerInt; + + // determine constant starts and ends + const intptr_t BIG_NEG = -128; + assert(BIG_NEG + 2*abase < 0, "neg enough"); + intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG); + intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG); + if (slice_len_con == 0) { + return; // nothing to do here + } + intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low; + intptr_t end_con = _igvn.find_intptr_t_con(dest_size, -1); + if (slice_idx_con >= 0 && slice_len_con >= 0) { + assert(end_con < 0, "not two cons"); + end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale), + BytesPerLong); + } + + if (start_con >= 0 && end_con >= 0) { + // Constant start and end. Simple. + mem = ClearArrayNode::clear_memory(ctrl, mem, dest, + start_con, end_con, &_igvn); + } else if (start_con >= 0 && dest_size != top()) { + // Constant start, pre-rounded end after the tail of the array. + Node* end = dest_size; + mem = ClearArrayNode::clear_memory(ctrl, mem, dest, + start_con, end, &_igvn); + } else if (start_con >= 0 && slice_len != top()) { + // Constant start, non-constant end. End needs rounding up. + // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8) + intptr_t end_base = abase + (slice_idx_con << scale); + int end_round = (-1 << scale) & (BytesPerLong - 1); + Node* end = ConvI2X(slice_len); + if (scale != 0) + end = transform_later(new LShiftXNode(end, intcon(scale) )); + end_base += end_round; + end = transform_later(new AddXNode(end, MakeConX(end_base)) ); + end = transform_later(new AndXNode(end, MakeConX(~end_round)) ); + mem = ClearArrayNode::clear_memory(ctrl, mem, dest, + start_con, end, &_igvn); + } else if (start_con < 0 && dest_size != top()) { + // Non-constant start, pre-rounded end after the tail of the array. + // This is almost certainly a "round-to-end" operation. + Node* start = slice_idx; + start = ConvI2X(start); + if (scale != 0) + start = transform_later(new LShiftXNode( start, intcon(scale) )); + start = transform_later(new AddXNode(start, MakeConX(abase)) ); + if ((bump_bit | clear_low) != 0) { + int to_clear = (bump_bit | clear_low); + // Align up mod 8, then store a jint zero unconditionally + // just before the mod-8 boundary. + if (((abase + bump_bit) & ~to_clear) - bump_bit + < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) { + bump_bit = 0; + assert((abase & to_clear) == 0, "array base must be long-aligned"); + } else { + // Bump 'start' up to (or past) the next jint boundary: + start = transform_later( new AddXNode(start, MakeConX(bump_bit)) ); + assert((abase & clear_low) == 0, "array base must be int-aligned"); + } + // Round bumped 'start' down to jlong boundary in body of array. + start = transform_later(new AndXNode(start, MakeConX(~to_clear)) ); + if (bump_bit != 0) { + // Store a zero to the immediately preceding jint: + Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) ); + Node* p1 = basic_plus_adr(dest, x1); + mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered); + mem = transform_later(mem); + } + } + Node* end = dest_size; // pre-rounded + mem = ClearArrayNode::clear_memory(ctrl, mem, dest, + start, end, &_igvn); + } else { + // Non-constant start, unrounded non-constant end. + // (Nobody zeroes a random midsection of an array using this routine.) + ShouldNotReachHere(); // fix caller + } + + // Done. + merge_mem->set_memory_at(alias_idx, mem); +} + +bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io, + const TypePtr* adr_type, + BasicType basic_elem_type, + AllocateNode* alloc, + Node* src, Node* src_offset, + Node* dest, Node* dest_offset, + Node* dest_size, bool dest_uninitialized) { + // See if there is an advantage from block transfer. + int scale = exact_log2(type2aelembytes(basic_elem_type)); + if (scale >= LogBytesPerLong) + return false; // it is already a block transfer + + // Look at the alignment of the starting offsets. + int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); + + intptr_t src_off_con = (intptr_t) _igvn.find_int_con(src_offset, -1); + intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1); + if (src_off_con < 0 || dest_off_con < 0) { + // At present, we can only understand constants. + return false; + } + + intptr_t src_off = abase + (src_off_con << scale); + intptr_t dest_off = abase + (dest_off_con << scale); + + if (((src_off | dest_off) & (BytesPerLong-1)) != 0) { + // Non-aligned; too bad. + // One more chance: Pick off an initial 32-bit word. + // This is a common case, since abase can be odd mod 8. + if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt && + ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) { + Node* sptr = basic_plus_adr(src, src_off); + Node* dptr = basic_plus_adr(dest, dest_off); + uint alias_idx = C->get_alias_index(adr_type); + Node* sval = transform_later(LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), sptr, adr_type, TypeInt::INT, T_INT, MemNode::unordered)); + Node* st = transform_later(StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), dptr, adr_type, sval, T_INT, MemNode::unordered)); + (*mem)->set_memory_at(alias_idx, st); + src_off += BytesPerInt; + dest_off += BytesPerInt; + } else { + return false; + } + } + assert(src_off % BytesPerLong == 0, ""); + assert(dest_off % BytesPerLong == 0, ""); + + // Do this copy by giant steps. + Node* sptr = basic_plus_adr(src, src_off); + Node* dptr = basic_plus_adr(dest, dest_off); + Node* countx = dest_size; + countx = transform_later(new SubXNode(countx, MakeConX(dest_off))); + countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong))); + + bool disjoint_bases = true; // since alloc != NULL + generate_unchecked_arraycopy(ctrl, mem, + adr_type, T_LONG, disjoint_bases, + sptr, NULL, dptr, NULL, countx, dest_uninitialized); + + return true; +} + +// Helper function; generates code for the slow case. +// We make a call to a runtime method which emulates the native method, +// but without the native wrapper overhead. +MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac, + Node** ctrl, Node* mem, Node** io, + const TypePtr* adr_type, + Node* src, Node* src_offset, + Node* dest, Node* dest_offset, + Node* copy_length, bool dest_uninitialized) { + assert(!dest_uninitialized, "Invariant"); + + const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type(); + CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(), + "slow_arraycopy", + ac->jvms()->bci(), TypePtr::BOTTOM); + + call->init_req(TypeFunc::Control, *ctrl); + call->init_req(TypeFunc::I_O , *io); + call->init_req(TypeFunc::Memory , mem); + call->init_req(TypeFunc::ReturnAdr, top()); + call->init_req(TypeFunc::FramePtr, top()); + call->init_req(TypeFunc::Parms+0, src); + call->init_req(TypeFunc::Parms+1, src_offset); + call->init_req(TypeFunc::Parms+2, dest); + call->init_req(TypeFunc::Parms+3, dest_offset); + call->init_req(TypeFunc::Parms+4, copy_length); + copy_call_debug_info(ac, call); + + call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. + _igvn.replace_node(ac, call); + transform_later(call); + + extract_call_projections(call); + *ctrl = _fallthroughcatchproj->clone(); + transform_later(*ctrl); + + Node* m = _memproj_fallthrough->clone(); + transform_later(m); + + uint alias_idx = C->get_alias_index(adr_type); + MergeMemNode* out_mem; + if (alias_idx != Compile::AliasIdxBot) { + out_mem = MergeMemNode::make(C, mem); + out_mem->set_memory_at(alias_idx, m); + } else { + out_mem = MergeMemNode::make(C, m); + } + transform_later(out_mem); + + *io = _ioproj_fallthrough->clone(); + transform_later(*io); + + return out_mem; +} + +// Helper function; generates code for cases requiring runtime checks. +Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem, + const TypePtr* adr_type, + Node* dest_elem_klass, + Node* src, Node* src_offset, + Node* dest, Node* dest_offset, + Node* copy_length, bool dest_uninitialized) { + if ((*ctrl)->is_top()) return NULL; + + address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized); + if (copyfunc_addr == NULL) { // Stub was not generated, go slow path. + return NULL; + } + + // Pick out the parameters required to perform a store-check + // for the target array. This is an optimistic check. It will + // look in each non-null element's class, at the desired klass's + // super_check_offset, for the desired klass. + int sco_offset = in_bytes(Klass::super_check_offset_offset()); + Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset); + Node* n3 = new LoadINode(NULL, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered); + Node* check_offset = ConvI2X(transform_later(n3)); + Node* check_value = dest_elem_klass; + + Node* src_start = array_element_address(src, src_offset, T_OBJECT); + Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT); + + const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type(); + Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type, + src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value); + + finish_arraycopy_call(call, ctrl, mem, adr_type); + + Node* proj = new ProjNode(call, TypeFunc::Parms); + transform_later(proj); + + return proj; +} + +// Helper function; generates code for cases requiring runtime checks. +Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem, + const TypePtr* adr_type, + Node* src, Node* src_offset, + Node* dest, Node* dest_offset, + Node* copy_length, bool dest_uninitialized) { + if ((*ctrl)->is_top()) return NULL; + assert(!dest_uninitialized, "Invariant"); + + address copyfunc_addr = StubRoutines::generic_arraycopy(); + if (copyfunc_addr == NULL) { // Stub was not generated, go slow path. + return NULL; + } + + const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type(); + Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type, + src, src_offset, dest, dest_offset, copy_length); + + finish_arraycopy_call(call, ctrl, mem, adr_type); + + Node* proj = new ProjNode(call, TypeFunc::Parms); + transform_later(proj); + + return proj; +} + +// Helper function; generates the fast out-of-line call to an arraycopy stub. +void PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem, + const TypePtr* adr_type, + BasicType basic_elem_type, + bool disjoint_bases, + Node* src, Node* src_offset, + Node* dest, Node* dest_offset, + Node* copy_length, bool dest_uninitialized) { + if ((*ctrl)->is_top()) return; + + Node* src_start = src; + Node* dest_start = dest; + if (src_offset != NULL || dest_offset != NULL) { + src_start = array_element_address(src, src_offset, basic_elem_type); + dest_start = array_element_address(dest, dest_offset, basic_elem_type); + } + + // Figure out which arraycopy runtime method to call. + const char* copyfunc_name = "arraycopy"; + address copyfunc_addr = + basictype2arraycopy(basic_elem_type, src_offset, dest_offset, + disjoint_bases, copyfunc_name, dest_uninitialized); + + const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type(); + Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type, + src_start, dest_start, copy_length XTOP); + + finish_arraycopy_call(call, ctrl, mem, adr_type); +} + +void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) { + Node* ctrl = ac->in(TypeFunc::Control); + Node* io = ac->in(TypeFunc::I_O); + Node* src = ac->in(ArrayCopyNode::Src); + Node* src_offset = ac->in(ArrayCopyNode::SrcPos); + Node* dest = ac->in(ArrayCopyNode::Dest); + Node* dest_offset = ac->in(ArrayCopyNode::DestPos); + Node* length = ac->in(ArrayCopyNode::Length); + MergeMemNode* merge_mem = NULL; + + if (ac->is_clonebasic()) { + assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null"); + Node* mem = ac->in(TypeFunc::Memory); + const char* copyfunc_name = "arraycopy"; + address copyfunc_addr = + basictype2arraycopy(T_LONG, NULL, NULL, + true, copyfunc_name, true); + + const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; + const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type(); + + Node* call = make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, src, dest, length XTOP); + transform_later(call); + + _igvn.replace_node(ac, call); + return; + } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_cloneoop()) { + Node* mem = ac->in(TypeFunc::Memory); + merge_mem = MergeMemNode::make(C, mem); + transform_later(merge_mem); + + RegionNode* slow_region = new RegionNode(1); + transform_later(slow_region); + + AllocateArrayNode* alloc = NULL; + if (ac->is_alloc_tightly_coupled()) { + alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn); + assert(alloc != NULL, "expect alloc"); + } + + generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, + TypeAryPtr::OOPS, T_OBJECT, + src, src_offset, dest, dest_offset, length, + true, !ac->is_copyofrange()); + + return; + } + + AllocateArrayNode* alloc = NULL; + if (ac->is_alloc_tightly_coupled()) { + alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn); + assert(alloc != NULL, "expect alloc"); + } + + assert(ac->is_arraycopy() || ac->is_arraycopy_notest(), "should be an arraycopy"); + + // Compile time checks. If any of these checks cannot be verified at compile time, + // we do not make a fast path for this call. Instead, we let the call remain as it + // is. The checks we choose to mandate at compile time are: + // + // (1) src and dest are arrays. + const Type* src_type = src->Value(&_igvn); + const Type* dest_type = dest->Value(&_igvn); + const TypeAryPtr* top_src = src_type->isa_aryptr(); + const TypeAryPtr* top_dest = dest_type->isa_aryptr(); + + if (top_src == NULL || top_src->klass() == NULL || + top_dest == NULL || top_dest->klass() == NULL) { + // Conservatively insert a memory barrier on all memory slices. + // Do not let writes into the source float below the arraycopy. + { + Node* mem = ac->in(TypeFunc::Memory); + insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder); + + merge_mem = MergeMemNode::make(C, mem); + transform_later(merge_mem); + } + + // Call StubRoutines::generic_arraycopy stub. + Node* mem = generate_arraycopy(ac, NULL, &ctrl, merge_mem, &io, + TypeRawPtr::BOTTOM, T_CONFLICT, + src, src_offset, dest, dest_offset, length); + + // Do not let reads from the destination float above the arraycopy. + // Since we cannot type the arrays, we don't know which slices + // might be affected. We could restrict this barrier only to those + // memory slices which pertain to array elements--but don't bother. + if (!InsertMemBarAfterArraycopy) { + // (If InsertMemBarAfterArraycopy, there is already one in place.) + insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder); + } + return; + } + // (2) src and dest arrays must have elements of the same BasicType + // Figure out the size and type of the elements we will be copying. + BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); + BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); + if (src_elem == T_ARRAY) src_elem = T_OBJECT; + if (dest_elem == T_ARRAY) dest_elem = T_OBJECT; + + if (src_elem != dest_elem || dest_elem == T_VOID) { + // The component types are not the same or are not recognized. Punt. + // (But, avoid the native method wrapper to JVM_ArrayCopy.) + { + Node* mem = ac->in(TypeFunc::Memory); + merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false); + } + + _igvn.replace_node(_memproj_fallthrough, merge_mem); + _igvn.replace_node(_ioproj_fallthrough, io); + _igvn.replace_node(_fallthroughcatchproj, ctrl); + return; + } + + //--------------------------------------------------------------------------- + // We will make a fast path for this call to arraycopy. + + // We have the following tests left to perform: + // + // (3) src and dest must not be null. + // (4) src_offset must not be negative. + // (5) dest_offset must not be negative. + // (6) length must not be negative. + // (7) src_offset + length must not exceed length of src. + // (8) dest_offset + length must not exceed length of dest. + // (9) each element of an oop array must be assignable + + { + Node* mem = ac->in(TypeFunc::Memory); + merge_mem = MergeMemNode::make(C, mem); + transform_later(merge_mem); + } + + RegionNode* slow_region = new RegionNode(1); + transform_later(slow_region); + + if (!ac->is_arraycopy_notest()) { + // (3) operands must not be null + // We currently perform our null checks with the null_check routine. + // This means that the null exceptions will be reported in the caller + // rather than (correctly) reported inside of the native arraycopy call. + // This should be corrected, given time. We do our null check with the + // stack pointer restored. + // null checks done library_call.cpp + + // (4) src_offset must not be negative. + generate_negative_guard(&ctrl, src_offset, slow_region); + + // (5) dest_offset must not be negative. + generate_negative_guard(&ctrl, dest_offset, slow_region); + + // (6) length must not be negative (moved to generate_arraycopy()). + // generate_negative_guard(length, slow_region); + + // (7) src_offset + length must not exceed length of src. + Node* r_adr = new AddPNode(src, src, MakeConX(arrayOopDesc::length_offset_in_bytes())); + transform_later(r_adr); + Node* alen = new LoadRangeNode(0, C->immutable_memory(), r_adr, TypeInt::POS); + transform_later(alen); + generate_limit_guard(&ctrl, + src_offset, length, + alen, + slow_region); + + // (8) dest_offset + length must not exceed length of dest. + r_adr = new AddPNode(dest, dest, MakeConX(arrayOopDesc::length_offset_in_bytes())); + transform_later(r_adr); + alen = new LoadRangeNode(0, C->immutable_memory(), r_adr, TypeInt::POS); + transform_later(alen); + generate_limit_guard(&ctrl, + dest_offset, length, + alen, + slow_region); + + // (9) each element of an oop array must be assignable + // The generate_arraycopy subroutine checks this. + } + // This is where the memory effects are placed: + const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem); + generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, + adr_type, dest_elem, + src, src_offset, dest, dest_offset, length, + false, false, slow_region); +}