1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 class AbstractLockNode;
  38 class AddNode;
  39 class AddPNode;
  40 class AliasInfo;
  41 class AllocateArrayNode;
  42 class AllocateNode;
  43 class ArrayCopyNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CatchNode;
  55 class CatchProjNode;
  56 class CheckCastPPNode;
  57 class ClearArrayNode;
  58 class CmpNode;
  59 class CodeBuffer;
  60 class ConstraintCastNode;
  61 class ConNode;
  62 class CountedLoopNode;
  63 class CountedLoopEndNode;
  64 class DecodeNarrowPtrNode;
  65 class DecodeNNode;
  66 class DecodeNKlassNode;
  67 class EncodeNarrowPtrNode;
  68 class EncodePNode;
  69 class EncodePKlassNode;
  70 class FastLockNode;
  71 class FastUnlockNode;
  72 class IfNode;
  73 class IfFalseNode;
  74 class IfTrueNode;
  75 class InitializeNode;
  76 class JVMState;
  77 class JumpNode;
  78 class JumpProjNode;
  79 class LoadNode;
  80 class LoadStoreNode;
  81 class LockNode;
  82 class LoopNode;
  83 class MachBranchNode;
  84 class MachCallDynamicJavaNode;
  85 class MachCallJavaNode;
  86 class MachCallLeafNode;
  87 class MachCallNode;
  88 class MachCallRuntimeNode;
  89 class MachCallStaticJavaNode;
  90 class MachConstantBaseNode;
  91 class MachConstantNode;
  92 class MachGotoNode;
  93 class MachIfNode;
  94 class MachNode;
  95 class MachNullCheckNode;
  96 class MachProjNode;
  97 class MachReturnNode;
  98 class MachSafePointNode;
  99 class MachSpillCopyNode;
 100 class MachTempNode;
 101 class Matcher;
 102 class MemBarNode;
 103 class MemBarStoreStoreNode;
 104 class MemNode;
 105 class MergeMemNode;
 106 class MulNode;
 107 class MultiNode;
 108 class MultiBranchNode;
 109 class NeverBranchNode;
 110 class Node;
 111 class Node_Array;
 112 class Node_List;
 113 class Node_Stack;
 114 class NullCheckNode;
 115 class OopMap;
 116 class ParmNode;
 117 class PCTableNode;
 118 class PhaseCCP;
 119 class PhaseGVN;
 120 class PhaseIterGVN;
 121 class PhaseRegAlloc;
 122 class PhaseTransform;
 123 class PhaseValues;
 124 class PhiNode;
 125 class Pipeline;
 126 class ProjNode;
 127 class RegMask;
 128 class RegionNode;
 129 class RootNode;
 130 class SafePointNode;
 131 class SafePointScalarObjectNode;
 132 class StartNode;
 133 class State;
 134 class StoreNode;
 135 class SubNode;
 136 class Type;
 137 class TypeNode;
 138 class UnlockNode;
 139 class VectorNode;
 140 class LoadVectorNode;
 141 class StoreVectorNode;
 142 class VectorSet;
 143 typedef void (*NFunc)(Node&,void*);
 144 extern "C" {
 145   typedef int (*C_sort_func_t)(const void *, const void *);
 146 }
 147 
 148 // The type of all node counts and indexes.
 149 // It must hold at least 16 bits, but must also be fast to load and store.
 150 // This type, if less than 32 bits, could limit the number of possible nodes.
 151 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 152 typedef unsigned int node_idx_t;
 153 
 154 
 155 #ifndef OPTO_DU_ITERATOR_ASSERT
 156 #ifdef ASSERT
 157 #define OPTO_DU_ITERATOR_ASSERT 1
 158 #else
 159 #define OPTO_DU_ITERATOR_ASSERT 0
 160 #endif
 161 #endif //OPTO_DU_ITERATOR_ASSERT
 162 
 163 #if OPTO_DU_ITERATOR_ASSERT
 164 class DUIterator;
 165 class DUIterator_Fast;
 166 class DUIterator_Last;
 167 #else
 168 typedef uint   DUIterator;
 169 typedef Node** DUIterator_Fast;
 170 typedef Node** DUIterator_Last;
 171 #endif
 172 
 173 // Node Sentinel
 174 #define NodeSentinel (Node*)-1
 175 
 176 // Unknown count frequency
 177 #define COUNT_UNKNOWN (-1.0f)
 178 
 179 //------------------------------Node-------------------------------------------
 180 // Nodes define actions in the program.  They create values, which have types.
 181 // They are both vertices in a directed graph and program primitives.  Nodes
 182 // are labeled; the label is the "opcode", the primitive function in the lambda
 183 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 184 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 185 // the Node's function.  These inputs also define a Type equation for the Node.
 186 // Solving these Type equations amounts to doing dataflow analysis.
 187 // Control and data are uniformly represented in the graph.  Finally, Nodes
 188 // have a unique dense integer index which is used to index into side arrays
 189 // whenever I have phase-specific information.
 190 
 191 class Node {
 192   friend class VMStructs;
 193 
 194   // Lots of restrictions on cloning Nodes
 195   Node(const Node&);            // not defined; linker error to use these
 196   Node &operator=(const Node &rhs);
 197 
 198 public:
 199   friend class Compile;
 200   #if OPTO_DU_ITERATOR_ASSERT
 201   friend class DUIterator_Common;
 202   friend class DUIterator;
 203   friend class DUIterator_Fast;
 204   friend class DUIterator_Last;
 205   #endif
 206 
 207   // Because Nodes come and go, I define an Arena of Node structures to pull
 208   // from.  This should allow fast access to node creation & deletion.  This
 209   // field is a local cache of a value defined in some "program fragment" for
 210   // which these Nodes are just a part of.
 211 
 212   inline void* operator new(size_t x) throw() {
 213     Compile* C = Compile::current();
 214     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 215 #ifdef ASSERT
 216     n->_in = (Node**)n; // magic cookie for assertion check
 217 #endif
 218     return (void*)n;
 219   }
 220 
 221   // Delete is a NOP
 222   void operator delete( void *ptr ) {}
 223   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 224   void destruct();
 225 
 226   // Create a new Node.  Required is the number is of inputs required for
 227   // semantic correctness.
 228   Node( uint required );
 229 
 230   // Create a new Node with given input edges.
 231   // This version requires use of the "edge-count" new.
 232   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 233   Node( Node *n0 );
 234   Node( Node *n0, Node *n1 );
 235   Node( Node *n0, Node *n1, Node *n2 );
 236   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 237   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 238   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 239   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 240             Node *n4, Node *n5, Node *n6 );
 241 
 242   // Clone an inherited Node given only the base Node type.
 243   Node* clone() const;
 244 
 245   // Clone a Node, immediately supplying one or two new edges.
 246   // The first and second arguments, if non-null, replace in(1) and in(2),
 247   // respectively.
 248   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 249     Node* nn = clone();
 250     if (in1 != NULL)  nn->set_req(1, in1);
 251     if (in2 != NULL)  nn->set_req(2, in2);
 252     return nn;
 253   }
 254 
 255 private:
 256   // Shared setup for the above constructors.
 257   // Handles all interactions with Compile::current.
 258   // Puts initial values in all Node fields except _idx.
 259   // Returns the initial value for _idx, which cannot
 260   // be initialized by assignment.
 261   inline int Init(int req);
 262 
 263 //----------------- input edge handling
 264 protected:
 265   friend class PhaseCFG;        // Access to address of _in array elements
 266   Node **_in;                   // Array of use-def references to Nodes
 267   Node **_out;                  // Array of def-use references to Nodes
 268 
 269   // Input edges are split into two categories.  Required edges are required
 270   // for semantic correctness; order is important and NULLs are allowed.
 271   // Precedence edges are used to help determine execution order and are
 272   // added, e.g., for scheduling purposes.  They are unordered and not
 273   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 274   // are required, from _cnt to _max-1 are precedence edges.
 275   node_idx_t _cnt;              // Total number of required Node inputs.
 276 
 277   node_idx_t _max;              // Actual length of input array.
 278 
 279   // Output edges are an unordered list of def-use edges which exactly
 280   // correspond to required input edges which point from other nodes
 281   // to this one.  Thus the count of the output edges is the number of
 282   // users of this node.
 283   node_idx_t _outcnt;           // Total number of Node outputs.
 284 
 285   node_idx_t _outmax;           // Actual length of output array.
 286 
 287   // Grow the actual input array to the next larger power-of-2 bigger than len.
 288   void grow( uint len );
 289   // Grow the output array to the next larger power-of-2 bigger than len.
 290   void out_grow( uint len );
 291 
 292  public:
 293   // Each Node is assigned a unique small/dense number.  This number is used
 294   // to index into auxiliary arrays of data and bitvectors.
 295   // It is declared const to defend against inadvertant assignment,
 296   // since it is used by clients as a naked field.
 297   const node_idx_t _idx;
 298 
 299   // Get the (read-only) number of input edges
 300   uint req() const { return _cnt; }
 301   uint len() const { return _max; }
 302   // Get the (read-only) number of output edges
 303   uint outcnt() const { return _outcnt; }
 304 
 305 #if OPTO_DU_ITERATOR_ASSERT
 306   // Iterate over the out-edges of this node.  Deletions are illegal.
 307   inline DUIterator outs() const;
 308   // Use this when the out array might have changed to suppress asserts.
 309   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 310   // Does the node have an out at this position?  (Used for iteration.)
 311   inline bool has_out(DUIterator& i) const;
 312   inline Node*    out(DUIterator& i) const;
 313   // Iterate over the out-edges of this node.  All changes are illegal.
 314   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 315   inline Node*    fast_out(DUIterator_Fast& i) const;
 316   // Iterate over the out-edges of this node, deleting one at a time.
 317   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 318   inline Node*    last_out(DUIterator_Last& i) const;
 319   // The inline bodies of all these methods are after the iterator definitions.
 320 #else
 321   // Iterate over the out-edges of this node.  Deletions are illegal.
 322   // This iteration uses integral indexes, to decouple from array reallocations.
 323   DUIterator outs() const  { return 0; }
 324   // Use this when the out array might have changed to suppress asserts.
 325   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 326 
 327   // Reference to the i'th output Node.  Error if out of bounds.
 328   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 329   // Does the node have an out at this position?  (Used for iteration.)
 330   bool has_out(DUIterator i) const { return i < _outcnt; }
 331 
 332   // Iterate over the out-edges of this node.  All changes are illegal.
 333   // This iteration uses a pointer internal to the out array.
 334   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 335     Node** out = _out;
 336     // Assign a limit pointer to the reference argument:
 337     max = out + (ptrdiff_t)_outcnt;
 338     // Return the base pointer:
 339     return out;
 340   }
 341   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 342   // Iterate over the out-edges of this node, deleting one at a time.
 343   // This iteration uses a pointer internal to the out array.
 344   DUIterator_Last last_outs(DUIterator_Last& min) const {
 345     Node** out = _out;
 346     // Assign a limit pointer to the reference argument:
 347     min = out;
 348     // Return the pointer to the start of the iteration:
 349     return out + (ptrdiff_t)_outcnt - 1;
 350   }
 351   Node*    last_out(DUIterator_Last i) const  { return *i; }
 352 #endif
 353 
 354   // Reference to the i'th input Node.  Error if out of bounds.
 355   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
 356   // Reference to the i'th input Node.  NULL if out of bounds.
 357   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 358   // Reference to the i'th output Node.  Error if out of bounds.
 359   // Use this accessor sparingly.  We are going trying to use iterators instead.
 360   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 361   // Return the unique out edge.
 362   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 363   // Delete out edge at position 'i' by moving last out edge to position 'i'
 364   void  raw_del_out(uint i) {
 365     assert(i < _outcnt,"oob");
 366     assert(_outcnt > 0,"oob");
 367     #if OPTO_DU_ITERATOR_ASSERT
 368     // Record that a change happened here.
 369     debug_only(_last_del = _out[i]; ++_del_tick);
 370     #endif
 371     _out[i] = _out[--_outcnt];
 372     // Smash the old edge so it can't be used accidentally.
 373     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 374   }
 375 
 376 #ifdef ASSERT
 377   bool is_dead() const;
 378 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 379 #endif
 380   // Check whether node has become unreachable
 381   bool is_unreachable(PhaseIterGVN &igvn) const;
 382 
 383   // Set a required input edge, also updates corresponding output edge
 384   void add_req( Node *n ); // Append a NEW required input
 385   void add_req( Node *n0, Node *n1 ) {
 386     add_req(n0); add_req(n1); }
 387   void add_req( Node *n0, Node *n1, Node *n2 ) {
 388     add_req(n0); add_req(n1); add_req(n2); }
 389   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 390   void del_req( uint idx ); // Delete required edge & compact
 391   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 392   void ins_req( uint i, Node *n ); // Insert a NEW required input
 393   void set_req( uint i, Node *n ) {
 394     assert( is_not_dead(n), "can not use dead node");
 395     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
 396     assert( !VerifyHashTableKeys || _hash_lock == 0,
 397             "remove node from hash table before modifying it");
 398     Node** p = &_in[i];    // cache this._in, across the del_out call
 399     if (*p != NULL)  (*p)->del_out((Node *)this);
 400     (*p) = n;
 401     if (n != NULL)      n->add_out((Node *)this);
 402     Compile::current()->record_modified_node(this);
 403   }
 404   // Light version of set_req() to init inputs after node creation.
 405   void init_req( uint i, Node *n ) {
 406     assert( i == 0 && this == n ||
 407             is_not_dead(n), "can not use dead node");
 408     assert( i < _cnt, "oob");
 409     assert( !VerifyHashTableKeys || _hash_lock == 0,
 410             "remove node from hash table before modifying it");
 411     assert( _in[i] == NULL, "sanity");
 412     _in[i] = n;
 413     if (n != NULL)      n->add_out((Node *)this);
 414     Compile::current()->record_modified_node(this);
 415   }
 416   // Find first occurrence of n among my edges:
 417   int find_edge(Node* n);
 418   int replace_edge(Node* old, Node* neww);
 419   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 420   // NULL out all inputs to eliminate incoming Def-Use edges.
 421   // Return the number of edges between 'n' and 'this'
 422   int  disconnect_inputs(Node *n, Compile *c);
 423 
 424   // Quickly, return true if and only if I am Compile::current()->top().
 425   bool is_top() const {
 426     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 427     return (_out == NULL);
 428   }
 429   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 430   void setup_is_top();
 431 
 432   // Strip away casting.  (It is depth-limited.)
 433   Node* uncast() const;
 434   // Return whether two Nodes are equivalent, after stripping casting.
 435   bool eqv_uncast(const Node* n) const {
 436     return (this->uncast() == n->uncast());
 437   }
 438 
 439 private:
 440   static Node* uncast_helper(const Node* n);
 441 
 442   // Add an output edge to the end of the list
 443   void add_out( Node *n ) {
 444     if (is_top())  return;
 445     if( _outcnt == _outmax ) out_grow(_outcnt);
 446     _out[_outcnt++] = n;
 447   }
 448   // Delete an output edge
 449   void del_out( Node *n ) {
 450     if (is_top())  return;
 451     Node** outp = &_out[_outcnt];
 452     // Find and remove n
 453     do {
 454       assert(outp > _out, "Missing Def-Use edge");
 455     } while (*--outp != n);
 456     *outp = _out[--_outcnt];
 457     // Smash the old edge so it can't be used accidentally.
 458     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 459     // Record that a change happened here.
 460     #if OPTO_DU_ITERATOR_ASSERT
 461     debug_only(_last_del = n; ++_del_tick);
 462     #endif
 463   }
 464 
 465 public:
 466   // Globally replace this node by a given new node, updating all uses.
 467   void replace_by(Node* new_node);
 468   // Globally replace this node by a given new node, updating all uses
 469   // and cutting input edges of old node.
 470   void subsume_by(Node* new_node, Compile* c) {
 471     replace_by(new_node);
 472     disconnect_inputs(NULL, c);
 473   }
 474   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 475   // Find the one non-null required input.  RegionNode only
 476   Node *nonnull_req() const;
 477   // Add or remove precedence edges
 478   void add_prec( Node *n );
 479   void rm_prec( uint i );
 480   void set_prec( uint i, Node *n ) {
 481     assert( is_not_dead(n), "can not use dead node");
 482     assert( i >= _cnt, "not a precedence edge");
 483     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 484     _in[i] = n;
 485     if (n != NULL) n->add_out((Node *)this);
 486   }
 487   // Set this node's index, used by cisc_version to replace current node
 488   void set_idx(uint new_idx) {
 489     const node_idx_t* ref = &_idx;
 490     *(node_idx_t*)ref = new_idx;
 491   }
 492   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 493   void swap_edges(uint i1, uint i2) {
 494     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 495     // Def-Use info is unchanged
 496     Node* n1 = in(i1);
 497     Node* n2 = in(i2);
 498     _in[i1] = n2;
 499     _in[i2] = n1;
 500     // If this node is in the hash table, make sure it doesn't need a rehash.
 501     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 502   }
 503 
 504   // Iterators over input Nodes for a Node X are written as:
 505   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 506   // NOTE: Required edges can contain embedded NULL pointers.
 507 
 508 //----------------- Other Node Properties
 509 
 510   // Generate class id for some ideal nodes to avoid virtual query
 511   // methods is_<Node>().
 512   // Class id is the set of bits corresponded to the node class and all its
 513   // super classes so that queries for super classes are also valid.
 514   // Subclasses of the same super class have different assigned bit
 515   // (the third parameter in the macro DEFINE_CLASS_ID).
 516   // Classes with deeper hierarchy are declared first.
 517   // Classes with the same hierarchy depth are sorted by usage frequency.
 518   //
 519   // The query method masks the bits to cut off bits of subclasses
 520   // and then compare the result with the class id
 521   // (see the macro DEFINE_CLASS_QUERY below).
 522   //
 523   //  Class_MachCall=30, ClassMask_MachCall=31
 524   // 12               8               4               0
 525   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 526   //                                  |   |   |   |
 527   //                                  |   |   |   Bit_Mach=2
 528   //                                  |   |   Bit_MachReturn=4
 529   //                                  |   Bit_MachSafePoint=8
 530   //                                  Bit_MachCall=16
 531   //
 532   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 533   // 12               8               4               0
 534   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 535   //                              |   |   |
 536   //                              |   |   Bit_Region=8
 537   //                              |   Bit_Loop=16
 538   //                              Bit_CountedLoop=32
 539 
 540   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 541   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 542   Class_##cl = Class_##supcl + Bit_##cl , \
 543   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 544 
 545   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 546   // so that it's values fits into 16 bits.
 547   enum NodeClasses {
 548     Bit_Node   = 0x0000,
 549     Class_Node = 0x0000,
 550     ClassMask_Node = 0xFFFF,
 551 
 552     DEFINE_CLASS_ID(Multi, Node, 0)
 553       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 554         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 555           DEFINE_CLASS_ID(CallJava,         Call, 0)
 556             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 557             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 558           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 559             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 560           DEFINE_CLASS_ID(Allocate,         Call, 2)
 561             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 562           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 563             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 564             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 565           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 566       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 567         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 568           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 569           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 570         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 571           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 572         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 573       DEFINE_CLASS_ID(Start,       Multi, 2)
 574       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 575         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 576         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 577 
 578     DEFINE_CLASS_ID(Mach,  Node, 1)
 579       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 580         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 581           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 582             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 583               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 584               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 585             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 586               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 587       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 588         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 589         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 590         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 591       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 592       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 593       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 594       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 595 
 596     DEFINE_CLASS_ID(Type,  Node, 2)
 597       DEFINE_CLASS_ID(Phi,   Type, 0)
 598       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 599       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 600       DEFINE_CLASS_ID(CMove, Type, 3)
 601       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 602       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 603         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 604         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 605       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 606         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 607         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 608 
 609     DEFINE_CLASS_ID(Proj,  Node, 3)
 610       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 611       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 612       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 613       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 614       DEFINE_CLASS_ID(Parm,      Proj, 4)
 615       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 616 
 617     DEFINE_CLASS_ID(Mem,   Node, 4)
 618       DEFINE_CLASS_ID(Load,  Mem, 0)
 619         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 620       DEFINE_CLASS_ID(Store, Mem, 1)
 621         DEFINE_CLASS_ID(StoreVector, Store, 0)
 622       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 623 
 624     DEFINE_CLASS_ID(Region, Node, 5)
 625       DEFINE_CLASS_ID(Loop, Region, 0)
 626         DEFINE_CLASS_ID(Root,        Loop, 0)
 627         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 628 
 629     DEFINE_CLASS_ID(Sub,   Node, 6)
 630       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 631         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 632         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 633 
 634     DEFINE_CLASS_ID(MergeMem, Node, 7)
 635     DEFINE_CLASS_ID(Bool,     Node, 8)
 636     DEFINE_CLASS_ID(AddP,     Node, 9)
 637     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 638     DEFINE_CLASS_ID(Add,      Node, 11)
 639     DEFINE_CLASS_ID(Mul,      Node, 12)
 640     DEFINE_CLASS_ID(Vector,   Node, 13)
 641     DEFINE_CLASS_ID(ClearArray, Node, 14)
 642 
 643     _max_classes  = ClassMask_ClearArray
 644   };
 645   #undef DEFINE_CLASS_ID
 646 
 647   // Flags are sorted by usage frequency.
 648   enum NodeFlags {
 649     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 650     Flag_rematerialize               = Flag_is_Copy << 1,
 651     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 652     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 653     Flag_is_Con                      = Flag_is_macro << 1,
 654     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 655     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 656     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 657     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 658     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 659     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 660     Flag_is_expensive                = Flag_has_call << 1,
 661     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 662   };
 663 
 664 private:
 665   jushort _class_id;
 666   jushort _flags;
 667 
 668 protected:
 669   // These methods should be called from constructors only.
 670   void init_class_id(jushort c) {
 671     assert(c <= _max_classes, "invalid node class");
 672     _class_id = c; // cast out const
 673   }
 674   void init_flags(jushort fl) {
 675     assert(fl <= _max_flags, "invalid node flag");
 676     _flags |= fl;
 677   }
 678   void clear_flag(jushort fl) {
 679     assert(fl <= _max_flags, "invalid node flag");
 680     _flags &= ~fl;
 681   }
 682 
 683 public:
 684   const jushort class_id() const { return _class_id; }
 685 
 686   const jushort flags() const { return _flags; }
 687 
 688   // Return a dense integer opcode number
 689   virtual int Opcode() const;
 690 
 691   // Virtual inherited Node size
 692   virtual uint size_of() const;
 693 
 694   // Other interesting Node properties
 695   #define DEFINE_CLASS_QUERY(type)                           \
 696   bool is_##type() const {                                   \
 697     return ((_class_id & ClassMask_##type) == Class_##type); \
 698   }                                                          \
 699   type##Node *as_##type() const {                            \
 700     assert(is_##type(), "invalid node class");               \
 701     return (type##Node*)this;                                \
 702   }                                                          \
 703   type##Node* isa_##type() const {                           \
 704     return (is_##type()) ? as_##type() : NULL;               \
 705   }
 706 
 707   DEFINE_CLASS_QUERY(AbstractLock)
 708   DEFINE_CLASS_QUERY(Add)
 709   DEFINE_CLASS_QUERY(AddP)
 710   DEFINE_CLASS_QUERY(Allocate)
 711   DEFINE_CLASS_QUERY(AllocateArray)
 712   DEFINE_CLASS_QUERY(ArrayCopy)
 713   DEFINE_CLASS_QUERY(Bool)
 714   DEFINE_CLASS_QUERY(BoxLock)
 715   DEFINE_CLASS_QUERY(Call)
 716   DEFINE_CLASS_QUERY(CallDynamicJava)
 717   DEFINE_CLASS_QUERY(CallJava)
 718   DEFINE_CLASS_QUERY(CallLeaf)
 719   DEFINE_CLASS_QUERY(CallRuntime)
 720   DEFINE_CLASS_QUERY(CallStaticJava)
 721   DEFINE_CLASS_QUERY(Catch)
 722   DEFINE_CLASS_QUERY(CatchProj)
 723   DEFINE_CLASS_QUERY(CheckCastPP)
 724   DEFINE_CLASS_QUERY(ConstraintCast)
 725   DEFINE_CLASS_QUERY(ClearArray)
 726   DEFINE_CLASS_QUERY(CMove)
 727   DEFINE_CLASS_QUERY(Cmp)
 728   DEFINE_CLASS_QUERY(CountedLoop)
 729   DEFINE_CLASS_QUERY(CountedLoopEnd)
 730   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 731   DEFINE_CLASS_QUERY(DecodeN)
 732   DEFINE_CLASS_QUERY(DecodeNKlass)
 733   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 734   DEFINE_CLASS_QUERY(EncodeP)
 735   DEFINE_CLASS_QUERY(EncodePKlass)
 736   DEFINE_CLASS_QUERY(FastLock)
 737   DEFINE_CLASS_QUERY(FastUnlock)
 738   DEFINE_CLASS_QUERY(If)
 739   DEFINE_CLASS_QUERY(IfFalse)
 740   DEFINE_CLASS_QUERY(IfTrue)
 741   DEFINE_CLASS_QUERY(Initialize)
 742   DEFINE_CLASS_QUERY(Jump)
 743   DEFINE_CLASS_QUERY(JumpProj)
 744   DEFINE_CLASS_QUERY(Load)
 745   DEFINE_CLASS_QUERY(LoadStore)
 746   DEFINE_CLASS_QUERY(Lock)
 747   DEFINE_CLASS_QUERY(Loop)
 748   DEFINE_CLASS_QUERY(Mach)
 749   DEFINE_CLASS_QUERY(MachBranch)
 750   DEFINE_CLASS_QUERY(MachCall)
 751   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 752   DEFINE_CLASS_QUERY(MachCallJava)
 753   DEFINE_CLASS_QUERY(MachCallLeaf)
 754   DEFINE_CLASS_QUERY(MachCallRuntime)
 755   DEFINE_CLASS_QUERY(MachCallStaticJava)
 756   DEFINE_CLASS_QUERY(MachConstantBase)
 757   DEFINE_CLASS_QUERY(MachConstant)
 758   DEFINE_CLASS_QUERY(MachGoto)
 759   DEFINE_CLASS_QUERY(MachIf)
 760   DEFINE_CLASS_QUERY(MachNullCheck)
 761   DEFINE_CLASS_QUERY(MachProj)
 762   DEFINE_CLASS_QUERY(MachReturn)
 763   DEFINE_CLASS_QUERY(MachSafePoint)
 764   DEFINE_CLASS_QUERY(MachSpillCopy)
 765   DEFINE_CLASS_QUERY(MachTemp)
 766   DEFINE_CLASS_QUERY(Mem)
 767   DEFINE_CLASS_QUERY(MemBar)
 768   DEFINE_CLASS_QUERY(MemBarStoreStore)
 769   DEFINE_CLASS_QUERY(MergeMem)
 770   DEFINE_CLASS_QUERY(Mul)
 771   DEFINE_CLASS_QUERY(Multi)
 772   DEFINE_CLASS_QUERY(MultiBranch)
 773   DEFINE_CLASS_QUERY(Parm)
 774   DEFINE_CLASS_QUERY(PCTable)
 775   DEFINE_CLASS_QUERY(Phi)
 776   DEFINE_CLASS_QUERY(Proj)
 777   DEFINE_CLASS_QUERY(Region)
 778   DEFINE_CLASS_QUERY(Root)
 779   DEFINE_CLASS_QUERY(SafePoint)
 780   DEFINE_CLASS_QUERY(SafePointScalarObject)
 781   DEFINE_CLASS_QUERY(Start)
 782   DEFINE_CLASS_QUERY(Store)
 783   DEFINE_CLASS_QUERY(Sub)
 784   DEFINE_CLASS_QUERY(Type)
 785   DEFINE_CLASS_QUERY(Vector)
 786   DEFINE_CLASS_QUERY(LoadVector)
 787   DEFINE_CLASS_QUERY(StoreVector)
 788   DEFINE_CLASS_QUERY(Unlock)
 789 
 790   #undef DEFINE_CLASS_QUERY
 791 
 792   // duplicate of is_MachSpillCopy()
 793   bool is_SpillCopy () const {
 794     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 795   }
 796 
 797   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 798   // The data node which is safe to leave in dead loop during IGVN optimization.
 799   bool is_dead_loop_safe() const {
 800     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 801            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 802             (!is_Proj() || !in(0)->is_Allocate()));
 803   }
 804 
 805   // is_Copy() returns copied edge index (0 or 1)
 806   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 807 
 808   virtual bool is_CFG() const { return false; }
 809 
 810   // If this node is control-dependent on a test, can it be
 811   // rerouted to a dominating equivalent test?  This is usually
 812   // true of non-CFG nodes, but can be false for operations which
 813   // depend for their correct sequencing on more than one test.
 814   // (In that case, hoisting to a dominating test may silently
 815   // skip some other important test.)
 816   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 817 
 818   // When building basic blocks, I need to have a notion of block beginning
 819   // Nodes, next block selector Nodes (block enders), and next block
 820   // projections.  These calls need to work on their machine equivalents.  The
 821   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 822   bool is_block_start() const {
 823     if ( is_Region() )
 824       return this == (const Node*)in(0);
 825     else
 826       return is_Start();
 827   }
 828 
 829   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 830   // Goto and Return.  This call also returns the block ending Node.
 831   virtual const Node *is_block_proj() const;
 832 
 833   // The node is a "macro" node which needs to be expanded before matching
 834   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 835   // The node is expensive: the best control is set during loop opts
 836   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 837 
 838 //----------------- Optimization
 839 
 840   // Get the worst-case Type output for this Node.
 841   virtual const class Type *bottom_type() const;
 842 
 843   // If we find a better type for a node, try to record it permanently.
 844   // Return true if this node actually changed.
 845   // Be sure to do the hash_delete game in the "rehash" variant.
 846   void raise_bottom_type(const Type* new_type);
 847 
 848   // Get the address type with which this node uses and/or defs memory,
 849   // or NULL if none.  The address type is conservatively wide.
 850   // Returns non-null for calls, membars, loads, stores, etc.
 851   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 852   virtual const class TypePtr *adr_type() const { return NULL; }
 853 
 854   // Return an existing node which computes the same function as this node.
 855   // The optimistic combined algorithm requires this to return a Node which
 856   // is a small number of steps away (e.g., one of my inputs).
 857   virtual Node *Identity( PhaseTransform *phase );
 858 
 859   // Return the set of values this Node can take on at runtime.
 860   virtual const Type *Value( PhaseTransform *phase ) const;
 861 
 862   // Return a node which is more "ideal" than the current node.
 863   // The invariants on this call are subtle.  If in doubt, read the
 864   // treatise in node.cpp above the default implemention AND TEST WITH
 865   // +VerifyIterativeGVN!
 866   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 867 
 868   // Some nodes have specific Ideal subgraph transformations only if they are
 869   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 870   // for the transformations to happen.
 871   bool has_special_unique_user() const;
 872 
 873   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 874   Node* find_exact_control(Node* ctrl);
 875 
 876   // Check if 'this' node dominates or equal to 'sub'.
 877   bool dominates(Node* sub, Node_List &nlist);
 878 
 879 protected:
 880   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 881 public:
 882 
 883   // Idealize graph, using DU info.  Done after constant propagation
 884   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 885 
 886   // See if there is valid pipeline info
 887   static  const Pipeline *pipeline_class();
 888   virtual const Pipeline *pipeline() const;
 889 
 890   // Compute the latency from the def to this instruction of the ith input node
 891   uint latency(uint i);
 892 
 893   // Hash & compare functions, for pessimistic value numbering
 894 
 895   // If the hash function returns the special sentinel value NO_HASH,
 896   // the node is guaranteed never to compare equal to any other node.
 897   // If we accidentally generate a hash with value NO_HASH the node
 898   // won't go into the table and we'll lose a little optimization.
 899   enum { NO_HASH = 0 };
 900   virtual uint hash() const;
 901   virtual uint cmp( const Node &n ) const;
 902 
 903   // Operation appears to be iteratively computed (such as an induction variable)
 904   // It is possible for this operation to return false for a loop-varying
 905   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 906   bool is_iteratively_computed();
 907 
 908   // Determine if a node is Counted loop induction variable.
 909   // The method is defined in loopnode.cpp.
 910   const Node* is_loop_iv() const;
 911 
 912   // Return a node with opcode "opc" and same inputs as "this" if one can
 913   // be found; Otherwise return NULL;
 914   Node* find_similar(int opc);
 915 
 916   // Return the unique control out if only one. Null if none or more than one.
 917   Node* unique_ctrl_out();
 918 
 919 //----------------- Code Generation
 920 
 921   // Ideal register class for Matching.  Zero means unmatched instruction
 922   // (these are cloned instead of converted to machine nodes).
 923   virtual uint ideal_reg() const;
 924 
 925   static const uint NotAMachineReg;   // must be > max. machine register
 926 
 927   // Do we Match on this edge index or not?  Generally false for Control
 928   // and true for everything else.  Weird for calls & returns.
 929   virtual uint match_edge(uint idx) const;
 930 
 931   // Register class output is returned in
 932   virtual const RegMask &out_RegMask() const;
 933   // Register class input is expected in
 934   virtual const RegMask &in_RegMask(uint) const;
 935   // Should we clone rather than spill this instruction?
 936   bool rematerialize() const;
 937 
 938   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 939   virtual JVMState* jvms() const;
 940 
 941   // Print as assembly
 942   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 943   // Emit bytes starting at parameter 'ptr'
 944   // Bump 'ptr' by the number of output bytes
 945   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 946   // Size of instruction in bytes
 947   virtual uint size(PhaseRegAlloc *ra_) const;
 948 
 949   // Convenience function to extract an integer constant from a node.
 950   // If it is not an integer constant (either Con, CastII, or Mach),
 951   // return value_if_unknown.
 952   jint find_int_con(jint value_if_unknown) const {
 953     const TypeInt* t = find_int_type();
 954     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 955   }
 956   // Return the constant, knowing it is an integer constant already
 957   jint get_int() const {
 958     const TypeInt* t = find_int_type();
 959     guarantee(t != NULL, "must be con");
 960     return t->get_con();
 961   }
 962   // Here's where the work is done.  Can produce non-constant int types too.
 963   const TypeInt* find_int_type() const;
 964 
 965   // Same thing for long (and intptr_t, via type.hpp):
 966   jlong get_long() const {
 967     const TypeLong* t = find_long_type();
 968     guarantee(t != NULL, "must be con");
 969     return t->get_con();
 970   }
 971   jlong find_long_con(jint value_if_unknown) const {
 972     const TypeLong* t = find_long_type();
 973     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 974   }
 975   const TypeLong* find_long_type() const;
 976 
 977   const TypePtr* get_ptr_type() const;
 978 
 979   // These guys are called by code generated by ADLC:
 980   intptr_t get_ptr() const;
 981   intptr_t get_narrowcon() const;
 982   jdouble getd() const;
 983   jfloat getf() const;
 984 
 985   // Nodes which are pinned into basic blocks
 986   virtual bool pinned() const { return false; }
 987 
 988   // Nodes which use memory without consuming it, hence need antidependences
 989   // More specifically, needs_anti_dependence_check returns true iff the node
 990   // (a) does a load, and (b) does not perform a store (except perhaps to a
 991   // stack slot or some other unaliased location).
 992   bool needs_anti_dependence_check() const;
 993 
 994   // Return which operand this instruction may cisc-spill. In other words,
 995   // return operand position that can convert from reg to memory access
 996   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
 997   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
 998 
 999 //----------------- Graph walking
1000 public:
1001   // Walk and apply member functions recursively.
1002   // Supplied (this) pointer is root.
1003   void walk(NFunc pre, NFunc post, void *env);
1004   static void nop(Node &, void*); // Dummy empty function
1005   static void packregion( Node &n, void* );
1006 private:
1007   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1008 
1009 //----------------- Printing, etc
1010 public:
1011 #ifndef PRODUCT
1012   Node* find(int idx) const;         // Search the graph for the given idx.
1013   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1014   void dump() const { dump("\n"); }  // Print this node.
1015   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
1016   void dump(int depth) const;        // Print this node, recursively to depth d
1017   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1018   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
1019   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
1020   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
1021   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1022   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1023   void verify() const;               // Check Def-Use info for my subgraph
1024   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1025 
1026   // This call defines a class-unique string used to identify class instances
1027   virtual const char *Name() const;
1028 
1029   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1030   // RegMask Print Functions
1031   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1032   void dump_out_regmask() { out_RegMask().dump(); }
1033   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1034   void fast_dump() const {
1035     tty->print("%4d: %-17s", _idx, Name());
1036     for (uint i = 0; i < len(); i++)
1037       if (in(i))
1038         tty->print(" %4d", in(i)->_idx);
1039       else
1040         tty->print(" NULL");
1041     tty->print("\n");
1042   }
1043 #endif
1044 #ifdef ASSERT
1045   void verify_construction();
1046   bool verify_jvms(const JVMState* jvms) const;
1047   int  _debug_idx;                     // Unique value assigned to every node.
1048   int   debug_idx() const              { return _debug_idx; }
1049   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1050 
1051   Node* _debug_orig;                   // Original version of this, if any.
1052   Node*  debug_orig() const            { return _debug_orig; }
1053   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1054 
1055   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1056   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1057   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1058 
1059   static void init_NodeProperty();
1060 
1061   #if OPTO_DU_ITERATOR_ASSERT
1062   const Node* _last_del;               // The last deleted node.
1063   uint        _del_tick;               // Bumped when a deletion happens..
1064   #endif
1065 #endif
1066 };
1067 
1068 //-----------------------------------------------------------------------------
1069 // Iterators over DU info, and associated Node functions.
1070 
1071 #if OPTO_DU_ITERATOR_ASSERT
1072 
1073 // Common code for assertion checking on DU iterators.
1074 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1075 #ifdef ASSERT
1076  protected:
1077   bool         _vdui;               // cached value of VerifyDUIterators
1078   const Node*  _node;               // the node containing the _out array
1079   uint         _outcnt;             // cached node->_outcnt
1080   uint         _del_tick;           // cached node->_del_tick
1081   Node*        _last;               // last value produced by the iterator
1082 
1083   void sample(const Node* node);    // used by c'tor to set up for verifies
1084   void verify(const Node* node, bool at_end_ok = false);
1085   void verify_resync();
1086   void reset(const DUIterator_Common& that);
1087 
1088 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1089   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1090 #else
1091   #define I_VDUI_ONLY(i,x) { }
1092 #endif //ASSERT
1093 };
1094 
1095 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1096 
1097 // Default DU iterator.  Allows appends onto the out array.
1098 // Allows deletion from the out array only at the current point.
1099 // Usage:
1100 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1101 //    Node* y = x->out(i);
1102 //    ...
1103 //  }
1104 // Compiles in product mode to a unsigned integer index, which indexes
1105 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1106 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1107 // before continuing the loop.  You must delete only the last-produced
1108 // edge.  You must delete only a single copy of the last-produced edge,
1109 // or else you must delete all copies at once (the first time the edge
1110 // is produced by the iterator).
1111 class DUIterator : public DUIterator_Common {
1112   friend class Node;
1113 
1114   // This is the index which provides the product-mode behavior.
1115   // Whatever the product-mode version of the system does to the
1116   // DUI index is done to this index.  All other fields in
1117   // this class are used only for assertion checking.
1118   uint         _idx;
1119 
1120   #ifdef ASSERT
1121   uint         _refresh_tick;    // Records the refresh activity.
1122 
1123   void sample(const Node* node); // Initialize _refresh_tick etc.
1124   void verify(const Node* node, bool at_end_ok = false);
1125   void verify_increment();       // Verify an increment operation.
1126   void verify_resync();          // Verify that we can back up over a deletion.
1127   void verify_finish();          // Verify that the loop terminated properly.
1128   void refresh();                // Resample verification info.
1129   void reset(const DUIterator& that);  // Resample after assignment.
1130   #endif
1131 
1132   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1133     { _idx = 0;                         debug_only(sample(node)); }
1134 
1135  public:
1136   // initialize to garbage; clear _vdui to disable asserts
1137   DUIterator()
1138     { /*initialize to garbage*/         debug_only(_vdui = false); }
1139 
1140   void operator++(int dummy_to_specify_postfix_op)
1141     { _idx++;                           VDUI_ONLY(verify_increment()); }
1142 
1143   void operator--()
1144     { VDUI_ONLY(verify_resync());       --_idx; }
1145 
1146   ~DUIterator()
1147     { VDUI_ONLY(verify_finish()); }
1148 
1149   void operator=(const DUIterator& that)
1150     { _idx = that._idx;                 debug_only(reset(that)); }
1151 };
1152 
1153 DUIterator Node::outs() const
1154   { return DUIterator(this, 0); }
1155 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1156   { I_VDUI_ONLY(i, i.refresh());        return i; }
1157 bool Node::has_out(DUIterator& i) const
1158   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1159 Node*    Node::out(DUIterator& i) const
1160   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1161 
1162 
1163 // Faster DU iterator.  Disallows insertions into the out array.
1164 // Allows deletion from the out array only at the current point.
1165 // Usage:
1166 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1167 //    Node* y = x->fast_out(i);
1168 //    ...
1169 //  }
1170 // Compiles in product mode to raw Node** pointer arithmetic, with
1171 // no reloading of pointers from the original node x.  If you delete,
1172 // you must perform "--i; --imax" just before continuing the loop.
1173 // If you delete multiple copies of the same edge, you must decrement
1174 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1175 class DUIterator_Fast : public DUIterator_Common {
1176   friend class Node;
1177   friend class DUIterator_Last;
1178 
1179   // This is the pointer which provides the product-mode behavior.
1180   // Whatever the product-mode version of the system does to the
1181   // DUI pointer is done to this pointer.  All other fields in
1182   // this class are used only for assertion checking.
1183   Node**       _outp;
1184 
1185   #ifdef ASSERT
1186   void verify(const Node* node, bool at_end_ok = false);
1187   void verify_limit();
1188   void verify_resync();
1189   void verify_relimit(uint n);
1190   void reset(const DUIterator_Fast& that);
1191   #endif
1192 
1193   // Note:  offset must be signed, since -1 is sometimes passed
1194   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1195     { _outp = node->_out + offset;      debug_only(sample(node)); }
1196 
1197  public:
1198   // initialize to garbage; clear _vdui to disable asserts
1199   DUIterator_Fast()
1200     { /*initialize to garbage*/         debug_only(_vdui = false); }
1201 
1202   void operator++(int dummy_to_specify_postfix_op)
1203     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1204 
1205   void operator--()
1206     { VDUI_ONLY(verify_resync());       --_outp; }
1207 
1208   void operator-=(uint n)   // applied to the limit only
1209     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1210 
1211   bool operator<(DUIterator_Fast& limit) {
1212     I_VDUI_ONLY(*this, this->verify(_node, true));
1213     I_VDUI_ONLY(limit, limit.verify_limit());
1214     return _outp < limit._outp;
1215   }
1216 
1217   void operator=(const DUIterator_Fast& that)
1218     { _outp = that._outp;               debug_only(reset(that)); }
1219 };
1220 
1221 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1222   // Assign a limit pointer to the reference argument:
1223   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1224   // Return the base pointer:
1225   return DUIterator_Fast(this, 0);
1226 }
1227 Node* Node::fast_out(DUIterator_Fast& i) const {
1228   I_VDUI_ONLY(i, i.verify(this));
1229   return debug_only(i._last=) *i._outp;
1230 }
1231 
1232 
1233 // Faster DU iterator.  Requires each successive edge to be removed.
1234 // Does not allow insertion of any edges.
1235 // Usage:
1236 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1237 //    Node* y = x->last_out(i);
1238 //    ...
1239 //  }
1240 // Compiles in product mode to raw Node** pointer arithmetic, with
1241 // no reloading of pointers from the original node x.
1242 class DUIterator_Last : private DUIterator_Fast {
1243   friend class Node;
1244 
1245   #ifdef ASSERT
1246   void verify(const Node* node, bool at_end_ok = false);
1247   void verify_limit();
1248   void verify_step(uint num_edges);
1249   #endif
1250 
1251   // Note:  offset must be signed, since -1 is sometimes passed
1252   DUIterator_Last(const Node* node, ptrdiff_t offset)
1253     : DUIterator_Fast(node, offset) { }
1254 
1255   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1256   void operator<(int)                              {} // do not use
1257 
1258  public:
1259   DUIterator_Last() { }
1260   // initialize to garbage
1261 
1262   void operator--()
1263     { _outp--;              VDUI_ONLY(verify_step(1));  }
1264 
1265   void operator-=(uint n)
1266     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1267 
1268   bool operator>=(DUIterator_Last& limit) {
1269     I_VDUI_ONLY(*this, this->verify(_node, true));
1270     I_VDUI_ONLY(limit, limit.verify_limit());
1271     return _outp >= limit._outp;
1272   }
1273 
1274   void operator=(const DUIterator_Last& that)
1275     { DUIterator_Fast::operator=(that); }
1276 };
1277 
1278 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1279   // Assign a limit pointer to the reference argument:
1280   imin = DUIterator_Last(this, 0);
1281   // Return the initial pointer:
1282   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1283 }
1284 Node* Node::last_out(DUIterator_Last& i) const {
1285   I_VDUI_ONLY(i, i.verify(this));
1286   return debug_only(i._last=) *i._outp;
1287 }
1288 
1289 #endif //OPTO_DU_ITERATOR_ASSERT
1290 
1291 #undef I_VDUI_ONLY
1292 #undef VDUI_ONLY
1293 
1294 // An Iterator that truly follows the iterator pattern.  Doesn't
1295 // support deletion but could be made to.
1296 //
1297 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1298 //     Node* m = i.get();
1299 //
1300 class SimpleDUIterator : public StackObj {
1301  private:
1302   Node* node;
1303   DUIterator_Fast i;
1304   DUIterator_Fast imax;
1305  public:
1306   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1307   bool has_next() { return i < imax; }
1308   void next() { i++; }
1309   Node* get() { return node->fast_out(i); }
1310 };
1311 
1312 
1313 //-----------------------------------------------------------------------------
1314 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1315 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1316 // Note that the constructor just zeros things, and since I use Arena
1317 // allocation I do not need a destructor to reclaim storage.
1318 class Node_Array : public ResourceObj {
1319   friend class VMStructs;
1320 protected:
1321   Arena *_a;                    // Arena to allocate in
1322   uint   _max;
1323   Node **_nodes;
1324   void   grow( uint i );        // Grow array node to fit
1325 public:
1326   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1327     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1328     for( int i = 0; i < OptoNodeListSize; i++ ) {
1329       _nodes[i] = NULL;
1330     }
1331   }
1332 
1333   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1334   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1335   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1336   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1337   Node **adr() { return _nodes; }
1338   // Extend the mapping: index i maps to Node *n.
1339   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1340   void insert( uint i, Node *n );
1341   void remove( uint i );        // Remove, preserving order
1342   void sort( C_sort_func_t func);
1343   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1344   void clear();                 // Set all entries to NULL, keep storage
1345   uint Size() const { return _max; }
1346   void dump() const;
1347 };
1348 
1349 class Node_List : public Node_Array {
1350   friend class VMStructs;
1351   uint _cnt;
1352 public:
1353   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1354   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1355   bool contains(const Node* n) const {
1356     for (uint e = 0; e < size(); e++) {
1357       if (at(e) == n) return true;
1358     }
1359     return false;
1360   }
1361   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1362   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1363   void push( Node *b ) { map(_cnt++,b); }
1364   void yank( Node *n );         // Find and remove
1365   Node *pop() { return _nodes[--_cnt]; }
1366   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1367   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1368   uint size() const { return _cnt; }
1369   void dump() const;
1370 };
1371 
1372 //------------------------------Unique_Node_List-------------------------------
1373 class Unique_Node_List : public Node_List {
1374   friend class VMStructs;
1375   VectorSet _in_worklist;
1376   uint _clock_index;            // Index in list where to pop from next
1377 public:
1378   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1379   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1380 
1381   void remove( Node *n );
1382   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1383   VectorSet &member_set(){ return _in_worklist; }
1384 
1385   void push( Node *b ) {
1386     if( !_in_worklist.test_set(b->_idx) )
1387       Node_List::push(b);
1388   }
1389   Node *pop() {
1390     if( _clock_index >= size() ) _clock_index = 0;
1391     Node *b = at(_clock_index);
1392     map( _clock_index, Node_List::pop());
1393     if (size() != 0) _clock_index++; // Always start from 0
1394     _in_worklist >>= b->_idx;
1395     return b;
1396   }
1397   Node *remove( uint i ) {
1398     Node *b = Node_List::at(i);
1399     _in_worklist >>= b->_idx;
1400     map(i,Node_List::pop());
1401     return b;
1402   }
1403   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1404   void  clear() {
1405     _in_worklist.Clear();        // Discards storage but grows automatically
1406     Node_List::clear();
1407     _clock_index = 0;
1408   }
1409 
1410   // Used after parsing to remove useless nodes before Iterative GVN
1411   void remove_useless_nodes(VectorSet &useful);
1412 
1413 #ifndef PRODUCT
1414   void print_set() const { _in_worklist.print(); }
1415 #endif
1416 };
1417 
1418 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1419 inline void Compile::record_for_igvn(Node* n) {
1420   _for_igvn->push(n);
1421 }
1422 
1423 //------------------------------Node_Stack-------------------------------------
1424 class Node_Stack {
1425   friend class VMStructs;
1426 protected:
1427   struct INode {
1428     Node *node; // Processed node
1429     uint  indx; // Index of next node's child
1430   };
1431   INode *_inode_top; // tos, stack grows up
1432   INode *_inode_max; // End of _inodes == _inodes + _max
1433   INode *_inodes;    // Array storage for the stack
1434   Arena *_a;         // Arena to allocate in
1435   void grow();
1436 public:
1437   Node_Stack(int size) {
1438     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1439     _a = Thread::current()->resource_area();
1440     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1441     _inode_max = _inodes + max;
1442     _inode_top = _inodes - 1; // stack is empty
1443   }
1444 
1445   Node_Stack(Arena *a, int size) : _a(a) {
1446     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1447     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1448     _inode_max = _inodes + max;
1449     _inode_top = _inodes - 1; // stack is empty
1450   }
1451 
1452   void pop() {
1453     assert(_inode_top >= _inodes, "node stack underflow");
1454     --_inode_top;
1455   }
1456   void push(Node *n, uint i) {
1457     ++_inode_top;
1458     if (_inode_top >= _inode_max) grow();
1459     INode *top = _inode_top; // optimization
1460     top->node = n;
1461     top->indx = i;
1462   }
1463   Node *node() const {
1464     return _inode_top->node;
1465   }
1466   Node* node_at(uint i) const {
1467     assert(_inodes + i <= _inode_top, "in range");
1468     return _inodes[i].node;
1469   }
1470   uint index() const {
1471     return _inode_top->indx;
1472   }
1473   uint index_at(uint i) const {
1474     assert(_inodes + i <= _inode_top, "in range");
1475     return _inodes[i].indx;
1476   }
1477   void set_node(Node *n) {
1478     _inode_top->node = n;
1479   }
1480   void set_index(uint i) {
1481     _inode_top->indx = i;
1482   }
1483   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1484   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1485   bool is_nonempty() const { return (_inode_top >= _inodes); }
1486   bool is_empty() const { return (_inode_top < _inodes); }
1487   void clear() { _inode_top = _inodes - 1; } // retain storage
1488 
1489   // Node_Stack is used to map nodes.
1490   Node* find(uint idx) const;
1491 };
1492 
1493 
1494 //-----------------------------Node_Notes--------------------------------------
1495 // Debugging or profiling annotations loosely and sparsely associated
1496 // with some nodes.  See Compile::node_notes_at for the accessor.
1497 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1498   friend class VMStructs;
1499   JVMState* _jvms;
1500 
1501 public:
1502   Node_Notes(JVMState* jvms = NULL) {
1503     _jvms = jvms;
1504   }
1505 
1506   JVMState* jvms()            { return _jvms; }
1507   void  set_jvms(JVMState* x) {        _jvms = x; }
1508 
1509   // True if there is nothing here.
1510   bool is_clear() {
1511     return (_jvms == NULL);
1512   }
1513 
1514   // Make there be nothing here.
1515   void clear() {
1516     _jvms = NULL;
1517   }
1518 
1519   // Make a new, clean node notes.
1520   static Node_Notes* make(Compile* C) {
1521     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1522     nn->clear();
1523     return nn;
1524   }
1525 
1526   Node_Notes* clone(Compile* C) {
1527     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1528     (*nn) = (*this);
1529     return nn;
1530   }
1531 
1532   // Absorb any information from source.
1533   bool update_from(Node_Notes* source) {
1534     bool changed = false;
1535     if (source != NULL) {
1536       if (source->jvms() != NULL) {
1537         set_jvms(source->jvms());
1538         changed = true;
1539       }
1540     }
1541     return changed;
1542   }
1543 };
1544 
1545 // Inlined accessors for Compile::node_nodes that require the preceding class:
1546 inline Node_Notes*
1547 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1548                            int idx, bool can_grow) {
1549   assert(idx >= 0, "oob");
1550   int block_idx = (idx >> _log2_node_notes_block_size);
1551   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1552   if (grow_by >= 0) {
1553     if (!can_grow)  return NULL;
1554     grow_node_notes(arr, grow_by + 1);
1555   }
1556   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1557   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1558 }
1559 
1560 inline bool
1561 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1562   if (value == NULL || value->is_clear())
1563     return false;  // nothing to write => write nothing
1564   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1565   assert(loc != NULL, "");
1566   return loc->update_from(value);
1567 }
1568 
1569 
1570 //------------------------------TypeNode---------------------------------------
1571 // Node with a Type constant.
1572 class TypeNode : public Node {
1573 protected:
1574   virtual uint hash() const;    // Check the type
1575   virtual uint cmp( const Node &n ) const;
1576   virtual uint size_of() const; // Size is bigger
1577   const Type* const _type;
1578 public:
1579   void set_type(const Type* t) {
1580     assert(t != NULL, "sanity");
1581     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1582     *(const Type**)&_type = t;   // cast away const-ness
1583     // If this node is in the hash table, make sure it doesn't need a rehash.
1584     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1585   }
1586   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1587   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1588     init_class_id(Class_Type);
1589   }
1590   virtual const Type *Value( PhaseTransform *phase ) const;
1591   virtual const Type *bottom_type() const;
1592   virtual       uint  ideal_reg() const;
1593 #ifndef PRODUCT
1594   virtual void dump_spec(outputStream *st) const;
1595 #endif
1596 };
1597 
1598 #endif // SHARE_VM_OPTO_NODE_HPP