1 /*
   2  * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 /*
  26  * Micro-benchmark for Math.pow() and Math.exp()
  27  */
  28 
  29 import java.util.*;
  30 
  31 public class Test7177917 {
  32 
  33   static double d;
  34 
  35   static Random r = new Random(0);
  36 
  37   static long  m_pow(double[][] values) {
  38     double res = 0;
  39     long start = System.nanoTime();
  40     for (int i = 0; i < values.length; i++) {
  41       res += Math.pow(values[i][0], values[i][1]);
  42     }
  43     long stop = System.nanoTime();
  44     d = res;
  45     return (stop - start) / 1000;
  46   }
  47 
  48   static long  m_exp(double[] values) {
  49     double res = 0;
  50     long start = System.nanoTime();
  51     for (int i = 0; i < values.length; i++) {
  52       res += Math.exp(values[i]);
  53     }
  54     long stop = System.nanoTime();
  55     d = res;
  56     return (stop - start) / 1000;
  57   }
  58 
  59   static double[][] pow_values(int nb) {
  60     double[][] res = new double[nb][2];
  61     for (int i = 0; i < nb; i++) {
  62       double ylogx = (1 + (r.nextDouble() * 2045)) - 1023; // 2045 rather than 2046 as a safety margin
  63       double x = Math.abs(Double.longBitsToDouble(r.nextLong()));
  64       while (x != x) {
  65         x = Math.abs(Double.longBitsToDouble(r.nextLong()));
  66       }
  67       double logx = Math.log(x) / Math.log(2);
  68       double y = ylogx / logx;
  69 
  70       res[i][0] = x;
  71       res[i][1] = y;
  72     }
  73     return res;
  74   }
  75 
  76   static double[] exp_values(int nb) {
  77     double[] res = new double[nb];
  78     for (int i = 0; i < nb; i++) {
  79       double ylogx = (1 + (r.nextDouble() * 2045)) - 1023; // 2045 rather than 2046 as a safety margin
  80       double x = Math.E;
  81       double logx = Math.log(x) / Math.log(2);
  82       double y = ylogx / logx;
  83       res[i] = y;
  84     }
  85     return res;
  86   }
  87 
  88   static public void main(String[] args) {
  89     {
  90       // warmup
  91       double[][] warmup_values = pow_values(10);
  92       m_pow(warmup_values);
  93 
  94       for (int i = 0; i < 20000; i++) {
  95         m_pow(warmup_values);
  96       }
  97       // test pow perf
  98       double[][] values = pow_values(1000000);
  99       System.out.println("==> POW " + m_pow(values));
 100 
 101       // force uncommon trap 
 102       double[][] nan_values = new double[1][2];
 103       nan_values[0][0] = Double.NaN;
 104       nan_values[0][1] = Double.NaN;
 105       m_pow(nan_values);
 106 
 107       // force recompilation
 108       for (int i = 0; i < 20000; i++) {
 109         m_pow(warmup_values);
 110       }
 111 
 112       // test pow perf again
 113       System.out.println("==> POW " + m_pow(values));
 114     }
 115     {
 116       // warmup
 117       double[] warmup_values = exp_values(10);
 118       m_exp(warmup_values);
 119 
 120       for (int i = 0; i < 20000; i++) {
 121         m_exp(warmup_values);
 122       }
 123 
 124       // test pow perf
 125       double[] values = exp_values(1000000);
 126       System.out.println("==> EXP " + m_exp(values));
 127 
 128       // force uncommon trap 
 129       double[] nan_values = new double[1];
 130       nan_values[0] = Double.NaN;
 131       m_exp(nan_values);
 132 
 133       // force recompilation
 134       for (int i = 0; i < 20000; i++) {
 135         m_exp(warmup_values);
 136       }
 137 
 138       // test pow perf again
 139       System.out.println("==> EXP " + m_exp(values));
 140     }
 141   }
 142 }