1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/machnode.hpp"
  31 #include "opto/mulnode.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/subnode.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 // Classic Add functionality.  This covers all the usual 'add' behaviors for
  38 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
  39 // all inherited from this class.  The various identity values are supplied
  40 // by virtual functions.
  41 
  42 
  43 //=============================================================================
  44 //------------------------------hash-------------------------------------------
  45 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
  46 // (commute) inputs to AddNodes willy-nilly so the hash function must return
  47 // the same value in the presence of edge swapping.
  48 uint AddNode::hash() const {
  49   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  50 }
  51 
  52 //------------------------------Identity---------------------------------------
  53 // If either input is a constant 0, return the other input.
  54 Node *AddNode::Identity( PhaseTransform *phase ) {
  55   const Type *zero = add_id();  // The additive identity
  56   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
  57   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
  58   return this;
  59 }
  60 
  61 //------------------------------commute----------------------------------------
  62 // Commute operands to move loads and constants to the right.
  63 static bool commute( Node *add, int con_left, int con_right ) {
  64   Node *in1 = add->in(1);
  65   Node *in2 = add->in(2);
  66 
  67   // Convert "1+x" into "x+1".
  68   // Right is a constant; leave it
  69   if( con_right ) return false;
  70   // Left is a constant; move it right.
  71   if( con_left ) {
  72     add->swap_edges(1, 2);
  73     return true;
  74   }
  75 
  76   // Convert "Load+x" into "x+Load".
  77   // Now check for loads
  78   if (in2->is_Load()) {
  79     if (!in1->is_Load()) {
  80       // already x+Load to return
  81       return false;
  82     }
  83     // both are loads, so fall through to sort inputs by idx
  84   } else if( in1->is_Load() ) {
  85     // Left is a Load and Right is not; move it right.
  86     add->swap_edges(1, 2);
  87     return true;
  88   }
  89 
  90   PhiNode *phi;
  91   // Check for tight loop increments: Loop-phi of Add of loop-phi
  92   if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
  93     return false;
  94   if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
  95     add->swap_edges(1, 2);
  96     return true;
  97   }
  98 
  99   // Otherwise, sort inputs (commutativity) to help value numbering.
 100   if( in1->_idx > in2->_idx ) {
 101     add->swap_edges(1, 2);
 102     return true;
 103   }
 104   return false;
 105 }
 106 
 107 //------------------------------Idealize---------------------------------------
 108 // If we get here, we assume we are associative!
 109 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 110   const Type *t1 = phase->type( in(1) );
 111   const Type *t2 = phase->type( in(2) );
 112   int con_left  = t1->singleton();
 113   int con_right = t2->singleton();
 114 
 115   // Check for commutative operation desired
 116   if( commute(this,con_left,con_right) ) return this;
 117 
 118   AddNode *progress = NULL;             // Progress flag
 119 
 120   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
 121   // constant, and the left input is an add of a constant, flatten the
 122   // expression tree.
 123   Node *add1 = in(1);
 124   Node *add2 = in(2);
 125   int add1_op = add1->Opcode();
 126   int this_op = Opcode();
 127   if( con_right && t2 != Type::TOP && // Right input is a constant?
 128       add1_op == this_op ) { // Left input is an Add?
 129 
 130     // Type of left _in right input
 131     const Type *t12 = phase->type( add1->in(2) );
 132     if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 133       // Check for rare case of closed data cycle which can happen inside
 134       // unreachable loops. In these cases the computation is undefined.
 135 #ifdef ASSERT
 136       Node *add11    = add1->in(1);
 137       int   add11_op = add11->Opcode();
 138       if( (add1 == add1->in(1))
 139          || (add11_op == this_op && add11->in(1) == add1) ) {
 140         assert(false, "dead loop in AddNode::Ideal");
 141       }
 142 #endif
 143       // The Add of the flattened expression
 144       Node *x1 = add1->in(1);
 145       Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
 146       PhaseIterGVN *igvn = phase->is_IterGVN();
 147       if( igvn ) {
 148         set_req_X(2,x2,igvn);
 149         set_req_X(1,x1,igvn);
 150       } else {
 151         set_req(2,x2);
 152         set_req(1,x1);
 153       }
 154       progress = this;            // Made progress
 155       add1 = in(1);
 156       add1_op = add1->Opcode();
 157     }
 158   }
 159 
 160   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
 161   if( add1_op == this_op && !con_right ) {
 162     Node *a12 = add1->in(2);
 163     const Type *t12 = phase->type( a12 );
 164     if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
 165        !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
 166       assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
 167       add2 = add1->clone();
 168       add2->set_req(2, in(2));
 169       add2 = phase->transform(add2);
 170       set_req(1, add2);
 171       set_req(2, a12);
 172       progress = this;
 173       add2 = a12;
 174     }
 175   }
 176 
 177   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
 178   int add2_op = add2->Opcode();
 179   if( add2_op == this_op && !con_left ) {
 180     Node *a22 = add2->in(2);
 181     const Type *t22 = phase->type( a22 );
 182     if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
 183        !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
 184       assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
 185       Node *addx = add2->clone();
 186       addx->set_req(1, in(1));
 187       addx->set_req(2, add2->in(1));
 188       addx = phase->transform(addx);
 189       set_req(1, addx);
 190       set_req(2, a22);
 191       progress = this;
 192     }
 193   }
 194 
 195   return progress;
 196 }
 197 
 198 //------------------------------Value-----------------------------------------
 199 // An add node sums it's two _in.  If one input is an RSD, we must mixin
 200 // the other input's symbols.
 201 const Type *AddNode::Value( PhaseTransform *phase ) const {
 202   // Either input is TOP ==> the result is TOP
 203   const Type *t1 = phase->type( in(1) );
 204   const Type *t2 = phase->type( in(2) );
 205   if( t1 == Type::TOP ) return Type::TOP;
 206   if( t2 == Type::TOP ) return Type::TOP;
 207 
 208   // Either input is BOTTOM ==> the result is the local BOTTOM
 209   const Type *bot = bottom_type();
 210   if( (t1 == bot) || (t2 == bot) ||
 211       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 212     return bot;
 213 
 214   // Check for an addition involving the additive identity
 215   const Type *tadd = add_of_identity( t1, t2 );
 216   if( tadd ) return tadd;
 217 
 218   return add_ring(t1,t2);               // Local flavor of type addition
 219 }
 220 
 221 //------------------------------add_identity-----------------------------------
 222 // Check for addition of the identity
 223 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
 224   const Type *zero = add_id();  // The additive identity
 225   if( t1->higher_equal( zero ) ) return t2;
 226   if( t2->higher_equal( zero ) ) return t1;
 227 
 228   return NULL;
 229 }
 230 
 231 
 232 //=============================================================================
 233 //------------------------------Idealize---------------------------------------
 234 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 235   Node* in1 = in(1);
 236   Node* in2 = in(2);
 237   int op1 = in1->Opcode();
 238   int op2 = in2->Opcode();
 239   // Fold (con1-x)+con2 into (con1+con2)-x
 240   if ( op1 == Op_AddI && op2 == Op_SubI ) {
 241     // Swap edges to try optimizations below
 242     in1 = in2;
 243     in2 = in(1);
 244     op1 = op2;
 245     op2 = in2->Opcode();
 246   }
 247   if( op1 == Op_SubI ) {
 248     const Type *t_sub1 = phase->type( in1->in(1) );
 249     const Type *t_2    = phase->type( in2        );
 250     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
 251       return new (phase->C) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
 252                               in1->in(2) );
 253     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
 254     if( op2 == Op_SubI ) {
 255       // Check for dead cycle: d = (a-b)+(c-d)
 256       assert( in1->in(2) != this && in2->in(2) != this,
 257               "dead loop in AddINode::Ideal" );
 258       Node *sub  = new (phase->C) SubINode(NULL, NULL);
 259       sub->init_req(1, phase->transform(new (phase->C) AddINode(in1->in(1), in2->in(1) ) ));
 260       sub->init_req(2, phase->transform(new (phase->C) AddINode(in1->in(2), in2->in(2) ) ));
 261       return sub;
 262     }
 263     // Convert "(a-b)+(b+c)" into "(a+c)"
 264     if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
 265       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
 266       return new (phase->C) AddINode(in1->in(1), in2->in(2));
 267     }
 268     // Convert "(a-b)+(c+b)" into "(a+c)"
 269     if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
 270       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
 271       return new (phase->C) AddINode(in1->in(1), in2->in(1));
 272     }
 273     // Convert "(a-b)+(b-c)" into "(a-c)"
 274     if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
 275       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
 276       return new (phase->C) SubINode(in1->in(1), in2->in(2));
 277     }
 278     // Convert "(a-b)+(c-a)" into "(c-b)"
 279     if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
 280       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
 281       return new (phase->C) SubINode(in2->in(1), in1->in(2));
 282     }
 283   }
 284 
 285   // Convert "x+(0-y)" into "(x-y)"
 286   if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
 287     return new (phase->C) SubINode(in1, in2->in(2) );
 288 
 289   // Convert "(0-y)+x" into "(x-y)"
 290   if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
 291     return new (phase->C) SubINode( in2, in1->in(2) );
 292 
 293   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
 294   // Helps with array allocation math constant folding
 295   // See 4790063:
 296   // Unrestricted transformation is unsafe for some runtime values of 'x'
 297   // ( x ==  0, z == 1, y == -1 ) fails
 298   // ( x == -5, z == 1, y ==  1 ) fails
 299   // Transform works for small z and small negative y when the addition
 300   // (x + (y << z)) does not cross zero.
 301   // Implement support for negative y and (x >= -(y << z))
 302   // Have not observed cases where type information exists to support
 303   // positive y and (x <= -(y << z))
 304   if( op1 == Op_URShiftI && op2 == Op_ConI &&
 305       in1->in(2)->Opcode() == Op_ConI ) {
 306     jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
 307     jint y = phase->type( in2 )->is_int()->get_con();
 308 
 309     if( z < 5 && -5 < y && y < 0 ) {
 310       const Type *t_in11 = phase->type(in1->in(1));
 311       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
 312         Node *a = phase->transform( new (phase->C) AddINode( in1->in(1), phase->intcon(y<<z) ) );
 313         return new (phase->C) URShiftINode( a, in1->in(2) );
 314       }
 315     }
 316   }
 317 
 318   return AddNode::Ideal(phase, can_reshape);
 319 }
 320 
 321 
 322 //------------------------------Identity---------------------------------------
 323 // Fold (x-y)+y  OR  y+(x-y)  into  x
 324 Node *AddINode::Identity( PhaseTransform *phase ) {
 325   if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
 326     return in(1)->in(1);
 327   }
 328   else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
 329     return in(2)->in(1);
 330   }
 331   return AddNode::Identity(phase);
 332 }
 333 
 334 
 335 //------------------------------add_ring---------------------------------------
 336 // Supplied function returns the sum of the inputs.  Guaranteed never
 337 // to be passed a TOP or BOTTOM type, these are filtered out by
 338 // pre-check.
 339 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
 340   const TypeInt *r0 = t0->is_int(); // Handy access
 341   const TypeInt *r1 = t1->is_int();
 342   int lo = r0->_lo + r1->_lo;
 343   int hi = r0->_hi + r1->_hi;
 344   if( !(r0->is_con() && r1->is_con()) ) {
 345     // Not both constants, compute approximate result
 346     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
 347       lo = min_jint; hi = max_jint; // Underflow on the low side
 348     }
 349     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
 350       lo = min_jint; hi = max_jint; // Overflow on the high side
 351     }
 352     if( lo > hi ) {               // Handle overflow
 353       lo = min_jint; hi = max_jint;
 354     }
 355   } else {
 356     // both constants, compute precise result using 'lo' and 'hi'
 357     // Semantics define overflow and underflow for integer addition
 358     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
 359   }
 360   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
 361 }
 362 
 363 
 364 //=============================================================================
 365 //------------------------------Idealize---------------------------------------
 366 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 367   Node* in1 = in(1);
 368   Node* in2 = in(2);
 369   int op1 = in1->Opcode();
 370   int op2 = in2->Opcode();
 371   // Fold (con1-x)+con2 into (con1+con2)-x
 372   if ( op1 == Op_AddL && op2 == Op_SubL ) {
 373     // Swap edges to try optimizations below
 374     in1 = in2;
 375     in2 = in(1);
 376     op1 = op2;
 377     op2 = in2->Opcode();
 378   }
 379   // Fold (con1-x)+con2 into (con1+con2)-x
 380   if( op1 == Op_SubL ) {
 381     const Type *t_sub1 = phase->type( in1->in(1) );
 382     const Type *t_2    = phase->type( in2        );
 383     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
 384       return new (phase->C) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
 385                               in1->in(2) );
 386     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
 387     if( op2 == Op_SubL ) {
 388       // Check for dead cycle: d = (a-b)+(c-d)
 389       assert( in1->in(2) != this && in2->in(2) != this,
 390               "dead loop in AddLNode::Ideal" );
 391       Node *sub  = new (phase->C) SubLNode(NULL, NULL);
 392       sub->init_req(1, phase->transform(new (phase->C) AddLNode(in1->in(1), in2->in(1) ) ));
 393       sub->init_req(2, phase->transform(new (phase->C) AddLNode(in1->in(2), in2->in(2) ) ));
 394       return sub;
 395     }
 396     // Convert "(a-b)+(b+c)" into "(a+c)"
 397     if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
 398       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
 399       return new (phase->C) AddLNode(in1->in(1), in2->in(2));
 400     }
 401     // Convert "(a-b)+(c+b)" into "(a+c)"
 402     if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
 403       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
 404       return new (phase->C) AddLNode(in1->in(1), in2->in(1));
 405     }
 406     // Convert "(a-b)+(b-c)" into "(a-c)"
 407     if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
 408       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
 409       return new (phase->C) SubLNode(in1->in(1), in2->in(2));
 410     }
 411     // Convert "(a-b)+(c-a)" into "(c-b)"
 412     if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
 413       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
 414       return new (phase->C) SubLNode(in2->in(1), in1->in(2));
 415     }
 416   }
 417 
 418   // Convert "x+(0-y)" into "(x-y)"
 419   if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
 420     return new (phase->C) SubLNode( in1, in2->in(2) );
 421 
 422   // Convert "(0-y)+x" into "(x-y)"
 423   if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
 424     return new (phase->C) SubLNode( in2, in1->in(2) );
 425 
 426   // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
 427   // into "(X<<1)+Y" and let shift-folding happen.
 428   if( op2 == Op_AddL &&
 429       in2->in(1) == in1 &&
 430       op1 != Op_ConL &&
 431       0 ) {
 432     Node *shift = phase->transform(new (phase->C) LShiftLNode(in1,phase->intcon(1)));
 433     return new (phase->C) AddLNode(shift,in2->in(2));
 434   }
 435 
 436   return AddNode::Ideal(phase, can_reshape);
 437 }
 438 
 439 
 440 //------------------------------Identity---------------------------------------
 441 // Fold (x-y)+y  OR  y+(x-y)  into  x
 442 Node *AddLNode::Identity( PhaseTransform *phase ) {
 443   if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
 444     return in(1)->in(1);
 445   }
 446   else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
 447     return in(2)->in(1);
 448   }
 449   return AddNode::Identity(phase);
 450 }
 451 
 452 
 453 //------------------------------add_ring---------------------------------------
 454 // Supplied function returns the sum of the inputs.  Guaranteed never
 455 // to be passed a TOP or BOTTOM type, these are filtered out by
 456 // pre-check.
 457 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
 458   const TypeLong *r0 = t0->is_long(); // Handy access
 459   const TypeLong *r1 = t1->is_long();
 460   jlong lo = r0->_lo + r1->_lo;
 461   jlong hi = r0->_hi + r1->_hi;
 462   if( !(r0->is_con() && r1->is_con()) ) {
 463     // Not both constants, compute approximate result
 464     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
 465       lo =min_jlong; hi = max_jlong; // Underflow on the low side
 466     }
 467     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
 468       lo = min_jlong; hi = max_jlong; // Overflow on the high side
 469     }
 470     if( lo > hi ) {               // Handle overflow
 471       lo = min_jlong; hi = max_jlong;
 472     }
 473   } else {
 474     // both constants, compute precise result using 'lo' and 'hi'
 475     // Semantics define overflow and underflow for integer addition
 476     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
 477   }
 478   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
 479 }
 480 
 481 
 482 //=============================================================================
 483 //------------------------------add_of_identity--------------------------------
 484 // Check for addition of the identity
 485 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
 486   // x ADD 0  should return x unless 'x' is a -zero
 487   //
 488   // const Type *zero = add_id();     // The additive identity
 489   // jfloat f1 = t1->getf();
 490   // jfloat f2 = t2->getf();
 491   //
 492   // if( t1->higher_equal( zero ) ) return t2;
 493   // if( t2->higher_equal( zero ) ) return t1;
 494 
 495   return NULL;
 496 }
 497 
 498 //------------------------------add_ring---------------------------------------
 499 // Supplied function returns the sum of the inputs.
 500 // This also type-checks the inputs for sanity.  Guaranteed never to
 501 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 502 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
 503   // We must be adding 2 float constants.
 504   return TypeF::make( t0->getf() + t1->getf() );
 505 }
 506 
 507 //------------------------------Ideal------------------------------------------
 508 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 509   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 510     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
 511   }
 512 
 513   // Floating point additions are not associative because of boundary conditions (infinity)
 514   return commute(this,
 515                  phase->type( in(1) )->singleton(),
 516                  phase->type( in(2) )->singleton() ) ? this : NULL;
 517 }
 518 
 519 
 520 //=============================================================================
 521 //------------------------------add_of_identity--------------------------------
 522 // Check for addition of the identity
 523 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
 524   // x ADD 0  should return x unless 'x' is a -zero
 525   //
 526   // const Type *zero = add_id();     // The additive identity
 527   // jfloat f1 = t1->getf();
 528   // jfloat f2 = t2->getf();
 529   //
 530   // if( t1->higher_equal( zero ) ) return t2;
 531   // if( t2->higher_equal( zero ) ) return t1;
 532 
 533   return NULL;
 534 }
 535 //------------------------------add_ring---------------------------------------
 536 // Supplied function returns the sum of the inputs.
 537 // This also type-checks the inputs for sanity.  Guaranteed never to
 538 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 539 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
 540   // We must be adding 2 double constants.
 541   return TypeD::make( t0->getd() + t1->getd() );
 542 }
 543 
 544 //------------------------------Ideal------------------------------------------
 545 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 546   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 547     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
 548   }
 549 
 550   // Floating point additions are not associative because of boundary conditions (infinity)
 551   return commute(this,
 552                  phase->type( in(1) )->singleton(),
 553                  phase->type( in(2) )->singleton() ) ? this : NULL;
 554 }
 555 
 556 
 557 //=============================================================================
 558 //------------------------------Identity---------------------------------------
 559 // If one input is a constant 0, return the other input.
 560 Node *AddPNode::Identity( PhaseTransform *phase ) {
 561   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
 562 }
 563 
 564 //------------------------------Idealize---------------------------------------
 565 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 566   // Bail out if dead inputs
 567   if( phase->type( in(Address) ) == Type::TOP ) return NULL;
 568 
 569   // If the left input is an add of a constant, flatten the expression tree.
 570   const Node *n = in(Address);
 571   if (n->is_AddP() && n->in(Base) == in(Base)) {
 572     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
 573     assert( !addp->in(Address)->is_AddP() ||
 574              addp->in(Address)->as_AddP() != addp,
 575             "dead loop in AddPNode::Ideal" );
 576     // Type of left input's right input
 577     const Type *t = phase->type( addp->in(Offset) );
 578     if( t == Type::TOP ) return NULL;
 579     const TypeX *t12 = t->is_intptr_t();
 580     if( t12->is_con() ) {       // Left input is an add of a constant?
 581       // If the right input is a constant, combine constants
 582       const Type *temp_t2 = phase->type( in(Offset) );
 583       if( temp_t2 == Type::TOP ) return NULL;
 584       const TypeX *t2 = temp_t2->is_intptr_t();
 585       Node* address;
 586       Node* offset;
 587       if( t2->is_con() ) {
 588         // The Add of the flattened expression
 589         address = addp->in(Address);
 590         offset  = phase->MakeConX(t2->get_con() + t12->get_con());
 591       } else {
 592         // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
 593         address = phase->transform(new (phase->C) AddPNode(in(Base),addp->in(Address),in(Offset)));
 594         offset  = addp->in(Offset);
 595       }
 596       PhaseIterGVN *igvn = phase->is_IterGVN();
 597       if( igvn ) {
 598         set_req_X(Address,address,igvn);
 599         set_req_X(Offset,offset,igvn);
 600       } else {
 601         set_req(Address,address);
 602         set_req(Offset,offset);
 603       }
 604       return this;
 605     }
 606   }
 607 
 608   // Raw pointers?
 609   if( in(Base)->bottom_type() == Type::TOP ) {
 610     // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
 611     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
 612       Node* offset = in(Offset);
 613       return new (phase->C) CastX2PNode(offset);
 614     }
 615   }
 616 
 617   // If the right is an add of a constant, push the offset down.
 618   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
 619   // The idea is to merge array_base+scaled_index groups together,
 620   // and only have different constant offsets from the same base.
 621   const Node *add = in(Offset);
 622   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
 623     const Type *t22 = phase->type( add->in(2) );
 624     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
 625       set_req(Address, phase->transform(new (phase->C) AddPNode(in(Base),in(Address),add->in(1))));
 626       set_req(Offset, add->in(2));
 627       return this;              // Made progress
 628     }
 629   }
 630 
 631   return NULL;                  // No progress
 632 }
 633 
 634 //------------------------------bottom_type------------------------------------
 635 // Bottom-type is the pointer-type with unknown offset.
 636 const Type *AddPNode::bottom_type() const {
 637   if (in(Address) == NULL)  return TypePtr::BOTTOM;
 638   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
 639   if( !tp ) return Type::TOP;   // TOP input means TOP output
 640   assert( in(Offset)->Opcode() != Op_ConP, "" );
 641   const Type *t = in(Offset)->bottom_type();
 642   if( t == Type::TOP )
 643     return tp->add_offset(Type::OffsetTop);
 644   const TypeX *tx = t->is_intptr_t();
 645   intptr_t txoffset = Type::OffsetBot;
 646   if (tx->is_con()) {   // Left input is an add of a constant?
 647     txoffset = tx->get_con();
 648   }
 649   return tp->add_offset(txoffset);
 650 }
 651 
 652 //------------------------------Value------------------------------------------
 653 const Type *AddPNode::Value( PhaseTransform *phase ) const {
 654   // Either input is TOP ==> the result is TOP
 655   const Type *t1 = phase->type( in(Address) );
 656   const Type *t2 = phase->type( in(Offset) );
 657   if( t1 == Type::TOP ) return Type::TOP;
 658   if( t2 == Type::TOP ) return Type::TOP;
 659 
 660   // Left input is a pointer
 661   const TypePtr *p1 = t1->isa_ptr();
 662   // Right input is an int
 663   const TypeX *p2 = t2->is_intptr_t();
 664   // Add 'em
 665   intptr_t p2offset = Type::OffsetBot;
 666   if (p2->is_con()) {   // Left input is an add of a constant?
 667     p2offset = p2->get_con();
 668   }
 669   return p1->add_offset(p2offset);
 670 }
 671 
 672 //------------------------Ideal_base_and_offset--------------------------------
 673 // Split an oop pointer into a base and offset.
 674 // (The offset might be Type::OffsetBot in the case of an array.)
 675 // Return the base, or NULL if failure.
 676 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
 677                                       // second return value:
 678                                       intptr_t& offset) {
 679   if (ptr->is_AddP()) {
 680     Node* base = ptr->in(AddPNode::Base);
 681     Node* addr = ptr->in(AddPNode::Address);
 682     Node* offs = ptr->in(AddPNode::Offset);
 683     if (base == addr || base->is_top()) {
 684       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
 685       if (offset != Type::OffsetBot) {
 686         return addr;
 687       }
 688     }
 689   }
 690   offset = Type::OffsetBot;
 691   return NULL;
 692 }
 693 
 694 //------------------------------unpack_offsets----------------------------------
 695 // Collect the AddP offset values into the elements array, giving up
 696 // if there are more than length.
 697 int AddPNode::unpack_offsets(Node* elements[], int length) {
 698   int count = 0;
 699   Node* addr = this;
 700   Node* base = addr->in(AddPNode::Base);
 701   while (addr->is_AddP()) {
 702     if (addr->in(AddPNode::Base) != base) {
 703       // give up
 704       return -1;
 705     }
 706     elements[count++] = addr->in(AddPNode::Offset);
 707     if (count == length) {
 708       // give up
 709       return -1;
 710     }
 711     addr = addr->in(AddPNode::Address);
 712   }
 713   if (addr != base) {
 714     return -1;
 715   }
 716   return count;
 717 }
 718 
 719 //------------------------------match_edge-------------------------------------
 720 // Do we Match on this edge index or not?  Do not match base pointer edge
 721 uint AddPNode::match_edge(uint idx) const {
 722   return idx > Base;
 723 }
 724 
 725 //=============================================================================
 726 //------------------------------Identity---------------------------------------
 727 Node *OrINode::Identity( PhaseTransform *phase ) {
 728   // x | x => x
 729   if (phase->eqv(in(1), in(2))) {
 730     return in(1);
 731   }
 732 
 733   return AddNode::Identity(phase);
 734 }
 735 
 736 //------------------------------add_ring---------------------------------------
 737 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
 738 // the logical operations the ring's ADD is really a logical OR function.
 739 // This also type-checks the inputs for sanity.  Guaranteed never to
 740 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 741 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
 742   const TypeInt *r0 = t0->is_int(); // Handy access
 743   const TypeInt *r1 = t1->is_int();
 744 
 745   // If both args are bool, can figure out better types
 746   if ( r0 == TypeInt::BOOL ) {
 747     if ( r1 == TypeInt::ONE) {
 748       return TypeInt::ONE;
 749     } else if ( r1 == TypeInt::BOOL ) {
 750       return TypeInt::BOOL;
 751     }
 752   } else if ( r0 == TypeInt::ONE ) {
 753     if ( r1 == TypeInt::BOOL ) {
 754       return TypeInt::ONE;
 755     }
 756   }
 757 
 758   // If either input is not a constant, just return all integers.
 759   if( !r0->is_con() || !r1->is_con() )
 760     return TypeInt::INT;        // Any integer, but still no symbols.
 761 
 762   // Otherwise just OR them bits.
 763   return TypeInt::make( r0->get_con() | r1->get_con() );
 764 }
 765 
 766 //=============================================================================
 767 //------------------------------Identity---------------------------------------
 768 Node *OrLNode::Identity( PhaseTransform *phase ) {
 769   // x | x => x
 770   if (phase->eqv(in(1), in(2))) {
 771     return in(1);
 772   }
 773 
 774   return AddNode::Identity(phase);
 775 }
 776 
 777 //------------------------------add_ring---------------------------------------
 778 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
 779   const TypeLong *r0 = t0->is_long(); // Handy access
 780   const TypeLong *r1 = t1->is_long();
 781 
 782   // If either input is not a constant, just return all integers.
 783   if( !r0->is_con() || !r1->is_con() )
 784     return TypeLong::LONG;      // Any integer, but still no symbols.
 785 
 786   // Otherwise just OR them bits.
 787   return TypeLong::make( r0->get_con() | r1->get_con() );
 788 }
 789 
 790 //=============================================================================
 791 //------------------------------add_ring---------------------------------------
 792 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
 793 // the logical operations the ring's ADD is really a logical OR function.
 794 // This also type-checks the inputs for sanity.  Guaranteed never to
 795 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 796 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
 797   const TypeInt *r0 = t0->is_int(); // Handy access
 798   const TypeInt *r1 = t1->is_int();
 799 
 800   // Complementing a boolean?
 801   if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
 802                                || r1 == TypeInt::BOOL))
 803     return TypeInt::BOOL;
 804 
 805   if( !r0->is_con() || !r1->is_con() ) // Not constants
 806     return TypeInt::INT;        // Any integer, but still no symbols.
 807 
 808   // Otherwise just XOR them bits.
 809   return TypeInt::make( r0->get_con() ^ r1->get_con() );
 810 }
 811 
 812 //=============================================================================
 813 //------------------------------add_ring---------------------------------------
 814 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
 815   const TypeLong *r0 = t0->is_long(); // Handy access
 816   const TypeLong *r1 = t1->is_long();
 817 
 818   // If either input is not a constant, just return all integers.
 819   if( !r0->is_con() || !r1->is_con() )
 820     return TypeLong::LONG;      // Any integer, but still no symbols.
 821 
 822   // Otherwise just OR them bits.
 823   return TypeLong::make( r0->get_con() ^ r1->get_con() );
 824 }
 825 
 826 //=============================================================================
 827 //------------------------------add_ring---------------------------------------
 828 // Supplied function returns the sum of the inputs.
 829 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
 830   const TypeInt *r0 = t0->is_int(); // Handy access
 831   const TypeInt *r1 = t1->is_int();
 832 
 833   // Otherwise just MAX them bits.
 834   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
 835 }
 836 
 837 //=============================================================================
 838 //------------------------------Idealize---------------------------------------
 839 // MINs show up in range-check loop limit calculations.  Look for
 840 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
 841 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 842   Node *progress = NULL;
 843   // Force a right-spline graph
 844   Node *l = in(1);
 845   Node *r = in(2);
 846   // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
 847   // to force a right-spline graph for the rest of MinINode::Ideal().
 848   if( l->Opcode() == Op_MinI ) {
 849     assert( l != l->in(1), "dead loop in MinINode::Ideal" );
 850     r = phase->transform(new (phase->C) MinINode(l->in(2),r));
 851     l = l->in(1);
 852     set_req(1, l);
 853     set_req(2, r);
 854     return this;
 855   }
 856 
 857   // Get left input & constant
 858   Node *x = l;
 859   int x_off = 0;
 860   if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
 861       x->in(2)->is_Con() ) {
 862     const Type *t = x->in(2)->bottom_type();
 863     if( t == Type::TOP ) return NULL;  // No progress
 864     x_off = t->is_int()->get_con();
 865     x = x->in(1);
 866   }
 867 
 868   // Scan a right-spline-tree for MINs
 869   Node *y = r;
 870   int y_off = 0;
 871   // Check final part of MIN tree
 872   if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
 873       y->in(2)->is_Con() ) {
 874     const Type *t = y->in(2)->bottom_type();
 875     if( t == Type::TOP ) return NULL;  // No progress
 876     y_off = t->is_int()->get_con();
 877     y = y->in(1);
 878   }
 879   if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
 880     swap_edges(1, 2);
 881     return this;
 882   }
 883 
 884 
 885   if( r->Opcode() == Op_MinI ) {
 886     assert( r != r->in(2), "dead loop in MinINode::Ideal" );
 887     y = r->in(1);
 888     // Check final part of MIN tree
 889     if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
 890         y->in(2)->is_Con() ) {
 891       const Type *t = y->in(2)->bottom_type();
 892       if( t == Type::TOP ) return NULL;  // No progress
 893       y_off = t->is_int()->get_con();
 894       y = y->in(1);
 895     }
 896 
 897     if( x->_idx > y->_idx )
 898       return new (phase->C) MinINode(r->in(1),phase->transform(new (phase->C) MinINode(l,r->in(2))));
 899 
 900     // See if covers: MIN2(x+c0,MIN2(y+c1,z))
 901     if( !phase->eqv(x,y) ) return NULL;
 902     // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
 903     // MIN2(x+c0 or x+c1 which less, z).
 904     return new (phase->C) MinINode(phase->transform(new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
 905   } else {
 906     // See if covers: MIN2(x+c0,y+c1)
 907     if( !phase->eqv(x,y) ) return NULL;
 908     // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
 909     return new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
 910   }
 911 
 912 }
 913 
 914 //------------------------------add_ring---------------------------------------
 915 // Supplied function returns the sum of the inputs.
 916 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
 917   const TypeInt *r0 = t0->is_int(); // Handy access
 918   const TypeInt *r1 = t1->is_int();
 919 
 920   // Otherwise just MIN them bits.
 921   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
 922 }