1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/escape.hpp"
  30 #include "opto/locknode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/parse.hpp"
  34 #include "opto/regalloc.hpp"
  35 #include "opto/regmask.hpp"
  36 #include "opto/rootnode.hpp"
  37 #include "opto/runtime.hpp"
  38 
  39 // Portions of code courtesy of Clifford Click
  40 
  41 // Optimization - Graph Style
  42 
  43 //=============================================================================
  44 uint StartNode::size_of() const { return sizeof(*this); }
  45 uint StartNode::cmp( const Node &n ) const
  46 { return _domain == ((StartNode&)n)._domain; }
  47 const Type *StartNode::bottom_type() const { return _domain; }
  48 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
  49 #ifndef PRODUCT
  50 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  51 #endif
  52 
  53 //------------------------------Ideal------------------------------------------
  54 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  55   return remove_dead_region(phase, can_reshape) ? this : NULL;
  56 }
  57 
  58 //------------------------------calling_convention-----------------------------
  59 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  60   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
  61 }
  62 
  63 //------------------------------Registers--------------------------------------
  64 const RegMask &StartNode::in_RegMask(uint) const {
  65   return RegMask::Empty;
  66 }
  67 
  68 //------------------------------match------------------------------------------
  69 // Construct projections for incoming parameters, and their RegMask info
  70 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  71   switch (proj->_con) {
  72   case TypeFunc::Control:
  73   case TypeFunc::I_O:
  74   case TypeFunc::Memory:
  75     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  76   case TypeFunc::FramePtr:
  77     return new (match->C) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  78   case TypeFunc::ReturnAdr:
  79     return new (match->C) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  80   case TypeFunc::Parms:
  81   default: {
  82       uint parm_num = proj->_con - TypeFunc::Parms;
  83       const Type *t = _domain->field_at(proj->_con);
  84       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  85         return new (match->C) ConNode(Type::TOP);
  86       uint ideal_reg = t->ideal_reg();
  87       RegMask &rm = match->_calling_convention_mask[parm_num];
  88       return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
  89     }
  90   }
  91   return NULL;
  92 }
  93 
  94 //------------------------------StartOSRNode----------------------------------
  95 // The method start node for an on stack replacement adapter
  96 
  97 //------------------------------osr_domain-----------------------------
  98 const TypeTuple *StartOSRNode::osr_domain() {
  99   const Type **fields = TypeTuple::fields(2);
 100   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 101 
 102   return TypeTuple::make(TypeFunc::Parms+1, fields);
 103 }
 104 
 105 //=============================================================================
 106 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 107   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 108 };
 109 
 110 #ifndef PRODUCT
 111 void ParmNode::dump_spec(outputStream *st) const {
 112   if( _con < TypeFunc::Parms ) {
 113     st->print(names[_con]);
 114   } else {
 115     st->print("Parm%d: ",_con-TypeFunc::Parms);
 116     // Verbose and WizardMode dump bottom_type for all nodes
 117     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 118   }
 119 }
 120 #endif
 121 
 122 uint ParmNode::ideal_reg() const {
 123   switch( _con ) {
 124   case TypeFunc::Control  : // fall through
 125   case TypeFunc::I_O      : // fall through
 126   case TypeFunc::Memory   : return 0;
 127   case TypeFunc::FramePtr : // fall through
 128   case TypeFunc::ReturnAdr: return Op_RegP;
 129   default                 : assert( _con > TypeFunc::Parms, "" );
 130     // fall through
 131   case TypeFunc::Parms    : {
 132     // Type of argument being passed
 133     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 134     return t->ideal_reg();
 135   }
 136   }
 137   ShouldNotReachHere();
 138   return 0;
 139 }
 140 
 141 //=============================================================================
 142 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 143   init_req(TypeFunc::Control,cntrl);
 144   init_req(TypeFunc::I_O,i_o);
 145   init_req(TypeFunc::Memory,memory);
 146   init_req(TypeFunc::FramePtr,frameptr);
 147   init_req(TypeFunc::ReturnAdr,retadr);
 148 }
 149 
 150 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 151   return remove_dead_region(phase, can_reshape) ? this : NULL;
 152 }
 153 
 154 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
 155   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 156     ? Type::TOP
 157     : Type::BOTTOM;
 158 }
 159 
 160 // Do we Match on this edge index or not?  No edges on return nodes
 161 uint ReturnNode::match_edge(uint idx) const {
 162   return 0;
 163 }
 164 
 165 
 166 #ifndef PRODUCT
 167 void ReturnNode::dump_req() const {
 168   // Dump the required inputs, enclosed in '(' and ')'
 169   uint i;                       // Exit value of loop
 170   for( i=0; i<req(); i++ ) {    // For all required inputs
 171     if( i == TypeFunc::Parms ) tty->print("returns");
 172     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 173     else tty->print("_ ");
 174   }
 175 }
 176 #endif
 177 
 178 //=============================================================================
 179 RethrowNode::RethrowNode(
 180   Node* cntrl,
 181   Node* i_o,
 182   Node* memory,
 183   Node* frameptr,
 184   Node* ret_adr,
 185   Node* exception
 186 ) : Node(TypeFunc::Parms + 1) {
 187   init_req(TypeFunc::Control  , cntrl    );
 188   init_req(TypeFunc::I_O      , i_o      );
 189   init_req(TypeFunc::Memory   , memory   );
 190   init_req(TypeFunc::FramePtr , frameptr );
 191   init_req(TypeFunc::ReturnAdr, ret_adr);
 192   init_req(TypeFunc::Parms    , exception);
 193 }
 194 
 195 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 196   return remove_dead_region(phase, can_reshape) ? this : NULL;
 197 }
 198 
 199 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
 200   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 201     ? Type::TOP
 202     : Type::BOTTOM;
 203 }
 204 
 205 uint RethrowNode::match_edge(uint idx) const {
 206   return 0;
 207 }
 208 
 209 #ifndef PRODUCT
 210 void RethrowNode::dump_req() const {
 211   // Dump the required inputs, enclosed in '(' and ')'
 212   uint i;                       // Exit value of loop
 213   for( i=0; i<req(); i++ ) {    // For all required inputs
 214     if( i == TypeFunc::Parms ) tty->print("exception");
 215     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 216     else tty->print("_ ");
 217   }
 218 }
 219 #endif
 220 
 221 //=============================================================================
 222 // Do we Match on this edge index or not?  Match only target address & method
 223 uint TailCallNode::match_edge(uint idx) const {
 224   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 225 }
 226 
 227 //=============================================================================
 228 // Do we Match on this edge index or not?  Match only target address & oop
 229 uint TailJumpNode::match_edge(uint idx) const {
 230   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 231 }
 232 
 233 //=============================================================================
 234 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 235   _method(method) {
 236   assert(method != NULL, "must be valid call site");
 237   _reexecute = Reexecute_Undefined;
 238   debug_only(_bci = -99);  // random garbage value
 239   debug_only(_map = (SafePointNode*)-1);
 240   _caller = caller;
 241   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 242   _locoff = TypeFunc::Parms;
 243   _stkoff = _locoff + _method->max_locals();
 244   _monoff = _stkoff + _method->max_stack();
 245   _scloff = _monoff;
 246   _endoff = _monoff;
 247   _sp = 0;
 248 }
 249 JVMState::JVMState(int stack_size) :
 250   _method(NULL) {
 251   _bci = InvocationEntryBci;
 252   _reexecute = Reexecute_Undefined;
 253   debug_only(_map = (SafePointNode*)-1);
 254   _caller = NULL;
 255   _depth  = 1;
 256   _locoff = TypeFunc::Parms;
 257   _stkoff = _locoff;
 258   _monoff = _stkoff + stack_size;
 259   _scloff = _monoff;
 260   _endoff = _monoff;
 261   _sp = 0;
 262 }
 263 
 264 //--------------------------------of_depth-------------------------------------
 265 JVMState* JVMState::of_depth(int d) const {
 266   const JVMState* jvmp = this;
 267   assert(0 < d && (uint)d <= depth(), "oob");
 268   for (int skip = depth() - d; skip > 0; skip--) {
 269     jvmp = jvmp->caller();
 270   }
 271   assert(jvmp->depth() == (uint)d, "found the right one");
 272   return (JVMState*)jvmp;
 273 }
 274 
 275 //-----------------------------same_calls_as-----------------------------------
 276 bool JVMState::same_calls_as(const JVMState* that) const {
 277   if (this == that)                    return true;
 278   if (this->depth() != that->depth())  return false;
 279   const JVMState* p = this;
 280   const JVMState* q = that;
 281   for (;;) {
 282     if (p->_method != q->_method)    return false;
 283     if (p->_method == NULL)          return true;   // bci is irrelevant
 284     if (p->_bci    != q->_bci)       return false;
 285     if (p->_reexecute != q->_reexecute)  return false;
 286     p = p->caller();
 287     q = q->caller();
 288     if (p == q)                      return true;
 289     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 290   }
 291 }
 292 
 293 //------------------------------debug_start------------------------------------
 294 uint JVMState::debug_start()  const {
 295   debug_only(JVMState* jvmroot = of_depth(1));
 296   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 297   return of_depth(1)->locoff();
 298 }
 299 
 300 //-------------------------------debug_end-------------------------------------
 301 uint JVMState::debug_end() const {
 302   debug_only(JVMState* jvmroot = of_depth(1));
 303   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 304   return endoff();
 305 }
 306 
 307 //------------------------------debug_depth------------------------------------
 308 uint JVMState::debug_depth() const {
 309   uint total = 0;
 310   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 311     total += jvmp->debug_size();
 312   }
 313   return total;
 314 }
 315 
 316 #ifndef PRODUCT
 317 
 318 //------------------------------format_helper----------------------------------
 319 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 320 // any defined value or not.  If it does, print out the register or constant.
 321 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 322   if (n == NULL) { st->print(" NULL"); return; }
 323   if (n->is_SafePointScalarObject()) {
 324     // Scalar replacement.
 325     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 326     scobjs->append_if_missing(spobj);
 327     int sco_n = scobjs->find(spobj);
 328     assert(sco_n >= 0, "");
 329     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 330     return;
 331   }
 332   if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 333     char buf[50];
 334     regalloc->dump_register(n,buf);
 335     st->print(" %s%d]=%s",msg,i,buf);
 336   } else {                      // No register, but might be constant
 337     const Type *t = n->bottom_type();
 338     switch (t->base()) {
 339     case Type::Int:
 340       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
 341       break;
 342     case Type::AnyPtr:
 343       assert( t == TypePtr::NULL_PTR, "" );
 344       st->print(" %s%d]=#NULL",msg,i);
 345       break;
 346     case Type::AryPtr:
 347     case Type::InstPtr:
 348       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
 349       break;
 350     case Type::KlassPtr:
 351       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_klassptr()->klass());
 352       break;
 353     case Type::MetadataPtr:
 354       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_metadataptr()->metadata());
 355       break;
 356     case Type::NarrowOop:
 357       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
 358       break;
 359     case Type::RawPtr:
 360       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
 361       break;
 362     case Type::DoubleCon:
 363       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 364       break;
 365     case Type::FloatCon:
 366       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 367       break;
 368     case Type::Long:
 369       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
 370       break;
 371     case Type::Half:
 372     case Type::Top:
 373       st->print(" %s%d]=_",msg,i);
 374       break;
 375     default: ShouldNotReachHere();
 376     }
 377   }
 378 }
 379 
 380 //------------------------------format-----------------------------------------
 381 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 382   st->print("        #");
 383   if( _method ) {
 384     _method->print_short_name(st);
 385     st->print(" @ bci:%d ",_bci);
 386   } else {
 387     st->print_cr(" runtime stub ");
 388     return;
 389   }
 390   if (n->is_MachSafePoint()) {
 391     GrowableArray<SafePointScalarObjectNode*> scobjs;
 392     MachSafePointNode *mcall = n->as_MachSafePoint();
 393     uint i;
 394     // Print locals
 395     for( i = 0; i < (uint)loc_size(); i++ )
 396       format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
 397     // Print stack
 398     for (i = 0; i < (uint)stk_size(); i++) {
 399       if ((uint)(_stkoff + i) >= mcall->len())
 400         st->print(" oob ");
 401       else
 402        format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
 403     }
 404     for (i = 0; (int)i < nof_monitors(); i++) {
 405       Node *box = mcall->monitor_box(this, i);
 406       Node *obj = mcall->monitor_obj(this, i);
 407       if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
 408         box = BoxLockNode::box_node(box);
 409         format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
 410       } else {
 411         OptoReg::Name box_reg = BoxLockNode::reg(box);
 412         st->print(" MON-BOX%d=%s+%d",
 413                    i,
 414                    OptoReg::regname(OptoReg::c_frame_pointer),
 415                    regalloc->reg2offset(box_reg));
 416       }
 417       const char* obj_msg = "MON-OBJ[";
 418       if (EliminateLocks) {
 419         if (BoxLockNode::box_node(box)->is_eliminated())
 420           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 421       }
 422       format_helper( regalloc, st, obj, obj_msg, i, &scobjs );
 423     }
 424 
 425     for (i = 0; i < (uint)scobjs.length(); i++) {
 426       // Scalar replaced objects.
 427       st->print_cr("");
 428       st->print("        # ScObj" INT32_FORMAT " ", i);
 429       SafePointScalarObjectNode* spobj = scobjs.at(i);
 430       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
 431       assert(cik->is_instance_klass() ||
 432              cik->is_array_klass(), "Not supported allocation.");
 433       ciInstanceKlass *iklass = NULL;
 434       if (cik->is_instance_klass()) {
 435         cik->print_name_on(st);
 436         iklass = cik->as_instance_klass();
 437       } else if (cik->is_type_array_klass()) {
 438         cik->as_array_klass()->base_element_type()->print_name_on(st);
 439         st->print("[%d]", spobj->n_fields());
 440       } else if (cik->is_obj_array_klass()) {
 441         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 442         if (cie->is_instance_klass()) {
 443           cie->print_name_on(st);
 444         } else if (cie->is_type_array_klass()) {
 445           cie->as_array_klass()->base_element_type()->print_name_on(st);
 446         } else {
 447           ShouldNotReachHere();
 448         }
 449         st->print("[%d]", spobj->n_fields());
 450         int ndim = cik->as_array_klass()->dimension() - 1;
 451         while (ndim-- > 0) {
 452           st->print("[]");
 453         }
 454       }
 455       st->print("={");
 456       uint nf = spobj->n_fields();
 457       if (nf > 0) {
 458         uint first_ind = spobj->first_index();
 459         Node* fld_node = mcall->in(first_ind);
 460         ciField* cifield;
 461         if (iklass != NULL) {
 462           st->print(" [");
 463           cifield = iklass->nonstatic_field_at(0);
 464           cifield->print_name_on(st);
 465           format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
 466         } else {
 467           format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
 468         }
 469         for (uint j = 1; j < nf; j++) {
 470           fld_node = mcall->in(first_ind+j);
 471           if (iklass != NULL) {
 472             st->print(", [");
 473             cifield = iklass->nonstatic_field_at(j);
 474             cifield->print_name_on(st);
 475             format_helper( regalloc, st, fld_node, ":", j, &scobjs );
 476           } else {
 477             format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
 478           }
 479         }
 480       }
 481       st->print(" }");
 482     }
 483   }
 484   st->print_cr("");
 485   if (caller() != NULL)  caller()->format(regalloc, n, st);
 486 }
 487 
 488 
 489 void JVMState::dump_spec(outputStream *st) const {
 490   if (_method != NULL) {
 491     bool printed = false;
 492     if (!Verbose) {
 493       // The JVMS dumps make really, really long lines.
 494       // Take out the most boring parts, which are the package prefixes.
 495       char buf[500];
 496       stringStream namest(buf, sizeof(buf));
 497       _method->print_short_name(&namest);
 498       if (namest.count() < sizeof(buf)) {
 499         const char* name = namest.base();
 500         if (name[0] == ' ')  ++name;
 501         const char* endcn = strchr(name, ':');  // end of class name
 502         if (endcn == NULL)  endcn = strchr(name, '(');
 503         if (endcn == NULL)  endcn = name + strlen(name);
 504         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 505           --endcn;
 506         st->print(" %s", endcn);
 507         printed = true;
 508       }
 509     }
 510     if (!printed)
 511       _method->print_short_name(st);
 512     st->print(" @ bci:%d",_bci);
 513     if(_reexecute == Reexecute_True)
 514       st->print(" reexecute");
 515   } else {
 516     st->print(" runtime stub");
 517   }
 518   if (caller() != NULL)  caller()->dump_spec(st);
 519 }
 520 
 521 
 522 void JVMState::dump_on(outputStream* st) const {
 523   if (_map && !((uintptr_t)_map & 1)) {
 524     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 525       Node* ex = _map->in(_map->req());  // _map->next_exception()
 526       // skip the first one; it's already being printed
 527       while (ex != NULL && ex->len() > ex->req()) {
 528         ex = ex->in(ex->req());  // ex->next_exception()
 529         ex->dump(1);
 530       }
 531     }
 532     _map->dump(2);
 533   }
 534   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 535              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 536   if (_method == NULL) {
 537     st->print_cr("(none)");
 538   } else {
 539     _method->print_name(st);
 540     st->cr();
 541     if (bci() >= 0 && bci() < _method->code_size()) {
 542       st->print("    bc: ");
 543       _method->print_codes_on(bci(), bci()+1, st);
 544     }
 545   }
 546   if (caller() != NULL) {
 547     caller()->dump_on(st);
 548   }
 549 }
 550 
 551 // Extra way to dump a jvms from the debugger,
 552 // to avoid a bug with C++ member function calls.
 553 void dump_jvms(JVMState* jvms) {
 554   jvms->dump();
 555 }
 556 #endif
 557 
 558 //--------------------------clone_shallow--------------------------------------
 559 JVMState* JVMState::clone_shallow(Compile* C) const {
 560   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 561   n->set_bci(_bci);
 562   n->_reexecute = _reexecute;
 563   n->set_locoff(_locoff);
 564   n->set_stkoff(_stkoff);
 565   n->set_monoff(_monoff);
 566   n->set_scloff(_scloff);
 567   n->set_endoff(_endoff);
 568   n->set_sp(_sp);
 569   n->set_map(_map);
 570   return n;
 571 }
 572 
 573 //---------------------------clone_deep----------------------------------------
 574 JVMState* JVMState::clone_deep(Compile* C) const {
 575   JVMState* n = clone_shallow(C);
 576   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 577     p->_caller = p->_caller->clone_shallow(C);
 578   }
 579   assert(n->depth() == depth(), "sanity");
 580   assert(n->debug_depth() == debug_depth(), "sanity");
 581   return n;
 582 }
 583 
 584 //=============================================================================
 585 uint CallNode::cmp( const Node &n ) const
 586 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 587 #ifndef PRODUCT
 588 void CallNode::dump_req() const {
 589   // Dump the required inputs, enclosed in '(' and ')'
 590   uint i;                       // Exit value of loop
 591   for( i=0; i<req(); i++ ) {    // For all required inputs
 592     if( i == TypeFunc::Parms ) tty->print("(");
 593     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 594     else tty->print("_ ");
 595   }
 596   tty->print(")");
 597 }
 598 
 599 void CallNode::dump_spec(outputStream *st) const {
 600   st->print(" ");
 601   tf()->dump_on(st);
 602   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 603   if (jvms() != NULL)  jvms()->dump_spec(st);
 604 }
 605 #endif
 606 
 607 const Type *CallNode::bottom_type() const { return tf()->range(); }
 608 const Type *CallNode::Value(PhaseTransform *phase) const {
 609   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 610   return tf()->range();
 611 }
 612 
 613 //------------------------------calling_convention-----------------------------
 614 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 615   // Use the standard compiler calling convention
 616   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
 617 }
 618 
 619 
 620 //------------------------------match------------------------------------------
 621 // Construct projections for control, I/O, memory-fields, ..., and
 622 // return result(s) along with their RegMask info
 623 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 624   switch (proj->_con) {
 625   case TypeFunc::Control:
 626   case TypeFunc::I_O:
 627   case TypeFunc::Memory:
 628     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 629 
 630   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 631     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 632     // 2nd half of doubles and longs
 633     return new (match->C) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 634 
 635   case TypeFunc::Parms: {       // Normal returns
 636     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 637     OptoRegPair regs = is_CallRuntime()
 638       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
 639       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
 640     RegMask rm = RegMask(regs.first());
 641     if( OptoReg::is_valid(regs.second()) )
 642       rm.Insert( regs.second() );
 643     return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
 644   }
 645 
 646   case TypeFunc::ReturnAdr:
 647   case TypeFunc::FramePtr:
 648   default:
 649     ShouldNotReachHere();
 650   }
 651   return NULL;
 652 }
 653 
 654 // Do we Match on this edge index or not?  Match no edges
 655 uint CallNode::match_edge(uint idx) const {
 656   return 0;
 657 }
 658 
 659 //
 660 // Determine whether the call could modify the field of the specified
 661 // instance at the specified offset.
 662 //
 663 bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
 664   const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
 665 
 666   // If not an OopPtr or not an instance type, assume the worst.
 667   // Note: currently this method is called only for instance types.
 668   if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
 669     return true;
 670   }
 671   // The instance_id is set only for scalar-replaceable allocations which
 672   // are not passed as arguments according to Escape Analysis.
 673   return false;
 674 }
 675 
 676 // Does this call have a direct reference to n other than debug information?
 677 bool CallNode::has_non_debug_use(Node *n) {
 678   const TypeTuple * d = tf()->domain();
 679   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 680     Node *arg = in(i);
 681     if (arg == n) {
 682       return true;
 683     }
 684   }
 685   return false;
 686 }
 687 
 688 // Returns the unique CheckCastPP of a call
 689 // or 'this' if there are several CheckCastPP
 690 // or returns NULL if there is no one.
 691 Node *CallNode::result_cast() {
 692   Node *cast = NULL;
 693 
 694   Node *p = proj_out(TypeFunc::Parms);
 695   if (p == NULL)
 696     return NULL;
 697 
 698   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 699     Node *use = p->fast_out(i);
 700     if (use->is_CheckCastPP()) {
 701       if (cast != NULL) {
 702         return this;  // more than 1 CheckCastPP
 703       }
 704       cast = use;
 705     }
 706   }
 707   return cast;
 708 }
 709 
 710 
 711 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
 712   projs->fallthrough_proj      = NULL;
 713   projs->fallthrough_catchproj = NULL;
 714   projs->fallthrough_ioproj    = NULL;
 715   projs->catchall_ioproj       = NULL;
 716   projs->catchall_catchproj    = NULL;
 717   projs->fallthrough_memproj   = NULL;
 718   projs->catchall_memproj      = NULL;
 719   projs->resproj               = NULL;
 720   projs->exobj                 = NULL;
 721 
 722   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 723     ProjNode *pn = fast_out(i)->as_Proj();
 724     if (pn->outcnt() == 0) continue;
 725     switch (pn->_con) {
 726     case TypeFunc::Control:
 727       {
 728         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 729         projs->fallthrough_proj = pn;
 730         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 731         const Node *cn = pn->fast_out(j);
 732         if (cn->is_Catch()) {
 733           ProjNode *cpn = NULL;
 734           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 735             cpn = cn->fast_out(k)->as_Proj();
 736             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 737             if (cpn->_con == CatchProjNode::fall_through_index)
 738               projs->fallthrough_catchproj = cpn;
 739             else {
 740               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 741               projs->catchall_catchproj = cpn;
 742             }
 743           }
 744         }
 745         break;
 746       }
 747     case TypeFunc::I_O:
 748       if (pn->_is_io_use)
 749         projs->catchall_ioproj = pn;
 750       else
 751         projs->fallthrough_ioproj = pn;
 752       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 753         Node* e = pn->out(j);
 754         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 755           assert(projs->exobj == NULL, "only one");
 756           projs->exobj = e;
 757         }
 758       }
 759       break;
 760     case TypeFunc::Memory:
 761       if (pn->_is_io_use)
 762         projs->catchall_memproj = pn;
 763       else
 764         projs->fallthrough_memproj = pn;
 765       break;
 766     case TypeFunc::Parms:
 767       projs->resproj = pn;
 768       break;
 769     default:
 770       assert(false, "unexpected projection from allocation node.");
 771     }
 772   }
 773 
 774   // The resproj may not exist because the result couuld be ignored
 775   // and the exception object may not exist if an exception handler
 776   // swallows the exception but all the other must exist and be found.
 777   assert(projs->fallthrough_proj      != NULL, "must be found");
 778   assert(projs->fallthrough_catchproj != NULL, "must be found");
 779   assert(projs->fallthrough_memproj   != NULL, "must be found");
 780   assert(projs->fallthrough_ioproj    != NULL, "must be found");
 781   assert(projs->catchall_catchproj    != NULL, "must be found");
 782   if (separate_io_proj) {
 783     assert(projs->catchall_memproj      != NULL, "must be found");
 784     assert(projs->catchall_ioproj       != NULL, "must be found");
 785   }
 786 }
 787 
 788 
 789 //=============================================================================
 790 uint CallJavaNode::size_of() const { return sizeof(*this); }
 791 uint CallJavaNode::cmp( const Node &n ) const {
 792   CallJavaNode &call = (CallJavaNode&)n;
 793   return CallNode::cmp(call) && _method == call._method;
 794 }
 795 #ifndef PRODUCT
 796 void CallJavaNode::dump_spec(outputStream *st) const {
 797   if( _method ) _method->print_short_name(st);
 798   CallNode::dump_spec(st);
 799 }
 800 #endif
 801 
 802 //=============================================================================
 803 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
 804 uint CallStaticJavaNode::cmp( const Node &n ) const {
 805   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
 806   return CallJavaNode::cmp(call);
 807 }
 808 
 809 //----------------------------uncommon_trap_request----------------------------
 810 // If this is an uncommon trap, return the request code, else zero.
 811 int CallStaticJavaNode::uncommon_trap_request() const {
 812   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 813     return extract_uncommon_trap_request(this);
 814   }
 815   return 0;
 816 }
 817 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
 818 #ifndef PRODUCT
 819   if (!(call->req() > TypeFunc::Parms &&
 820         call->in(TypeFunc::Parms) != NULL &&
 821         call->in(TypeFunc::Parms)->is_Con())) {
 822     assert(_in_dump_cnt != 0, "OK if dumping");
 823     tty->print("[bad uncommon trap]");
 824     return 0;
 825   }
 826 #endif
 827   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
 828 }
 829 
 830 #ifndef PRODUCT
 831 void CallStaticJavaNode::dump_spec(outputStream *st) const {
 832   st->print("# Static ");
 833   if (_name != NULL) {
 834     st->print("%s", _name);
 835     int trap_req = uncommon_trap_request();
 836     if (trap_req != 0) {
 837       char buf[100];
 838       st->print("(%s)",
 839                  Deoptimization::format_trap_request(buf, sizeof(buf),
 840                                                      trap_req));
 841     }
 842     st->print(" ");
 843   }
 844   CallJavaNode::dump_spec(st);
 845 }
 846 #endif
 847 
 848 //=============================================================================
 849 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
 850 uint CallDynamicJavaNode::cmp( const Node &n ) const {
 851   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
 852   return CallJavaNode::cmp(call);
 853 }
 854 #ifndef PRODUCT
 855 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
 856   st->print("# Dynamic ");
 857   CallJavaNode::dump_spec(st);
 858 }
 859 #endif
 860 
 861 //=============================================================================
 862 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
 863 uint CallRuntimeNode::cmp( const Node &n ) const {
 864   CallRuntimeNode &call = (CallRuntimeNode&)n;
 865   return CallNode::cmp(call) && !strcmp(_name,call._name);
 866 }
 867 #ifndef PRODUCT
 868 void CallRuntimeNode::dump_spec(outputStream *st) const {
 869   st->print("# ");
 870   st->print(_name);
 871   CallNode::dump_spec(st);
 872 }
 873 #endif
 874 
 875 //------------------------------calling_convention-----------------------------
 876 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 877   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
 878 }
 879 
 880 //=============================================================================
 881 //------------------------------calling_convention-----------------------------
 882 
 883 
 884 //=============================================================================
 885 #ifndef PRODUCT
 886 void CallLeafNode::dump_spec(outputStream *st) const {
 887   st->print("# ");
 888   st->print(_name);
 889   CallNode::dump_spec(st);
 890 }
 891 #endif
 892 
 893 //=============================================================================
 894 
 895 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
 896   assert(verify_jvms(jvms), "jvms must match");
 897   int loc = jvms->locoff() + idx;
 898   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
 899     // If current local idx is top then local idx - 1 could
 900     // be a long/double that needs to be killed since top could
 901     // represent the 2nd half ofthe long/double.
 902     uint ideal = in(loc -1)->ideal_reg();
 903     if (ideal == Op_RegD || ideal == Op_RegL) {
 904       // set other (low index) half to top
 905       set_req(loc - 1, in(loc));
 906     }
 907   }
 908   set_req(loc, c);
 909 }
 910 
 911 uint SafePointNode::size_of() const { return sizeof(*this); }
 912 uint SafePointNode::cmp( const Node &n ) const {
 913   return (&n == this);          // Always fail except on self
 914 }
 915 
 916 //-------------------------set_next_exception----------------------------------
 917 void SafePointNode::set_next_exception(SafePointNode* n) {
 918   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
 919   if (len() == req()) {
 920     if (n != NULL)  add_prec(n);
 921   } else {
 922     set_prec(req(), n);
 923   }
 924 }
 925 
 926 
 927 //----------------------------next_exception-----------------------------------
 928 SafePointNode* SafePointNode::next_exception() const {
 929   if (len() == req()) {
 930     return NULL;
 931   } else {
 932     Node* n = in(req());
 933     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
 934     return (SafePointNode*) n;
 935   }
 936 }
 937 
 938 
 939 //------------------------------Ideal------------------------------------------
 940 // Skip over any collapsed Regions
 941 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 942   return remove_dead_region(phase, can_reshape) ? this : NULL;
 943 }
 944 
 945 //------------------------------Identity---------------------------------------
 946 // Remove obviously duplicate safepoints
 947 Node *SafePointNode::Identity( PhaseTransform *phase ) {
 948 
 949   // If you have back to back safepoints, remove one
 950   if( in(TypeFunc::Control)->is_SafePoint() )
 951     return in(TypeFunc::Control);
 952 
 953   if( in(0)->is_Proj() ) {
 954     Node *n0 = in(0)->in(0);
 955     // Check if he is a call projection (except Leaf Call)
 956     if( n0->is_Catch() ) {
 957       n0 = n0->in(0)->in(0);
 958       assert( n0->is_Call(), "expect a call here" );
 959     }
 960     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
 961       // Useless Safepoint, so remove it
 962       return in(TypeFunc::Control);
 963     }
 964   }
 965 
 966   return this;
 967 }
 968 
 969 //------------------------------Value------------------------------------------
 970 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
 971   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
 972   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
 973   return Type::CONTROL;
 974 }
 975 
 976 #ifndef PRODUCT
 977 void SafePointNode::dump_spec(outputStream *st) const {
 978   st->print(" SafePoint ");
 979 }
 980 #endif
 981 
 982 const RegMask &SafePointNode::in_RegMask(uint idx) const {
 983   if( idx < TypeFunc::Parms ) return RegMask::Empty;
 984   // Values outside the domain represent debug info
 985   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
 986 }
 987 const RegMask &SafePointNode::out_RegMask() const {
 988   return RegMask::Empty;
 989 }
 990 
 991 
 992 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
 993   assert((int)grow_by > 0, "sanity");
 994   int monoff = jvms->monoff();
 995   int scloff = jvms->scloff();
 996   int endoff = jvms->endoff();
 997   assert(endoff == (int)req(), "no other states or debug info after me");
 998   Node* top = Compile::current()->top();
 999   for (uint i = 0; i < grow_by; i++) {
1000     ins_req(monoff, top);
1001   }
1002   jvms->set_monoff(monoff + grow_by);
1003   jvms->set_scloff(scloff + grow_by);
1004   jvms->set_endoff(endoff + grow_by);
1005 }
1006 
1007 void SafePointNode::push_monitor(const FastLockNode *lock) {
1008   // Add a LockNode, which points to both the original BoxLockNode (the
1009   // stack space for the monitor) and the Object being locked.
1010   const int MonitorEdges = 2;
1011   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1012   assert(req() == jvms()->endoff(), "correct sizing");
1013   int nextmon = jvms()->scloff();
1014   if (GenerateSynchronizationCode) {
1015     add_req(lock->box_node());
1016     add_req(lock->obj_node());
1017   } else {
1018     Node* top = Compile::current()->top();
1019     add_req(top);
1020     add_req(top);
1021   }
1022   jvms()->set_scloff(nextmon+MonitorEdges);
1023   jvms()->set_endoff(req());
1024 }
1025 
1026 void SafePointNode::pop_monitor() {
1027   // Delete last monitor from debug info
1028   debug_only(int num_before_pop = jvms()->nof_monitors());
1029   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
1030   int scloff = jvms()->scloff();
1031   int endoff = jvms()->endoff();
1032   int new_scloff = scloff - MonitorEdges;
1033   int new_endoff = endoff - MonitorEdges;
1034   jvms()->set_scloff(new_scloff);
1035   jvms()->set_endoff(new_endoff);
1036   while (scloff > new_scloff)  del_req(--scloff);
1037   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1038 }
1039 
1040 Node *SafePointNode::peek_monitor_box() const {
1041   int mon = jvms()->nof_monitors() - 1;
1042   assert(mon >= 0, "most have a monitor");
1043   return monitor_box(jvms(), mon);
1044 }
1045 
1046 Node *SafePointNode::peek_monitor_obj() const {
1047   int mon = jvms()->nof_monitors() - 1;
1048   assert(mon >= 0, "most have a monitor");
1049   return monitor_obj(jvms(), mon);
1050 }
1051 
1052 // Do we Match on this edge index or not?  Match no edges
1053 uint SafePointNode::match_edge(uint idx) const {
1054   if( !needs_polling_address_input() )
1055     return 0;
1056 
1057   return (TypeFunc::Parms == idx);
1058 }
1059 
1060 //==============  SafePointScalarObjectNode  ==============
1061 
1062 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1063 #ifdef ASSERT
1064                                                      AllocateNode* alloc,
1065 #endif
1066                                                      uint first_index,
1067                                                      uint n_fields) :
1068   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1069 #ifdef ASSERT
1070   _alloc(alloc),
1071 #endif
1072   _first_index(first_index),
1073   _n_fields(n_fields)
1074 {
1075   init_class_id(Class_SafePointScalarObject);
1076 }
1077 
1078 // Do not allow value-numbering for SafePointScalarObject node.
1079 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1080 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1081   return (&n == this); // Always fail except on self
1082 }
1083 
1084 uint SafePointScalarObjectNode::ideal_reg() const {
1085   return 0; // No matching to machine instruction
1086 }
1087 
1088 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1089   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1090 }
1091 
1092 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1093   return RegMask::Empty;
1094 }
1095 
1096 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1097   return 0;
1098 }
1099 
1100 SafePointScalarObjectNode*
1101 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
1102   void* cached = (*sosn_map)[(void*)this];
1103   if (cached != NULL) {
1104     return (SafePointScalarObjectNode*)cached;
1105   }
1106   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1107   res->_first_index += jvms_adj;
1108   sosn_map->Insert((void*)this, (void*)res);
1109   return res;
1110 }
1111 
1112 
1113 #ifndef PRODUCT
1114 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1115   st->print(" # fields@[%d..%d]", first_index(),
1116              first_index() + n_fields() - 1);
1117 }
1118 
1119 #endif
1120 
1121 //=============================================================================
1122 uint AllocateNode::size_of() const { return sizeof(*this); }
1123 
1124 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1125                            Node *ctrl, Node *mem, Node *abio,
1126                            Node *size, Node *klass_node, Node *initial_test)
1127   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1128 {
1129   init_class_id(Class_Allocate);
1130   init_flags(Flag_is_macro);
1131   _is_scalar_replaceable = false;
1132   Node *topnode = C->top();
1133 
1134   init_req( TypeFunc::Control  , ctrl );
1135   init_req( TypeFunc::I_O      , abio );
1136   init_req( TypeFunc::Memory   , mem );
1137   init_req( TypeFunc::ReturnAdr, topnode );
1138   init_req( TypeFunc::FramePtr , topnode );
1139   init_req( AllocSize          , size);
1140   init_req( KlassNode          , klass_node);
1141   init_req( InitialTest        , initial_test);
1142   init_req( ALength            , topnode);
1143   C->add_macro_node(this);
1144 }
1145 
1146 //=============================================================================
1147 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
1148 
1149 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1150   if (remove_dead_region(phase, can_reshape))  return this;
1151   // Don't bother trying to transform a dead node
1152   if (in(0) && in(0)->is_top())  return NULL;
1153 
1154   const Type* type = phase->type(Ideal_length());
1155   if (type->isa_int() && type->is_int()->_hi < 0) {
1156     if (can_reshape) {
1157       PhaseIterGVN *igvn = phase->is_IterGVN();
1158       // Unreachable fall through path (negative array length),
1159       // the allocation can only throw so disconnect it.
1160       Node* proj = proj_out(TypeFunc::Control);
1161       Node* catchproj = NULL;
1162       if (proj != NULL) {
1163         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1164           Node *cn = proj->fast_out(i);
1165           if (cn->is_Catch()) {
1166             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1167             break;
1168           }
1169         }
1170       }
1171       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1172           (catchproj->outcnt() > 1 ||
1173            catchproj->unique_out()->Opcode() != Op_Halt)) {
1174         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1175         Node* nproj = catchproj->clone();
1176         igvn->register_new_node_with_optimizer(nproj);
1177 
1178         Node *frame = new (phase->C) ParmNode( phase->C->start(), TypeFunc::FramePtr );
1179         frame = phase->transform(frame);
1180         // Halt & Catch Fire
1181         Node *halt = new (phase->C) HaltNode( nproj, frame );
1182         phase->C->root()->add_req(halt);
1183         phase->transform(halt);
1184 
1185         igvn->replace_node(catchproj, phase->C->top());
1186         return this;
1187       }
1188     } else {
1189       // Can't correct it during regular GVN so register for IGVN
1190       phase->C->record_for_igvn(this);
1191     }
1192   }
1193   return NULL;
1194 }
1195 
1196 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1197 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1198 // a CastII is appropriate, return NULL.
1199 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1200   Node *length = in(AllocateNode::ALength);
1201   assert(length != NULL, "length is not null");
1202 
1203   const TypeInt* length_type = phase->find_int_type(length);
1204   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1205 
1206   if (ary_type != NULL && length_type != NULL) {
1207     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1208     if (narrow_length_type != length_type) {
1209       // Assert one of:
1210       //   - the narrow_length is 0
1211       //   - the narrow_length is not wider than length
1212       assert(narrow_length_type == TypeInt::ZERO ||
1213              (narrow_length_type->_hi <= length_type->_hi &&
1214               narrow_length_type->_lo >= length_type->_lo),
1215              "narrow type must be narrower than length type");
1216 
1217       // Return NULL if new nodes are not allowed
1218       if (!allow_new_nodes) return NULL;
1219       // Create a cast which is control dependent on the initialization to
1220       // propagate the fact that the array length must be positive.
1221       length = new (phase->C) CastIINode(length, narrow_length_type);
1222       length->set_req(0, initialization()->proj_out(0));
1223     }
1224   }
1225 
1226   return length;
1227 }
1228 
1229 //=============================================================================
1230 uint LockNode::size_of() const { return sizeof(*this); }
1231 
1232 // Redundant lock elimination
1233 //
1234 // There are various patterns of locking where we release and
1235 // immediately reacquire a lock in a piece of code where no operations
1236 // occur in between that would be observable.  In those cases we can
1237 // skip releasing and reacquiring the lock without violating any
1238 // fairness requirements.  Doing this around a loop could cause a lock
1239 // to be held for a very long time so we concentrate on non-looping
1240 // control flow.  We also require that the operations are fully
1241 // redundant meaning that we don't introduce new lock operations on
1242 // some paths so to be able to eliminate it on others ala PRE.  This
1243 // would probably require some more extensive graph manipulation to
1244 // guarantee that the memory edges were all handled correctly.
1245 //
1246 // Assuming p is a simple predicate which can't trap in any way and s
1247 // is a synchronized method consider this code:
1248 //
1249 //   s();
1250 //   if (p)
1251 //     s();
1252 //   else
1253 //     s();
1254 //   s();
1255 //
1256 // 1. The unlocks of the first call to s can be eliminated if the
1257 // locks inside the then and else branches are eliminated.
1258 //
1259 // 2. The unlocks of the then and else branches can be eliminated if
1260 // the lock of the final call to s is eliminated.
1261 //
1262 // Either of these cases subsumes the simple case of sequential control flow
1263 //
1264 // Addtionally we can eliminate versions without the else case:
1265 //
1266 //   s();
1267 //   if (p)
1268 //     s();
1269 //   s();
1270 //
1271 // 3. In this case we eliminate the unlock of the first s, the lock
1272 // and unlock in the then case and the lock in the final s.
1273 //
1274 // Note also that in all these cases the then/else pieces don't have
1275 // to be trivial as long as they begin and end with synchronization
1276 // operations.
1277 //
1278 //   s();
1279 //   if (p)
1280 //     s();
1281 //     f();
1282 //     s();
1283 //   s();
1284 //
1285 // The code will work properly for this case, leaving in the unlock
1286 // before the call to f and the relock after it.
1287 //
1288 // A potentially interesting case which isn't handled here is when the
1289 // locking is partially redundant.
1290 //
1291 //   s();
1292 //   if (p)
1293 //     s();
1294 //
1295 // This could be eliminated putting unlocking on the else case and
1296 // eliminating the first unlock and the lock in the then side.
1297 // Alternatively the unlock could be moved out of the then side so it
1298 // was after the merge and the first unlock and second lock
1299 // eliminated.  This might require less manipulation of the memory
1300 // state to get correct.
1301 //
1302 // Additionally we might allow work between a unlock and lock before
1303 // giving up eliminating the locks.  The current code disallows any
1304 // conditional control flow between these operations.  A formulation
1305 // similar to partial redundancy elimination computing the
1306 // availability of unlocking and the anticipatability of locking at a
1307 // program point would allow detection of fully redundant locking with
1308 // some amount of work in between.  I'm not sure how often I really
1309 // think that would occur though.  Most of the cases I've seen
1310 // indicate it's likely non-trivial work would occur in between.
1311 // There may be other more complicated constructs where we could
1312 // eliminate locking but I haven't seen any others appear as hot or
1313 // interesting.
1314 //
1315 // Locking and unlocking have a canonical form in ideal that looks
1316 // roughly like this:
1317 //
1318 //              <obj>
1319 //                | \\------+
1320 //                |  \       \
1321 //                | BoxLock   \
1322 //                |  |   |     \
1323 //                |  |    \     \
1324 //                |  |   FastLock
1325 //                |  |   /
1326 //                |  |  /
1327 //                |  |  |
1328 //
1329 //               Lock
1330 //                |
1331 //            Proj #0
1332 //                |
1333 //            MembarAcquire
1334 //                |
1335 //            Proj #0
1336 //
1337 //            MembarRelease
1338 //                |
1339 //            Proj #0
1340 //                |
1341 //              Unlock
1342 //                |
1343 //            Proj #0
1344 //
1345 //
1346 // This code proceeds by processing Lock nodes during PhaseIterGVN
1347 // and searching back through its control for the proper code
1348 // patterns.  Once it finds a set of lock and unlock operations to
1349 // eliminate they are marked as eliminatable which causes the
1350 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1351 //
1352 //=============================================================================
1353 
1354 //
1355 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1356 //   - copy regions.  (These may not have been optimized away yet.)
1357 //   - eliminated locking nodes
1358 //
1359 static Node *next_control(Node *ctrl) {
1360   if (ctrl == NULL)
1361     return NULL;
1362   while (1) {
1363     if (ctrl->is_Region()) {
1364       RegionNode *r = ctrl->as_Region();
1365       Node *n = r->is_copy();
1366       if (n == NULL)
1367         break;  // hit a region, return it
1368       else
1369         ctrl = n;
1370     } else if (ctrl->is_Proj()) {
1371       Node *in0 = ctrl->in(0);
1372       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1373         ctrl = in0->in(0);
1374       } else {
1375         break;
1376       }
1377     } else {
1378       break; // found an interesting control
1379     }
1380   }
1381   return ctrl;
1382 }
1383 //
1384 // Given a control, see if it's the control projection of an Unlock which
1385 // operating on the same object as lock.
1386 //
1387 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1388                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1389   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1390   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1391     Node *n = ctrl_proj->in(0);
1392     if (n != NULL && n->is_Unlock()) {
1393       UnlockNode *unlock = n->as_Unlock();
1394       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1395           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1396           !unlock->is_eliminated()) {
1397         lock_ops.append(unlock);
1398         return true;
1399       }
1400     }
1401   }
1402   return false;
1403 }
1404 
1405 //
1406 // Find the lock matching an unlock.  Returns null if a safepoint
1407 // or complicated control is encountered first.
1408 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1409   LockNode *lock_result = NULL;
1410   // find the matching lock, or an intervening safepoint
1411   Node *ctrl = next_control(unlock->in(0));
1412   while (1) {
1413     assert(ctrl != NULL, "invalid control graph");
1414     assert(!ctrl->is_Start(), "missing lock for unlock");
1415     if (ctrl->is_top()) break;  // dead control path
1416     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1417     if (ctrl->is_SafePoint()) {
1418         break;  // found a safepoint (may be the lock we are searching for)
1419     } else if (ctrl->is_Region()) {
1420       // Check for a simple diamond pattern.  Punt on anything more complicated
1421       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1422         Node *in1 = next_control(ctrl->in(1));
1423         Node *in2 = next_control(ctrl->in(2));
1424         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1425              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1426           ctrl = next_control(in1->in(0)->in(0));
1427         } else {
1428           break;
1429         }
1430       } else {
1431         break;
1432       }
1433     } else {
1434       ctrl = next_control(ctrl->in(0));  // keep searching
1435     }
1436   }
1437   if (ctrl->is_Lock()) {
1438     LockNode *lock = ctrl->as_Lock();
1439     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1440         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1441       lock_result = lock;
1442     }
1443   }
1444   return lock_result;
1445 }
1446 
1447 // This code corresponds to case 3 above.
1448 
1449 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1450                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1451   Node* if_node = node->in(0);
1452   bool  if_true = node->is_IfTrue();
1453 
1454   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1455     Node *lock_ctrl = next_control(if_node->in(0));
1456     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1457       Node* lock1_node = NULL;
1458       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1459       if (if_true) {
1460         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1461           lock1_node = proj->unique_out();
1462         }
1463       } else {
1464         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1465           lock1_node = proj->unique_out();
1466         }
1467       }
1468       if (lock1_node != NULL && lock1_node->is_Lock()) {
1469         LockNode *lock1 = lock1_node->as_Lock();
1470         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
1471             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1472             !lock1->is_eliminated()) {
1473           lock_ops.append(lock1);
1474           return true;
1475         }
1476       }
1477     }
1478   }
1479 
1480   lock_ops.trunc_to(0);
1481   return false;
1482 }
1483 
1484 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1485                                GrowableArray<AbstractLockNode*> &lock_ops) {
1486   // check each control merging at this point for a matching unlock.
1487   // in(0) should be self edge so skip it.
1488   for (int i = 1; i < (int)region->req(); i++) {
1489     Node *in_node = next_control(region->in(i));
1490     if (in_node != NULL) {
1491       if (find_matching_unlock(in_node, lock, lock_ops)) {
1492         // found a match so keep on checking.
1493         continue;
1494       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1495         continue;
1496       }
1497 
1498       // If we fall through to here then it was some kind of node we
1499       // don't understand or there wasn't a matching unlock, so give
1500       // up trying to merge locks.
1501       lock_ops.trunc_to(0);
1502       return false;
1503     }
1504   }
1505   return true;
1506 
1507 }
1508 
1509 #ifndef PRODUCT
1510 //
1511 // Create a counter which counts the number of times this lock is acquired
1512 //
1513 void AbstractLockNode::create_lock_counter(JVMState* state) {
1514   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1515 }
1516 
1517 void AbstractLockNode::set_eliminated_lock_counter() {
1518   if (_counter) {
1519     // Update the counter to indicate that this lock was eliminated.
1520     // The counter update code will stay around even though the
1521     // optimizer will eliminate the lock operation itself.
1522     _counter->set_tag(NamedCounter::EliminatedLockCounter);
1523   }
1524 }
1525 #endif
1526 
1527 //=============================================================================
1528 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1529 
1530   // perform any generic optimizations first (returns 'this' or NULL)
1531   Node *result = SafePointNode::Ideal(phase, can_reshape);
1532   if (result != NULL)  return result;
1533   // Don't bother trying to transform a dead node
1534   if (in(0) && in(0)->is_top())  return NULL;
1535 
1536   // Now see if we can optimize away this lock.  We don't actually
1537   // remove the locking here, we simply set the _eliminate flag which
1538   // prevents macro expansion from expanding the lock.  Since we don't
1539   // modify the graph, the value returned from this function is the
1540   // one computed above.
1541   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1542     //
1543     // If we are locking an unescaped object, the lock/unlock is unnecessary
1544     //
1545     ConnectionGraph *cgr = phase->C->congraph();
1546     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1547       assert(!is_eliminated() || is_coarsened(), "sanity");
1548       // The lock could be marked eliminated by lock coarsening
1549       // code during first IGVN before EA. Replace coarsened flag
1550       // to eliminate all associated locks/unlocks.
1551       this->set_non_esc_obj();
1552       return result;
1553     }
1554 
1555     //
1556     // Try lock coarsening
1557     //
1558     PhaseIterGVN* iter = phase->is_IterGVN();
1559     if (iter != NULL && !is_eliminated()) {
1560 
1561       GrowableArray<AbstractLockNode*>   lock_ops;
1562 
1563       Node *ctrl = next_control(in(0));
1564 
1565       // now search back for a matching Unlock
1566       if (find_matching_unlock(ctrl, this, lock_ops)) {
1567         // found an unlock directly preceding this lock.  This is the
1568         // case of single unlock directly control dependent on a
1569         // single lock which is the trivial version of case 1 or 2.
1570       } else if (ctrl->is_Region() ) {
1571         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1572         // found lock preceded by multiple unlocks along all paths
1573         // joining at this point which is case 3 in description above.
1574         }
1575       } else {
1576         // see if this lock comes from either half of an if and the
1577         // predecessors merges unlocks and the other half of the if
1578         // performs a lock.
1579         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1580           // found unlock splitting to an if with locks on both branches.
1581         }
1582       }
1583 
1584       if (lock_ops.length() > 0) {
1585         // add ourselves to the list of locks to be eliminated.
1586         lock_ops.append(this);
1587 
1588   #ifndef PRODUCT
1589         if (PrintEliminateLocks) {
1590           int locks = 0;
1591           int unlocks = 0;
1592           for (int i = 0; i < lock_ops.length(); i++) {
1593             AbstractLockNode* lock = lock_ops.at(i);
1594             if (lock->Opcode() == Op_Lock)
1595               locks++;
1596             else
1597               unlocks++;
1598             if (Verbose) {
1599               lock->dump(1);
1600             }
1601           }
1602           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1603         }
1604   #endif
1605 
1606         // for each of the identified locks, mark them
1607         // as eliminatable
1608         for (int i = 0; i < lock_ops.length(); i++) {
1609           AbstractLockNode* lock = lock_ops.at(i);
1610 
1611           // Mark it eliminated by coarsening and update any counters
1612           lock->set_coarsened();
1613         }
1614       } else if (ctrl->is_Region() &&
1615                  iter->_worklist.member(ctrl)) {
1616         // We weren't able to find any opportunities but the region this
1617         // lock is control dependent on hasn't been processed yet so put
1618         // this lock back on the worklist so we can check again once any
1619         // region simplification has occurred.
1620         iter->_worklist.push(this);
1621       }
1622     }
1623   }
1624 
1625   return result;
1626 }
1627 
1628 //=============================================================================
1629 bool LockNode::is_nested_lock_region() {
1630   BoxLockNode* box = box_node()->as_BoxLock();
1631   int stk_slot = box->stack_slot();
1632   if (stk_slot <= 0)
1633     return false; // External lock or it is not Box (Phi node).
1634 
1635   // Ignore complex cases: merged locks or multiple locks.
1636   Node* obj = obj_node();
1637   LockNode* unique_lock = NULL;
1638   if (!box->is_simple_lock_region(&unique_lock, obj) ||
1639       (unique_lock != this)) {
1640     return false;
1641   }
1642 
1643   // Look for external lock for the same object.
1644   SafePointNode* sfn = this->as_SafePoint();
1645   JVMState* youngest_jvms = sfn->jvms();
1646   int max_depth = youngest_jvms->depth();
1647   for (int depth = 1; depth <= max_depth; depth++) {
1648     JVMState* jvms = youngest_jvms->of_depth(depth);
1649     int num_mon  = jvms->nof_monitors();
1650     // Loop over monitors
1651     for (int idx = 0; idx < num_mon; idx++) {
1652       Node* obj_node = sfn->monitor_obj(jvms, idx);
1653       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1654       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1655         return true;
1656       }
1657     }
1658   }
1659   return false;
1660 }
1661 
1662 //=============================================================================
1663 uint UnlockNode::size_of() const { return sizeof(*this); }
1664 
1665 //=============================================================================
1666 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1667 
1668   // perform any generic optimizations first (returns 'this' or NULL)
1669   Node *result = SafePointNode::Ideal(phase, can_reshape);
1670   if (result != NULL)  return result;
1671   // Don't bother trying to transform a dead node
1672   if (in(0) && in(0)->is_top())  return NULL;
1673 
1674   // Now see if we can optimize away this unlock.  We don't actually
1675   // remove the unlocking here, we simply set the _eliminate flag which
1676   // prevents macro expansion from expanding the unlock.  Since we don't
1677   // modify the graph, the value returned from this function is the
1678   // one computed above.
1679   // Escape state is defined after Parse phase.
1680   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1681     //
1682     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1683     //
1684     ConnectionGraph *cgr = phase->C->congraph();
1685     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1686       assert(!is_eliminated() || is_coarsened(), "sanity");
1687       // The lock could be marked eliminated by lock coarsening
1688       // code during first IGVN before EA. Replace coarsened flag
1689       // to eliminate all associated locks/unlocks.
1690       this->set_non_esc_obj();
1691     }
1692   }
1693   return result;
1694 }