1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "opto/callGenerator.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/escape.hpp"
  31 #include "opto/locknode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/parse.hpp"
  35 #include "opto/regalloc.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 
  40 // Portions of code courtesy of Clifford Click
  41 
  42 // Optimization - Graph Style
  43 
  44 //=============================================================================
  45 uint StartNode::size_of() const { return sizeof(*this); }
  46 uint StartNode::cmp( const Node &n ) const
  47 { return _domain == ((StartNode&)n)._domain; }
  48 const Type *StartNode::bottom_type() const { return _domain; }
  49 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
  50 #ifndef PRODUCT
  51 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  52 #endif
  53 
  54 //------------------------------Ideal------------------------------------------
  55 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  56   return remove_dead_region(phase, can_reshape) ? this : NULL;
  57 }
  58 
  59 //------------------------------calling_convention-----------------------------
  60 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  61   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
  62 }
  63 
  64 //------------------------------Registers--------------------------------------
  65 const RegMask &StartNode::in_RegMask(uint) const {
  66   return RegMask::Empty;
  67 }
  68 
  69 //------------------------------match------------------------------------------
  70 // Construct projections for incoming parameters, and their RegMask info
  71 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  72   switch (proj->_con) {
  73   case TypeFunc::Control:
  74   case TypeFunc::I_O:
  75   case TypeFunc::Memory:
  76     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  77   case TypeFunc::FramePtr:
  78     return new (match->C) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  79   case TypeFunc::ReturnAdr:
  80     return new (match->C) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  81   case TypeFunc::Parms:
  82   default: {
  83       uint parm_num = proj->_con - TypeFunc::Parms;
  84       const Type *t = _domain->field_at(proj->_con);
  85       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  86         return new (match->C) ConNode(Type::TOP);
  87       uint ideal_reg = t->ideal_reg();
  88       RegMask &rm = match->_calling_convention_mask[parm_num];
  89       return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
  90     }
  91   }
  92   return NULL;
  93 }
  94 
  95 //------------------------------StartOSRNode----------------------------------
  96 // The method start node for an on stack replacement adapter
  97 
  98 //------------------------------osr_domain-----------------------------
  99 const TypeTuple *StartOSRNode::osr_domain() {
 100   const Type **fields = TypeTuple::fields(2);
 101   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 102 
 103   return TypeTuple::make(TypeFunc::Parms+1, fields);
 104 }
 105 
 106 //=============================================================================
 107 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 108   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 109 };
 110 
 111 #ifndef PRODUCT
 112 void ParmNode::dump_spec(outputStream *st) const {
 113   if( _con < TypeFunc::Parms ) {
 114     st->print(names[_con]);
 115   } else {
 116     st->print("Parm%d: ",_con-TypeFunc::Parms);
 117     // Verbose and WizardMode dump bottom_type for all nodes
 118     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 119   }
 120 }
 121 #endif
 122 
 123 uint ParmNode::ideal_reg() const {
 124   switch( _con ) {
 125   case TypeFunc::Control  : // fall through
 126   case TypeFunc::I_O      : // fall through
 127   case TypeFunc::Memory   : return 0;
 128   case TypeFunc::FramePtr : // fall through
 129   case TypeFunc::ReturnAdr: return Op_RegP;
 130   default                 : assert( _con > TypeFunc::Parms, "" );
 131     // fall through
 132   case TypeFunc::Parms    : {
 133     // Type of argument being passed
 134     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 135     return t->ideal_reg();
 136   }
 137   }
 138   ShouldNotReachHere();
 139   return 0;
 140 }
 141 
 142 //=============================================================================
 143 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 144   init_req(TypeFunc::Control,cntrl);
 145   init_req(TypeFunc::I_O,i_o);
 146   init_req(TypeFunc::Memory,memory);
 147   init_req(TypeFunc::FramePtr,frameptr);
 148   init_req(TypeFunc::ReturnAdr,retadr);
 149 }
 150 
 151 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 152   return remove_dead_region(phase, can_reshape) ? this : NULL;
 153 }
 154 
 155 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
 156   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 157     ? Type::TOP
 158     : Type::BOTTOM;
 159 }
 160 
 161 // Do we Match on this edge index or not?  No edges on return nodes
 162 uint ReturnNode::match_edge(uint idx) const {
 163   return 0;
 164 }
 165 
 166 
 167 #ifndef PRODUCT
 168 void ReturnNode::dump_req() const {
 169   // Dump the required inputs, enclosed in '(' and ')'
 170   uint i;                       // Exit value of loop
 171   for( i=0; i<req(); i++ ) {    // For all required inputs
 172     if( i == TypeFunc::Parms ) tty->print("returns");
 173     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 174     else tty->print("_ ");
 175   }
 176 }
 177 #endif
 178 
 179 //=============================================================================
 180 RethrowNode::RethrowNode(
 181   Node* cntrl,
 182   Node* i_o,
 183   Node* memory,
 184   Node* frameptr,
 185   Node* ret_adr,
 186   Node* exception
 187 ) : Node(TypeFunc::Parms + 1) {
 188   init_req(TypeFunc::Control  , cntrl    );
 189   init_req(TypeFunc::I_O      , i_o      );
 190   init_req(TypeFunc::Memory   , memory   );
 191   init_req(TypeFunc::FramePtr , frameptr );
 192   init_req(TypeFunc::ReturnAdr, ret_adr);
 193   init_req(TypeFunc::Parms    , exception);
 194 }
 195 
 196 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 197   return remove_dead_region(phase, can_reshape) ? this : NULL;
 198 }
 199 
 200 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
 201   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 202     ? Type::TOP
 203     : Type::BOTTOM;
 204 }
 205 
 206 uint RethrowNode::match_edge(uint idx) const {
 207   return 0;
 208 }
 209 
 210 #ifndef PRODUCT
 211 void RethrowNode::dump_req() const {
 212   // Dump the required inputs, enclosed in '(' and ')'
 213   uint i;                       // Exit value of loop
 214   for( i=0; i<req(); i++ ) {    // For all required inputs
 215     if( i == TypeFunc::Parms ) tty->print("exception");
 216     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 217     else tty->print("_ ");
 218   }
 219 }
 220 #endif
 221 
 222 //=============================================================================
 223 // Do we Match on this edge index or not?  Match only target address & method
 224 uint TailCallNode::match_edge(uint idx) const {
 225   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 226 }
 227 
 228 //=============================================================================
 229 // Do we Match on this edge index or not?  Match only target address & oop
 230 uint TailJumpNode::match_edge(uint idx) const {
 231   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 232 }
 233 
 234 //=============================================================================
 235 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 236   _method(method) {
 237   assert(method != NULL, "must be valid call site");
 238   _reexecute = Reexecute_Undefined;
 239   debug_only(_bci = -99);  // random garbage value
 240   debug_only(_map = (SafePointNode*)-1);
 241   _caller = caller;
 242   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 243   _locoff = TypeFunc::Parms;
 244   _stkoff = _locoff + _method->max_locals();
 245   _monoff = _stkoff + _method->max_stack();
 246   _scloff = _monoff;
 247   _endoff = _monoff;
 248   _sp = 0;
 249 }
 250 JVMState::JVMState(int stack_size) :
 251   _method(NULL) {
 252   _bci = InvocationEntryBci;
 253   _reexecute = Reexecute_Undefined;
 254   debug_only(_map = (SafePointNode*)-1);
 255   _caller = NULL;
 256   _depth  = 1;
 257   _locoff = TypeFunc::Parms;
 258   _stkoff = _locoff;
 259   _monoff = _stkoff + stack_size;
 260   _scloff = _monoff;
 261   _endoff = _monoff;
 262   _sp = 0;
 263 }
 264 
 265 //--------------------------------of_depth-------------------------------------
 266 JVMState* JVMState::of_depth(int d) const {
 267   const JVMState* jvmp = this;
 268   assert(0 < d && (uint)d <= depth(), "oob");
 269   for (int skip = depth() - d; skip > 0; skip--) {
 270     jvmp = jvmp->caller();
 271   }
 272   assert(jvmp->depth() == (uint)d, "found the right one");
 273   return (JVMState*)jvmp;
 274 }
 275 
 276 //-----------------------------same_calls_as-----------------------------------
 277 bool JVMState::same_calls_as(const JVMState* that) const {
 278   if (this == that)                    return true;
 279   if (this->depth() != that->depth())  return false;
 280   const JVMState* p = this;
 281   const JVMState* q = that;
 282   for (;;) {
 283     if (p->_method != q->_method)    return false;
 284     if (p->_method == NULL)          return true;   // bci is irrelevant
 285     if (p->_bci    != q->_bci)       return false;
 286     if (p->_reexecute != q->_reexecute)  return false;
 287     p = p->caller();
 288     q = q->caller();
 289     if (p == q)                      return true;
 290     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 291   }
 292 }
 293 
 294 //------------------------------debug_start------------------------------------
 295 uint JVMState::debug_start()  const {
 296   debug_only(JVMState* jvmroot = of_depth(1));
 297   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 298   return of_depth(1)->locoff();
 299 }
 300 
 301 //-------------------------------debug_end-------------------------------------
 302 uint JVMState::debug_end() const {
 303   debug_only(JVMState* jvmroot = of_depth(1));
 304   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 305   return endoff();
 306 }
 307 
 308 //------------------------------debug_depth------------------------------------
 309 uint JVMState::debug_depth() const {
 310   uint total = 0;
 311   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 312     total += jvmp->debug_size();
 313   }
 314   return total;
 315 }
 316 
 317 #ifndef PRODUCT
 318 
 319 //------------------------------format_helper----------------------------------
 320 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 321 // any defined value or not.  If it does, print out the register or constant.
 322 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 323   if (n == NULL) { st->print(" NULL"); return; }
 324   if (n->is_SafePointScalarObject()) {
 325     // Scalar replacement.
 326     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 327     scobjs->append_if_missing(spobj);
 328     int sco_n = scobjs->find(spobj);
 329     assert(sco_n >= 0, "");
 330     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 331     return;
 332   }
 333   if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 334     char buf[50];
 335     regalloc->dump_register(n,buf);
 336     st->print(" %s%d]=%s",msg,i,buf);
 337   } else {                      // No register, but might be constant
 338     const Type *t = n->bottom_type();
 339     switch (t->base()) {
 340     case Type::Int:
 341       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
 342       break;
 343     case Type::AnyPtr:
 344       assert( t == TypePtr::NULL_PTR, "" );
 345       st->print(" %s%d]=#NULL",msg,i);
 346       break;
 347     case Type::AryPtr:
 348     case Type::InstPtr:
 349       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
 350       break;
 351     case Type::KlassPtr:
 352       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_klassptr()->klass());
 353       break;
 354     case Type::MetadataPtr:
 355       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_metadataptr()->metadata());
 356       break;
 357     case Type::NarrowOop:
 358       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
 359       break;
 360     case Type::RawPtr:
 361       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
 362       break;
 363     case Type::DoubleCon:
 364       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 365       break;
 366     case Type::FloatCon:
 367       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 368       break;
 369     case Type::Long:
 370       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
 371       break;
 372     case Type::Half:
 373     case Type::Top:
 374       st->print(" %s%d]=_",msg,i);
 375       break;
 376     default: ShouldNotReachHere();
 377     }
 378   }
 379 }
 380 
 381 //------------------------------format-----------------------------------------
 382 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 383   st->print("        #");
 384   if( _method ) {
 385     _method->print_short_name(st);
 386     st->print(" @ bci:%d ",_bci);
 387   } else {
 388     st->print_cr(" runtime stub ");
 389     return;
 390   }
 391   if (n->is_MachSafePoint()) {
 392     GrowableArray<SafePointScalarObjectNode*> scobjs;
 393     MachSafePointNode *mcall = n->as_MachSafePoint();
 394     uint i;
 395     // Print locals
 396     for( i = 0; i < (uint)loc_size(); i++ )
 397       format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
 398     // Print stack
 399     for (i = 0; i < (uint)stk_size(); i++) {
 400       if ((uint)(_stkoff + i) >= mcall->len())
 401         st->print(" oob ");
 402       else
 403        format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
 404     }
 405     for (i = 0; (int)i < nof_monitors(); i++) {
 406       Node *box = mcall->monitor_box(this, i);
 407       Node *obj = mcall->monitor_obj(this, i);
 408       if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
 409         box = BoxLockNode::box_node(box);
 410         format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
 411       } else {
 412         OptoReg::Name box_reg = BoxLockNode::reg(box);
 413         st->print(" MON-BOX%d=%s+%d",
 414                    i,
 415                    OptoReg::regname(OptoReg::c_frame_pointer),
 416                    regalloc->reg2offset(box_reg));
 417       }
 418       const char* obj_msg = "MON-OBJ[";
 419       if (EliminateLocks) {
 420         if (BoxLockNode::box_node(box)->is_eliminated())
 421           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 422       }
 423       format_helper( regalloc, st, obj, obj_msg, i, &scobjs );
 424     }
 425 
 426     for (i = 0; i < (uint)scobjs.length(); i++) {
 427       // Scalar replaced objects.
 428       st->print_cr("");
 429       st->print("        # ScObj" INT32_FORMAT " ", i);
 430       SafePointScalarObjectNode* spobj = scobjs.at(i);
 431       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
 432       assert(cik->is_instance_klass() ||
 433              cik->is_array_klass(), "Not supported allocation.");
 434       ciInstanceKlass *iklass = NULL;
 435       if (cik->is_instance_klass()) {
 436         cik->print_name_on(st);
 437         iklass = cik->as_instance_klass();
 438       } else if (cik->is_type_array_klass()) {
 439         cik->as_array_klass()->base_element_type()->print_name_on(st);
 440         st->print("[%d]", spobj->n_fields());
 441       } else if (cik->is_obj_array_klass()) {
 442         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 443         if (cie->is_instance_klass()) {
 444           cie->print_name_on(st);
 445         } else if (cie->is_type_array_klass()) {
 446           cie->as_array_klass()->base_element_type()->print_name_on(st);
 447         } else {
 448           ShouldNotReachHere();
 449         }
 450         st->print("[%d]", spobj->n_fields());
 451         int ndim = cik->as_array_klass()->dimension() - 1;
 452         while (ndim-- > 0) {
 453           st->print("[]");
 454         }
 455       }
 456       st->print("={");
 457       uint nf = spobj->n_fields();
 458       if (nf > 0) {
 459         uint first_ind = spobj->first_index();
 460         Node* fld_node = mcall->in(first_ind);
 461         ciField* cifield;
 462         if (iklass != NULL) {
 463           st->print(" [");
 464           cifield = iklass->nonstatic_field_at(0);
 465           cifield->print_name_on(st);
 466           format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
 467         } else {
 468           format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
 469         }
 470         for (uint j = 1; j < nf; j++) {
 471           fld_node = mcall->in(first_ind+j);
 472           if (iklass != NULL) {
 473             st->print(", [");
 474             cifield = iklass->nonstatic_field_at(j);
 475             cifield->print_name_on(st);
 476             format_helper( regalloc, st, fld_node, ":", j, &scobjs );
 477           } else {
 478             format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
 479           }
 480         }
 481       }
 482       st->print(" }");
 483     }
 484   }
 485   st->print_cr("");
 486   if (caller() != NULL)  caller()->format(regalloc, n, st);
 487 }
 488 
 489 
 490 void JVMState::dump_spec(outputStream *st) const {
 491   if (_method != NULL) {
 492     bool printed = false;
 493     if (!Verbose) {
 494       // The JVMS dumps make really, really long lines.
 495       // Take out the most boring parts, which are the package prefixes.
 496       char buf[500];
 497       stringStream namest(buf, sizeof(buf));
 498       _method->print_short_name(&namest);
 499       if (namest.count() < sizeof(buf)) {
 500         const char* name = namest.base();
 501         if (name[0] == ' ')  ++name;
 502         const char* endcn = strchr(name, ':');  // end of class name
 503         if (endcn == NULL)  endcn = strchr(name, '(');
 504         if (endcn == NULL)  endcn = name + strlen(name);
 505         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 506           --endcn;
 507         st->print(" %s", endcn);
 508         printed = true;
 509       }
 510     }
 511     if (!printed)
 512       _method->print_short_name(st);
 513     st->print(" @ bci:%d",_bci);
 514     if(_reexecute == Reexecute_True)
 515       st->print(" reexecute");
 516   } else {
 517     st->print(" runtime stub");
 518   }
 519   if (caller() != NULL)  caller()->dump_spec(st);
 520 }
 521 
 522 
 523 void JVMState::dump_on(outputStream* st) const {
 524   if (_map && !((uintptr_t)_map & 1)) {
 525     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 526       Node* ex = _map->in(_map->req());  // _map->next_exception()
 527       // skip the first one; it's already being printed
 528       while (ex != NULL && ex->len() > ex->req()) {
 529         ex = ex->in(ex->req());  // ex->next_exception()
 530         ex->dump(1);
 531       }
 532     }
 533     _map->dump(2);
 534   }
 535   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 536              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 537   if (_method == NULL) {
 538     st->print_cr("(none)");
 539   } else {
 540     _method->print_name(st);
 541     st->cr();
 542     if (bci() >= 0 && bci() < _method->code_size()) {
 543       st->print("    bc: ");
 544       _method->print_codes_on(bci(), bci()+1, st);
 545     }
 546   }
 547   if (caller() != NULL) {
 548     caller()->dump_on(st);
 549   }
 550 }
 551 
 552 // Extra way to dump a jvms from the debugger,
 553 // to avoid a bug with C++ member function calls.
 554 void dump_jvms(JVMState* jvms) {
 555   jvms->dump();
 556 }
 557 #endif
 558 
 559 //--------------------------clone_shallow--------------------------------------
 560 JVMState* JVMState::clone_shallow(Compile* C) const {
 561   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 562   n->set_bci(_bci);
 563   n->_reexecute = _reexecute;
 564   n->set_locoff(_locoff);
 565   n->set_stkoff(_stkoff);
 566   n->set_monoff(_monoff);
 567   n->set_scloff(_scloff);
 568   n->set_endoff(_endoff);
 569   n->set_sp(_sp);
 570   n->set_map(_map);
 571   return n;
 572 }
 573 
 574 //---------------------------clone_deep----------------------------------------
 575 JVMState* JVMState::clone_deep(Compile* C) const {
 576   JVMState* n = clone_shallow(C);
 577   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 578     p->_caller = p->_caller->clone_shallow(C);
 579   }
 580   assert(n->depth() == depth(), "sanity");
 581   assert(n->debug_depth() == debug_depth(), "sanity");
 582   return n;
 583 }
 584 
 585 //=============================================================================
 586 uint CallNode::cmp( const Node &n ) const
 587 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 588 #ifndef PRODUCT
 589 void CallNode::dump_req() const {
 590   // Dump the required inputs, enclosed in '(' and ')'
 591   uint i;                       // Exit value of loop
 592   for( i=0; i<req(); i++ ) {    // For all required inputs
 593     if( i == TypeFunc::Parms ) tty->print("(");
 594     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 595     else tty->print("_ ");
 596   }
 597   tty->print(")");
 598 }
 599 
 600 void CallNode::dump_spec(outputStream *st) const {
 601   st->print(" ");
 602   tf()->dump_on(st);
 603   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 604   if (jvms() != NULL)  jvms()->dump_spec(st);
 605 }
 606 #endif
 607 
 608 const Type *CallNode::bottom_type() const { return tf()->range(); }
 609 const Type *CallNode::Value(PhaseTransform *phase) const {
 610   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 611   return tf()->range();
 612 }
 613 
 614 //------------------------------calling_convention-----------------------------
 615 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 616   // Use the standard compiler calling convention
 617   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
 618 }
 619 
 620 
 621 //------------------------------match------------------------------------------
 622 // Construct projections for control, I/O, memory-fields, ..., and
 623 // return result(s) along with their RegMask info
 624 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 625   switch (proj->_con) {
 626   case TypeFunc::Control:
 627   case TypeFunc::I_O:
 628   case TypeFunc::Memory:
 629     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 630 
 631   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 632     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 633     // 2nd half of doubles and longs
 634     return new (match->C) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 635 
 636   case TypeFunc::Parms: {       // Normal returns
 637     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 638     OptoRegPair regs = is_CallRuntime()
 639       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
 640       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
 641     RegMask rm = RegMask(regs.first());
 642     if( OptoReg::is_valid(regs.second()) )
 643       rm.Insert( regs.second() );
 644     return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
 645   }
 646 
 647   case TypeFunc::ReturnAdr:
 648   case TypeFunc::FramePtr:
 649   default:
 650     ShouldNotReachHere();
 651   }
 652   return NULL;
 653 }
 654 
 655 // Do we Match on this edge index or not?  Match no edges
 656 uint CallNode::match_edge(uint idx) const {
 657   return 0;
 658 }
 659 
 660 //
 661 // Determine whether the call could modify the field of the specified
 662 // instance at the specified offset.
 663 //
 664 bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
 665   const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
 666 
 667   // If not an OopPtr or not an instance type, assume the worst.
 668   // Note: currently this method is called only for instance types.
 669   if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
 670     return true;
 671   }
 672   // The instance_id is set only for scalar-replaceable allocations which
 673   // are not passed as arguments according to Escape Analysis.
 674   return false;
 675 }
 676 
 677 // Does this call have a direct reference to n other than debug information?
 678 bool CallNode::has_non_debug_use(Node *n) {
 679   const TypeTuple * d = tf()->domain();
 680   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 681     Node *arg = in(i);
 682     if (arg == n) {
 683       return true;
 684     }
 685   }
 686   return false;
 687 }
 688 
 689 // Returns the unique CheckCastPP of a call
 690 // or 'this' if there are several CheckCastPP
 691 // or returns NULL if there is no one.
 692 Node *CallNode::result_cast() {
 693   Node *cast = NULL;
 694 
 695   Node *p = proj_out(TypeFunc::Parms);
 696   if (p == NULL)
 697     return NULL;
 698 
 699   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 700     Node *use = p->fast_out(i);
 701     if (use->is_CheckCastPP()) {
 702       if (cast != NULL) {
 703         return this;  // more than 1 CheckCastPP
 704       }
 705       cast = use;
 706     }
 707   }
 708   return cast;
 709 }
 710 
 711 
 712 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
 713   projs->fallthrough_proj      = NULL;
 714   projs->fallthrough_catchproj = NULL;
 715   projs->fallthrough_ioproj    = NULL;
 716   projs->catchall_ioproj       = NULL;
 717   projs->catchall_catchproj    = NULL;
 718   projs->fallthrough_memproj   = NULL;
 719   projs->catchall_memproj      = NULL;
 720   projs->resproj               = NULL;
 721   projs->exobj                 = NULL;
 722 
 723   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 724     ProjNode *pn = fast_out(i)->as_Proj();
 725     if (pn->outcnt() == 0) continue;
 726     switch (pn->_con) {
 727     case TypeFunc::Control:
 728       {
 729         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 730         projs->fallthrough_proj = pn;
 731         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 732         const Node *cn = pn->fast_out(j);
 733         if (cn->is_Catch()) {
 734           ProjNode *cpn = NULL;
 735           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 736             cpn = cn->fast_out(k)->as_Proj();
 737             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 738             if (cpn->_con == CatchProjNode::fall_through_index)
 739               projs->fallthrough_catchproj = cpn;
 740             else {
 741               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 742               projs->catchall_catchproj = cpn;
 743             }
 744           }
 745         }
 746         break;
 747       }
 748     case TypeFunc::I_O:
 749       if (pn->_is_io_use)
 750         projs->catchall_ioproj = pn;
 751       else
 752         projs->fallthrough_ioproj = pn;
 753       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 754         Node* e = pn->out(j);
 755         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 756           assert(projs->exobj == NULL, "only one");
 757           projs->exobj = e;
 758         }
 759       }
 760       break;
 761     case TypeFunc::Memory:
 762       if (pn->_is_io_use)
 763         projs->catchall_memproj = pn;
 764       else
 765         projs->fallthrough_memproj = pn;
 766       break;
 767     case TypeFunc::Parms:
 768       projs->resproj = pn;
 769       break;
 770     default:
 771       assert(false, "unexpected projection from allocation node.");
 772     }
 773   }
 774 
 775   // The resproj may not exist because the result couuld be ignored
 776   // and the exception object may not exist if an exception handler
 777   // swallows the exception but all the other must exist and be found.
 778   assert(projs->fallthrough_proj      != NULL, "must be found");
 779   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
 780   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj   != NULL, "must be found");
 781   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj    != NULL, "must be found");
 782   assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj    != NULL, "must be found");
 783   if (separate_io_proj) {
 784     assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj    != NULL, "must be found");
 785     assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj     != NULL, "must be found");
 786   }
 787 }
 788 
 789 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 790   if (can_reshape && _cg != NULL && _cg->is_mh_late_inline() && !_cg->already_attempted()) {
 791     // Check whether this MH handle call becomes a candidate for inlining
 792     ciMethod* callee = _cg->method();
 793     vmIntrinsics::ID iid = callee->intrinsic_id();
 794     if (iid == vmIntrinsics::_invokeBasic) {
 795       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
 796         Compile::current()->prepend_late_inline(_cg);
 797         _cg = NULL;
 798       }
 799     } else {
 800       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
 801         Compile::current()->prepend_late_inline(_cg);
 802         _cg = NULL;
 803       }
 804     }
 805   }
 806   return SafePointNode::Ideal(phase, can_reshape);
 807 }
 808 
 809 
 810 //=============================================================================
 811 uint CallJavaNode::size_of() const { return sizeof(*this); }
 812 uint CallJavaNode::cmp( const Node &n ) const {
 813   CallJavaNode &call = (CallJavaNode&)n;
 814   return CallNode::cmp(call) && _method == call._method;
 815 }
 816 #ifndef PRODUCT
 817 void CallJavaNode::dump_spec(outputStream *st) const {
 818   if( _method ) _method->print_short_name(st);
 819   CallNode::dump_spec(st);
 820 }
 821 #endif
 822 
 823 //=============================================================================
 824 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
 825 uint CallStaticJavaNode::cmp( const Node &n ) const {
 826   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
 827   return CallJavaNode::cmp(call);
 828 }
 829 
 830 //----------------------------uncommon_trap_request----------------------------
 831 // If this is an uncommon trap, return the request code, else zero.
 832 int CallStaticJavaNode::uncommon_trap_request() const {
 833   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 834     return extract_uncommon_trap_request(this);
 835   }
 836   return 0;
 837 }
 838 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
 839 #ifndef PRODUCT
 840   if (!(call->req() > TypeFunc::Parms &&
 841         call->in(TypeFunc::Parms) != NULL &&
 842         call->in(TypeFunc::Parms)->is_Con())) {
 843     assert(_in_dump_cnt != 0, "OK if dumping");
 844     tty->print("[bad uncommon trap]");
 845     return 0;
 846   }
 847 #endif
 848   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
 849 }
 850 
 851 #ifndef PRODUCT
 852 void CallStaticJavaNode::dump_spec(outputStream *st) const {
 853   st->print("# Static ");
 854   if (_name != NULL) {
 855     st->print("%s", _name);
 856     int trap_req = uncommon_trap_request();
 857     if (trap_req != 0) {
 858       char buf[100];
 859       st->print("(%s)",
 860                  Deoptimization::format_trap_request(buf, sizeof(buf),
 861                                                      trap_req));
 862     }
 863     st->print(" ");
 864   }
 865   CallJavaNode::dump_spec(st);
 866 }
 867 #endif
 868 
 869 //=============================================================================
 870 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
 871 uint CallDynamicJavaNode::cmp( const Node &n ) const {
 872   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
 873   return CallJavaNode::cmp(call);
 874 }
 875 #ifndef PRODUCT
 876 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
 877   st->print("# Dynamic ");
 878   CallJavaNode::dump_spec(st);
 879 }
 880 #endif
 881 
 882 //=============================================================================
 883 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
 884 uint CallRuntimeNode::cmp( const Node &n ) const {
 885   CallRuntimeNode &call = (CallRuntimeNode&)n;
 886   return CallNode::cmp(call) && !strcmp(_name,call._name);
 887 }
 888 #ifndef PRODUCT
 889 void CallRuntimeNode::dump_spec(outputStream *st) const {
 890   st->print("# ");
 891   st->print(_name);
 892   CallNode::dump_spec(st);
 893 }
 894 #endif
 895 
 896 //------------------------------calling_convention-----------------------------
 897 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 898   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
 899 }
 900 
 901 //=============================================================================
 902 //------------------------------calling_convention-----------------------------
 903 
 904 
 905 //=============================================================================
 906 #ifndef PRODUCT
 907 void CallLeafNode::dump_spec(outputStream *st) const {
 908   st->print("# ");
 909   st->print(_name);
 910   CallNode::dump_spec(st);
 911 }
 912 #endif
 913 
 914 //=============================================================================
 915 
 916 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
 917   assert(verify_jvms(jvms), "jvms must match");
 918   int loc = jvms->locoff() + idx;
 919   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
 920     // If current local idx is top then local idx - 1 could
 921     // be a long/double that needs to be killed since top could
 922     // represent the 2nd half ofthe long/double.
 923     uint ideal = in(loc -1)->ideal_reg();
 924     if (ideal == Op_RegD || ideal == Op_RegL) {
 925       // set other (low index) half to top
 926       set_req(loc - 1, in(loc));
 927     }
 928   }
 929   set_req(loc, c);
 930 }
 931 
 932 uint SafePointNode::size_of() const { return sizeof(*this); }
 933 uint SafePointNode::cmp( const Node &n ) const {
 934   return (&n == this);          // Always fail except on self
 935 }
 936 
 937 //-------------------------set_next_exception----------------------------------
 938 void SafePointNode::set_next_exception(SafePointNode* n) {
 939   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
 940   if (len() == req()) {
 941     if (n != NULL)  add_prec(n);
 942   } else {
 943     set_prec(req(), n);
 944   }
 945 }
 946 
 947 
 948 //----------------------------next_exception-----------------------------------
 949 SafePointNode* SafePointNode::next_exception() const {
 950   if (len() == req()) {
 951     return NULL;
 952   } else {
 953     Node* n = in(req());
 954     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
 955     return (SafePointNode*) n;
 956   }
 957 }
 958 
 959 
 960 //------------------------------Ideal------------------------------------------
 961 // Skip over any collapsed Regions
 962 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 963   return remove_dead_region(phase, can_reshape) ? this : NULL;
 964 }
 965 
 966 //------------------------------Identity---------------------------------------
 967 // Remove obviously duplicate safepoints
 968 Node *SafePointNode::Identity( PhaseTransform *phase ) {
 969 
 970   // If you have back to back safepoints, remove one
 971   if( in(TypeFunc::Control)->is_SafePoint() )
 972     return in(TypeFunc::Control);
 973 
 974   if( in(0)->is_Proj() ) {
 975     Node *n0 = in(0)->in(0);
 976     // Check if he is a call projection (except Leaf Call)
 977     if( n0->is_Catch() ) {
 978       n0 = n0->in(0)->in(0);
 979       assert( n0->is_Call(), "expect a call here" );
 980     }
 981     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
 982       // Useless Safepoint, so remove it
 983       return in(TypeFunc::Control);
 984     }
 985   }
 986 
 987   return this;
 988 }
 989 
 990 //------------------------------Value------------------------------------------
 991 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
 992   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
 993   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
 994   return Type::CONTROL;
 995 }
 996 
 997 #ifndef PRODUCT
 998 void SafePointNode::dump_spec(outputStream *st) const {
 999   st->print(" SafePoint ");
1000 }
1001 #endif
1002 
1003 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1004   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1005   // Values outside the domain represent debug info
1006   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1007 }
1008 const RegMask &SafePointNode::out_RegMask() const {
1009   return RegMask::Empty;
1010 }
1011 
1012 
1013 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1014   assert((int)grow_by > 0, "sanity");
1015   int monoff = jvms->monoff();
1016   int scloff = jvms->scloff();
1017   int endoff = jvms->endoff();
1018   assert(endoff == (int)req(), "no other states or debug info after me");
1019   Node* top = Compile::current()->top();
1020   for (uint i = 0; i < grow_by; i++) {
1021     ins_req(monoff, top);
1022   }
1023   jvms->set_monoff(monoff + grow_by);
1024   jvms->set_scloff(scloff + grow_by);
1025   jvms->set_endoff(endoff + grow_by);
1026 }
1027 
1028 void SafePointNode::push_monitor(const FastLockNode *lock) {
1029   // Add a LockNode, which points to both the original BoxLockNode (the
1030   // stack space for the monitor) and the Object being locked.
1031   const int MonitorEdges = 2;
1032   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1033   assert(req() == jvms()->endoff(), "correct sizing");
1034   int nextmon = jvms()->scloff();
1035   if (GenerateSynchronizationCode) {
1036     add_req(lock->box_node());
1037     add_req(lock->obj_node());
1038   } else {
1039     Node* top = Compile::current()->top();
1040     add_req(top);
1041     add_req(top);
1042   }
1043   jvms()->set_scloff(nextmon+MonitorEdges);
1044   jvms()->set_endoff(req());
1045 }
1046 
1047 void SafePointNode::pop_monitor() {
1048   // Delete last monitor from debug info
1049   debug_only(int num_before_pop = jvms()->nof_monitors());
1050   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
1051   int scloff = jvms()->scloff();
1052   int endoff = jvms()->endoff();
1053   int new_scloff = scloff - MonitorEdges;
1054   int new_endoff = endoff - MonitorEdges;
1055   jvms()->set_scloff(new_scloff);
1056   jvms()->set_endoff(new_endoff);
1057   while (scloff > new_scloff)  del_req(--scloff);
1058   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1059 }
1060 
1061 Node *SafePointNode::peek_monitor_box() const {
1062   int mon = jvms()->nof_monitors() - 1;
1063   assert(mon >= 0, "most have a monitor");
1064   return monitor_box(jvms(), mon);
1065 }
1066 
1067 Node *SafePointNode::peek_monitor_obj() const {
1068   int mon = jvms()->nof_monitors() - 1;
1069   assert(mon >= 0, "most have a monitor");
1070   return monitor_obj(jvms(), mon);
1071 }
1072 
1073 // Do we Match on this edge index or not?  Match no edges
1074 uint SafePointNode::match_edge(uint idx) const {
1075   if( !needs_polling_address_input() )
1076     return 0;
1077 
1078   return (TypeFunc::Parms == idx);
1079 }
1080 
1081 //==============  SafePointScalarObjectNode  ==============
1082 
1083 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1084 #ifdef ASSERT
1085                                                      AllocateNode* alloc,
1086 #endif
1087                                                      uint first_index,
1088                                                      uint n_fields) :
1089   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1090 #ifdef ASSERT
1091   _alloc(alloc),
1092 #endif
1093   _first_index(first_index),
1094   _n_fields(n_fields)
1095 {
1096   init_class_id(Class_SafePointScalarObject);
1097 }
1098 
1099 // Do not allow value-numbering for SafePointScalarObject node.
1100 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1101 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1102   return (&n == this); // Always fail except on self
1103 }
1104 
1105 uint SafePointScalarObjectNode::ideal_reg() const {
1106   return 0; // No matching to machine instruction
1107 }
1108 
1109 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1110   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1111 }
1112 
1113 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1114   return RegMask::Empty;
1115 }
1116 
1117 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1118   return 0;
1119 }
1120 
1121 SafePointScalarObjectNode*
1122 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
1123   void* cached = (*sosn_map)[(void*)this];
1124   if (cached != NULL) {
1125     return (SafePointScalarObjectNode*)cached;
1126   }
1127   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1128   res->_first_index += jvms_adj;
1129   sosn_map->Insert((void*)this, (void*)res);
1130   return res;
1131 }
1132 
1133 
1134 #ifndef PRODUCT
1135 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1136   st->print(" # fields@[%d..%d]", first_index(),
1137              first_index() + n_fields() - 1);
1138 }
1139 
1140 #endif
1141 
1142 //=============================================================================
1143 uint AllocateNode::size_of() const { return sizeof(*this); }
1144 
1145 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1146                            Node *ctrl, Node *mem, Node *abio,
1147                            Node *size, Node *klass_node, Node *initial_test)
1148   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1149 {
1150   init_class_id(Class_Allocate);
1151   init_flags(Flag_is_macro);
1152   _is_scalar_replaceable = false;
1153   Node *topnode = C->top();
1154 
1155   init_req( TypeFunc::Control  , ctrl );
1156   init_req( TypeFunc::I_O      , abio );
1157   init_req( TypeFunc::Memory   , mem );
1158   init_req( TypeFunc::ReturnAdr, topnode );
1159   init_req( TypeFunc::FramePtr , topnode );
1160   init_req( AllocSize          , size);
1161   init_req( KlassNode          , klass_node);
1162   init_req( InitialTest        , initial_test);
1163   init_req( ALength            , topnode);
1164   C->add_macro_node(this);
1165 }
1166 
1167 //=============================================================================
1168 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
1169 
1170 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1171   if (remove_dead_region(phase, can_reshape))  return this;
1172   // Don't bother trying to transform a dead node
1173   if (in(0) && in(0)->is_top())  return NULL;
1174 
1175   const Type* type = phase->type(Ideal_length());
1176   if (type->isa_int() && type->is_int()->_hi < 0) {
1177     if (can_reshape) {
1178       PhaseIterGVN *igvn = phase->is_IterGVN();
1179       // Unreachable fall through path (negative array length),
1180       // the allocation can only throw so disconnect it.
1181       Node* proj = proj_out(TypeFunc::Control);
1182       Node* catchproj = NULL;
1183       if (proj != NULL) {
1184         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1185           Node *cn = proj->fast_out(i);
1186           if (cn->is_Catch()) {
1187             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1188             break;
1189           }
1190         }
1191       }
1192       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1193           (catchproj->outcnt() > 1 ||
1194            catchproj->unique_out()->Opcode() != Op_Halt)) {
1195         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1196         Node* nproj = catchproj->clone();
1197         igvn->register_new_node_with_optimizer(nproj);
1198 
1199         Node *frame = new (phase->C) ParmNode( phase->C->start(), TypeFunc::FramePtr );
1200         frame = phase->transform(frame);
1201         // Halt & Catch Fire
1202         Node *halt = new (phase->C) HaltNode( nproj, frame );
1203         phase->C->root()->add_req(halt);
1204         phase->transform(halt);
1205 
1206         igvn->replace_node(catchproj, phase->C->top());
1207         return this;
1208       }
1209     } else {
1210       // Can't correct it during regular GVN so register for IGVN
1211       phase->C->record_for_igvn(this);
1212     }
1213   }
1214   return NULL;
1215 }
1216 
1217 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1218 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1219 // a CastII is appropriate, return NULL.
1220 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1221   Node *length = in(AllocateNode::ALength);
1222   assert(length != NULL, "length is not null");
1223 
1224   const TypeInt* length_type = phase->find_int_type(length);
1225   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1226 
1227   if (ary_type != NULL && length_type != NULL) {
1228     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1229     if (narrow_length_type != length_type) {
1230       // Assert one of:
1231       //   - the narrow_length is 0
1232       //   - the narrow_length is not wider than length
1233       assert(narrow_length_type == TypeInt::ZERO ||
1234              (narrow_length_type->_hi <= length_type->_hi &&
1235               narrow_length_type->_lo >= length_type->_lo),
1236              "narrow type must be narrower than length type");
1237 
1238       // Return NULL if new nodes are not allowed
1239       if (!allow_new_nodes) return NULL;
1240       // Create a cast which is control dependent on the initialization to
1241       // propagate the fact that the array length must be positive.
1242       length = new (phase->C) CastIINode(length, narrow_length_type);
1243       length->set_req(0, initialization()->proj_out(0));
1244     }
1245   }
1246 
1247   return length;
1248 }
1249 
1250 //=============================================================================
1251 uint LockNode::size_of() const { return sizeof(*this); }
1252 
1253 // Redundant lock elimination
1254 //
1255 // There are various patterns of locking where we release and
1256 // immediately reacquire a lock in a piece of code where no operations
1257 // occur in between that would be observable.  In those cases we can
1258 // skip releasing and reacquiring the lock without violating any
1259 // fairness requirements.  Doing this around a loop could cause a lock
1260 // to be held for a very long time so we concentrate on non-looping
1261 // control flow.  We also require that the operations are fully
1262 // redundant meaning that we don't introduce new lock operations on
1263 // some paths so to be able to eliminate it on others ala PRE.  This
1264 // would probably require some more extensive graph manipulation to
1265 // guarantee that the memory edges were all handled correctly.
1266 //
1267 // Assuming p is a simple predicate which can't trap in any way and s
1268 // is a synchronized method consider this code:
1269 //
1270 //   s();
1271 //   if (p)
1272 //     s();
1273 //   else
1274 //     s();
1275 //   s();
1276 //
1277 // 1. The unlocks of the first call to s can be eliminated if the
1278 // locks inside the then and else branches are eliminated.
1279 //
1280 // 2. The unlocks of the then and else branches can be eliminated if
1281 // the lock of the final call to s is eliminated.
1282 //
1283 // Either of these cases subsumes the simple case of sequential control flow
1284 //
1285 // Addtionally we can eliminate versions without the else case:
1286 //
1287 //   s();
1288 //   if (p)
1289 //     s();
1290 //   s();
1291 //
1292 // 3. In this case we eliminate the unlock of the first s, the lock
1293 // and unlock in the then case and the lock in the final s.
1294 //
1295 // Note also that in all these cases the then/else pieces don't have
1296 // to be trivial as long as they begin and end with synchronization
1297 // operations.
1298 //
1299 //   s();
1300 //   if (p)
1301 //     s();
1302 //     f();
1303 //     s();
1304 //   s();
1305 //
1306 // The code will work properly for this case, leaving in the unlock
1307 // before the call to f and the relock after it.
1308 //
1309 // A potentially interesting case which isn't handled here is when the
1310 // locking is partially redundant.
1311 //
1312 //   s();
1313 //   if (p)
1314 //     s();
1315 //
1316 // This could be eliminated putting unlocking on the else case and
1317 // eliminating the first unlock and the lock in the then side.
1318 // Alternatively the unlock could be moved out of the then side so it
1319 // was after the merge and the first unlock and second lock
1320 // eliminated.  This might require less manipulation of the memory
1321 // state to get correct.
1322 //
1323 // Additionally we might allow work between a unlock and lock before
1324 // giving up eliminating the locks.  The current code disallows any
1325 // conditional control flow between these operations.  A formulation
1326 // similar to partial redundancy elimination computing the
1327 // availability of unlocking and the anticipatability of locking at a
1328 // program point would allow detection of fully redundant locking with
1329 // some amount of work in between.  I'm not sure how often I really
1330 // think that would occur though.  Most of the cases I've seen
1331 // indicate it's likely non-trivial work would occur in between.
1332 // There may be other more complicated constructs where we could
1333 // eliminate locking but I haven't seen any others appear as hot or
1334 // interesting.
1335 //
1336 // Locking and unlocking have a canonical form in ideal that looks
1337 // roughly like this:
1338 //
1339 //              <obj>
1340 //                | \\------+
1341 //                |  \       \
1342 //                | BoxLock   \
1343 //                |  |   |     \
1344 //                |  |    \     \
1345 //                |  |   FastLock
1346 //                |  |   /
1347 //                |  |  /
1348 //                |  |  |
1349 //
1350 //               Lock
1351 //                |
1352 //            Proj #0
1353 //                |
1354 //            MembarAcquire
1355 //                |
1356 //            Proj #0
1357 //
1358 //            MembarRelease
1359 //                |
1360 //            Proj #0
1361 //                |
1362 //              Unlock
1363 //                |
1364 //            Proj #0
1365 //
1366 //
1367 // This code proceeds by processing Lock nodes during PhaseIterGVN
1368 // and searching back through its control for the proper code
1369 // patterns.  Once it finds a set of lock and unlock operations to
1370 // eliminate they are marked as eliminatable which causes the
1371 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1372 //
1373 //=============================================================================
1374 
1375 //
1376 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1377 //   - copy regions.  (These may not have been optimized away yet.)
1378 //   - eliminated locking nodes
1379 //
1380 static Node *next_control(Node *ctrl) {
1381   if (ctrl == NULL)
1382     return NULL;
1383   while (1) {
1384     if (ctrl->is_Region()) {
1385       RegionNode *r = ctrl->as_Region();
1386       Node *n = r->is_copy();
1387       if (n == NULL)
1388         break;  // hit a region, return it
1389       else
1390         ctrl = n;
1391     } else if (ctrl->is_Proj()) {
1392       Node *in0 = ctrl->in(0);
1393       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1394         ctrl = in0->in(0);
1395       } else {
1396         break;
1397       }
1398     } else {
1399       break; // found an interesting control
1400     }
1401   }
1402   return ctrl;
1403 }
1404 //
1405 // Given a control, see if it's the control projection of an Unlock which
1406 // operating on the same object as lock.
1407 //
1408 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1409                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1410   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1411   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1412     Node *n = ctrl_proj->in(0);
1413     if (n != NULL && n->is_Unlock()) {
1414       UnlockNode *unlock = n->as_Unlock();
1415       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1416           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1417           !unlock->is_eliminated()) {
1418         lock_ops.append(unlock);
1419         return true;
1420       }
1421     }
1422   }
1423   return false;
1424 }
1425 
1426 //
1427 // Find the lock matching an unlock.  Returns null if a safepoint
1428 // or complicated control is encountered first.
1429 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1430   LockNode *lock_result = NULL;
1431   // find the matching lock, or an intervening safepoint
1432   Node *ctrl = next_control(unlock->in(0));
1433   while (1) {
1434     assert(ctrl != NULL, "invalid control graph");
1435     assert(!ctrl->is_Start(), "missing lock for unlock");
1436     if (ctrl->is_top()) break;  // dead control path
1437     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1438     if (ctrl->is_SafePoint()) {
1439         break;  // found a safepoint (may be the lock we are searching for)
1440     } else if (ctrl->is_Region()) {
1441       // Check for a simple diamond pattern.  Punt on anything more complicated
1442       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1443         Node *in1 = next_control(ctrl->in(1));
1444         Node *in2 = next_control(ctrl->in(2));
1445         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1446              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1447           ctrl = next_control(in1->in(0)->in(0));
1448         } else {
1449           break;
1450         }
1451       } else {
1452         break;
1453       }
1454     } else {
1455       ctrl = next_control(ctrl->in(0));  // keep searching
1456     }
1457   }
1458   if (ctrl->is_Lock()) {
1459     LockNode *lock = ctrl->as_Lock();
1460     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1461         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1462       lock_result = lock;
1463     }
1464   }
1465   return lock_result;
1466 }
1467 
1468 // This code corresponds to case 3 above.
1469 
1470 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1471                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1472   Node* if_node = node->in(0);
1473   bool  if_true = node->is_IfTrue();
1474 
1475   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1476     Node *lock_ctrl = next_control(if_node->in(0));
1477     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1478       Node* lock1_node = NULL;
1479       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1480       if (if_true) {
1481         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1482           lock1_node = proj->unique_out();
1483         }
1484       } else {
1485         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1486           lock1_node = proj->unique_out();
1487         }
1488       }
1489       if (lock1_node != NULL && lock1_node->is_Lock()) {
1490         LockNode *lock1 = lock1_node->as_Lock();
1491         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
1492             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1493             !lock1->is_eliminated()) {
1494           lock_ops.append(lock1);
1495           return true;
1496         }
1497       }
1498     }
1499   }
1500 
1501   lock_ops.trunc_to(0);
1502   return false;
1503 }
1504 
1505 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1506                                GrowableArray<AbstractLockNode*> &lock_ops) {
1507   // check each control merging at this point for a matching unlock.
1508   // in(0) should be self edge so skip it.
1509   for (int i = 1; i < (int)region->req(); i++) {
1510     Node *in_node = next_control(region->in(i));
1511     if (in_node != NULL) {
1512       if (find_matching_unlock(in_node, lock, lock_ops)) {
1513         // found a match so keep on checking.
1514         continue;
1515       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1516         continue;
1517       }
1518 
1519       // If we fall through to here then it was some kind of node we
1520       // don't understand or there wasn't a matching unlock, so give
1521       // up trying to merge locks.
1522       lock_ops.trunc_to(0);
1523       return false;
1524     }
1525   }
1526   return true;
1527 
1528 }
1529 
1530 #ifndef PRODUCT
1531 //
1532 // Create a counter which counts the number of times this lock is acquired
1533 //
1534 void AbstractLockNode::create_lock_counter(JVMState* state) {
1535   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1536 }
1537 
1538 void AbstractLockNode::set_eliminated_lock_counter() {
1539   if (_counter) {
1540     // Update the counter to indicate that this lock was eliminated.
1541     // The counter update code will stay around even though the
1542     // optimizer will eliminate the lock operation itself.
1543     _counter->set_tag(NamedCounter::EliminatedLockCounter);
1544   }
1545 }
1546 #endif
1547 
1548 //=============================================================================
1549 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1550 
1551   // perform any generic optimizations first (returns 'this' or NULL)
1552   Node *result = SafePointNode::Ideal(phase, can_reshape);
1553   if (result != NULL)  return result;
1554   // Don't bother trying to transform a dead node
1555   if (in(0) && in(0)->is_top())  return NULL;
1556 
1557   // Now see if we can optimize away this lock.  We don't actually
1558   // remove the locking here, we simply set the _eliminate flag which
1559   // prevents macro expansion from expanding the lock.  Since we don't
1560   // modify the graph, the value returned from this function is the
1561   // one computed above.
1562   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1563     //
1564     // If we are locking an unescaped object, the lock/unlock is unnecessary
1565     //
1566     ConnectionGraph *cgr = phase->C->congraph();
1567     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1568       assert(!is_eliminated() || is_coarsened(), "sanity");
1569       // The lock could be marked eliminated by lock coarsening
1570       // code during first IGVN before EA. Replace coarsened flag
1571       // to eliminate all associated locks/unlocks.
1572       this->set_non_esc_obj();
1573       return result;
1574     }
1575 
1576     //
1577     // Try lock coarsening
1578     //
1579     PhaseIterGVN* iter = phase->is_IterGVN();
1580     if (iter != NULL && !is_eliminated()) {
1581 
1582       GrowableArray<AbstractLockNode*>   lock_ops;
1583 
1584       Node *ctrl = next_control(in(0));
1585 
1586       // now search back for a matching Unlock
1587       if (find_matching_unlock(ctrl, this, lock_ops)) {
1588         // found an unlock directly preceding this lock.  This is the
1589         // case of single unlock directly control dependent on a
1590         // single lock which is the trivial version of case 1 or 2.
1591       } else if (ctrl->is_Region() ) {
1592         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1593         // found lock preceded by multiple unlocks along all paths
1594         // joining at this point which is case 3 in description above.
1595         }
1596       } else {
1597         // see if this lock comes from either half of an if and the
1598         // predecessors merges unlocks and the other half of the if
1599         // performs a lock.
1600         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1601           // found unlock splitting to an if with locks on both branches.
1602         }
1603       }
1604 
1605       if (lock_ops.length() > 0) {
1606         // add ourselves to the list of locks to be eliminated.
1607         lock_ops.append(this);
1608 
1609   #ifndef PRODUCT
1610         if (PrintEliminateLocks) {
1611           int locks = 0;
1612           int unlocks = 0;
1613           for (int i = 0; i < lock_ops.length(); i++) {
1614             AbstractLockNode* lock = lock_ops.at(i);
1615             if (lock->Opcode() == Op_Lock)
1616               locks++;
1617             else
1618               unlocks++;
1619             if (Verbose) {
1620               lock->dump(1);
1621             }
1622           }
1623           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1624         }
1625   #endif
1626 
1627         // for each of the identified locks, mark them
1628         // as eliminatable
1629         for (int i = 0; i < lock_ops.length(); i++) {
1630           AbstractLockNode* lock = lock_ops.at(i);
1631 
1632           // Mark it eliminated by coarsening and update any counters
1633           lock->set_coarsened();
1634         }
1635       } else if (ctrl->is_Region() &&
1636                  iter->_worklist.member(ctrl)) {
1637         // We weren't able to find any opportunities but the region this
1638         // lock is control dependent on hasn't been processed yet so put
1639         // this lock back on the worklist so we can check again once any
1640         // region simplification has occurred.
1641         iter->_worklist.push(this);
1642       }
1643     }
1644   }
1645 
1646   return result;
1647 }
1648 
1649 //=============================================================================
1650 bool LockNode::is_nested_lock_region() {
1651   BoxLockNode* box = box_node()->as_BoxLock();
1652   int stk_slot = box->stack_slot();
1653   if (stk_slot <= 0)
1654     return false; // External lock or it is not Box (Phi node).
1655 
1656   // Ignore complex cases: merged locks or multiple locks.
1657   Node* obj = obj_node();
1658   LockNode* unique_lock = NULL;
1659   if (!box->is_simple_lock_region(&unique_lock, obj) ||
1660       (unique_lock != this)) {
1661     return false;
1662   }
1663 
1664   // Look for external lock for the same object.
1665   SafePointNode* sfn = this->as_SafePoint();
1666   JVMState* youngest_jvms = sfn->jvms();
1667   int max_depth = youngest_jvms->depth();
1668   for (int depth = 1; depth <= max_depth; depth++) {
1669     JVMState* jvms = youngest_jvms->of_depth(depth);
1670     int num_mon  = jvms->nof_monitors();
1671     // Loop over monitors
1672     for (int idx = 0; idx < num_mon; idx++) {
1673       Node* obj_node = sfn->monitor_obj(jvms, idx);
1674       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1675       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1676         return true;
1677       }
1678     }
1679   }
1680   return false;
1681 }
1682 
1683 //=============================================================================
1684 uint UnlockNode::size_of() const { return sizeof(*this); }
1685 
1686 //=============================================================================
1687 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1688 
1689   // perform any generic optimizations first (returns 'this' or NULL)
1690   Node *result = SafePointNode::Ideal(phase, can_reshape);
1691   if (result != NULL)  return result;
1692   // Don't bother trying to transform a dead node
1693   if (in(0) && in(0)->is_top())  return NULL;
1694 
1695   // Now see if we can optimize away this unlock.  We don't actually
1696   // remove the unlocking here, we simply set the _eliminate flag which
1697   // prevents macro expansion from expanding the unlock.  Since we don't
1698   // modify the graph, the value returned from this function is the
1699   // one computed above.
1700   // Escape state is defined after Parse phase.
1701   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1702     //
1703     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1704     //
1705     ConnectionGraph *cgr = phase->C->congraph();
1706     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1707       assert(!is_eliminated() || is_coarsened(), "sanity");
1708       // The lock could be marked eliminated by lock coarsening
1709       // code during first IGVN before EA. Replace coarsened flag
1710       // to eliminate all associated locks/unlocks.
1711       this->set_non_esc_obj();
1712     }
1713   }
1714   return result;
1715 }