1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/castnode.hpp"
  42 #include "opto/cfgnode.hpp"
  43 #include "opto/chaitin.hpp"
  44 #include "opto/compile.hpp"
  45 #include "opto/connode.hpp"
  46 #include "opto/convertnode.hpp"
  47 #include "opto/divnode.hpp"
  48 #include "opto/escape.hpp"
  49 #include "opto/idealGraphPrinter.hpp"
  50 #include "opto/loopnode.hpp"
  51 #include "opto/machnode.hpp"
  52 #include "opto/macro.hpp"
  53 #include "opto/matcher.hpp"
  54 #include "opto/mathexactnode.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/narrowptrnode.hpp"
  58 #include "opto/node.hpp"
  59 #include "opto/opcodes.hpp"
  60 #include "opto/output.hpp"
  61 #include "opto/parse.hpp"
  62 #include "opto/phaseX.hpp"
  63 #include "opto/rootnode.hpp"
  64 #include "opto/runtime.hpp"
  65 #include "opto/stringopts.hpp"
  66 #include "opto/type.hpp"
  67 #include "opto/vectornode.hpp"
  68 #include "runtime/arguments.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/signature.hpp"
  71 #include "runtime/stubRoutines.hpp"
  72 #include "runtime/timer.hpp"
  73 #include "utilities/copy.hpp"
  74 
  75 
  76 // -------------------- Compile::mach_constant_base_node -----------------------
  77 // Constant table base node singleton.
  78 MachConstantBaseNode* Compile::mach_constant_base_node() {
  79   if (_mach_constant_base_node == NULL) {
  80     _mach_constant_base_node = new MachConstantBaseNode();
  81     _mach_constant_base_node->add_req(C->root());
  82   }
  83   return _mach_constant_base_node;
  84 }
  85 
  86 
  87 /// Support for intrinsics.
  88 
  89 // Return the index at which m must be inserted (or already exists).
  90 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  91 class IntrinsicDescPair {
  92  private:
  93   ciMethod* _m;
  94   bool _is_virtual;
  95  public:
  96   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
  97   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
  98     ciMethod* m= elt->method();
  99     ciMethod* key_m = key->_m;
 100     if (key_m < m)      return -1;
 101     else if (key_m > m) return 1;
 102     else {
 103       bool is_virtual = elt->is_virtual();
 104       bool key_virtual = key->_is_virtual;
 105       if (key_virtual < is_virtual)      return -1;
 106       else if (key_virtual > is_virtual) return 1;
 107       else                               return 0;
 108     }
 109   }
 110 };
 111 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 112 #ifdef ASSERT
 113   for (int i = 1; i < _intrinsics->length(); i++) {
 114     CallGenerator* cg1 = _intrinsics->at(i-1);
 115     CallGenerator* cg2 = _intrinsics->at(i);
 116     assert(cg1->method() != cg2->method()
 117            ? cg1->method()     < cg2->method()
 118            : cg1->is_virtual() < cg2->is_virtual(),
 119            "compiler intrinsics list must stay sorted");
 120   }
 121 #endif
 122   IntrinsicDescPair pair(m, is_virtual);
 123   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 124 }
 125 
 126 void Compile::register_intrinsic(CallGenerator* cg) {
 127   if (_intrinsics == NULL) {
 128     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 129   }
 130   int len = _intrinsics->length();
 131   bool found = false;
 132   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 133   assert(!found, "registering twice");
 134   _intrinsics->insert_before(index, cg);
 135   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 136 }
 137 
 138 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 139   assert(m->is_loaded(), "don't try this on unloaded methods");
 140   if (_intrinsics != NULL) {
 141     bool found = false;
 142     int index = intrinsic_insertion_index(m, is_virtual, found);
 143      if (found) {
 144       return _intrinsics->at(index);
 145     }
 146   }
 147   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 148   if (m->intrinsic_id() != vmIntrinsics::_none &&
 149       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 150     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 151     if (cg != NULL) {
 152       // Save it for next time:
 153       register_intrinsic(cg);
 154       return cg;
 155     } else {
 156       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 157     }
 158   }
 159   return NULL;
 160 }
 161 
 162 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 163 // in library_call.cpp.
 164 
 165 
 166 #ifndef PRODUCT
 167 // statistics gathering...
 168 
 169 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 170 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 171 
 172 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 173   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 174   int oflags = _intrinsic_hist_flags[id];
 175   assert(flags != 0, "what happened?");
 176   if (is_virtual) {
 177     flags |= _intrinsic_virtual;
 178   }
 179   bool changed = (flags != oflags);
 180   if ((flags & _intrinsic_worked) != 0) {
 181     juint count = (_intrinsic_hist_count[id] += 1);
 182     if (count == 1) {
 183       changed = true;           // first time
 184     }
 185     // increment the overall count also:
 186     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 187   }
 188   if (changed) {
 189     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 190       // Something changed about the intrinsic's virtuality.
 191       if ((flags & _intrinsic_virtual) != 0) {
 192         // This is the first use of this intrinsic as a virtual call.
 193         if (oflags != 0) {
 194           // We already saw it as a non-virtual, so note both cases.
 195           flags |= _intrinsic_both;
 196         }
 197       } else if ((oflags & _intrinsic_both) == 0) {
 198         // This is the first use of this intrinsic as a non-virtual
 199         flags |= _intrinsic_both;
 200       }
 201     }
 202     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 203   }
 204   // update the overall flags also:
 205   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 206   return changed;
 207 }
 208 
 209 static char* format_flags(int flags, char* buf) {
 210   buf[0] = 0;
 211   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 212   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 213   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 214   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 215   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 216   if (buf[0] == 0)  strcat(buf, ",");
 217   assert(buf[0] == ',', "must be");
 218   return &buf[1];
 219 }
 220 
 221 void Compile::print_intrinsic_statistics() {
 222   char flagsbuf[100];
 223   ttyLocker ttyl;
 224   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 225   tty->print_cr("Compiler intrinsic usage:");
 226   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 227   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 228   #define PRINT_STAT_LINE(name, c, f) \
 229     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 230   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 231     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 232     int   flags = _intrinsic_hist_flags[id];
 233     juint count = _intrinsic_hist_count[id];
 234     if ((flags | count) != 0) {
 235       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 236     }
 237   }
 238   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 239   if (xtty != NULL)  xtty->tail("statistics");
 240 }
 241 
 242 void Compile::print_statistics() {
 243   { ttyLocker ttyl;
 244     if (xtty != NULL)  xtty->head("statistics type='opto'");
 245     Parse::print_statistics();
 246     PhaseCCP::print_statistics();
 247     PhaseRegAlloc::print_statistics();
 248     Scheduling::print_statistics();
 249     PhasePeephole::print_statistics();
 250     PhaseIdealLoop::print_statistics();
 251     if (xtty != NULL)  xtty->tail("statistics");
 252   }
 253   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 254     // put this under its own <statistics> element.
 255     print_intrinsic_statistics();
 256   }
 257 }
 258 #endif //PRODUCT
 259 
 260 // Support for bundling info
 261 Bundle* Compile::node_bundling(const Node *n) {
 262   assert(valid_bundle_info(n), "oob");
 263   return &_node_bundling_base[n->_idx];
 264 }
 265 
 266 bool Compile::valid_bundle_info(const Node *n) {
 267   return (_node_bundling_limit > n->_idx);
 268 }
 269 
 270 
 271 void Compile::gvn_replace_by(Node* n, Node* nn) {
 272   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 273     Node* use = n->last_out(i);
 274     bool is_in_table = initial_gvn()->hash_delete(use);
 275     uint uses_found = 0;
 276     for (uint j = 0; j < use->len(); j++) {
 277       if (use->in(j) == n) {
 278         if (j < use->req())
 279           use->set_req(j, nn);
 280         else
 281           use->set_prec(j, nn);
 282         uses_found++;
 283       }
 284     }
 285     if (is_in_table) {
 286       // reinsert into table
 287       initial_gvn()->hash_find_insert(use);
 288     }
 289     record_for_igvn(use);
 290     i -= uses_found;    // we deleted 1 or more copies of this edge
 291   }
 292 }
 293 
 294 
 295 static inline bool not_a_node(const Node* n) {
 296   if (n == NULL)                   return true;
 297   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 298   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 299   return false;
 300 }
 301 
 302 // Identify all nodes that are reachable from below, useful.
 303 // Use breadth-first pass that records state in a Unique_Node_List,
 304 // recursive traversal is slower.
 305 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 306   int estimated_worklist_size = live_nodes();
 307   useful.map( estimated_worklist_size, NULL );  // preallocate space
 308 
 309   // Initialize worklist
 310   if (root() != NULL)     { useful.push(root()); }
 311   // If 'top' is cached, declare it useful to preserve cached node
 312   if( cached_top_node() ) { useful.push(cached_top_node()); }
 313 
 314   // Push all useful nodes onto the list, breadthfirst
 315   for( uint next = 0; next < useful.size(); ++next ) {
 316     assert( next < unique(), "Unique useful nodes < total nodes");
 317     Node *n  = useful.at(next);
 318     uint max = n->len();
 319     for( uint i = 0; i < max; ++i ) {
 320       Node *m = n->in(i);
 321       if (not_a_node(m))  continue;
 322       useful.push(m);
 323     }
 324   }
 325 }
 326 
 327 // Update dead_node_list with any missing dead nodes using useful
 328 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 329 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 330   uint max_idx = unique();
 331   VectorSet& useful_node_set = useful.member_set();
 332 
 333   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 334     // If node with index node_idx is not in useful set,
 335     // mark it as dead in dead node list.
 336     if (! useful_node_set.test(node_idx) ) {
 337       record_dead_node(node_idx);
 338     }
 339   }
 340 }
 341 
 342 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 343   int shift = 0;
 344   for (int i = 0; i < inlines->length(); i++) {
 345     CallGenerator* cg = inlines->at(i);
 346     CallNode* call = cg->call_node();
 347     if (shift > 0) {
 348       inlines->at_put(i-shift, cg);
 349     }
 350     if (!useful.member(call)) {
 351       shift++;
 352     }
 353   }
 354   inlines->trunc_to(inlines->length()-shift);
 355 }
 356 
 357 // Disconnect all useless nodes by disconnecting those at the boundary.
 358 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 359   uint next = 0;
 360   while (next < useful.size()) {
 361     Node *n = useful.at(next++);
 362     if (n->is_SafePoint()) {
 363       // We're done with a parsing phase. Replaced nodes are not valid
 364       // beyond that point.
 365       n->as_SafePoint()->delete_replaced_nodes();
 366     }
 367     // Use raw traversal of out edges since this code removes out edges
 368     int max = n->outcnt();
 369     for (int j = 0; j < max; ++j) {
 370       Node* child = n->raw_out(j);
 371       if (! useful.member(child)) {
 372         assert(!child->is_top() || child != top(),
 373                "If top is cached in Compile object it is in useful list");
 374         // Only need to remove this out-edge to the useless node
 375         n->raw_del_out(j);
 376         --j;
 377         --max;
 378       }
 379     }
 380     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 381       record_for_igvn(n->unique_out());
 382     }
 383   }
 384   // Remove useless macro and predicate opaq nodes
 385   for (int i = C->macro_count()-1; i >= 0; i--) {
 386     Node* n = C->macro_node(i);
 387     if (!useful.member(n)) {
 388       remove_macro_node(n);
 389     }
 390   }
 391   // Remove useless CastII nodes with range check dependency
 392   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 393     Node* cast = range_check_cast_node(i);
 394     if (!useful.member(cast)) {
 395       remove_range_check_cast(cast);
 396     }
 397   }
 398   // Remove useless expensive node
 399   for (int i = C->expensive_count()-1; i >= 0; i--) {
 400     Node* n = C->expensive_node(i);
 401     if (!useful.member(n)) {
 402       remove_expensive_node(n);
 403     }
 404   }
 405   // clean up the late inline lists
 406   remove_useless_late_inlines(&_string_late_inlines, useful);
 407   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 408   remove_useless_late_inlines(&_late_inlines, useful);
 409   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 410 }
 411 
 412 //------------------------------frame_size_in_words-----------------------------
 413 // frame_slots in units of words
 414 int Compile::frame_size_in_words() const {
 415   // shift is 0 in LP32 and 1 in LP64
 416   const int shift = (LogBytesPerWord - LogBytesPerInt);
 417   int words = _frame_slots >> shift;
 418   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 419   return words;
 420 }
 421 
 422 // To bang the stack of this compiled method we use the stack size
 423 // that the interpreter would need in case of a deoptimization. This
 424 // removes the need to bang the stack in the deoptimization blob which
 425 // in turn simplifies stack overflow handling.
 426 int Compile::bang_size_in_bytes() const {
 427   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 428 }
 429 
 430 // ============================================================================
 431 //------------------------------CompileWrapper---------------------------------
 432 class CompileWrapper : public StackObj {
 433   Compile *const _compile;
 434  public:
 435   CompileWrapper(Compile* compile);
 436 
 437   ~CompileWrapper();
 438 };
 439 
 440 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 441   // the Compile* pointer is stored in the current ciEnv:
 442   ciEnv* env = compile->env();
 443   assert(env == ciEnv::current(), "must already be a ciEnv active");
 444   assert(env->compiler_data() == NULL, "compile already active?");
 445   env->set_compiler_data(compile);
 446   assert(compile == Compile::current(), "sanity");
 447 
 448   compile->set_type_dict(NULL);
 449   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 450   compile->clone_map().set_clone_idx(0);
 451   compile->set_type_hwm(NULL);
 452   compile->set_type_last_size(0);
 453   compile->set_last_tf(NULL, NULL);
 454   compile->set_indexSet_arena(NULL);
 455   compile->set_indexSet_free_block_list(NULL);
 456   compile->init_type_arena();
 457   Type::Initialize(compile);
 458   _compile->set_scratch_buffer_blob(NULL);
 459   _compile->begin_method();
 460   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 461 }
 462 CompileWrapper::~CompileWrapper() {
 463   _compile->end_method();
 464   if (_compile->scratch_buffer_blob() != NULL)
 465     BufferBlob::free(_compile->scratch_buffer_blob());
 466   _compile->env()->set_compiler_data(NULL);
 467 }
 468 
 469 
 470 //----------------------------print_compile_messages---------------------------
 471 void Compile::print_compile_messages() {
 472 #ifndef PRODUCT
 473   // Check if recompiling
 474   if (_subsume_loads == false && PrintOpto) {
 475     // Recompiling without allowing machine instructions to subsume loads
 476     tty->print_cr("*********************************************************");
 477     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 478     tty->print_cr("*********************************************************");
 479   }
 480   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 481     // Recompiling without escape analysis
 482     tty->print_cr("*********************************************************");
 483     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 484     tty->print_cr("*********************************************************");
 485   }
 486   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 487     // Recompiling without boxing elimination
 488     tty->print_cr("*********************************************************");
 489     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 490     tty->print_cr("*********************************************************");
 491   }
 492   if (C->directive()->BreakAtCompileOption) {
 493     // Open the debugger when compiling this method.
 494     tty->print("### Breaking when compiling: ");
 495     method()->print_short_name();
 496     tty->cr();
 497     BREAKPOINT;
 498   }
 499 
 500   if( PrintOpto ) {
 501     if (is_osr_compilation()) {
 502       tty->print("[OSR]%3d", _compile_id);
 503     } else {
 504       tty->print("%3d", _compile_id);
 505     }
 506   }
 507 #endif
 508 }
 509 
 510 
 511 //-----------------------init_scratch_buffer_blob------------------------------
 512 // Construct a temporary BufferBlob and cache it for this compile.
 513 void Compile::init_scratch_buffer_blob(int const_size) {
 514   // If there is already a scratch buffer blob allocated and the
 515   // constant section is big enough, use it.  Otherwise free the
 516   // current and allocate a new one.
 517   BufferBlob* blob = scratch_buffer_blob();
 518   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 519     // Use the current blob.
 520   } else {
 521     if (blob != NULL) {
 522       BufferBlob::free(blob);
 523     }
 524 
 525     ResourceMark rm;
 526     _scratch_const_size = const_size;
 527     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 528     blob = BufferBlob::create("Compile::scratch_buffer", size);
 529     // Record the buffer blob for next time.
 530     set_scratch_buffer_blob(blob);
 531     // Have we run out of code space?
 532     if (scratch_buffer_blob() == NULL) {
 533       // Let CompilerBroker disable further compilations.
 534       record_failure("Not enough space for scratch buffer in CodeCache");
 535       return;
 536     }
 537   }
 538 
 539   // Initialize the relocation buffers
 540   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 541   set_scratch_locs_memory(locs_buf);
 542 }
 543 
 544 
 545 //-----------------------scratch_emit_size-------------------------------------
 546 // Helper function that computes size by emitting code
 547 uint Compile::scratch_emit_size(const Node* n) {
 548   // Start scratch_emit_size section.
 549   set_in_scratch_emit_size(true);
 550 
 551   // Emit into a trash buffer and count bytes emitted.
 552   // This is a pretty expensive way to compute a size,
 553   // but it works well enough if seldom used.
 554   // All common fixed-size instructions are given a size
 555   // method by the AD file.
 556   // Note that the scratch buffer blob and locs memory are
 557   // allocated at the beginning of the compile task, and
 558   // may be shared by several calls to scratch_emit_size.
 559   // The allocation of the scratch buffer blob is particularly
 560   // expensive, since it has to grab the code cache lock.
 561   BufferBlob* blob = this->scratch_buffer_blob();
 562   assert(blob != NULL, "Initialize BufferBlob at start");
 563   assert(blob->size() > MAX_inst_size, "sanity");
 564   relocInfo* locs_buf = scratch_locs_memory();
 565   address blob_begin = blob->content_begin();
 566   address blob_end   = (address)locs_buf;
 567   assert(blob->content_contains(blob_end), "sanity");
 568   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 569   buf.initialize_consts_size(_scratch_const_size);
 570   buf.initialize_stubs_size(MAX_stubs_size);
 571   assert(locs_buf != NULL, "sanity");
 572   int lsize = MAX_locs_size / 3;
 573   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 574   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 575   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 576 
 577   // Do the emission.
 578 
 579   Label fakeL; // Fake label for branch instructions.
 580   Label*   saveL = NULL;
 581   uint save_bnum = 0;
 582   bool is_branch = n->is_MachBranch();
 583   if (is_branch) {
 584     MacroAssembler masm(&buf);
 585     masm.bind(fakeL);
 586     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 587     n->as_MachBranch()->label_set(&fakeL, 0);
 588   }
 589   n->emit(buf, this->regalloc());
 590 
 591   // Emitting into the scratch buffer should not fail
 592   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 593 
 594   if (is_branch) // Restore label.
 595     n->as_MachBranch()->label_set(saveL, save_bnum);
 596 
 597   // End scratch_emit_size section.
 598   set_in_scratch_emit_size(false);
 599 
 600   return buf.insts_size();
 601 }
 602 
 603 
 604 // ============================================================================
 605 //------------------------------Compile standard-------------------------------
 606 debug_only( int Compile::_debug_idx = 100000; )
 607 
 608 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 609 // the continuation bci for on stack replacement.
 610 
 611 
 612 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 613                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 614                 : Phase(Compiler),
 615                   _env(ci_env),
 616                   _directive(directive),
 617                   _log(ci_env->log()),
 618                   _compile_id(ci_env->compile_id()),
 619                   _save_argument_registers(false),
 620                   _stub_name(NULL),
 621                   _stub_function(NULL),
 622                   _stub_entry_point(NULL),
 623                   _method(target),
 624                   _entry_bci(osr_bci),
 625                   _initial_gvn(NULL),
 626                   _for_igvn(NULL),
 627                   _warm_calls(NULL),
 628                   _subsume_loads(subsume_loads),
 629                   _do_escape_analysis(do_escape_analysis),
 630                   _eliminate_boxing(eliminate_boxing),
 631                   _failure_reason(NULL),
 632                   _code_buffer("Compile::Fill_buffer"),
 633                   _orig_pc_slot(0),
 634                   _orig_pc_slot_offset_in_bytes(0),
 635                   _has_method_handle_invokes(false),
 636                   _mach_constant_base_node(NULL),
 637                   _node_bundling_limit(0),
 638                   _node_bundling_base(NULL),
 639                   _java_calls(0),
 640                   _inner_loops(0),
 641                   _scratch_const_size(-1),
 642                   _in_scratch_emit_size(false),
 643                   _dead_node_list(comp_arena()),
 644                   _dead_node_count(0),
 645 #ifndef PRODUCT
 646                   _trace_opto_output(directive->TraceOptoOutputOption),
 647                   _in_dump_cnt(0),
 648                   _printer(IdealGraphPrinter::printer()),
 649 #endif
 650                   _congraph(NULL),
 651                   _comp_arena(mtCompiler),
 652                   _node_arena(mtCompiler),
 653                   _old_arena(mtCompiler),
 654                   _Compile_types(mtCompiler),
 655                   _replay_inline_data(NULL),
 656                   _late_inlines(comp_arena(), 2, 0, NULL),
 657                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 658                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 659                   _late_inlines_pos(0),
 660                   _number_of_mh_late_inlines(0),
 661                   _inlining_progress(false),
 662                   _inlining_incrementally(false),
 663                   _print_inlining_list(NULL),
 664                   _print_inlining_stream(NULL),
 665                   _print_inlining_idx(0),
 666                   _print_inlining_output(NULL),
 667                   _interpreter_frame_size(0),
 668                   _max_node_limit(MaxNodeLimit),
 669                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 670   C = this;
 671 #ifndef PRODUCT
 672   if (_printer != NULL) {
 673     _printer->set_compile(this);
 674   }
 675 #endif
 676   CompileWrapper cw(this);
 677 
 678   if (CITimeVerbose) {
 679     tty->print(" ");
 680     target->holder()->name()->print();
 681     tty->print(".");
 682     target->print_short_name();
 683     tty->print("  ");
 684   }
 685   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 686   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 687 
 688 #ifndef PRODUCT
 689   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 690   if (!print_opto_assembly) {
 691     bool print_assembly = directive->PrintAssemblyOption;
 692     if (print_assembly && !Disassembler::can_decode()) {
 693       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 694       print_opto_assembly = true;
 695     }
 696   }
 697   set_print_assembly(print_opto_assembly);
 698   set_parsed_irreducible_loop(false);
 699 
 700   if (directive->ReplayInlineOption) {
 701     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 702   }
 703 #endif
 704   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 705   set_print_intrinsics(directive->PrintIntrinsicsOption);
 706   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 707 
 708   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 709     // Make sure the method being compiled gets its own MDO,
 710     // so we can at least track the decompile_count().
 711     // Need MDO to record RTM code generation state.
 712     method()->ensure_method_data();
 713   }
 714 
 715   Init(::AliasLevel);
 716 
 717 
 718   print_compile_messages();
 719 
 720   _ilt = InlineTree::build_inline_tree_root();
 721 
 722   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 723   assert(num_alias_types() >= AliasIdxRaw, "");
 724 
 725 #define MINIMUM_NODE_HASH  1023
 726   // Node list that Iterative GVN will start with
 727   Unique_Node_List for_igvn(comp_arena());
 728   set_for_igvn(&for_igvn);
 729 
 730   // GVN that will be run immediately on new nodes
 731   uint estimated_size = method()->code_size()*4+64;
 732   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 733   PhaseGVN gvn(node_arena(), estimated_size);
 734   set_initial_gvn(&gvn);
 735 
 736   print_inlining_init();
 737   { // Scope for timing the parser
 738     TracePhase tp("parse", &timers[_t_parser]);
 739 
 740     // Put top into the hash table ASAP.
 741     initial_gvn()->transform_no_reclaim(top());
 742 
 743     // Set up tf(), start(), and find a CallGenerator.
 744     CallGenerator* cg = NULL;
 745     if (is_osr_compilation()) {
 746       const TypeTuple *domain = StartOSRNode::osr_domain();
 747       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 748       init_tf(TypeFunc::make(domain, range));
 749       StartNode* s = new StartOSRNode(root(), domain);
 750       initial_gvn()->set_type_bottom(s);
 751       init_start(s);
 752       cg = CallGenerator::for_osr(method(), entry_bci());
 753     } else {
 754       // Normal case.
 755       init_tf(TypeFunc::make(method()));
 756       StartNode* s = new StartNode(root(), tf()->domain());
 757       initial_gvn()->set_type_bottom(s);
 758       init_start(s);
 759       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 760         // With java.lang.ref.reference.get() we must go through the
 761         // intrinsic when G1 is enabled - even when get() is the root
 762         // method of the compile - so that, if necessary, the value in
 763         // the referent field of the reference object gets recorded by
 764         // the pre-barrier code.
 765         // Specifically, if G1 is enabled, the value in the referent
 766         // field is recorded by the G1 SATB pre barrier. This will
 767         // result in the referent being marked live and the reference
 768         // object removed from the list of discovered references during
 769         // reference processing.
 770         cg = find_intrinsic(method(), false);
 771       }
 772       if (cg == NULL) {
 773         float past_uses = method()->interpreter_invocation_count();
 774         float expected_uses = past_uses;
 775         cg = CallGenerator::for_inline(method(), expected_uses);
 776       }
 777     }
 778     if (failing())  return;
 779     if (cg == NULL) {
 780       record_method_not_compilable_all_tiers("cannot parse method");
 781       return;
 782     }
 783     JVMState* jvms = build_start_state(start(), tf());
 784     if ((jvms = cg->generate(jvms)) == NULL) {
 785       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 786         record_method_not_compilable("method parse failed");
 787       }
 788       return;
 789     }
 790     GraphKit kit(jvms);
 791 
 792     if (!kit.stopped()) {
 793       // Accept return values, and transfer control we know not where.
 794       // This is done by a special, unique ReturnNode bound to root.
 795       return_values(kit.jvms());
 796     }
 797 
 798     if (kit.has_exceptions()) {
 799       // Any exceptions that escape from this call must be rethrown
 800       // to whatever caller is dynamically above us on the stack.
 801       // This is done by a special, unique RethrowNode bound to root.
 802       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 803     }
 804 
 805     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 806 
 807     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 808       inline_string_calls(true);
 809     }
 810 
 811     if (failing())  return;
 812 
 813     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 814 
 815     // Remove clutter produced by parsing.
 816     if (!failing()) {
 817       ResourceMark rm;
 818       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 819     }
 820   }
 821 
 822   // Note:  Large methods are capped off in do_one_bytecode().
 823   if (failing())  return;
 824 
 825   // After parsing, node notes are no longer automagic.
 826   // They must be propagated by register_new_node_with_optimizer(),
 827   // clone(), or the like.
 828   set_default_node_notes(NULL);
 829 
 830   for (;;) {
 831     int successes = Inline_Warm();
 832     if (failing())  return;
 833     if (successes == 0)  break;
 834   }
 835 
 836   // Drain the list.
 837   Finish_Warm();
 838 #ifndef PRODUCT
 839   if (_printer && _printer->should_print(1)) {
 840     _printer->print_inlining();
 841   }
 842 #endif
 843 
 844   if (failing())  return;
 845   NOT_PRODUCT( verify_graph_edges(); )
 846 
 847   // Now optimize
 848   Optimize();
 849   if (failing())  return;
 850   NOT_PRODUCT( verify_graph_edges(); )
 851 
 852 #ifndef PRODUCT
 853   if (PrintIdeal) {
 854     ttyLocker ttyl;  // keep the following output all in one block
 855     // This output goes directly to the tty, not the compiler log.
 856     // To enable tools to match it up with the compilation activity,
 857     // be sure to tag this tty output with the compile ID.
 858     if (xtty != NULL) {
 859       xtty->head("ideal compile_id='%d'%s", compile_id(),
 860                  is_osr_compilation()    ? " compile_kind='osr'" :
 861                  "");
 862     }
 863     root()->dump(9999);
 864     if (xtty != NULL) {
 865       xtty->tail("ideal");
 866     }
 867   }
 868 #endif
 869 
 870   NOT_PRODUCT( verify_barriers(); )
 871 
 872   // Dump compilation data to replay it.
 873   if (directive->DumpReplayOption) {
 874     env()->dump_replay_data(_compile_id);
 875   }
 876   if (directive->DumpInlineOption && (ilt() != NULL)) {
 877     env()->dump_inline_data(_compile_id);
 878   }
 879 
 880   // Now that we know the size of all the monitors we can add a fixed slot
 881   // for the original deopt pc.
 882 
 883   _orig_pc_slot =  fixed_slots();
 884   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 885   set_fixed_slots(next_slot);
 886 
 887   // Compute when to use implicit null checks. Used by matching trap based
 888   // nodes and NullCheck optimization.
 889   set_allowed_deopt_reasons();
 890 
 891   // Now generate code
 892   Code_Gen();
 893   if (failing())  return;
 894 
 895   // Check if we want to skip execution of all compiled code.
 896   {
 897 #ifndef PRODUCT
 898     if (OptoNoExecute) {
 899       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 900       return;
 901     }
 902 #endif
 903     TracePhase tp("install_code", &timers[_t_registerMethod]);
 904 
 905     if (is_osr_compilation()) {
 906       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 907       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 908     } else {
 909       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 910       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 911     }
 912 
 913     env()->register_method(_method, _entry_bci,
 914                            &_code_offsets,
 915                            _orig_pc_slot_offset_in_bytes,
 916                            code_buffer(),
 917                            frame_size_in_words(), _oop_map_set,
 918                            &_handler_table, &_inc_table,
 919                            compiler,
 920                            has_unsafe_access(),
 921                            SharedRuntime::is_wide_vector(max_vector_size()),
 922                            rtm_state()
 923                            );
 924 
 925     if (log() != NULL) // Print code cache state into compiler log
 926       log()->code_cache_state();
 927   }
 928 }
 929 
 930 //------------------------------Compile----------------------------------------
 931 // Compile a runtime stub
 932 Compile::Compile( ciEnv* ci_env,
 933                   TypeFunc_generator generator,
 934                   address stub_function,
 935                   const char *stub_name,
 936                   int is_fancy_jump,
 937                   bool pass_tls,
 938                   bool save_arg_registers,
 939                   bool return_pc,
 940                   DirectiveSet* directive)
 941   : Phase(Compiler),
 942     _env(ci_env),
 943     _directive(directive),
 944     _log(ci_env->log()),
 945     _compile_id(0),
 946     _save_argument_registers(save_arg_registers),
 947     _method(NULL),
 948     _stub_name(stub_name),
 949     _stub_function(stub_function),
 950     _stub_entry_point(NULL),
 951     _entry_bci(InvocationEntryBci),
 952     _initial_gvn(NULL),
 953     _for_igvn(NULL),
 954     _warm_calls(NULL),
 955     _orig_pc_slot(0),
 956     _orig_pc_slot_offset_in_bytes(0),
 957     _subsume_loads(true),
 958     _do_escape_analysis(false),
 959     _eliminate_boxing(false),
 960     _failure_reason(NULL),
 961     _code_buffer("Compile::Fill_buffer"),
 962     _has_method_handle_invokes(false),
 963     _mach_constant_base_node(NULL),
 964     _node_bundling_limit(0),
 965     _node_bundling_base(NULL),
 966     _java_calls(0),
 967     _inner_loops(0),
 968 #ifndef PRODUCT
 969     _trace_opto_output(TraceOptoOutput),
 970     _in_dump_cnt(0),
 971     _printer(NULL),
 972 #endif
 973     _comp_arena(mtCompiler),
 974     _node_arena(mtCompiler),
 975     _old_arena(mtCompiler),
 976     _Compile_types(mtCompiler),
 977     _dead_node_list(comp_arena()),
 978     _dead_node_count(0),
 979     _congraph(NULL),
 980     _replay_inline_data(NULL),
 981     _number_of_mh_late_inlines(0),
 982     _inlining_progress(false),
 983     _inlining_incrementally(false),
 984     _print_inlining_list(NULL),
 985     _print_inlining_stream(NULL),
 986     _print_inlining_idx(0),
 987     _print_inlining_output(NULL),
 988     _allowed_reasons(0),
 989     _interpreter_frame_size(0),
 990     _max_node_limit(MaxNodeLimit) {
 991   C = this;
 992 
 993   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 994   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 995 
 996 #ifndef PRODUCT
 997   set_print_assembly(PrintFrameConverterAssembly);
 998   set_parsed_irreducible_loop(false);
 999 #endif
1000   set_has_irreducible_loop(false); // no loops
1001 
1002   CompileWrapper cw(this);
1003   Init(/*AliasLevel=*/ 0);
1004   init_tf((*generator)());
1005 
1006   {
1007     // The following is a dummy for the sake of GraphKit::gen_stub
1008     Unique_Node_List for_igvn(comp_arena());
1009     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1010     PhaseGVN gvn(Thread::current()->resource_area(),255);
1011     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1012     gvn.transform_no_reclaim(top());
1013 
1014     GraphKit kit;
1015     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1016   }
1017 
1018   NOT_PRODUCT( verify_graph_edges(); )
1019   Code_Gen();
1020   if (failing())  return;
1021 
1022 
1023   // Entry point will be accessed using compile->stub_entry_point();
1024   if (code_buffer() == NULL) {
1025     Matcher::soft_match_failure();
1026   } else {
1027     if (PrintAssembly && (WizardMode || Verbose))
1028       tty->print_cr("### Stub::%s", stub_name);
1029 
1030     if (!failing()) {
1031       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1032 
1033       // Make the NMethod
1034       // For now we mark the frame as never safe for profile stackwalking
1035       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1036                                                       code_buffer(),
1037                                                       CodeOffsets::frame_never_safe,
1038                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1039                                                       frame_size_in_words(),
1040                                                       _oop_map_set,
1041                                                       save_arg_registers);
1042       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1043 
1044       _stub_entry_point = rs->entry_point();
1045     }
1046   }
1047 }
1048 
1049 //------------------------------Init-------------------------------------------
1050 // Prepare for a single compilation
1051 void Compile::Init(int aliaslevel) {
1052   _unique  = 0;
1053   _regalloc = NULL;
1054 
1055   _tf      = NULL;  // filled in later
1056   _top     = NULL;  // cached later
1057   _matcher = NULL;  // filled in later
1058   _cfg     = NULL;  // filled in later
1059 
1060   set_24_bit_selection_and_mode(Use24BitFP, false);
1061 
1062   _node_note_array = NULL;
1063   _default_node_notes = NULL;
1064   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1065 
1066   _immutable_memory = NULL; // filled in at first inquiry
1067 
1068   // Globally visible Nodes
1069   // First set TOP to NULL to give safe behavior during creation of RootNode
1070   set_cached_top_node(NULL);
1071   set_root(new RootNode());
1072   // Now that you have a Root to point to, create the real TOP
1073   set_cached_top_node( new ConNode(Type::TOP) );
1074   set_recent_alloc(NULL, NULL);
1075 
1076   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1077   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1078   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1079   env()->set_dependencies(new Dependencies(env()));
1080 
1081   _fixed_slots = 0;
1082   set_has_split_ifs(false);
1083   set_has_loops(has_method() && method()->has_loops()); // first approximation
1084   set_has_stringbuilder(false);
1085   set_has_boxed_value(false);
1086   _trap_can_recompile = false;  // no traps emitted yet
1087   _major_progress = true; // start out assuming good things will happen
1088   set_has_unsafe_access(false);
1089   set_max_vector_size(0);
1090   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1091   set_decompile_count(0);
1092 
1093   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1094   set_num_loop_opts(LoopOptsCount);
1095   set_do_inlining(Inline);
1096   set_max_inline_size(MaxInlineSize);
1097   set_freq_inline_size(FreqInlineSize);
1098   set_do_scheduling(OptoScheduling);
1099   set_do_count_invocations(false);
1100   set_do_method_data_update(false);
1101 
1102   set_do_vector_loop(false);
1103 
1104   if (AllowVectorizeOnDemand) {
1105     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1106       set_do_vector_loop(true);
1107       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1108     } else if (has_method() && method()->name() != 0 &&
1109                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1110       set_do_vector_loop(true);
1111     }
1112   }
1113   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1114   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1115 
1116   set_age_code(has_method() && method()->profile_aging());
1117   set_rtm_state(NoRTM); // No RTM lock eliding by default
1118   _max_node_limit = _directive->MaxNodeLimitOption;
1119 
1120 #if INCLUDE_RTM_OPT
1121   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1122     int rtm_state = method()->method_data()->rtm_state();
1123     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1124       // Don't generate RTM lock eliding code.
1125       set_rtm_state(NoRTM);
1126     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1127       // Generate RTM lock eliding code without abort ratio calculation code.
1128       set_rtm_state(UseRTM);
1129     } else if (UseRTMDeopt) {
1130       // Generate RTM lock eliding code and include abort ratio calculation
1131       // code if UseRTMDeopt is on.
1132       set_rtm_state(ProfileRTM);
1133     }
1134   }
1135 #endif
1136   if (debug_info()->recording_non_safepoints()) {
1137     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1138                         (comp_arena(), 8, 0, NULL));
1139     set_default_node_notes(Node_Notes::make(this));
1140   }
1141 
1142   // // -- Initialize types before each compile --
1143   // // Update cached type information
1144   // if( _method && _method->constants() )
1145   //   Type::update_loaded_types(_method, _method->constants());
1146 
1147   // Init alias_type map.
1148   if (!_do_escape_analysis && aliaslevel == 3)
1149     aliaslevel = 2;  // No unique types without escape analysis
1150   _AliasLevel = aliaslevel;
1151   const int grow_ats = 16;
1152   _max_alias_types = grow_ats;
1153   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1154   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1155   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1156   {
1157     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1158   }
1159   // Initialize the first few types.
1160   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1161   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1162   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1163   _num_alias_types = AliasIdxRaw+1;
1164   // Zero out the alias type cache.
1165   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1166   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1167   probe_alias_cache(NULL)->_index = AliasIdxTop;
1168 
1169   _intrinsics = NULL;
1170   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1171   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1172   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1173   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1174   register_library_intrinsics();
1175 }
1176 
1177 //---------------------------init_start----------------------------------------
1178 // Install the StartNode on this compile object.
1179 void Compile::init_start(StartNode* s) {
1180   if (failing())
1181     return; // already failing
1182   assert(s == start(), "");
1183 }
1184 
1185 /**
1186  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1187  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1188  * the ideal graph.
1189  */
1190 StartNode* Compile::start() const {
1191   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1192   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1193     Node* start = root()->fast_out(i);
1194     if (start->is_Start()) {
1195       return start->as_Start();
1196     }
1197   }
1198   fatal("Did not find Start node!");
1199   return NULL;
1200 }
1201 
1202 //-------------------------------immutable_memory-------------------------------------
1203 // Access immutable memory
1204 Node* Compile::immutable_memory() {
1205   if (_immutable_memory != NULL) {
1206     return _immutable_memory;
1207   }
1208   StartNode* s = start();
1209   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1210     Node *p = s->fast_out(i);
1211     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1212       _immutable_memory = p;
1213       return _immutable_memory;
1214     }
1215   }
1216   ShouldNotReachHere();
1217   return NULL;
1218 }
1219 
1220 //----------------------set_cached_top_node------------------------------------
1221 // Install the cached top node, and make sure Node::is_top works correctly.
1222 void Compile::set_cached_top_node(Node* tn) {
1223   if (tn != NULL)  verify_top(tn);
1224   Node* old_top = _top;
1225   _top = tn;
1226   // Calling Node::setup_is_top allows the nodes the chance to adjust
1227   // their _out arrays.
1228   if (_top != NULL)     _top->setup_is_top();
1229   if (old_top != NULL)  old_top->setup_is_top();
1230   assert(_top == NULL || top()->is_top(), "");
1231 }
1232 
1233 #ifdef ASSERT
1234 uint Compile::count_live_nodes_by_graph_walk() {
1235   Unique_Node_List useful(comp_arena());
1236   // Get useful node list by walking the graph.
1237   identify_useful_nodes(useful);
1238   return useful.size();
1239 }
1240 
1241 void Compile::print_missing_nodes() {
1242 
1243   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1244   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1245     return;
1246   }
1247 
1248   // This is an expensive function. It is executed only when the user
1249   // specifies VerifyIdealNodeCount option or otherwise knows the
1250   // additional work that needs to be done to identify reachable nodes
1251   // by walking the flow graph and find the missing ones using
1252   // _dead_node_list.
1253 
1254   Unique_Node_List useful(comp_arena());
1255   // Get useful node list by walking the graph.
1256   identify_useful_nodes(useful);
1257 
1258   uint l_nodes = C->live_nodes();
1259   uint l_nodes_by_walk = useful.size();
1260 
1261   if (l_nodes != l_nodes_by_walk) {
1262     if (_log != NULL) {
1263       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1264       _log->stamp();
1265       _log->end_head();
1266     }
1267     VectorSet& useful_member_set = useful.member_set();
1268     int last_idx = l_nodes_by_walk;
1269     for (int i = 0; i < last_idx; i++) {
1270       if (useful_member_set.test(i)) {
1271         if (_dead_node_list.test(i)) {
1272           if (_log != NULL) {
1273             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1274           }
1275           if (PrintIdealNodeCount) {
1276             // Print the log message to tty
1277               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1278               useful.at(i)->dump();
1279           }
1280         }
1281       }
1282       else if (! _dead_node_list.test(i)) {
1283         if (_log != NULL) {
1284           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1285         }
1286         if (PrintIdealNodeCount) {
1287           // Print the log message to tty
1288           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1289         }
1290       }
1291     }
1292     if (_log != NULL) {
1293       _log->tail("mismatched_nodes");
1294     }
1295   }
1296 }
1297 void Compile::record_modified_node(Node* n) {
1298   if (_modified_nodes != NULL && !_inlining_incrementally &&
1299       n->outcnt() != 0 && !n->is_Con()) {
1300     _modified_nodes->push(n);
1301   }
1302 }
1303 
1304 void Compile::remove_modified_node(Node* n) {
1305   if (_modified_nodes != NULL) {
1306     _modified_nodes->remove(n);
1307   }
1308 }
1309 #endif
1310 
1311 #ifndef PRODUCT
1312 void Compile::verify_top(Node* tn) const {
1313   if (tn != NULL) {
1314     assert(tn->is_Con(), "top node must be a constant");
1315     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1316     assert(tn->in(0) != NULL, "must have live top node");
1317   }
1318 }
1319 #endif
1320 
1321 
1322 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1323 
1324 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1325   guarantee(arr != NULL, "");
1326   int num_blocks = arr->length();
1327   if (grow_by < num_blocks)  grow_by = num_blocks;
1328   int num_notes = grow_by * _node_notes_block_size;
1329   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1330   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1331   while (num_notes > 0) {
1332     arr->append(notes);
1333     notes     += _node_notes_block_size;
1334     num_notes -= _node_notes_block_size;
1335   }
1336   assert(num_notes == 0, "exact multiple, please");
1337 }
1338 
1339 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1340   if (source == NULL || dest == NULL)  return false;
1341 
1342   if (dest->is_Con())
1343     return false;               // Do not push debug info onto constants.
1344 
1345 #ifdef ASSERT
1346   // Leave a bread crumb trail pointing to the original node:
1347   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1348     dest->set_debug_orig(source);
1349   }
1350 #endif
1351 
1352   if (node_note_array() == NULL)
1353     return false;               // Not collecting any notes now.
1354 
1355   // This is a copy onto a pre-existing node, which may already have notes.
1356   // If both nodes have notes, do not overwrite any pre-existing notes.
1357   Node_Notes* source_notes = node_notes_at(source->_idx);
1358   if (source_notes == NULL || source_notes->is_clear())  return false;
1359   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1360   if (dest_notes == NULL || dest_notes->is_clear()) {
1361     return set_node_notes_at(dest->_idx, source_notes);
1362   }
1363 
1364   Node_Notes merged_notes = (*source_notes);
1365   // The order of operations here ensures that dest notes will win...
1366   merged_notes.update_from(dest_notes);
1367   return set_node_notes_at(dest->_idx, &merged_notes);
1368 }
1369 
1370 
1371 //--------------------------allow_range_check_smearing-------------------------
1372 // Gating condition for coalescing similar range checks.
1373 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1374 // single covering check that is at least as strong as any of them.
1375 // If the optimization succeeds, the simplified (strengthened) range check
1376 // will always succeed.  If it fails, we will deopt, and then give up
1377 // on the optimization.
1378 bool Compile::allow_range_check_smearing() const {
1379   // If this method has already thrown a range-check,
1380   // assume it was because we already tried range smearing
1381   // and it failed.
1382   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1383   return !already_trapped;
1384 }
1385 
1386 
1387 //------------------------------flatten_alias_type-----------------------------
1388 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1389   int offset = tj->offset();
1390   TypePtr::PTR ptr = tj->ptr();
1391 
1392   // Known instance (scalarizable allocation) alias only with itself.
1393   bool is_known_inst = tj->isa_oopptr() != NULL &&
1394                        tj->is_oopptr()->is_known_instance();
1395 
1396   // Process weird unsafe references.
1397   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1398     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1399     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1400     tj = TypeOopPtr::BOTTOM;
1401     ptr = tj->ptr();
1402     offset = tj->offset();
1403   }
1404 
1405   // Array pointers need some flattening
1406   const TypeAryPtr *ta = tj->isa_aryptr();
1407   if (ta && ta->is_stable()) {
1408     // Erase stability property for alias analysis.
1409     tj = ta = ta->cast_to_stable(false);
1410   }
1411   if( ta && is_known_inst ) {
1412     if ( offset != Type::OffsetBot &&
1413          offset > arrayOopDesc::length_offset_in_bytes() ) {
1414       offset = Type::OffsetBot; // Flatten constant access into array body only
1415       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1416     }
1417   } else if( ta && _AliasLevel >= 2 ) {
1418     // For arrays indexed by constant indices, we flatten the alias
1419     // space to include all of the array body.  Only the header, klass
1420     // and array length can be accessed un-aliased.
1421     if( offset != Type::OffsetBot ) {
1422       if( ta->const_oop() ) { // MethodData* or Method*
1423         offset = Type::OffsetBot;   // Flatten constant access into array body
1424         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1425       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1426         // range is OK as-is.
1427         tj = ta = TypeAryPtr::RANGE;
1428       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1429         tj = TypeInstPtr::KLASS; // all klass loads look alike
1430         ta = TypeAryPtr::RANGE; // generic ignored junk
1431         ptr = TypePtr::BotPTR;
1432       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1433         tj = TypeInstPtr::MARK;
1434         ta = TypeAryPtr::RANGE; // generic ignored junk
1435         ptr = TypePtr::BotPTR;
1436       } else {                  // Random constant offset into array body
1437         offset = Type::OffsetBot;   // Flatten constant access into array body
1438         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1439       }
1440     }
1441     // Arrays of fixed size alias with arrays of unknown size.
1442     if (ta->size() != TypeInt::POS) {
1443       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1444       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1445     }
1446     // Arrays of known objects become arrays of unknown objects.
1447     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1448       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1449       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1450     }
1451     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1452       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1453       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1454     }
1455     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1456     // cannot be distinguished by bytecode alone.
1457     if (ta->elem() == TypeInt::BOOL) {
1458       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1459       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1460       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1461     }
1462     // During the 2nd round of IterGVN, NotNull castings are removed.
1463     // Make sure the Bottom and NotNull variants alias the same.
1464     // Also, make sure exact and non-exact variants alias the same.
1465     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1466       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1467     }
1468   }
1469 
1470   // Oop pointers need some flattening
1471   const TypeInstPtr *to = tj->isa_instptr();
1472   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1473     ciInstanceKlass *k = to->klass()->as_instance_klass();
1474     if( ptr == TypePtr::Constant ) {
1475       if (to->klass() != ciEnv::current()->Class_klass() ||
1476           offset < k->size_helper() * wordSize) {
1477         // No constant oop pointers (such as Strings); they alias with
1478         // unknown strings.
1479         assert(!is_known_inst, "not scalarizable allocation");
1480         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1481       }
1482     } else if( is_known_inst ) {
1483       tj = to; // Keep NotNull and klass_is_exact for instance type
1484     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1485       // During the 2nd round of IterGVN, NotNull castings are removed.
1486       // Make sure the Bottom and NotNull variants alias the same.
1487       // Also, make sure exact and non-exact variants alias the same.
1488       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1489     }
1490     if (to->speculative() != NULL) {
1491       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1492     }
1493     // Canonicalize the holder of this field
1494     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1495       // First handle header references such as a LoadKlassNode, even if the
1496       // object's klass is unloaded at compile time (4965979).
1497       if (!is_known_inst) { // Do it only for non-instance types
1498         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1499       }
1500     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1501       // Static fields are in the space above the normal instance
1502       // fields in the java.lang.Class instance.
1503       if (to->klass() != ciEnv::current()->Class_klass()) {
1504         to = NULL;
1505         tj = TypeOopPtr::BOTTOM;
1506         offset = tj->offset();
1507       }
1508     } else {
1509       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1510       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1511         if( is_known_inst ) {
1512           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1513         } else {
1514           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1515         }
1516       }
1517     }
1518   }
1519 
1520   // Klass pointers to object array klasses need some flattening
1521   const TypeKlassPtr *tk = tj->isa_klassptr();
1522   if( tk ) {
1523     // If we are referencing a field within a Klass, we need
1524     // to assume the worst case of an Object.  Both exact and
1525     // inexact types must flatten to the same alias class so
1526     // use NotNull as the PTR.
1527     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1528 
1529       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1530                                    TypeKlassPtr::OBJECT->klass(),
1531                                    offset);
1532     }
1533 
1534     ciKlass* klass = tk->klass();
1535     if( klass->is_obj_array_klass() ) {
1536       ciKlass* k = TypeAryPtr::OOPS->klass();
1537       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1538         k = TypeInstPtr::BOTTOM->klass();
1539       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1540     }
1541 
1542     // Check for precise loads from the primary supertype array and force them
1543     // to the supertype cache alias index.  Check for generic array loads from
1544     // the primary supertype array and also force them to the supertype cache
1545     // alias index.  Since the same load can reach both, we need to merge
1546     // these 2 disparate memories into the same alias class.  Since the
1547     // primary supertype array is read-only, there's no chance of confusion
1548     // where we bypass an array load and an array store.
1549     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1550     if (offset == Type::OffsetBot ||
1551         (offset >= primary_supers_offset &&
1552          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1553         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1554       offset = in_bytes(Klass::secondary_super_cache_offset());
1555       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1556     }
1557   }
1558 
1559   // Flatten all Raw pointers together.
1560   if (tj->base() == Type::RawPtr)
1561     tj = TypeRawPtr::BOTTOM;
1562 
1563   if (tj->base() == Type::AnyPtr)
1564     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1565 
1566   // Flatten all to bottom for now
1567   switch( _AliasLevel ) {
1568   case 0:
1569     tj = TypePtr::BOTTOM;
1570     break;
1571   case 1:                       // Flatten to: oop, static, field or array
1572     switch (tj->base()) {
1573     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1574     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1575     case Type::AryPtr:   // do not distinguish arrays at all
1576     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1577     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1578     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1579     default: ShouldNotReachHere();
1580     }
1581     break;
1582   case 2:                       // No collapsing at level 2; keep all splits
1583   case 3:                       // No collapsing at level 3; keep all splits
1584     break;
1585   default:
1586     Unimplemented();
1587   }
1588 
1589   offset = tj->offset();
1590   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1591 
1592   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1593           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1594           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1595           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1596           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1597           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1598           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1599           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1600   assert( tj->ptr() != TypePtr::TopPTR &&
1601           tj->ptr() != TypePtr::AnyNull &&
1602           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1603 //    assert( tj->ptr() != TypePtr::Constant ||
1604 //            tj->base() == Type::RawPtr ||
1605 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1606 
1607   return tj;
1608 }
1609 
1610 void Compile::AliasType::Init(int i, const TypePtr* at) {
1611   _index = i;
1612   _adr_type = at;
1613   _field = NULL;
1614   _element = NULL;
1615   _is_rewritable = true; // default
1616   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1617   if (atoop != NULL && atoop->is_known_instance()) {
1618     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1619     _general_index = Compile::current()->get_alias_index(gt);
1620   } else {
1621     _general_index = 0;
1622   }
1623 }
1624 
1625 //---------------------------------print_on------------------------------------
1626 #ifndef PRODUCT
1627 void Compile::AliasType::print_on(outputStream* st) {
1628   if (index() < 10)
1629         st->print("@ <%d> ", index());
1630   else  st->print("@ <%d>",  index());
1631   st->print(is_rewritable() ? "   " : " RO");
1632   int offset = adr_type()->offset();
1633   if (offset == Type::OffsetBot)
1634         st->print(" +any");
1635   else  st->print(" +%-3d", offset);
1636   st->print(" in ");
1637   adr_type()->dump_on(st);
1638   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1639   if (field() != NULL && tjp) {
1640     if (tjp->klass()  != field()->holder() ||
1641         tjp->offset() != field()->offset_in_bytes()) {
1642       st->print(" != ");
1643       field()->print();
1644       st->print(" ***");
1645     }
1646   }
1647 }
1648 
1649 void print_alias_types() {
1650   Compile* C = Compile::current();
1651   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1652   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1653     C->alias_type(idx)->print_on(tty);
1654     tty->cr();
1655   }
1656 }
1657 #endif
1658 
1659 
1660 //----------------------------probe_alias_cache--------------------------------
1661 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1662   intptr_t key = (intptr_t) adr_type;
1663   key ^= key >> logAliasCacheSize;
1664   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1665 }
1666 
1667 
1668 //-----------------------------grow_alias_types--------------------------------
1669 void Compile::grow_alias_types() {
1670   const int old_ats  = _max_alias_types; // how many before?
1671   const int new_ats  = old_ats;          // how many more?
1672   const int grow_ats = old_ats+new_ats;  // how many now?
1673   _max_alias_types = grow_ats;
1674   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1675   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1676   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1677   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1678 }
1679 
1680 
1681 //--------------------------------find_alias_type------------------------------
1682 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1683   if (_AliasLevel == 0)
1684     return alias_type(AliasIdxBot);
1685 
1686   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1687   if (ace->_adr_type == adr_type) {
1688     return alias_type(ace->_index);
1689   }
1690 
1691   // Handle special cases.
1692   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1693   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1694 
1695   // Do it the slow way.
1696   const TypePtr* flat = flatten_alias_type(adr_type);
1697 
1698 #ifdef ASSERT
1699   assert(flat == flatten_alias_type(flat), "idempotent");
1700   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1701   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1702     const TypeOopPtr* foop = flat->is_oopptr();
1703     // Scalarizable allocations have exact klass always.
1704     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1705     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1706     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1707   }
1708   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1709 #endif
1710 
1711   int idx = AliasIdxTop;
1712   for (int i = 0; i < num_alias_types(); i++) {
1713     if (alias_type(i)->adr_type() == flat) {
1714       idx = i;
1715       break;
1716     }
1717   }
1718 
1719   if (idx == AliasIdxTop) {
1720     if (no_create)  return NULL;
1721     // Grow the array if necessary.
1722     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1723     // Add a new alias type.
1724     idx = _num_alias_types++;
1725     _alias_types[idx]->Init(idx, flat);
1726     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1727     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1728     if (flat->isa_instptr()) {
1729       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1730           && flat->is_instptr()->klass() == env()->Class_klass())
1731         alias_type(idx)->set_rewritable(false);
1732     }
1733     if (flat->isa_aryptr()) {
1734 #ifdef ASSERT
1735       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1736       // (T_BYTE has the weakest alignment and size restrictions...)
1737       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1738 #endif
1739       if (flat->offset() == TypePtr::OffsetBot) {
1740         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1741       }
1742     }
1743     if (flat->isa_klassptr()) {
1744       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1745         alias_type(idx)->set_rewritable(false);
1746       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1747         alias_type(idx)->set_rewritable(false);
1748       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1749         alias_type(idx)->set_rewritable(false);
1750       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1751         alias_type(idx)->set_rewritable(false);
1752     }
1753     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1754     // but the base pointer type is not distinctive enough to identify
1755     // references into JavaThread.)
1756 
1757     // Check for final fields.
1758     const TypeInstPtr* tinst = flat->isa_instptr();
1759     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1760       ciField* field;
1761       if (tinst->const_oop() != NULL &&
1762           tinst->klass() == ciEnv::current()->Class_klass() &&
1763           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1764         // static field
1765         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1766         field = k->get_field_by_offset(tinst->offset(), true);
1767       } else {
1768         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1769         field = k->get_field_by_offset(tinst->offset(), false);
1770       }
1771       assert(field == NULL ||
1772              original_field == NULL ||
1773              (field->holder() == original_field->holder() &&
1774               field->offset() == original_field->offset() &&
1775               field->is_static() == original_field->is_static()), "wrong field?");
1776       // Set field() and is_rewritable() attributes.
1777       if (field != NULL)  alias_type(idx)->set_field(field);
1778     }
1779   }
1780 
1781   // Fill the cache for next time.
1782   ace->_adr_type = adr_type;
1783   ace->_index    = idx;
1784   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1785 
1786   // Might as well try to fill the cache for the flattened version, too.
1787   AliasCacheEntry* face = probe_alias_cache(flat);
1788   if (face->_adr_type == NULL) {
1789     face->_adr_type = flat;
1790     face->_index    = idx;
1791     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1792   }
1793 
1794   return alias_type(idx);
1795 }
1796 
1797 
1798 Compile::AliasType* Compile::alias_type(ciField* field) {
1799   const TypeOopPtr* t;
1800   if (field->is_static())
1801     t = TypeInstPtr::make(field->holder()->java_mirror());
1802   else
1803     t = TypeOopPtr::make_from_klass_raw(field->holder());
1804   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1805   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1806   return atp;
1807 }
1808 
1809 
1810 //------------------------------have_alias_type--------------------------------
1811 bool Compile::have_alias_type(const TypePtr* adr_type) {
1812   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1813   if (ace->_adr_type == adr_type) {
1814     return true;
1815   }
1816 
1817   // Handle special cases.
1818   if (adr_type == NULL)             return true;
1819   if (adr_type == TypePtr::BOTTOM)  return true;
1820 
1821   return find_alias_type(adr_type, true, NULL) != NULL;
1822 }
1823 
1824 //-----------------------------must_alias--------------------------------------
1825 // True if all values of the given address type are in the given alias category.
1826 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1827   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1828   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1829   if (alias_idx == AliasIdxTop)         return false; // the empty category
1830   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1831 
1832   // the only remaining possible overlap is identity
1833   int adr_idx = get_alias_index(adr_type);
1834   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1835   assert(adr_idx == alias_idx ||
1836          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1837           && adr_type                       != TypeOopPtr::BOTTOM),
1838          "should not be testing for overlap with an unsafe pointer");
1839   return adr_idx == alias_idx;
1840 }
1841 
1842 //------------------------------can_alias--------------------------------------
1843 // True if any values of the given address type are in the given alias category.
1844 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1845   if (alias_idx == AliasIdxTop)         return false; // the empty category
1846   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1847   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1848   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1849 
1850   // the only remaining possible overlap is identity
1851   int adr_idx = get_alias_index(adr_type);
1852   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1853   return adr_idx == alias_idx;
1854 }
1855 
1856 
1857 
1858 //---------------------------pop_warm_call-------------------------------------
1859 WarmCallInfo* Compile::pop_warm_call() {
1860   WarmCallInfo* wci = _warm_calls;
1861   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1862   return wci;
1863 }
1864 
1865 //----------------------------Inline_Warm--------------------------------------
1866 int Compile::Inline_Warm() {
1867   // If there is room, try to inline some more warm call sites.
1868   // %%% Do a graph index compaction pass when we think we're out of space?
1869   if (!InlineWarmCalls)  return 0;
1870 
1871   int calls_made_hot = 0;
1872   int room_to_grow   = NodeCountInliningCutoff - unique();
1873   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1874   int amount_grown   = 0;
1875   WarmCallInfo* call;
1876   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1877     int est_size = (int)call->size();
1878     if (est_size > (room_to_grow - amount_grown)) {
1879       // This one won't fit anyway.  Get rid of it.
1880       call->make_cold();
1881       continue;
1882     }
1883     call->make_hot();
1884     calls_made_hot++;
1885     amount_grown   += est_size;
1886     amount_to_grow -= est_size;
1887   }
1888 
1889   if (calls_made_hot > 0)  set_major_progress();
1890   return calls_made_hot;
1891 }
1892 
1893 
1894 //----------------------------Finish_Warm--------------------------------------
1895 void Compile::Finish_Warm() {
1896   if (!InlineWarmCalls)  return;
1897   if (failing())  return;
1898   if (warm_calls() == NULL)  return;
1899 
1900   // Clean up loose ends, if we are out of space for inlining.
1901   WarmCallInfo* call;
1902   while ((call = pop_warm_call()) != NULL) {
1903     call->make_cold();
1904   }
1905 }
1906 
1907 //---------------------cleanup_loop_predicates-----------------------
1908 // Remove the opaque nodes that protect the predicates so that all unused
1909 // checks and uncommon_traps will be eliminated from the ideal graph
1910 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1911   if (predicate_count()==0) return;
1912   for (int i = predicate_count(); i > 0; i--) {
1913     Node * n = predicate_opaque1_node(i-1);
1914     assert(n->Opcode() == Op_Opaque1, "must be");
1915     igvn.replace_node(n, n->in(1));
1916   }
1917   assert(predicate_count()==0, "should be clean!");
1918 }
1919 
1920 void Compile::add_range_check_cast(Node* n) {
1921   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1922   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1923   _range_check_casts->append(n);
1924 }
1925 
1926 // Remove all range check dependent CastIINodes.
1927 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1928   for (int i = range_check_cast_count(); i > 0; i--) {
1929     Node* cast = range_check_cast_node(i-1);
1930     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1931     igvn.replace_node(cast, cast->in(1));
1932   }
1933   assert(range_check_cast_count() == 0, "should be empty");
1934 }
1935 
1936 // StringOpts and late inlining of string methods
1937 void Compile::inline_string_calls(bool parse_time) {
1938   {
1939     // remove useless nodes to make the usage analysis simpler
1940     ResourceMark rm;
1941     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1942   }
1943 
1944   {
1945     ResourceMark rm;
1946     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1947     PhaseStringOpts pso(initial_gvn(), for_igvn());
1948     print_method(PHASE_AFTER_STRINGOPTS, 3);
1949   }
1950 
1951   // now inline anything that we skipped the first time around
1952   if (!parse_time) {
1953     _late_inlines_pos = _late_inlines.length();
1954   }
1955 
1956   while (_string_late_inlines.length() > 0) {
1957     CallGenerator* cg = _string_late_inlines.pop();
1958     cg->do_late_inline();
1959     if (failing())  return;
1960   }
1961   _string_late_inlines.trunc_to(0);
1962 }
1963 
1964 // Late inlining of boxing methods
1965 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1966   if (_boxing_late_inlines.length() > 0) {
1967     assert(has_boxed_value(), "inconsistent");
1968 
1969     PhaseGVN* gvn = initial_gvn();
1970     set_inlining_incrementally(true);
1971 
1972     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1973     for_igvn()->clear();
1974     gvn->replace_with(&igvn);
1975 
1976     _late_inlines_pos = _late_inlines.length();
1977 
1978     while (_boxing_late_inlines.length() > 0) {
1979       CallGenerator* cg = _boxing_late_inlines.pop();
1980       cg->do_late_inline();
1981       if (failing())  return;
1982     }
1983     _boxing_late_inlines.trunc_to(0);
1984 
1985     {
1986       ResourceMark rm;
1987       PhaseRemoveUseless pru(gvn, for_igvn());
1988     }
1989 
1990     igvn = PhaseIterGVN(gvn);
1991     igvn.optimize();
1992 
1993     set_inlining_progress(false);
1994     set_inlining_incrementally(false);
1995   }
1996 }
1997 
1998 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1999   assert(IncrementalInline, "incremental inlining should be on");
2000   PhaseGVN* gvn = initial_gvn();
2001 
2002   set_inlining_progress(false);
2003   for_igvn()->clear();
2004   gvn->replace_with(&igvn);
2005 
2006   {
2007     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2008     int i = 0;
2009     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2010       CallGenerator* cg = _late_inlines.at(i);
2011       _late_inlines_pos = i+1;
2012       cg->do_late_inline();
2013       if (failing())  return;
2014     }
2015     int j = 0;
2016     for (; i < _late_inlines.length(); i++, j++) {
2017       _late_inlines.at_put(j, _late_inlines.at(i));
2018     }
2019     _late_inlines.trunc_to(j);
2020   }
2021 
2022   {
2023     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2024     ResourceMark rm;
2025     PhaseRemoveUseless pru(gvn, for_igvn());
2026   }
2027 
2028   {
2029     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2030     igvn = PhaseIterGVN(gvn);
2031   }
2032 }
2033 
2034 // Perform incremental inlining until bound on number of live nodes is reached
2035 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2036   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2037 
2038   PhaseGVN* gvn = initial_gvn();
2039 
2040   set_inlining_incrementally(true);
2041   set_inlining_progress(true);
2042   uint low_live_nodes = 0;
2043 
2044   while(inlining_progress() && _late_inlines.length() > 0) {
2045 
2046     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2047       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2048         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2049         // PhaseIdealLoop is expensive so we only try it once we are
2050         // out of live nodes and we only try it again if the previous
2051         // helped got the number of nodes down significantly
2052         PhaseIdealLoop ideal_loop( igvn, false, true );
2053         if (failing())  return;
2054         low_live_nodes = live_nodes();
2055         _major_progress = true;
2056       }
2057 
2058       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2059         break;
2060       }
2061     }
2062 
2063     inline_incrementally_one(igvn);
2064 
2065     if (failing())  return;
2066 
2067     {
2068       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2069       igvn.optimize();
2070     }
2071 
2072     if (failing())  return;
2073   }
2074 
2075   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2076 
2077   if (_string_late_inlines.length() > 0) {
2078     assert(has_stringbuilder(), "inconsistent");
2079     for_igvn()->clear();
2080     initial_gvn()->replace_with(&igvn);
2081 
2082     inline_string_calls(false);
2083 
2084     if (failing())  return;
2085 
2086     {
2087       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2088       ResourceMark rm;
2089       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2090     }
2091 
2092     {
2093       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2094       igvn = PhaseIterGVN(gvn);
2095       igvn.optimize();
2096     }
2097   }
2098 
2099   set_inlining_incrementally(false);
2100 }
2101 
2102 
2103 //------------------------------Optimize---------------------------------------
2104 // Given a graph, optimize it.
2105 void Compile::Optimize() {
2106   TracePhase tp("optimizer", &timers[_t_optimizer]);
2107 
2108 #ifndef PRODUCT
2109   if (_directive->BreakAtCompileOption) {
2110     BREAKPOINT;
2111   }
2112 
2113 #endif
2114 
2115   ResourceMark rm;
2116   int          loop_opts_cnt;
2117 
2118   print_inlining_reinit();
2119 
2120   NOT_PRODUCT( verify_graph_edges(); )
2121 
2122   print_method(PHASE_AFTER_PARSING);
2123 
2124  {
2125   // Iterative Global Value Numbering, including ideal transforms
2126   // Initialize IterGVN with types and values from parse-time GVN
2127   PhaseIterGVN igvn(initial_gvn());
2128 #ifdef ASSERT
2129   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2130 #endif
2131   {
2132     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2133     igvn.optimize();
2134   }
2135 
2136   print_method(PHASE_ITER_GVN1, 2);
2137 
2138   if (failing())  return;
2139 
2140   inline_incrementally(igvn);
2141 
2142   print_method(PHASE_INCREMENTAL_INLINE, 2);
2143 
2144   if (failing())  return;
2145 
2146   if (eliminate_boxing()) {
2147     // Inline valueOf() methods now.
2148     inline_boxing_calls(igvn);
2149 
2150     if (AlwaysIncrementalInline) {
2151       inline_incrementally(igvn);
2152     }
2153 
2154     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2155 
2156     if (failing())  return;
2157   }
2158 
2159   // Remove the speculative part of types and clean up the graph from
2160   // the extra CastPP nodes whose only purpose is to carry them. Do
2161   // that early so that optimizations are not disrupted by the extra
2162   // CastPP nodes.
2163   remove_speculative_types(igvn);
2164 
2165   // No more new expensive nodes will be added to the list from here
2166   // so keep only the actual candidates for optimizations.
2167   cleanup_expensive_nodes(igvn);
2168 
2169   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2170     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2171     initial_gvn()->replace_with(&igvn);
2172     for_igvn()->clear();
2173     Unique_Node_List new_worklist(C->comp_arena());
2174     {
2175       ResourceMark rm;
2176       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2177     }
2178     set_for_igvn(&new_worklist);
2179     igvn = PhaseIterGVN(initial_gvn());
2180     igvn.optimize();
2181   }
2182 
2183   // Perform escape analysis
2184   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2185     if (has_loops()) {
2186       // Cleanup graph (remove dead nodes).
2187       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2188       PhaseIdealLoop ideal_loop( igvn, false, true );
2189       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2190       if (failing())  return;
2191     }
2192     ConnectionGraph::do_analysis(this, &igvn);
2193 
2194     if (failing())  return;
2195 
2196     // Optimize out fields loads from scalar replaceable allocations.
2197     igvn.optimize();
2198     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2199 
2200     if (failing())  return;
2201 
2202     if (congraph() != NULL && macro_count() > 0) {
2203       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2204       PhaseMacroExpand mexp(igvn);
2205       mexp.eliminate_macro_nodes();
2206       igvn.set_delay_transform(false);
2207 
2208       igvn.optimize();
2209       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2210 
2211       if (failing())  return;
2212     }
2213   }
2214 
2215   // Loop transforms on the ideal graph.  Range Check Elimination,
2216   // peeling, unrolling, etc.
2217 
2218   // Set loop opts counter
2219   loop_opts_cnt = num_loop_opts();
2220   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2221     {
2222       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2223       PhaseIdealLoop ideal_loop( igvn, true );
2224       loop_opts_cnt--;
2225       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2226       if (failing())  return;
2227     }
2228     // Loop opts pass if partial peeling occurred in previous pass
2229     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2230       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2231       PhaseIdealLoop ideal_loop( igvn, false );
2232       loop_opts_cnt--;
2233       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2234       if (failing())  return;
2235     }
2236     // Loop opts pass for loop-unrolling before CCP
2237     if(major_progress() && (loop_opts_cnt > 0)) {
2238       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2239       PhaseIdealLoop ideal_loop( igvn, false );
2240       loop_opts_cnt--;
2241       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2242     }
2243     if (!failing()) {
2244       // Verify that last round of loop opts produced a valid graph
2245       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2246       PhaseIdealLoop::verify(igvn);
2247     }
2248   }
2249   if (failing())  return;
2250 
2251   // Conditional Constant Propagation;
2252   PhaseCCP ccp( &igvn );
2253   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2254   {
2255     TracePhase tp("ccp", &timers[_t_ccp]);
2256     ccp.do_transform();
2257   }
2258   print_method(PHASE_CPP1, 2);
2259 
2260   assert( true, "Break here to ccp.dump_old2new_map()");
2261 
2262   // Iterative Global Value Numbering, including ideal transforms
2263   {
2264     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2265     igvn = ccp;
2266     igvn.optimize();
2267   }
2268 
2269   print_method(PHASE_ITER_GVN2, 2);
2270 
2271   if (failing())  return;
2272 
2273   // Loop transforms on the ideal graph.  Range Check Elimination,
2274   // peeling, unrolling, etc.
2275   if(loop_opts_cnt > 0) {
2276     debug_only( int cnt = 0; );
2277     while(major_progress() && (loop_opts_cnt > 0)) {
2278       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2279       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2280       PhaseIdealLoop ideal_loop( igvn, true);
2281       loop_opts_cnt--;
2282       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2283       if (failing())  return;
2284     }
2285   }
2286   // Ensure that major progress is now clear
2287   C->clear_major_progress();
2288 
2289   {
2290     // Verify that all previous optimizations produced a valid graph
2291     // at least to this point, even if no loop optimizations were done.
2292     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2293     PhaseIdealLoop::verify(igvn);
2294   }
2295 
2296   if (range_check_cast_count() > 0) {
2297     // No more loop optimizations. Remove all range check dependent CastIINodes.
2298     C->remove_range_check_casts(igvn);
2299     igvn.optimize();
2300   }
2301 
2302   {
2303     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2304     PhaseMacroExpand  mex(igvn);
2305     if (mex.expand_macro_nodes()) {
2306       assert(failing(), "must bail out w/ explicit message");
2307       return;
2308     }
2309   }
2310 
2311   DEBUG_ONLY( _modified_nodes = NULL; )
2312  } // (End scope of igvn; run destructor if necessary for asserts.)
2313 
2314  process_print_inlining();
2315  // A method with only infinite loops has no edges entering loops from root
2316  {
2317    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2318    if (final_graph_reshaping()) {
2319      assert(failing(), "must bail out w/ explicit message");
2320      return;
2321    }
2322  }
2323 
2324  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2325 }
2326 
2327 
2328 //------------------------------Code_Gen---------------------------------------
2329 // Given a graph, generate code for it
2330 void Compile::Code_Gen() {
2331   if (failing()) {
2332     return;
2333   }
2334 
2335   // Perform instruction selection.  You might think we could reclaim Matcher
2336   // memory PDQ, but actually the Matcher is used in generating spill code.
2337   // Internals of the Matcher (including some VectorSets) must remain live
2338   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2339   // set a bit in reclaimed memory.
2340 
2341   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2342   // nodes.  Mapping is only valid at the root of each matched subtree.
2343   NOT_PRODUCT( verify_graph_edges(); )
2344 
2345   Matcher matcher;
2346   _matcher = &matcher;
2347   {
2348     TracePhase tp("matcher", &timers[_t_matcher]);
2349     matcher.match();
2350   }
2351   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2352   // nodes.  Mapping is only valid at the root of each matched subtree.
2353   NOT_PRODUCT( verify_graph_edges(); )
2354 
2355   // If you have too many nodes, or if matching has failed, bail out
2356   check_node_count(0, "out of nodes matching instructions");
2357   if (failing()) {
2358     return;
2359   }
2360 
2361   // Build a proper-looking CFG
2362   PhaseCFG cfg(node_arena(), root(), matcher);
2363   _cfg = &cfg;
2364   {
2365     TracePhase tp("scheduler", &timers[_t_scheduler]);
2366     bool success = cfg.do_global_code_motion();
2367     if (!success) {
2368       return;
2369     }
2370 
2371     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2372     NOT_PRODUCT( verify_graph_edges(); )
2373     debug_only( cfg.verify(); )
2374   }
2375 
2376   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2377   _regalloc = &regalloc;
2378   {
2379     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2380     // Perform register allocation.  After Chaitin, use-def chains are
2381     // no longer accurate (at spill code) and so must be ignored.
2382     // Node->LRG->reg mappings are still accurate.
2383     _regalloc->Register_Allocate();
2384 
2385     // Bail out if the allocator builds too many nodes
2386     if (failing()) {
2387       return;
2388     }
2389   }
2390 
2391   // Prior to register allocation we kept empty basic blocks in case the
2392   // the allocator needed a place to spill.  After register allocation we
2393   // are not adding any new instructions.  If any basic block is empty, we
2394   // can now safely remove it.
2395   {
2396     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2397     cfg.remove_empty_blocks();
2398     if (do_freq_based_layout()) {
2399       PhaseBlockLayout layout(cfg);
2400     } else {
2401       cfg.set_loop_alignment();
2402     }
2403     cfg.fixup_flow();
2404   }
2405 
2406   // Apply peephole optimizations
2407   if( OptoPeephole ) {
2408     TracePhase tp("peephole", &timers[_t_peephole]);
2409     PhasePeephole peep( _regalloc, cfg);
2410     peep.do_transform();
2411   }
2412 
2413   // Do late expand if CPU requires this.
2414   if (Matcher::require_postalloc_expand) {
2415     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2416     cfg.postalloc_expand(_regalloc);
2417   }
2418 
2419   // Convert Nodes to instruction bits in a buffer
2420   {
2421     TraceTime tp("output", &timers[_t_output], CITime);
2422     Output();
2423   }
2424 
2425   print_method(PHASE_FINAL_CODE);
2426 
2427   // He's dead, Jim.
2428   _cfg     = (PhaseCFG*)0xdeadbeef;
2429   _regalloc = (PhaseChaitin*)0xdeadbeef;
2430 }
2431 
2432 
2433 //------------------------------dump_asm---------------------------------------
2434 // Dump formatted assembly
2435 #ifndef PRODUCT
2436 void Compile::dump_asm(int *pcs, uint pc_limit) {
2437   bool cut_short = false;
2438   tty->print_cr("#");
2439   tty->print("#  ");  _tf->dump();  tty->cr();
2440   tty->print_cr("#");
2441 
2442   // For all blocks
2443   int pc = 0x0;                 // Program counter
2444   char starts_bundle = ' ';
2445   _regalloc->dump_frame();
2446 
2447   Node *n = NULL;
2448   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2449     if (VMThread::should_terminate()) {
2450       cut_short = true;
2451       break;
2452     }
2453     Block* block = _cfg->get_block(i);
2454     if (block->is_connector() && !Verbose) {
2455       continue;
2456     }
2457     n = block->head();
2458     if (pcs && n->_idx < pc_limit) {
2459       tty->print("%3.3x   ", pcs[n->_idx]);
2460     } else {
2461       tty->print("      ");
2462     }
2463     block->dump_head(_cfg);
2464     if (block->is_connector()) {
2465       tty->print_cr("        # Empty connector block");
2466     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2467       tty->print_cr("        # Block is sole successor of call");
2468     }
2469 
2470     // For all instructions
2471     Node *delay = NULL;
2472     for (uint j = 0; j < block->number_of_nodes(); j++) {
2473       if (VMThread::should_terminate()) {
2474         cut_short = true;
2475         break;
2476       }
2477       n = block->get_node(j);
2478       if (valid_bundle_info(n)) {
2479         Bundle* bundle = node_bundling(n);
2480         if (bundle->used_in_unconditional_delay()) {
2481           delay = n;
2482           continue;
2483         }
2484         if (bundle->starts_bundle()) {
2485           starts_bundle = '+';
2486         }
2487       }
2488 
2489       if (WizardMode) {
2490         n->dump();
2491       }
2492 
2493       if( !n->is_Region() &&    // Dont print in the Assembly
2494           !n->is_Phi() &&       // a few noisely useless nodes
2495           !n->is_Proj() &&
2496           !n->is_MachTemp() &&
2497           !n->is_SafePointScalarObject() &&
2498           !n->is_Catch() &&     // Would be nice to print exception table targets
2499           !n->is_MergeMem() &&  // Not very interesting
2500           !n->is_top() &&       // Debug info table constants
2501           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2502           ) {
2503         if (pcs && n->_idx < pc_limit)
2504           tty->print("%3.3x", pcs[n->_idx]);
2505         else
2506           tty->print("   ");
2507         tty->print(" %c ", starts_bundle);
2508         starts_bundle = ' ';
2509         tty->print("\t");
2510         n->format(_regalloc, tty);
2511         tty->cr();
2512       }
2513 
2514       // If we have an instruction with a delay slot, and have seen a delay,
2515       // then back up and print it
2516       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2517         assert(delay != NULL, "no unconditional delay instruction");
2518         if (WizardMode) delay->dump();
2519 
2520         if (node_bundling(delay)->starts_bundle())
2521           starts_bundle = '+';
2522         if (pcs && n->_idx < pc_limit)
2523           tty->print("%3.3x", pcs[n->_idx]);
2524         else
2525           tty->print("   ");
2526         tty->print(" %c ", starts_bundle);
2527         starts_bundle = ' ';
2528         tty->print("\t");
2529         delay->format(_regalloc, tty);
2530         tty->cr();
2531         delay = NULL;
2532       }
2533 
2534       // Dump the exception table as well
2535       if( n->is_Catch() && (Verbose || WizardMode) ) {
2536         // Print the exception table for this offset
2537         _handler_table.print_subtable_for(pc);
2538       }
2539     }
2540 
2541     if (pcs && n->_idx < pc_limit)
2542       tty->print_cr("%3.3x", pcs[n->_idx]);
2543     else
2544       tty->cr();
2545 
2546     assert(cut_short || delay == NULL, "no unconditional delay branch");
2547 
2548   } // End of per-block dump
2549   tty->cr();
2550 
2551   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2552 }
2553 #endif
2554 
2555 //------------------------------Final_Reshape_Counts---------------------------
2556 // This class defines counters to help identify when a method
2557 // may/must be executed using hardware with only 24-bit precision.
2558 struct Final_Reshape_Counts : public StackObj {
2559   int  _call_count;             // count non-inlined 'common' calls
2560   int  _float_count;            // count float ops requiring 24-bit precision
2561   int  _double_count;           // count double ops requiring more precision
2562   int  _java_call_count;        // count non-inlined 'java' calls
2563   int  _inner_loop_count;       // count loops which need alignment
2564   VectorSet _visited;           // Visitation flags
2565   Node_List _tests;             // Set of IfNodes & PCTableNodes
2566 
2567   Final_Reshape_Counts() :
2568     _call_count(0), _float_count(0), _double_count(0),
2569     _java_call_count(0), _inner_loop_count(0),
2570     _visited( Thread::current()->resource_area() ) { }
2571 
2572   void inc_call_count  () { _call_count  ++; }
2573   void inc_float_count () { _float_count ++; }
2574   void inc_double_count() { _double_count++; }
2575   void inc_java_call_count() { _java_call_count++; }
2576   void inc_inner_loop_count() { _inner_loop_count++; }
2577 
2578   int  get_call_count  () const { return _call_count  ; }
2579   int  get_float_count () const { return _float_count ; }
2580   int  get_double_count() const { return _double_count; }
2581   int  get_java_call_count() const { return _java_call_count; }
2582   int  get_inner_loop_count() const { return _inner_loop_count; }
2583 };
2584 
2585 #ifdef ASSERT
2586 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2587   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2588   // Make sure the offset goes inside the instance layout.
2589   return k->contains_field_offset(tp->offset());
2590   // Note that OffsetBot and OffsetTop are very negative.
2591 }
2592 #endif
2593 
2594 // Eliminate trivially redundant StoreCMs and accumulate their
2595 // precedence edges.
2596 void Compile::eliminate_redundant_card_marks(Node* n) {
2597   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2598   if (n->in(MemNode::Address)->outcnt() > 1) {
2599     // There are multiple users of the same address so it might be
2600     // possible to eliminate some of the StoreCMs
2601     Node* mem = n->in(MemNode::Memory);
2602     Node* adr = n->in(MemNode::Address);
2603     Node* val = n->in(MemNode::ValueIn);
2604     Node* prev = n;
2605     bool done = false;
2606     // Walk the chain of StoreCMs eliminating ones that match.  As
2607     // long as it's a chain of single users then the optimization is
2608     // safe.  Eliminating partially redundant StoreCMs would require
2609     // cloning copies down the other paths.
2610     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2611       if (adr == mem->in(MemNode::Address) &&
2612           val == mem->in(MemNode::ValueIn)) {
2613         // redundant StoreCM
2614         if (mem->req() > MemNode::OopStore) {
2615           // Hasn't been processed by this code yet.
2616           n->add_prec(mem->in(MemNode::OopStore));
2617         } else {
2618           // Already converted to precedence edge
2619           for (uint i = mem->req(); i < mem->len(); i++) {
2620             // Accumulate any precedence edges
2621             if (mem->in(i) != NULL) {
2622               n->add_prec(mem->in(i));
2623             }
2624           }
2625           // Everything above this point has been processed.
2626           done = true;
2627         }
2628         // Eliminate the previous StoreCM
2629         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2630         assert(mem->outcnt() == 0, "should be dead");
2631         mem->disconnect_inputs(NULL, this);
2632       } else {
2633         prev = mem;
2634       }
2635       mem = prev->in(MemNode::Memory);
2636     }
2637   }
2638 }
2639 
2640 //------------------------------final_graph_reshaping_impl----------------------
2641 // Implement items 1-5 from final_graph_reshaping below.
2642 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2643 
2644   if ( n->outcnt() == 0 ) return; // dead node
2645   uint nop = n->Opcode();
2646 
2647   // Check for 2-input instruction with "last use" on right input.
2648   // Swap to left input.  Implements item (2).
2649   if( n->req() == 3 &&          // two-input instruction
2650       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2651       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2652       n->in(2)->outcnt() == 1 &&// right use IS a last use
2653       !n->in(2)->is_Con() ) {   // right use is not a constant
2654     // Check for commutative opcode
2655     switch( nop ) {
2656     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2657     case Op_MaxI:  case Op_MinI:
2658     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2659     case Op_AndL:  case Op_XorL:  case Op_OrL:
2660     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2661       // Move "last use" input to left by swapping inputs
2662       n->swap_edges(1, 2);
2663       break;
2664     }
2665     default:
2666       break;
2667     }
2668   }
2669 
2670 #ifdef ASSERT
2671   if( n->is_Mem() ) {
2672     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2673     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2674             // oop will be recorded in oop map if load crosses safepoint
2675             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2676                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2677             "raw memory operations should have control edge");
2678   }
2679 #endif
2680   // Count FPU ops and common calls, implements item (3)
2681   switch( nop ) {
2682   // Count all float operations that may use FPU
2683   case Op_AddF:
2684   case Op_SubF:
2685   case Op_MulF:
2686   case Op_DivF:
2687   case Op_NegF:
2688   case Op_ModF:
2689   case Op_ConvI2F:
2690   case Op_ConF:
2691   case Op_CmpF:
2692   case Op_CmpF3:
2693   // case Op_ConvL2F: // longs are split into 32-bit halves
2694     frc.inc_float_count();
2695     break;
2696 
2697   case Op_ConvF2D:
2698   case Op_ConvD2F:
2699     frc.inc_float_count();
2700     frc.inc_double_count();
2701     break;
2702 
2703   // Count all double operations that may use FPU
2704   case Op_AddD:
2705   case Op_SubD:
2706   case Op_MulD:
2707   case Op_DivD:
2708   case Op_NegD:
2709   case Op_ModD:
2710   case Op_ConvI2D:
2711   case Op_ConvD2I:
2712   // case Op_ConvL2D: // handled by leaf call
2713   // case Op_ConvD2L: // handled by leaf call
2714   case Op_ConD:
2715   case Op_CmpD:
2716   case Op_CmpD3:
2717     frc.inc_double_count();
2718     break;
2719   case Op_Opaque1:              // Remove Opaque Nodes before matching
2720   case Op_Opaque2:              // Remove Opaque Nodes before matching
2721   case Op_Opaque3:
2722     n->subsume_by(n->in(1), this);
2723     break;
2724   case Op_CallStaticJava:
2725   case Op_CallJava:
2726   case Op_CallDynamicJava:
2727     frc.inc_java_call_count(); // Count java call site;
2728   case Op_CallRuntime:
2729   case Op_CallLeaf:
2730   case Op_CallLeafNoFP: {
2731     assert( n->is_Call(), "" );
2732     CallNode *call = n->as_Call();
2733     // Count call sites where the FP mode bit would have to be flipped.
2734     // Do not count uncommon runtime calls:
2735     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2736     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2737     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2738       frc.inc_call_count();   // Count the call site
2739     } else {                  // See if uncommon argument is shared
2740       Node *n = call->in(TypeFunc::Parms);
2741       int nop = n->Opcode();
2742       // Clone shared simple arguments to uncommon calls, item (1).
2743       if( n->outcnt() > 1 &&
2744           !n->is_Proj() &&
2745           nop != Op_CreateEx &&
2746           nop != Op_CheckCastPP &&
2747           nop != Op_DecodeN &&
2748           nop != Op_DecodeNKlass &&
2749           !n->is_Mem() ) {
2750         Node *x = n->clone();
2751         call->set_req( TypeFunc::Parms, x );
2752       }
2753     }
2754     break;
2755   }
2756 
2757   case Op_StoreD:
2758   case Op_LoadD:
2759   case Op_LoadD_unaligned:
2760     frc.inc_double_count();
2761     goto handle_mem;
2762   case Op_StoreF:
2763   case Op_LoadF:
2764     frc.inc_float_count();
2765     goto handle_mem;
2766 
2767   case Op_StoreCM:
2768     {
2769       // Convert OopStore dependence into precedence edge
2770       Node* prec = n->in(MemNode::OopStore);
2771       n->del_req(MemNode::OopStore);
2772       n->add_prec(prec);
2773       eliminate_redundant_card_marks(n);
2774     }
2775 
2776     // fall through
2777 
2778   case Op_StoreB:
2779   case Op_StoreC:
2780   case Op_StorePConditional:
2781   case Op_StoreI:
2782   case Op_StoreL:
2783   case Op_StoreIConditional:
2784   case Op_StoreLConditional:
2785   case Op_CompareAndSwapI:
2786   case Op_CompareAndSwapL:
2787   case Op_CompareAndSwapP:
2788   case Op_CompareAndSwapN:
2789   case Op_GetAndAddI:
2790   case Op_GetAndAddL:
2791   case Op_GetAndSetI:
2792   case Op_GetAndSetL:
2793   case Op_GetAndSetP:
2794   case Op_GetAndSetN:
2795   case Op_StoreP:
2796   case Op_StoreN:
2797   case Op_StoreNKlass:
2798   case Op_LoadB:
2799   case Op_LoadUB:
2800   case Op_LoadUS:
2801   case Op_LoadI:
2802   case Op_LoadKlass:
2803   case Op_LoadNKlass:
2804   case Op_LoadL:
2805   case Op_LoadL_unaligned:
2806   case Op_LoadPLocked:
2807   case Op_LoadP:
2808   case Op_LoadN:
2809   case Op_LoadRange:
2810   case Op_LoadS: {
2811   handle_mem:
2812 #ifdef ASSERT
2813     if( VerifyOptoOopOffsets ) {
2814       assert( n->is_Mem(), "" );
2815       MemNode *mem  = (MemNode*)n;
2816       // Check to see if address types have grounded out somehow.
2817       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2818       assert( !tp || oop_offset_is_sane(tp), "" );
2819     }
2820 #endif
2821     break;
2822   }
2823 
2824   case Op_AddP: {               // Assert sane base pointers
2825     Node *addp = n->in(AddPNode::Address);
2826     assert( !addp->is_AddP() ||
2827             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2828             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2829             "Base pointers must match" );
2830 #ifdef _LP64
2831     if ((UseCompressedOops || UseCompressedClassPointers) &&
2832         addp->Opcode() == Op_ConP &&
2833         addp == n->in(AddPNode::Base) &&
2834         n->in(AddPNode::Offset)->is_Con()) {
2835       // Use addressing with narrow klass to load with offset on x86.
2836       // On sparc loading 32-bits constant and decoding it have less
2837       // instructions (4) then load 64-bits constant (7).
2838       // Do this transformation here since IGVN will convert ConN back to ConP.
2839       const Type* t = addp->bottom_type();
2840       if (t->isa_oopptr() || t->isa_klassptr()) {
2841         Node* nn = NULL;
2842 
2843         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2844 
2845         // Look for existing ConN node of the same exact type.
2846         Node* r  = root();
2847         uint cnt = r->outcnt();
2848         for (uint i = 0; i < cnt; i++) {
2849           Node* m = r->raw_out(i);
2850           if (m!= NULL && m->Opcode() == op &&
2851               m->bottom_type()->make_ptr() == t) {
2852             nn = m;
2853             break;
2854           }
2855         }
2856         if (nn != NULL) {
2857           // Decode a narrow oop to match address
2858           // [R12 + narrow_oop_reg<<3 + offset]
2859           if (t->isa_oopptr()) {
2860             nn = new DecodeNNode(nn, t);
2861           } else {
2862             nn = new DecodeNKlassNode(nn, t);
2863           }
2864           n->set_req(AddPNode::Base, nn);
2865           n->set_req(AddPNode::Address, nn);
2866           if (addp->outcnt() == 0) {
2867             addp->disconnect_inputs(NULL, this);
2868           }
2869         }
2870       }
2871     }
2872 #endif
2873     break;
2874   }
2875 
2876   case Op_CastPP: {
2877     // Remove CastPP nodes to gain more freedom during scheduling but
2878     // keep the dependency they encode as control or precedence edges
2879     // (if control is set already) on memory operations. Some CastPP
2880     // nodes don't have a control (don't carry a dependency): skip
2881     // those.
2882     if (n->in(0) != NULL) {
2883       ResourceMark rm;
2884       Unique_Node_List wq;
2885       wq.push(n);
2886       for (uint next = 0; next < wq.size(); ++next) {
2887         Node *m = wq.at(next);
2888         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2889           Node* use = m->fast_out(i);
2890           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2891             use->ensure_control_or_add_prec(n->in(0));
2892           } else {
2893             switch(use->Opcode()) {
2894             case Op_AddP:
2895             case Op_DecodeN:
2896             case Op_DecodeNKlass:
2897             case Op_CheckCastPP:
2898             case Op_CastPP:
2899               wq.push(use);
2900               break;
2901             }
2902           }
2903         }
2904       }
2905     }
2906     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2907     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2908       Node* in1 = n->in(1);
2909       const Type* t = n->bottom_type();
2910       Node* new_in1 = in1->clone();
2911       new_in1->as_DecodeN()->set_type(t);
2912 
2913       if (!Matcher::narrow_oop_use_complex_address()) {
2914         //
2915         // x86, ARM and friends can handle 2 adds in addressing mode
2916         // and Matcher can fold a DecodeN node into address by using
2917         // a narrow oop directly and do implicit NULL check in address:
2918         //
2919         // [R12 + narrow_oop_reg<<3 + offset]
2920         // NullCheck narrow_oop_reg
2921         //
2922         // On other platforms (Sparc) we have to keep new DecodeN node and
2923         // use it to do implicit NULL check in address:
2924         //
2925         // decode_not_null narrow_oop_reg, base_reg
2926         // [base_reg + offset]
2927         // NullCheck base_reg
2928         //
2929         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2930         // to keep the information to which NULL check the new DecodeN node
2931         // corresponds to use it as value in implicit_null_check().
2932         //
2933         new_in1->set_req(0, n->in(0));
2934       }
2935 
2936       n->subsume_by(new_in1, this);
2937       if (in1->outcnt() == 0) {
2938         in1->disconnect_inputs(NULL, this);
2939       }
2940     } else {
2941       n->subsume_by(n->in(1), this);
2942       if (n->outcnt() == 0) {
2943         n->disconnect_inputs(NULL, this);
2944       }
2945     }
2946     break;
2947   }
2948 #ifdef _LP64
2949   case Op_CmpP:
2950     // Do this transformation here to preserve CmpPNode::sub() and
2951     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2952     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2953       Node* in1 = n->in(1);
2954       Node* in2 = n->in(2);
2955       if (!in1->is_DecodeNarrowPtr()) {
2956         in2 = in1;
2957         in1 = n->in(2);
2958       }
2959       assert(in1->is_DecodeNarrowPtr(), "sanity");
2960 
2961       Node* new_in2 = NULL;
2962       if (in2->is_DecodeNarrowPtr()) {
2963         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2964         new_in2 = in2->in(1);
2965       } else if (in2->Opcode() == Op_ConP) {
2966         const Type* t = in2->bottom_type();
2967         if (t == TypePtr::NULL_PTR) {
2968           assert(in1->is_DecodeN(), "compare klass to null?");
2969           // Don't convert CmpP null check into CmpN if compressed
2970           // oops implicit null check is not generated.
2971           // This will allow to generate normal oop implicit null check.
2972           if (Matcher::gen_narrow_oop_implicit_null_checks())
2973             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2974           //
2975           // This transformation together with CastPP transformation above
2976           // will generated code for implicit NULL checks for compressed oops.
2977           //
2978           // The original code after Optimize()
2979           //
2980           //    LoadN memory, narrow_oop_reg
2981           //    decode narrow_oop_reg, base_reg
2982           //    CmpP base_reg, NULL
2983           //    CastPP base_reg // NotNull
2984           //    Load [base_reg + offset], val_reg
2985           //
2986           // after these transformations will be
2987           //
2988           //    LoadN memory, narrow_oop_reg
2989           //    CmpN narrow_oop_reg, NULL
2990           //    decode_not_null narrow_oop_reg, base_reg
2991           //    Load [base_reg + offset], val_reg
2992           //
2993           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2994           // since narrow oops can be used in debug info now (see the code in
2995           // final_graph_reshaping_walk()).
2996           //
2997           // At the end the code will be matched to
2998           // on x86:
2999           //
3000           //    Load_narrow_oop memory, narrow_oop_reg
3001           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3002           //    NullCheck narrow_oop_reg
3003           //
3004           // and on sparc:
3005           //
3006           //    Load_narrow_oop memory, narrow_oop_reg
3007           //    decode_not_null narrow_oop_reg, base_reg
3008           //    Load [base_reg + offset], val_reg
3009           //    NullCheck base_reg
3010           //
3011         } else if (t->isa_oopptr()) {
3012           new_in2 = ConNode::make(t->make_narrowoop());
3013         } else if (t->isa_klassptr()) {
3014           new_in2 = ConNode::make(t->make_narrowklass());
3015         }
3016       }
3017       if (new_in2 != NULL) {
3018         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3019         n->subsume_by(cmpN, this);
3020         if (in1->outcnt() == 0) {
3021           in1->disconnect_inputs(NULL, this);
3022         }
3023         if (in2->outcnt() == 0) {
3024           in2->disconnect_inputs(NULL, this);
3025         }
3026       }
3027     }
3028     break;
3029 
3030   case Op_DecodeN:
3031   case Op_DecodeNKlass:
3032     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3033     // DecodeN could be pinned when it can't be fold into
3034     // an address expression, see the code for Op_CastPP above.
3035     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3036     break;
3037 
3038   case Op_EncodeP:
3039   case Op_EncodePKlass: {
3040     Node* in1 = n->in(1);
3041     if (in1->is_DecodeNarrowPtr()) {
3042       n->subsume_by(in1->in(1), this);
3043     } else if (in1->Opcode() == Op_ConP) {
3044       const Type* t = in1->bottom_type();
3045       if (t == TypePtr::NULL_PTR) {
3046         assert(t->isa_oopptr(), "null klass?");
3047         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3048       } else if (t->isa_oopptr()) {
3049         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3050       } else if (t->isa_klassptr()) {
3051         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3052       }
3053     }
3054     if (in1->outcnt() == 0) {
3055       in1->disconnect_inputs(NULL, this);
3056     }
3057     break;
3058   }
3059 
3060   case Op_Proj: {
3061     if (OptimizeStringConcat) {
3062       ProjNode* p = n->as_Proj();
3063       if (p->_is_io_use) {
3064         // Separate projections were used for the exception path which
3065         // are normally removed by a late inline.  If it wasn't inlined
3066         // then they will hang around and should just be replaced with
3067         // the original one.
3068         Node* proj = NULL;
3069         // Replace with just one
3070         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3071           Node *use = i.get();
3072           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3073             proj = use;
3074             break;
3075           }
3076         }
3077         assert(proj != NULL, "must be found");
3078         p->subsume_by(proj, this);
3079       }
3080     }
3081     break;
3082   }
3083 
3084   case Op_Phi:
3085     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3086       // The EncodeP optimization may create Phi with the same edges
3087       // for all paths. It is not handled well by Register Allocator.
3088       Node* unique_in = n->in(1);
3089       assert(unique_in != NULL, "");
3090       uint cnt = n->req();
3091       for (uint i = 2; i < cnt; i++) {
3092         Node* m = n->in(i);
3093         assert(m != NULL, "");
3094         if (unique_in != m)
3095           unique_in = NULL;
3096       }
3097       if (unique_in != NULL) {
3098         n->subsume_by(unique_in, this);
3099       }
3100     }
3101     break;
3102 
3103 #endif
3104 
3105 #ifdef ASSERT
3106   case Op_CastII:
3107     // Verify that all range check dependent CastII nodes were removed.
3108     if (n->isa_CastII()->has_range_check()) {
3109       n->dump(3);
3110       assert(false, "Range check dependent CastII node was not removed");
3111     }
3112     break;
3113 #endif
3114 
3115   case Op_ModI:
3116     if (UseDivMod) {
3117       // Check if a%b and a/b both exist
3118       Node* d = n->find_similar(Op_DivI);
3119       if (d) {
3120         // Replace them with a fused divmod if supported
3121         if (Matcher::has_match_rule(Op_DivModI)) {
3122           DivModINode* divmod = DivModINode::make(n);
3123           d->subsume_by(divmod->div_proj(), this);
3124           n->subsume_by(divmod->mod_proj(), this);
3125         } else {
3126           // replace a%b with a-((a/b)*b)
3127           Node* mult = new MulINode(d, d->in(2));
3128           Node* sub  = new SubINode(d->in(1), mult);
3129           n->subsume_by(sub, this);
3130         }
3131       }
3132     }
3133     break;
3134 
3135   case Op_ModL:
3136     if (UseDivMod) {
3137       // Check if a%b and a/b both exist
3138       Node* d = n->find_similar(Op_DivL);
3139       if (d) {
3140         // Replace them with a fused divmod if supported
3141         if (Matcher::has_match_rule(Op_DivModL)) {
3142           DivModLNode* divmod = DivModLNode::make(n);
3143           d->subsume_by(divmod->div_proj(), this);
3144           n->subsume_by(divmod->mod_proj(), this);
3145         } else {
3146           // replace a%b with a-((a/b)*b)
3147           Node* mult = new MulLNode(d, d->in(2));
3148           Node* sub  = new SubLNode(d->in(1), mult);
3149           n->subsume_by(sub, this);
3150         }
3151       }
3152     }
3153     break;
3154 
3155   case Op_LoadVector:
3156   case Op_StoreVector:
3157     break;
3158 
3159   case Op_AddReductionVI:
3160   case Op_AddReductionVL:
3161   case Op_AddReductionVF:
3162   case Op_AddReductionVD:
3163   case Op_MulReductionVI:
3164   case Op_MulReductionVL:
3165   case Op_MulReductionVF:
3166   case Op_MulReductionVD:
3167     break;
3168 
3169   case Op_PackB:
3170   case Op_PackS:
3171   case Op_PackI:
3172   case Op_PackF:
3173   case Op_PackL:
3174   case Op_PackD:
3175     if (n->req()-1 > 2) {
3176       // Replace many operand PackNodes with a binary tree for matching
3177       PackNode* p = (PackNode*) n;
3178       Node* btp = p->binary_tree_pack(1, n->req());
3179       n->subsume_by(btp, this);
3180     }
3181     break;
3182   case Op_Loop:
3183   case Op_CountedLoop:
3184     if (n->as_Loop()->is_inner_loop()) {
3185       frc.inc_inner_loop_count();
3186     }
3187     break;
3188   case Op_LShiftI:
3189   case Op_RShiftI:
3190   case Op_URShiftI:
3191   case Op_LShiftL:
3192   case Op_RShiftL:
3193   case Op_URShiftL:
3194     if (Matcher::need_masked_shift_count) {
3195       // The cpu's shift instructions don't restrict the count to the
3196       // lower 5/6 bits. We need to do the masking ourselves.
3197       Node* in2 = n->in(2);
3198       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3199       const TypeInt* t = in2->find_int_type();
3200       if (t != NULL && t->is_con()) {
3201         juint shift = t->get_con();
3202         if (shift > mask) { // Unsigned cmp
3203           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3204         }
3205       } else {
3206         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3207           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3208           n->set_req(2, shift);
3209         }
3210       }
3211       if (in2->outcnt() == 0) { // Remove dead node
3212         in2->disconnect_inputs(NULL, this);
3213       }
3214     }
3215     break;
3216   case Op_MemBarStoreStore:
3217   case Op_MemBarRelease:
3218     // Break the link with AllocateNode: it is no longer useful and
3219     // confuses register allocation.
3220     if (n->req() > MemBarNode::Precedent) {
3221       n->set_req(MemBarNode::Precedent, top());
3222     }
3223     break;
3224   case Op_RangeCheck: {
3225     RangeCheckNode* rc = n->as_RangeCheck();
3226     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3227     n->subsume_by(iff, this);
3228     frc._tests.push(iff);
3229     break;
3230   }
3231   default:
3232     assert( !n->is_Call(), "" );
3233     assert( !n->is_Mem(), "" );
3234     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3235     break;
3236   }
3237 
3238   // Collect CFG split points
3239   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3240     frc._tests.push(n);
3241   }
3242 }
3243 
3244 //------------------------------final_graph_reshaping_walk---------------------
3245 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3246 // requires that the walk visits a node's inputs before visiting the node.
3247 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3248   ResourceArea *area = Thread::current()->resource_area();
3249   Unique_Node_List sfpt(area);
3250 
3251   frc._visited.set(root->_idx); // first, mark node as visited
3252   uint cnt = root->req();
3253   Node *n = root;
3254   uint  i = 0;
3255   while (true) {
3256     if (i < cnt) {
3257       // Place all non-visited non-null inputs onto stack
3258       Node* m = n->in(i);
3259       ++i;
3260       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3261         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3262           // compute worst case interpreter size in case of a deoptimization
3263           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3264 
3265           sfpt.push(m);
3266         }
3267         cnt = m->req();
3268         nstack.push(n, i); // put on stack parent and next input's index
3269         n = m;
3270         i = 0;
3271       }
3272     } else {
3273       // Now do post-visit work
3274       final_graph_reshaping_impl( n, frc );
3275       if (nstack.is_empty())
3276         break;             // finished
3277       n = nstack.node();   // Get node from stack
3278       cnt = n->req();
3279       i = nstack.index();
3280       nstack.pop();        // Shift to the next node on stack
3281     }
3282   }
3283 
3284   // Skip next transformation if compressed oops are not used.
3285   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3286       (!UseCompressedOops && !UseCompressedClassPointers))
3287     return;
3288 
3289   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3290   // It could be done for an uncommon traps or any safepoints/calls
3291   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3292   while (sfpt.size() > 0) {
3293     n = sfpt.pop();
3294     JVMState *jvms = n->as_SafePoint()->jvms();
3295     assert(jvms != NULL, "sanity");
3296     int start = jvms->debug_start();
3297     int end   = n->req();
3298     bool is_uncommon = (n->is_CallStaticJava() &&
3299                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3300     for (int j = start; j < end; j++) {
3301       Node* in = n->in(j);
3302       if (in->is_DecodeNarrowPtr()) {
3303         bool safe_to_skip = true;
3304         if (!is_uncommon ) {
3305           // Is it safe to skip?
3306           for (uint i = 0; i < in->outcnt(); i++) {
3307             Node* u = in->raw_out(i);
3308             if (!u->is_SafePoint() ||
3309                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3310               safe_to_skip = false;
3311             }
3312           }
3313         }
3314         if (safe_to_skip) {
3315           n->set_req(j, in->in(1));
3316         }
3317         if (in->outcnt() == 0) {
3318           in->disconnect_inputs(NULL, this);
3319         }
3320       }
3321     }
3322   }
3323 }
3324 
3325 //------------------------------final_graph_reshaping--------------------------
3326 // Final Graph Reshaping.
3327 //
3328 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3329 //     and not commoned up and forced early.  Must come after regular
3330 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3331 //     inputs to Loop Phis; these will be split by the allocator anyways.
3332 //     Remove Opaque nodes.
3333 // (2) Move last-uses by commutative operations to the left input to encourage
3334 //     Intel update-in-place two-address operations and better register usage
3335 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3336 //     calls canonicalizing them back.
3337 // (3) Count the number of double-precision FP ops, single-precision FP ops
3338 //     and call sites.  On Intel, we can get correct rounding either by
3339 //     forcing singles to memory (requires extra stores and loads after each
3340 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3341 //     clearing the mode bit around call sites).  The mode bit is only used
3342 //     if the relative frequency of single FP ops to calls is low enough.
3343 //     This is a key transform for SPEC mpeg_audio.
3344 // (4) Detect infinite loops; blobs of code reachable from above but not
3345 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3346 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3347 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3348 //     Detection is by looking for IfNodes where only 1 projection is
3349 //     reachable from below or CatchNodes missing some targets.
3350 // (5) Assert for insane oop offsets in debug mode.
3351 
3352 bool Compile::final_graph_reshaping() {
3353   // an infinite loop may have been eliminated by the optimizer,
3354   // in which case the graph will be empty.
3355   if (root()->req() == 1) {
3356     record_method_not_compilable("trivial infinite loop");
3357     return true;
3358   }
3359 
3360   // Expensive nodes have their control input set to prevent the GVN
3361   // from freely commoning them. There's no GVN beyond this point so
3362   // no need to keep the control input. We want the expensive nodes to
3363   // be freely moved to the least frequent code path by gcm.
3364   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3365   for (int i = 0; i < expensive_count(); i++) {
3366     _expensive_nodes->at(i)->set_req(0, NULL);
3367   }
3368 
3369   Final_Reshape_Counts frc;
3370 
3371   // Visit everybody reachable!
3372   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3373   Node_Stack nstack(live_nodes() >> 1);
3374   final_graph_reshaping_walk(nstack, root(), frc);
3375 
3376   // Check for unreachable (from below) code (i.e., infinite loops).
3377   for( uint i = 0; i < frc._tests.size(); i++ ) {
3378     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3379     // Get number of CFG targets.
3380     // Note that PCTables include exception targets after calls.
3381     uint required_outcnt = n->required_outcnt();
3382     if (n->outcnt() != required_outcnt) {
3383       // Check for a few special cases.  Rethrow Nodes never take the
3384       // 'fall-thru' path, so expected kids is 1 less.
3385       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3386         if (n->in(0)->in(0)->is_Call()) {
3387           CallNode *call = n->in(0)->in(0)->as_Call();
3388           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3389             required_outcnt--;      // Rethrow always has 1 less kid
3390           } else if (call->req() > TypeFunc::Parms &&
3391                      call->is_CallDynamicJava()) {
3392             // Check for null receiver. In such case, the optimizer has
3393             // detected that the virtual call will always result in a null
3394             // pointer exception. The fall-through projection of this CatchNode
3395             // will not be populated.
3396             Node *arg0 = call->in(TypeFunc::Parms);
3397             if (arg0->is_Type() &&
3398                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3399               required_outcnt--;
3400             }
3401           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3402                      call->req() > TypeFunc::Parms+1 &&
3403                      call->is_CallStaticJava()) {
3404             // Check for negative array length. In such case, the optimizer has
3405             // detected that the allocation attempt will always result in an
3406             // exception. There is no fall-through projection of this CatchNode .
3407             Node *arg1 = call->in(TypeFunc::Parms+1);
3408             if (arg1->is_Type() &&
3409                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3410               required_outcnt--;
3411             }
3412           }
3413         }
3414       }
3415       // Recheck with a better notion of 'required_outcnt'
3416       if (n->outcnt() != required_outcnt) {
3417         record_method_not_compilable("malformed control flow");
3418         return true;            // Not all targets reachable!
3419       }
3420     }
3421     // Check that I actually visited all kids.  Unreached kids
3422     // must be infinite loops.
3423     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3424       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3425         record_method_not_compilable("infinite loop");
3426         return true;            // Found unvisited kid; must be unreach
3427       }
3428   }
3429 
3430   // If original bytecodes contained a mixture of floats and doubles
3431   // check if the optimizer has made it homogenous, item (3).
3432   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3433       frc.get_float_count() > 32 &&
3434       frc.get_double_count() == 0 &&
3435       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3436     set_24_bit_selection_and_mode( false,  true );
3437   }
3438 
3439   set_java_calls(frc.get_java_call_count());
3440   set_inner_loops(frc.get_inner_loop_count());
3441 
3442   // No infinite loops, no reason to bail out.
3443   return false;
3444 }
3445 
3446 //-----------------------------too_many_traps----------------------------------
3447 // Report if there are too many traps at the current method and bci.
3448 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3449 bool Compile::too_many_traps(ciMethod* method,
3450                              int bci,
3451                              Deoptimization::DeoptReason reason) {
3452   ciMethodData* md = method->method_data();
3453   if (md->is_empty()) {
3454     // Assume the trap has not occurred, or that it occurred only
3455     // because of a transient condition during start-up in the interpreter.
3456     return false;
3457   }
3458   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3459   if (md->has_trap_at(bci, m, reason) != 0) {
3460     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3461     // Also, if there are multiple reasons, or if there is no per-BCI record,
3462     // assume the worst.
3463     if (log())
3464       log()->elem("observe trap='%s' count='%d'",
3465                   Deoptimization::trap_reason_name(reason),
3466                   md->trap_count(reason));
3467     return true;
3468   } else {
3469     // Ignore method/bci and see if there have been too many globally.
3470     return too_many_traps(reason, md);
3471   }
3472 }
3473 
3474 // Less-accurate variant which does not require a method and bci.
3475 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3476                              ciMethodData* logmd) {
3477   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3478     // Too many traps globally.
3479     // Note that we use cumulative trap_count, not just md->trap_count.
3480     if (log()) {
3481       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3482       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3483                   Deoptimization::trap_reason_name(reason),
3484                   mcount, trap_count(reason));
3485     }
3486     return true;
3487   } else {
3488     // The coast is clear.
3489     return false;
3490   }
3491 }
3492 
3493 //--------------------------too_many_recompiles--------------------------------
3494 // Report if there are too many recompiles at the current method and bci.
3495 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3496 // Is not eager to return true, since this will cause the compiler to use
3497 // Action_none for a trap point, to avoid too many recompilations.
3498 bool Compile::too_many_recompiles(ciMethod* method,
3499                                   int bci,
3500                                   Deoptimization::DeoptReason reason) {
3501   ciMethodData* md = method->method_data();
3502   if (md->is_empty()) {
3503     // Assume the trap has not occurred, or that it occurred only
3504     // because of a transient condition during start-up in the interpreter.
3505     return false;
3506   }
3507   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3508   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3509   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3510   Deoptimization::DeoptReason per_bc_reason
3511     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3512   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3513   if ((per_bc_reason == Deoptimization::Reason_none
3514        || md->has_trap_at(bci, m, reason) != 0)
3515       // The trap frequency measure we care about is the recompile count:
3516       && md->trap_recompiled_at(bci, m)
3517       && md->overflow_recompile_count() >= bc_cutoff) {
3518     // Do not emit a trap here if it has already caused recompilations.
3519     // Also, if there are multiple reasons, or if there is no per-BCI record,
3520     // assume the worst.
3521     if (log())
3522       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3523                   Deoptimization::trap_reason_name(reason),
3524                   md->trap_count(reason),
3525                   md->overflow_recompile_count());
3526     return true;
3527   } else if (trap_count(reason) != 0
3528              && decompile_count() >= m_cutoff) {
3529     // Too many recompiles globally, and we have seen this sort of trap.
3530     // Use cumulative decompile_count, not just md->decompile_count.
3531     if (log())
3532       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3533                   Deoptimization::trap_reason_name(reason),
3534                   md->trap_count(reason), trap_count(reason),
3535                   md->decompile_count(), decompile_count());
3536     return true;
3537   } else {
3538     // The coast is clear.
3539     return false;
3540   }
3541 }
3542 
3543 // Compute when not to trap. Used by matching trap based nodes and
3544 // NullCheck optimization.
3545 void Compile::set_allowed_deopt_reasons() {
3546   _allowed_reasons = 0;
3547   if (is_method_compilation()) {
3548     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3549       assert(rs < BitsPerInt, "recode bit map");
3550       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3551         _allowed_reasons |= nth_bit(rs);
3552       }
3553     }
3554   }
3555 }
3556 
3557 #ifndef PRODUCT
3558 //------------------------------verify_graph_edges---------------------------
3559 // Walk the Graph and verify that there is a one-to-one correspondence
3560 // between Use-Def edges and Def-Use edges in the graph.
3561 void Compile::verify_graph_edges(bool no_dead_code) {
3562   if (VerifyGraphEdges) {
3563     ResourceArea *area = Thread::current()->resource_area();
3564     Unique_Node_List visited(area);
3565     // Call recursive graph walk to check edges
3566     _root->verify_edges(visited);
3567     if (no_dead_code) {
3568       // Now make sure that no visited node is used by an unvisited node.
3569       bool dead_nodes = false;
3570       Unique_Node_List checked(area);
3571       while (visited.size() > 0) {
3572         Node* n = visited.pop();
3573         checked.push(n);
3574         for (uint i = 0; i < n->outcnt(); i++) {
3575           Node* use = n->raw_out(i);
3576           if (checked.member(use))  continue;  // already checked
3577           if (visited.member(use))  continue;  // already in the graph
3578           if (use->is_Con())        continue;  // a dead ConNode is OK
3579           // At this point, we have found a dead node which is DU-reachable.
3580           if (!dead_nodes) {
3581             tty->print_cr("*** Dead nodes reachable via DU edges:");
3582             dead_nodes = true;
3583           }
3584           use->dump(2);
3585           tty->print_cr("---");
3586           checked.push(use);  // No repeats; pretend it is now checked.
3587         }
3588       }
3589       assert(!dead_nodes, "using nodes must be reachable from root");
3590     }
3591   }
3592 }
3593 
3594 // Verify GC barriers consistency
3595 // Currently supported:
3596 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3597 void Compile::verify_barriers() {
3598   if (UseG1GC) {
3599     // Verify G1 pre-barriers
3600     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3601 
3602     ResourceArea *area = Thread::current()->resource_area();
3603     Unique_Node_List visited(area);
3604     Node_List worklist(area);
3605     // We're going to walk control flow backwards starting from the Root
3606     worklist.push(_root);
3607     while (worklist.size() > 0) {
3608       Node* x = worklist.pop();
3609       if (x == NULL || x == top()) continue;
3610       if (visited.member(x)) {
3611         continue;
3612       } else {
3613         visited.push(x);
3614       }
3615 
3616       if (x->is_Region()) {
3617         for (uint i = 1; i < x->req(); i++) {
3618           worklist.push(x->in(i));
3619         }
3620       } else {
3621         worklist.push(x->in(0));
3622         // We are looking for the pattern:
3623         //                            /->ThreadLocal
3624         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3625         //              \->ConI(0)
3626         // We want to verify that the If and the LoadB have the same control
3627         // See GraphKit::g1_write_barrier_pre()
3628         if (x->is_If()) {
3629           IfNode *iff = x->as_If();
3630           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3631             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3632             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3633                 && cmp->in(1)->is_Load()) {
3634               LoadNode* load = cmp->in(1)->as_Load();
3635               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3636                   && load->in(2)->in(3)->is_Con()
3637                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3638 
3639                 Node* if_ctrl = iff->in(0);
3640                 Node* load_ctrl = load->in(0);
3641 
3642                 if (if_ctrl != load_ctrl) {
3643                   // Skip possible CProj->NeverBranch in infinite loops
3644                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3645                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3646                     if_ctrl = if_ctrl->in(0)->in(0);
3647                   }
3648                 }
3649                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3650               }
3651             }
3652           }
3653         }
3654       }
3655     }
3656   }
3657 }
3658 
3659 #endif
3660 
3661 // The Compile object keeps track of failure reasons separately from the ciEnv.
3662 // This is required because there is not quite a 1-1 relation between the
3663 // ciEnv and its compilation task and the Compile object.  Note that one
3664 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3665 // to backtrack and retry without subsuming loads.  Other than this backtracking
3666 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3667 // by the logic in C2Compiler.
3668 void Compile::record_failure(const char* reason) {
3669   if (log() != NULL) {
3670     log()->elem("failure reason='%s' phase='compile'", reason);
3671   }
3672   if (_failure_reason == NULL) {
3673     // Record the first failure reason.
3674     _failure_reason = reason;
3675   }
3676 
3677   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3678     C->print_method(PHASE_FAILURE);
3679   }
3680   _root = NULL;  // flush the graph, too
3681 }
3682 
3683 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3684   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3685     _phase_name(name), _dolog(CITimeVerbose)
3686 {
3687   if (_dolog) {
3688     C = Compile::current();
3689     _log = C->log();
3690   } else {
3691     C = NULL;
3692     _log = NULL;
3693   }
3694   if (_log != NULL) {
3695     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3696     _log->stamp();
3697     _log->end_head();
3698   }
3699 }
3700 
3701 Compile::TracePhase::~TracePhase() {
3702 
3703   C = Compile::current();
3704   if (_dolog) {
3705     _log = C->log();
3706   } else {
3707     _log = NULL;
3708   }
3709 
3710 #ifdef ASSERT
3711   if (PrintIdealNodeCount) {
3712     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3713                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3714   }
3715 
3716   if (VerifyIdealNodeCount) {
3717     Compile::current()->print_missing_nodes();
3718   }
3719 #endif
3720 
3721   if (_log != NULL) {
3722     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3723   }
3724 }
3725 
3726 //=============================================================================
3727 // Two Constant's are equal when the type and the value are equal.
3728 bool Compile::Constant::operator==(const Constant& other) {
3729   if (type()          != other.type()         )  return false;
3730   if (can_be_reused() != other.can_be_reused())  return false;
3731   // For floating point values we compare the bit pattern.
3732   switch (type()) {
3733   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3734   case T_LONG:
3735   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3736   case T_OBJECT:
3737   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3738   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3739   case T_METADATA: return (_v._metadata == other._v._metadata);
3740   default: ShouldNotReachHere();
3741   }
3742   return false;
3743 }
3744 
3745 static int type_to_size_in_bytes(BasicType t) {
3746   switch (t) {
3747   case T_LONG:    return sizeof(jlong  );
3748   case T_FLOAT:   return sizeof(jfloat );
3749   case T_DOUBLE:  return sizeof(jdouble);
3750   case T_METADATA: return sizeof(Metadata*);
3751     // We use T_VOID as marker for jump-table entries (labels) which
3752     // need an internal word relocation.
3753   case T_VOID:
3754   case T_ADDRESS:
3755   case T_OBJECT:  return sizeof(jobject);
3756   }
3757 
3758   ShouldNotReachHere();
3759   return -1;
3760 }
3761 
3762 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3763   // sort descending
3764   if (a->freq() > b->freq())  return -1;
3765   if (a->freq() < b->freq())  return  1;
3766   return 0;
3767 }
3768 
3769 void Compile::ConstantTable::calculate_offsets_and_size() {
3770   // First, sort the array by frequencies.
3771   _constants.sort(qsort_comparator);
3772 
3773 #ifdef ASSERT
3774   // Make sure all jump-table entries were sorted to the end of the
3775   // array (they have a negative frequency).
3776   bool found_void = false;
3777   for (int i = 0; i < _constants.length(); i++) {
3778     Constant con = _constants.at(i);
3779     if (con.type() == T_VOID)
3780       found_void = true;  // jump-tables
3781     else
3782       assert(!found_void, "wrong sorting");
3783   }
3784 #endif
3785 
3786   int offset = 0;
3787   for (int i = 0; i < _constants.length(); i++) {
3788     Constant* con = _constants.adr_at(i);
3789 
3790     // Align offset for type.
3791     int typesize = type_to_size_in_bytes(con->type());
3792     offset = align_size_up(offset, typesize);
3793     con->set_offset(offset);   // set constant's offset
3794 
3795     if (con->type() == T_VOID) {
3796       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3797       offset = offset + typesize * n->outcnt();  // expand jump-table
3798     } else {
3799       offset = offset + typesize;
3800     }
3801   }
3802 
3803   // Align size up to the next section start (which is insts; see
3804   // CodeBuffer::align_at_start).
3805   assert(_size == -1, "already set?");
3806   _size = align_size_up(offset, CodeEntryAlignment);
3807 }
3808 
3809 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3810   MacroAssembler _masm(&cb);
3811   for (int i = 0; i < _constants.length(); i++) {
3812     Constant con = _constants.at(i);
3813     address constant_addr = NULL;
3814     switch (con.type()) {
3815     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3816     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3817     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3818     case T_OBJECT: {
3819       jobject obj = con.get_jobject();
3820       int oop_index = _masm.oop_recorder()->find_index(obj);
3821       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3822       break;
3823     }
3824     case T_ADDRESS: {
3825       address addr = (address) con.get_jobject();
3826       constant_addr = _masm.address_constant(addr);
3827       break;
3828     }
3829     // We use T_VOID as marker for jump-table entries (labels) which
3830     // need an internal word relocation.
3831     case T_VOID: {
3832       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3833       // Fill the jump-table with a dummy word.  The real value is
3834       // filled in later in fill_jump_table.
3835       address dummy = (address) n;
3836       constant_addr = _masm.address_constant(dummy);
3837       // Expand jump-table
3838       for (uint i = 1; i < n->outcnt(); i++) {
3839         address temp_addr = _masm.address_constant(dummy + i);
3840         assert(temp_addr, "consts section too small");
3841       }
3842       break;
3843     }
3844     case T_METADATA: {
3845       Metadata* obj = con.get_metadata();
3846       int metadata_index = _masm.oop_recorder()->find_index(obj);
3847       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3848       break;
3849     }
3850     default: ShouldNotReachHere();
3851     }
3852     assert(constant_addr, "consts section too small");
3853     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3854             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
3855   }
3856 }
3857 
3858 int Compile::ConstantTable::find_offset(Constant& con) const {
3859   int idx = _constants.find(con);
3860   assert(idx != -1, "constant must be in constant table");
3861   int offset = _constants.at(idx).offset();
3862   assert(offset != -1, "constant table not emitted yet?");
3863   return offset;
3864 }
3865 
3866 void Compile::ConstantTable::add(Constant& con) {
3867   if (con.can_be_reused()) {
3868     int idx = _constants.find(con);
3869     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3870       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3871       return;
3872     }
3873   }
3874   (void) _constants.append(con);
3875 }
3876 
3877 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3878   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3879   Constant con(type, value, b->_freq);
3880   add(con);
3881   return con;
3882 }
3883 
3884 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3885   Constant con(metadata);
3886   add(con);
3887   return con;
3888 }
3889 
3890 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3891   jvalue value;
3892   BasicType type = oper->type()->basic_type();
3893   switch (type) {
3894   case T_LONG:    value.j = oper->constantL(); break;
3895   case T_FLOAT:   value.f = oper->constantF(); break;
3896   case T_DOUBLE:  value.d = oper->constantD(); break;
3897   case T_OBJECT:
3898   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3899   case T_METADATA: return add((Metadata*)oper->constant()); break;
3900   default: guarantee(false, "unhandled type: %s", type2name(type));
3901   }
3902   return add(n, type, value);
3903 }
3904 
3905 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3906   jvalue value;
3907   // We can use the node pointer here to identify the right jump-table
3908   // as this method is called from Compile::Fill_buffer right before
3909   // the MachNodes are emitted and the jump-table is filled (means the
3910   // MachNode pointers do not change anymore).
3911   value.l = (jobject) n;
3912   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3913   add(con);
3914   return con;
3915 }
3916 
3917 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3918   // If called from Compile::scratch_emit_size do nothing.
3919   if (Compile::current()->in_scratch_emit_size())  return;
3920 
3921   assert(labels.is_nonempty(), "must be");
3922   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
3923 
3924   // Since MachConstantNode::constant_offset() also contains
3925   // table_base_offset() we need to subtract the table_base_offset()
3926   // to get the plain offset into the constant table.
3927   int offset = n->constant_offset() - table_base_offset();
3928 
3929   MacroAssembler _masm(&cb);
3930   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3931 
3932   for (uint i = 0; i < n->outcnt(); i++) {
3933     address* constant_addr = &jump_table_base[i];
3934     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
3935     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3936     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3937   }
3938 }
3939 
3940 //----------------------------static_subtype_check-----------------------------
3941 // Shortcut important common cases when superklass is exact:
3942 // (0) superklass is java.lang.Object (can occur in reflective code)
3943 // (1) subklass is already limited to a subtype of superklass => always ok
3944 // (2) subklass does not overlap with superklass => always fail
3945 // (3) superklass has NO subtypes and we can check with a simple compare.
3946 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3947   if (StressReflectiveCode) {
3948     return SSC_full_test;       // Let caller generate the general case.
3949   }
3950 
3951   if (superk == env()->Object_klass()) {
3952     return SSC_always_true;     // (0) this test cannot fail
3953   }
3954 
3955   ciType* superelem = superk;
3956   if (superelem->is_array_klass())
3957     superelem = superelem->as_array_klass()->base_element_type();
3958 
3959   if (!subk->is_interface()) {  // cannot trust static interface types yet
3960     if (subk->is_subtype_of(superk)) {
3961       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3962     }
3963     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3964         !superk->is_subtype_of(subk)) {
3965       return SSC_always_false;
3966     }
3967   }
3968 
3969   // If casting to an instance klass, it must have no subtypes
3970   if (superk->is_interface()) {
3971     // Cannot trust interfaces yet.
3972     // %%% S.B. superk->nof_implementors() == 1
3973   } else if (superelem->is_instance_klass()) {
3974     ciInstanceKlass* ik = superelem->as_instance_klass();
3975     if (!ik->has_subklass() && !ik->is_interface()) {
3976       if (!ik->is_final()) {
3977         // Add a dependency if there is a chance of a later subclass.
3978         dependencies()->assert_leaf_type(ik);
3979       }
3980       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3981     }
3982   } else {
3983     // A primitive array type has no subtypes.
3984     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3985   }
3986 
3987   return SSC_full_test;
3988 }
3989 
3990 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
3991 #ifdef _LP64
3992   // The scaled index operand to AddP must be a clean 64-bit value.
3993   // Java allows a 32-bit int to be incremented to a negative
3994   // value, which appears in a 64-bit register as a large
3995   // positive number.  Using that large positive number as an
3996   // operand in pointer arithmetic has bad consequences.
3997   // On the other hand, 32-bit overflow is rare, and the possibility
3998   // can often be excluded, if we annotate the ConvI2L node with
3999   // a type assertion that its value is known to be a small positive
4000   // number.  (The prior range check has ensured this.)
4001   // This assertion is used by ConvI2LNode::Ideal.
4002   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4003   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4004   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4005   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4006 #endif
4007   return idx;
4008 }
4009 
4010 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4011 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4012   if (ctrl != NULL) {
4013     // Express control dependency by a CastII node with a narrow type.
4014     value = new CastIINode(value, itype, false, true /* range check dependency */);
4015     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4016     // node from floating above the range check during loop optimizations. Otherwise, the
4017     // ConvI2L node may be eliminated independently of the range check, causing the data path
4018     // to become TOP while the control path is still there (although it's unreachable).
4019     value->set_req(0, ctrl);
4020     // Save CastII node to remove it after loop optimizations.
4021     phase->C->add_range_check_cast(value);
4022     value = phase->transform(value);
4023   }
4024   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4025   return phase->transform(new ConvI2LNode(value, ltype));
4026 }
4027 
4028 // The message about the current inlining is accumulated in
4029 // _print_inlining_stream and transfered into the _print_inlining_list
4030 // once we know whether inlining succeeds or not. For regular
4031 // inlining, messages are appended to the buffer pointed by
4032 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4033 // a new buffer is added after _print_inlining_idx in the list. This
4034 // way we can update the inlining message for late inlining call site
4035 // when the inlining is attempted again.
4036 void Compile::print_inlining_init() {
4037   if (print_inlining() || print_intrinsics()) {
4038     _print_inlining_stream = new stringStream();
4039     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4040   }
4041 }
4042 
4043 void Compile::print_inlining_reinit() {
4044   if (print_inlining() || print_intrinsics()) {
4045     // Re allocate buffer when we change ResourceMark
4046     _print_inlining_stream = new stringStream();
4047   }
4048 }
4049 
4050 void Compile::print_inlining_reset() {
4051   _print_inlining_stream->reset();
4052 }
4053 
4054 void Compile::print_inlining_commit() {
4055   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4056   // Transfer the message from _print_inlining_stream to the current
4057   // _print_inlining_list buffer and clear _print_inlining_stream.
4058   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4059   print_inlining_reset();
4060 }
4061 
4062 void Compile::print_inlining_push() {
4063   // Add new buffer to the _print_inlining_list at current position
4064   _print_inlining_idx++;
4065   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4066 }
4067 
4068 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4069   return _print_inlining_list->at(_print_inlining_idx);
4070 }
4071 
4072 void Compile::print_inlining_update(CallGenerator* cg) {
4073   if (print_inlining() || print_intrinsics()) {
4074     if (!cg->is_late_inline()) {
4075       if (print_inlining_current().cg() != NULL) {
4076         print_inlining_push();
4077       }
4078       print_inlining_commit();
4079     } else {
4080       if (print_inlining_current().cg() != cg &&
4081           (print_inlining_current().cg() != NULL ||
4082            print_inlining_current().ss()->size() != 0)) {
4083         print_inlining_push();
4084       }
4085       print_inlining_commit();
4086       print_inlining_current().set_cg(cg);
4087     }
4088   }
4089 }
4090 
4091 void Compile::print_inlining_move_to(CallGenerator* cg) {
4092   // We resume inlining at a late inlining call site. Locate the
4093   // corresponding inlining buffer so that we can update it.
4094   if (print_inlining()) {
4095     for (int i = 0; i < _print_inlining_list->length(); i++) {
4096       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4097         _print_inlining_idx = i;
4098         return;
4099       }
4100     }
4101     ShouldNotReachHere();
4102   }
4103 }
4104 
4105 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4106   if (print_inlining()) {
4107     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4108     assert(print_inlining_current().cg() == cg, "wrong entry");
4109     // replace message with new message
4110     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4111     print_inlining_commit();
4112     print_inlining_current().set_cg(cg);
4113   }
4114 }
4115 
4116 void Compile::print_inlining_assert_ready() {
4117   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4118 }
4119 
4120 void Compile::process_print_inlining() {
4121   bool do_print_inlining = print_inlining() || print_intrinsics();
4122   if (do_print_inlining || log() != NULL) {
4123     // Print inlining message for candidates that we couldn't inline
4124     // for lack of space
4125     for (int i = 0; i < _late_inlines.length(); i++) {
4126       CallGenerator* cg = _late_inlines.at(i);
4127       if (!cg->is_mh_late_inline()) {
4128         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4129         if (do_print_inlining) {
4130           cg->print_inlining_late(msg);
4131         }
4132         log_late_inline_failure(cg, msg);
4133       }
4134     }
4135   }
4136   if (do_print_inlining) {
4137     ResourceMark rm;
4138     stringStream ss;
4139     for (int i = 0; i < _print_inlining_list->length(); i++) {
4140       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4141     }
4142     size_t end = ss.size();
4143     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4144     strncpy(_print_inlining_output, ss.base(), end+1);
4145     _print_inlining_output[end] = 0;
4146   }
4147 }
4148 
4149 void Compile::dump_print_inlining() {
4150   if (_print_inlining_output != NULL) {
4151     tty->print_raw(_print_inlining_output);
4152   }
4153 }
4154 
4155 void Compile::log_late_inline(CallGenerator* cg) {
4156   if (log() != NULL) {
4157     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4158                 cg->unique_id());
4159     JVMState* p = cg->call_node()->jvms();
4160     while (p != NULL) {
4161       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4162       p = p->caller();
4163     }
4164     log()->tail("late_inline");
4165   }
4166 }
4167 
4168 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4169   log_late_inline(cg);
4170   if (log() != NULL) {
4171     log()->inline_fail(msg);
4172   }
4173 }
4174 
4175 void Compile::log_inline_id(CallGenerator* cg) {
4176   if (log() != NULL) {
4177     // The LogCompilation tool needs a unique way to identify late
4178     // inline call sites. This id must be unique for this call site in
4179     // this compilation. Try to have it unique across compilations as
4180     // well because it can be convenient when grepping through the log
4181     // file.
4182     // Distinguish OSR compilations from others in case CICountOSR is
4183     // on.
4184     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4185     cg->set_unique_id(id);
4186     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4187   }
4188 }
4189 
4190 void Compile::log_inline_failure(const char* msg) {
4191   if (C->log() != NULL) {
4192     C->log()->inline_fail(msg);
4193   }
4194 }
4195 
4196 
4197 // Dump inlining replay data to the stream.
4198 // Don't change thread state and acquire any locks.
4199 void Compile::dump_inline_data(outputStream* out) {
4200   InlineTree* inl_tree = ilt();
4201   if (inl_tree != NULL) {
4202     out->print(" inline %d", inl_tree->count());
4203     inl_tree->dump_replay_data(out);
4204   }
4205 }
4206 
4207 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4208   if (n1->Opcode() < n2->Opcode())      return -1;
4209   else if (n1->Opcode() > n2->Opcode()) return 1;
4210 
4211   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4212   for (uint i = 1; i < n1->req(); i++) {
4213     if (n1->in(i) < n2->in(i))      return -1;
4214     else if (n1->in(i) > n2->in(i)) return 1;
4215   }
4216 
4217   return 0;
4218 }
4219 
4220 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4221   Node* n1 = *n1p;
4222   Node* n2 = *n2p;
4223 
4224   return cmp_expensive_nodes(n1, n2);
4225 }
4226 
4227 void Compile::sort_expensive_nodes() {
4228   if (!expensive_nodes_sorted()) {
4229     _expensive_nodes->sort(cmp_expensive_nodes);
4230   }
4231 }
4232 
4233 bool Compile::expensive_nodes_sorted() const {
4234   for (int i = 1; i < _expensive_nodes->length(); i++) {
4235     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4236       return false;
4237     }
4238   }
4239   return true;
4240 }
4241 
4242 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4243   if (_expensive_nodes->length() == 0) {
4244     return false;
4245   }
4246 
4247   assert(OptimizeExpensiveOps, "optimization off?");
4248 
4249   // Take this opportunity to remove dead nodes from the list
4250   int j = 0;
4251   for (int i = 0; i < _expensive_nodes->length(); i++) {
4252     Node* n = _expensive_nodes->at(i);
4253     if (!n->is_unreachable(igvn)) {
4254       assert(n->is_expensive(), "should be expensive");
4255       _expensive_nodes->at_put(j, n);
4256       j++;
4257     }
4258   }
4259   _expensive_nodes->trunc_to(j);
4260 
4261   // Then sort the list so that similar nodes are next to each other
4262   // and check for at least two nodes of identical kind with same data
4263   // inputs.
4264   sort_expensive_nodes();
4265 
4266   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4267     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4268       return true;
4269     }
4270   }
4271 
4272   return false;
4273 }
4274 
4275 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4276   if (_expensive_nodes->length() == 0) {
4277     return;
4278   }
4279 
4280   assert(OptimizeExpensiveOps, "optimization off?");
4281 
4282   // Sort to bring similar nodes next to each other and clear the
4283   // control input of nodes for which there's only a single copy.
4284   sort_expensive_nodes();
4285 
4286   int j = 0;
4287   int identical = 0;
4288   int i = 0;
4289   bool modified = false;
4290   for (; i < _expensive_nodes->length()-1; i++) {
4291     assert(j <= i, "can't write beyond current index");
4292     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4293       identical++;
4294       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4295       continue;
4296     }
4297     if (identical > 0) {
4298       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4299       identical = 0;
4300     } else {
4301       Node* n = _expensive_nodes->at(i);
4302       igvn.replace_input_of(n, 0, NULL);
4303       igvn.hash_insert(n);
4304       modified = true;
4305     }
4306   }
4307   if (identical > 0) {
4308     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4309   } else if (_expensive_nodes->length() >= 1) {
4310     Node* n = _expensive_nodes->at(i);
4311     igvn.replace_input_of(n, 0, NULL);
4312     igvn.hash_insert(n);
4313     modified = true;
4314   }
4315   _expensive_nodes->trunc_to(j);
4316   if (modified) {
4317     igvn.optimize();
4318   }
4319 }
4320 
4321 void Compile::add_expensive_node(Node * n) {
4322   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4323   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4324   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4325   if (OptimizeExpensiveOps) {
4326     _expensive_nodes->append(n);
4327   } else {
4328     // Clear control input and let IGVN optimize expensive nodes if
4329     // OptimizeExpensiveOps is off.
4330     n->set_req(0, NULL);
4331   }
4332 }
4333 
4334 /**
4335  * Remove the speculative part of types and clean up the graph
4336  */
4337 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4338   if (UseTypeSpeculation) {
4339     Unique_Node_List worklist;
4340     worklist.push(root());
4341     int modified = 0;
4342     // Go over all type nodes that carry a speculative type, drop the
4343     // speculative part of the type and enqueue the node for an igvn
4344     // which may optimize it out.
4345     for (uint next = 0; next < worklist.size(); ++next) {
4346       Node *n  = worklist.at(next);
4347       if (n->is_Type()) {
4348         TypeNode* tn = n->as_Type();
4349         const Type* t = tn->type();
4350         const Type* t_no_spec = t->remove_speculative();
4351         if (t_no_spec != t) {
4352           bool in_hash = igvn.hash_delete(n);
4353           assert(in_hash, "node should be in igvn hash table");
4354           tn->set_type(t_no_spec);
4355           igvn.hash_insert(n);
4356           igvn._worklist.push(n); // give it a chance to go away
4357           modified++;
4358         }
4359       }
4360       uint max = n->len();
4361       for( uint i = 0; i < max; ++i ) {
4362         Node *m = n->in(i);
4363         if (not_a_node(m))  continue;
4364         worklist.push(m);
4365       }
4366     }
4367     // Drop the speculative part of all types in the igvn's type table
4368     igvn.remove_speculative_types();
4369     if (modified > 0) {
4370       igvn.optimize();
4371     }
4372 #ifdef ASSERT
4373     // Verify that after the IGVN is over no speculative type has resurfaced
4374     worklist.clear();
4375     worklist.push(root());
4376     for (uint next = 0; next < worklist.size(); ++next) {
4377       Node *n  = worklist.at(next);
4378       const Type* t = igvn.type_or_null(n);
4379       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4380       if (n->is_Type()) {
4381         t = n->as_Type()->type();
4382         assert(t == t->remove_speculative(), "no more speculative types");
4383       }
4384       uint max = n->len();
4385       for( uint i = 0; i < max; ++i ) {
4386         Node *m = n->in(i);
4387         if (not_a_node(m))  continue;
4388         worklist.push(m);
4389       }
4390     }
4391     igvn.check_no_speculative_types();
4392 #endif
4393   }
4394 }
4395 
4396 // Auxiliary method to support randomized stressing/fuzzing.
4397 //
4398 // This method can be called the arbitrary number of times, with current count
4399 // as the argument. The logic allows selecting a single candidate from the
4400 // running list of candidates as follows:
4401 //    int count = 0;
4402 //    Cand* selected = null;
4403 //    while(cand = cand->next()) {
4404 //      if (randomized_select(++count)) {
4405 //        selected = cand;
4406 //      }
4407 //    }
4408 //
4409 // Including count equalizes the chances any candidate is "selected".
4410 // This is useful when we don't have the complete list of candidates to choose
4411 // from uniformly. In this case, we need to adjust the randomicity of the
4412 // selection, or else we will end up biasing the selection towards the latter
4413 // candidates.
4414 //
4415 // Quick back-envelope calculation shows that for the list of n candidates
4416 // the equal probability for the candidate to persist as "best" can be
4417 // achieved by replacing it with "next" k-th candidate with the probability
4418 // of 1/k. It can be easily shown that by the end of the run, the
4419 // probability for any candidate is converged to 1/n, thus giving the
4420 // uniform distribution among all the candidates.
4421 //
4422 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4423 #define RANDOMIZED_DOMAIN_POW 29
4424 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4425 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4426 bool Compile::randomized_select(int count) {
4427   assert(count > 0, "only positive");
4428   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4429 }
4430 
4431 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4432 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4433 
4434 void NodeCloneInfo::dump() const {
4435   tty->print(" {%d:%d} ", idx(), gen());
4436 }
4437 
4438 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4439   uint64_t val = value(old->_idx);
4440   NodeCloneInfo cio(val);
4441   assert(val != 0, "old node should be in the map");
4442   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4443   insert(nnn->_idx, cin.get());
4444 #ifndef PRODUCT
4445   if (is_debug()) {
4446     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4447   }
4448 #endif
4449 }
4450 
4451 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4452   NodeCloneInfo cio(value(old->_idx));
4453   if (cio.get() == 0) {
4454     cio.set(old->_idx, 0);
4455     insert(old->_idx, cio.get());
4456 #ifndef PRODUCT
4457     if (is_debug()) {
4458       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4459     }
4460 #endif
4461   }
4462   clone(old, nnn, gen);
4463 }
4464 
4465 int CloneMap::max_gen() const {
4466   int g = 0;
4467   DictI di(_dict);
4468   for(; di.test(); ++di) {
4469     int t = gen(di._key);
4470     if (g < t) {
4471       g = t;
4472 #ifndef PRODUCT
4473       if (is_debug()) {
4474         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4475       }
4476 #endif
4477     }
4478   }
4479   return g;
4480 }
4481 
4482 void CloneMap::dump(node_idx_t key) const {
4483   uint64_t val = value(key);
4484   if (val != 0) {
4485     NodeCloneInfo ni(val);
4486     ni.dump();
4487   }
4488 }