1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "memory/gcLocker.hpp"
  29 #include "oops/methodData.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "utilities/copy.hpp"
  32 #include "utilities/xmlstream.hpp"
  33 
  34 // The structure of a CodeSection:
  35 //
  36 //    _start ->           +----------------+
  37 //                        | machine code...|
  38 //    _end ->             |----------------|
  39 //                        |                |
  40 //                        |    (empty)     |
  41 //                        |                |
  42 //                        |                |
  43 //                        +----------------+
  44 //    _limit ->           |                |
  45 //
  46 //    _locs_start ->      +----------------+
  47 //                        |reloc records...|
  48 //                        |----------------|
  49 //    _locs_end ->        |                |
  50 //                        |                |
  51 //                        |    (empty)     |
  52 //                        |                |
  53 //                        |                |
  54 //                        +----------------+
  55 //    _locs_limit ->      |                |
  56 // The _end (resp. _limit) pointer refers to the first
  57 // unused (resp. unallocated) byte.
  58 
  59 // The structure of the CodeBuffer while code is being accumulated:
  60 //
  61 //    _total_start ->    \
  62 //    _insts._start ->              +----------------+
  63 //                                  |                |
  64 //                                  |     Code       |
  65 //                                  |                |
  66 //    _stubs._start ->              |----------------|
  67 //                                  |                |
  68 //                                  |    Stubs       | (also handlers for deopt/exception)
  69 //                                  |                |
  70 //    _consts._start ->             |----------------|
  71 //                                  |                |
  72 //                                  |   Constants    |
  73 //                                  |                |
  74 //                                  +----------------+
  75 //    + _total_size ->              |                |
  76 //
  77 // When the code and relocations are copied to the code cache,
  78 // the empty parts of each section are removed, and everything
  79 // is copied into contiguous locations.
  80 
  81 typedef CodeBuffer::csize_t csize_t;  // file-local definition
  82 
  83 // External buffer, in a predefined CodeBlob.
  84 // Important: The code_start must be taken exactly, and not realigned.
  85 CodeBuffer::CodeBuffer(CodeBlob* blob) {
  86   initialize_misc("static buffer");
  87   initialize(blob->content_begin(), blob->content_size());
  88   verify_section_allocation();
  89 }
  90 
  91 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
  92   // Compute maximal alignment.
  93   int align = _insts.alignment();
  94   // Always allow for empty slop around each section.
  95   int slop = (int) CodeSection::end_slop();
  96 
  97   assert(blob() == NULL, "only once");
  98   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
  99   if (blob() == NULL) {
 100     // The assembler constructor will throw a fatal on an empty CodeBuffer.
 101     return;  // caller must test this
 102   }
 103 
 104   // Set up various pointers into the blob.
 105   initialize(_total_start, _total_size);
 106 
 107   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
 108 
 109   pd_initialize();
 110 
 111   if (locs_size != 0) {
 112     _insts.initialize_locs(locs_size / sizeof(relocInfo));
 113   }
 114 
 115   verify_section_allocation();
 116 }
 117 
 118 
 119 CodeBuffer::~CodeBuffer() {
 120   verify_section_allocation();
 121 
 122   // If we allocate our code buffer from the CodeCache
 123   // via a BufferBlob, and it's not permanent, then
 124   // free the BufferBlob.
 125   // The rest of the memory will be freed when the ResourceObj
 126   // is released.
 127   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
 128     // Previous incarnations of this buffer are held live, so that internal
 129     // addresses constructed before expansions will not be confused.
 130     cb->free_blob();
 131   }
 132 
 133   // free any overflow storage
 134   delete _overflow_arena;
 135 
 136 #ifdef ASSERT
 137   // Save allocation type to execute assert in ~ResourceObj()
 138   // which is called after this destructor.
 139   assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
 140   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
 141   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
 142   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
 143 #endif
 144 }
 145 
 146 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
 147   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
 148   DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
 149   _oop_recorder = r;
 150 }
 151 
 152 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
 153   assert(cs != &_insts, "insts is the memory provider, not the consumer");
 154   csize_t slop = CodeSection::end_slop();  // margin between sections
 155   int align = cs->alignment();
 156   assert(is_power_of_2(align), "sanity");
 157   address start  = _insts._start;
 158   address limit  = _insts._limit;
 159   address middle = limit - size;
 160   middle -= (intptr_t)middle & (align-1);  // align the division point downward
 161   guarantee(middle - slop > start, "need enough space to divide up");
 162   _insts._limit = middle - slop;  // subtract desired space, plus slop
 163   cs->initialize(middle, limit - middle);
 164   assert(cs->start() == middle, "sanity");
 165   assert(cs->limit() == limit,  "sanity");
 166   // give it some relocations to start with, if the main section has them
 167   if (_insts.has_locs())  cs->initialize_locs(1);
 168 }
 169 
 170 void CodeBuffer::freeze_section(CodeSection* cs) {
 171   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
 172   csize_t frozen_size = cs->size();
 173   if (next_cs != NULL) {
 174     frozen_size = next_cs->align_at_start(frozen_size);
 175   }
 176   address old_limit = cs->limit();
 177   address new_limit = cs->start() + frozen_size;
 178   relocInfo* old_locs_limit = cs->locs_limit();
 179   relocInfo* new_locs_limit = cs->locs_end();
 180   // Patch the limits.
 181   cs->_limit = new_limit;
 182   cs->_locs_limit = new_locs_limit;
 183   cs->_frozen = true;
 184   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
 185     // Give remaining buffer space to the following section.
 186     next_cs->initialize(new_limit, old_limit - new_limit);
 187     next_cs->initialize_shared_locs(new_locs_limit,
 188                                     old_locs_limit - new_locs_limit);
 189   }
 190 }
 191 
 192 void CodeBuffer::set_blob(BufferBlob* blob) {
 193   _blob = blob;
 194   if (blob != NULL) {
 195     address start = blob->content_begin();
 196     address end   = blob->content_end();
 197     // Round up the starting address.
 198     int align = _insts.alignment();
 199     start += (-(intptr_t)start) & (align-1);
 200     _total_start = start;
 201     _total_size  = end - start;
 202   } else {
 203 #ifdef ASSERT
 204     // Clean out dangling pointers.
 205     _total_start    = badAddress;
 206     _consts._start  = _consts._end  = badAddress;
 207     _insts._start   = _insts._end   = badAddress;
 208     _stubs._start   = _stubs._end   = badAddress;
 209 #endif //ASSERT
 210   }
 211 }
 212 
 213 void CodeBuffer::free_blob() {
 214   if (_blob != NULL) {
 215     BufferBlob::free(_blob);
 216     set_blob(NULL);
 217   }
 218 }
 219 
 220 const char* CodeBuffer::code_section_name(int n) {
 221 #ifdef PRODUCT
 222   return NULL;
 223 #else //PRODUCT
 224   switch (n) {
 225   case SECT_CONSTS:            return "consts";
 226   case SECT_INSTS:             return "insts";
 227   case SECT_STUBS:             return "stubs";
 228   default:                     return NULL;
 229   }
 230 #endif //PRODUCT
 231 }
 232 
 233 int CodeBuffer::section_index_of(address addr) const {
 234   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 235     const CodeSection* cs = code_section(n);
 236     if (cs->allocates(addr))  return n;
 237   }
 238   return SECT_NONE;
 239 }
 240 
 241 int CodeBuffer::locator(address addr) const {
 242   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 243     const CodeSection* cs = code_section(n);
 244     if (cs->allocates(addr)) {
 245       return locator(addr - cs->start(), n);
 246     }
 247   }
 248   return -1;
 249 }
 250 
 251 address CodeBuffer::locator_address(int locator) const {
 252   if (locator < 0)  return NULL;
 253   address start = code_section(locator_sect(locator))->start();
 254   return start + locator_pos(locator);
 255 }
 256 
 257 bool CodeBuffer::is_backward_branch(Label& L) {
 258   return L.is_bound() && insts_end() <= locator_address(L.loc());
 259 }
 260 
 261 address CodeBuffer::decode_begin() {
 262   address begin = _insts.start();
 263   if (_decode_begin != NULL && _decode_begin > begin)
 264     begin = _decode_begin;
 265   return begin;
 266 }
 267 
 268 
 269 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
 270   if (_overflow_arena == NULL) {
 271     _overflow_arena = new (mtCode) Arena();
 272   }
 273   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
 274 }
 275 
 276 
 277 // Helper function for managing labels and their target addresses.
 278 // Returns a sensible address, and if it is not the label's final
 279 // address, notes the dependency (at 'branch_pc') on the label.
 280 address CodeSection::target(Label& L, address branch_pc) {
 281   if (L.is_bound()) {
 282     int loc = L.loc();
 283     if (index() == CodeBuffer::locator_sect(loc)) {
 284       return start() + CodeBuffer::locator_pos(loc);
 285     } else {
 286       return outer()->locator_address(loc);
 287     }
 288   } else {
 289     assert(allocates2(branch_pc), "sanity");
 290     address base = start();
 291     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
 292     L.add_patch_at(outer(), patch_loc);
 293 
 294     // Need to return a pc, doesn't matter what it is since it will be
 295     // replaced during resolution later.
 296     // Don't return NULL or badAddress, since branches shouldn't overflow.
 297     // Don't return base either because that could overflow displacements
 298     // for shorter branches.  It will get checked when bound.
 299     return branch_pc;
 300   }
 301 }
 302 
 303 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
 304   Relocation* reloc = spec.reloc();
 305   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
 306   if (rtype == relocInfo::none)  return;
 307 
 308   // The assertion below has been adjusted, to also work for
 309   // relocation for fixup.  Sometimes we want to put relocation
 310   // information for the next instruction, since it will be patched
 311   // with a call.
 312   assert(start() <= at && at <= end()+1,
 313          "cannot relocate data outside code boundaries");
 314 
 315   if (!has_locs()) {
 316     // no space for relocation information provided => code cannot be
 317     // relocated.  Make sure that relocate is only called with rtypes
 318     // that can be ignored for this kind of code.
 319     assert(rtype == relocInfo::none              ||
 320            rtype == relocInfo::runtime_call_type ||
 321            rtype == relocInfo::internal_word_type||
 322            rtype == relocInfo::section_word_type ||
 323            rtype == relocInfo::external_word_type,
 324            "code needs relocation information");
 325     // leave behind an indication that we attempted a relocation
 326     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
 327     return;
 328   }
 329 
 330   // Advance the point, noting the offset we'll have to record.
 331   csize_t offset = at - locs_point();
 332   set_locs_point(at);
 333 
 334   // Test for a couple of overflow conditions; maybe expand the buffer.
 335   relocInfo* end = locs_end();
 336   relocInfo* req = end + relocInfo::length_limit;
 337   // Check for (potential) overflow
 338   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
 339     req += (uint)offset / (uint)relocInfo::offset_limit();
 340     if (req >= locs_limit()) {
 341       // Allocate or reallocate.
 342       expand_locs(locs_count() + (req - end));
 343       // reload pointer
 344       end = locs_end();
 345     }
 346   }
 347 
 348   // If the offset is giant, emit filler relocs, of type 'none', but
 349   // each carrying the largest possible offset, to advance the locs_point.
 350   while (offset >= relocInfo::offset_limit()) {
 351     assert(end < locs_limit(), "adjust previous paragraph of code");
 352     *end++ = filler_relocInfo();
 353     offset -= filler_relocInfo().addr_offset();
 354   }
 355 
 356   // If it's a simple reloc with no data, we'll just write (rtype | offset).
 357   (*end) = relocInfo(rtype, offset, format);
 358 
 359   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
 360   end->initialize(this, reloc);
 361 }
 362 
 363 void CodeSection::initialize_locs(int locs_capacity) {
 364   assert(_locs_start == NULL, "only one locs init step, please");
 365   // Apply a priori lower limits to relocation size:
 366   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
 367   if (locs_capacity < min_locs)  locs_capacity = min_locs;
 368   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
 369   _locs_start    = locs_start;
 370   _locs_end      = locs_start;
 371   _locs_limit    = locs_start + locs_capacity;
 372   _locs_own      = true;
 373 }
 374 
 375 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
 376   assert(_locs_start == NULL, "do this before locs are allocated");
 377   // Internal invariant:  locs buf must be fully aligned.
 378   // See copy_relocations_to() below.
 379   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
 380     ++buf; --length;
 381   }
 382   if (length > 0) {
 383     _locs_start = buf;
 384     _locs_end   = buf;
 385     _locs_limit = buf + length;
 386     _locs_own   = false;
 387   }
 388 }
 389 
 390 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
 391   int lcount = source_cs->locs_count();
 392   if (lcount != 0) {
 393     initialize_shared_locs(source_cs->locs_start(), lcount);
 394     _locs_end = _locs_limit = _locs_start + lcount;
 395     assert(is_allocated(), "must have copied code already");
 396     set_locs_point(start() + source_cs->locs_point_off());
 397   }
 398   assert(this->locs_count() == source_cs->locs_count(), "sanity");
 399 }
 400 
 401 void CodeSection::expand_locs(int new_capacity) {
 402   if (_locs_start == NULL) {
 403     initialize_locs(new_capacity);
 404     return;
 405   } else {
 406     int old_count    = locs_count();
 407     int old_capacity = locs_capacity();
 408     if (new_capacity < old_capacity * 2)
 409       new_capacity = old_capacity * 2;
 410     relocInfo* locs_start;
 411     if (_locs_own) {
 412       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
 413     } else {
 414       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
 415       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
 416       _locs_own = true;
 417     }
 418     _locs_start    = locs_start;
 419     _locs_end      = locs_start + old_count;
 420     _locs_limit    = locs_start + new_capacity;
 421   }
 422 }
 423 
 424 
 425 /// Support for emitting the code to its final location.
 426 /// The pattern is the same for all functions.
 427 /// We iterate over all the sections, padding each to alignment.
 428 
 429 csize_t CodeBuffer::total_content_size() const {
 430   csize_t size_so_far = 0;
 431   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 432     const CodeSection* cs = code_section(n);
 433     if (cs->is_empty())  continue;  // skip trivial section
 434     size_so_far = cs->align_at_start(size_so_far);
 435     size_so_far += cs->size();
 436   }
 437   return size_so_far;
 438 }
 439 
 440 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
 441   address buf = dest->_total_start;
 442   csize_t buf_offset = 0;
 443   assert(dest->_total_size >= total_content_size(), "must be big enough");
 444 
 445   {
 446     // not sure why this is here, but why not...
 447     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
 448     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
 449   }
 450 
 451   const CodeSection* prev_cs      = NULL;
 452   CodeSection*       prev_dest_cs = NULL;
 453 
 454   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 455     // figure compact layout of each section
 456     const CodeSection* cs = code_section(n);
 457     csize_t csize = cs->size();
 458 
 459     CodeSection* dest_cs = dest->code_section(n);
 460     if (!cs->is_empty()) {
 461       // Compute initial padding; assign it to the previous non-empty guy.
 462       // Cf. figure_expanded_capacities.
 463       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
 464       if (padding != 0) {
 465         buf_offset += padding;
 466         assert(prev_dest_cs != NULL, "sanity");
 467         prev_dest_cs->_limit += padding;
 468       }
 469       #ifdef ASSERT
 470       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
 471         // Make sure the ends still match up.
 472         // This is important because a branch in a frozen section
 473         // might target code in a following section, via a Label,
 474         // and without a relocation record.  See Label::patch_instructions.
 475         address dest_start = buf+buf_offset;
 476         csize_t start2start = cs->start() - prev_cs->start();
 477         csize_t dest_start2start = dest_start - prev_dest_cs->start();
 478         assert(start2start == dest_start2start, "cannot stretch frozen sect");
 479       }
 480       #endif //ASSERT
 481       prev_dest_cs = dest_cs;
 482       prev_cs      = cs;
 483     }
 484 
 485     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
 486     dest_cs->initialize(buf+buf_offset, csize);
 487     dest_cs->set_end(buf+buf_offset+csize);
 488     assert(dest_cs->is_allocated(), "must always be allocated");
 489     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
 490 
 491     buf_offset += csize;
 492   }
 493 
 494   // Done calculating sections; did it come out to the right end?
 495   assert(buf_offset == total_content_size(), "sanity");
 496   dest->verify_section_allocation();
 497 }
 498 
 499 // Append an oop reference that keeps the class alive.
 500 static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
 501   oop cl = k->klass_holder();
 502   if (cl != NULL && !oops->contains(cl)) {
 503     oops->append(cl);
 504   }
 505 }
 506 
 507 void CodeBuffer::finalize_oop_references(methodHandle mh) {
 508   No_Safepoint_Verifier nsv;
 509 
 510   GrowableArray<oop> oops;
 511 
 512   // Make sure that immediate metadata records something in the OopRecorder
 513   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 514     // pull code out of each section
 515     CodeSection* cs = code_section(n);
 516     if (cs->is_empty())  continue;  // skip trivial section
 517     RelocIterator iter(cs);
 518     while (iter.next()) {
 519       if (iter.type() == relocInfo::metadata_type) {
 520         metadata_Relocation* md = iter.metadata_reloc();
 521         if (md->metadata_is_immediate()) {
 522           Metadata* m = md->metadata_value();
 523           if (oop_recorder()->is_real(m)) {
 524             if (m->is_methodData()) {
 525               m = ((MethodData*)m)->method();
 526             }
 527             if (m->is_method()) {
 528               m = ((Method*)m)->method_holder();
 529             }
 530             if (m->is_klass()) {
 531               append_oop_references(&oops, (Klass*)m);
 532             } else {
 533               // XXX This will currently occur for MDO which don't
 534               // have a backpointer.  This has to be fixed later.
 535               m->print();
 536               ShouldNotReachHere();
 537             }
 538           }
 539         }
 540       }
 541     }
 542   }
 543 
 544   if (!oop_recorder()->is_unused()) {
 545     for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
 546       Metadata* m = oop_recorder()->metadata_at(i);
 547       if (oop_recorder()->is_real(m)) {
 548         if (m->is_methodData()) {
 549           m = ((MethodData*)m)->method();
 550         }
 551         if (m->is_method()) {
 552           m = ((Method*)m)->method_holder();
 553         }
 554         if (m->is_klass()) {
 555           append_oop_references(&oops, (Klass*)m);
 556         } else {
 557           m->print();
 558           ShouldNotReachHere();
 559         }
 560       }
 561     }
 562 
 563   }
 564 
 565   // Add the class loader of Method* for the nmethod itself
 566   append_oop_references(&oops, mh->method_holder());
 567 
 568   // Add any oops that we've found
 569   Thread* thread = Thread::current();
 570   for (int i = 0; i < oops.length(); i++) {
 571     oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
 572   }
 573 }
 574 
 575 
 576 
 577 csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
 578   csize_t size_so_far = 0;
 579   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 580     const CodeSection* cur_cs = code_section(n);
 581     if (!cur_cs->is_empty()) {
 582       size_so_far = cur_cs->align_at_start(size_so_far);
 583     }
 584     if (cur_cs->index() == cs->index()) {
 585       return size_so_far;
 586     }
 587     size_so_far += cur_cs->size();
 588   }
 589   ShouldNotReachHere();
 590   return -1;
 591 }
 592 
 593 csize_t CodeBuffer::total_relocation_size() const {
 594   csize_t lsize = copy_relocations_to(NULL);  // dry run only
 595   csize_t csize = total_content_size();
 596   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
 597   return (csize_t) align_size_up(total, HeapWordSize);
 598 }
 599 
 600 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
 601   address buf = NULL;
 602   csize_t buf_offset = 0;
 603   csize_t buf_limit = 0;
 604   if (dest != NULL) {
 605     buf = (address)dest->relocation_begin();
 606     buf_limit = (address)dest->relocation_end() - buf;
 607     assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
 608     assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
 609   }
 610   // if dest == NULL, this is just the sizing pass
 611 
 612   csize_t code_end_so_far = 0;
 613   csize_t code_point_so_far = 0;
 614   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 615     // pull relocs out of each section
 616     const CodeSection* cs = code_section(n);
 617     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
 618     if (cs->is_empty())  continue;  // skip trivial section
 619     relocInfo* lstart = cs->locs_start();
 620     relocInfo* lend   = cs->locs_end();
 621     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
 622     csize_t    csize  = cs->size();
 623     code_end_so_far = cs->align_at_start(code_end_so_far);
 624 
 625     if (lsize > 0) {
 626       // Figure out how to advance the combined relocation point
 627       // first to the beginning of this section.
 628       // We'll insert one or more filler relocs to span that gap.
 629       // (Don't bother to improve this by editing the first reloc's offset.)
 630       csize_t new_code_point = code_end_so_far;
 631       for (csize_t jump;
 632            code_point_so_far < new_code_point;
 633            code_point_so_far += jump) {
 634         jump = new_code_point - code_point_so_far;
 635         relocInfo filler = filler_relocInfo();
 636         if (jump >= filler.addr_offset()) {
 637           jump = filler.addr_offset();
 638         } else {  // else shrink the filler to fit
 639           filler = relocInfo(relocInfo::none, jump);
 640         }
 641         if (buf != NULL) {
 642           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
 643           *(relocInfo*)(buf+buf_offset) = filler;
 644         }
 645         buf_offset += sizeof(filler);
 646       }
 647 
 648       // Update code point and end to skip past this section:
 649       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
 650       assert(code_point_so_far <= last_code_point, "sanity");
 651       code_point_so_far = last_code_point; // advance past this guy's relocs
 652     }
 653     code_end_so_far += csize;  // advance past this guy's instructions too
 654 
 655     // Done with filler; emit the real relocations:
 656     if (buf != NULL && lsize != 0) {
 657       assert(buf_offset + lsize <= buf_limit, "target in bounds");
 658       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
 659       if (buf_offset % HeapWordSize == 0) {
 660         // Use wordwise copies if possible:
 661         Copy::disjoint_words((HeapWord*)lstart,
 662                              (HeapWord*)(buf+buf_offset),
 663                              (lsize + HeapWordSize-1) / HeapWordSize);
 664       } else {
 665         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
 666       }
 667     }
 668     buf_offset += lsize;
 669   }
 670 
 671   // Align end of relocation info in target.
 672   while (buf_offset % HeapWordSize != 0) {
 673     if (buf != NULL) {
 674       relocInfo padding = relocInfo(relocInfo::none, 0);
 675       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
 676       *(relocInfo*)(buf+buf_offset) = padding;
 677     }
 678     buf_offset += sizeof(relocInfo);
 679   }
 680 
 681   assert(code_end_so_far == total_content_size(), "sanity");
 682 
 683   // Account for index:
 684   if (buf != NULL) {
 685     RelocIterator::create_index(dest->relocation_begin(),
 686                                 buf_offset / sizeof(relocInfo),
 687                                 dest->relocation_end());
 688   }
 689 
 690   return buf_offset;
 691 }
 692 
 693 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
 694 #ifndef PRODUCT
 695   if (PrintNMethods && (WizardMode || Verbose)) {
 696     tty->print("done with CodeBuffer:");
 697     ((CodeBuffer*)this)->print();
 698   }
 699 #endif //PRODUCT
 700 
 701   CodeBuffer dest(dest_blob);
 702   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
 703   this->compute_final_layout(&dest);
 704   relocate_code_to(&dest);
 705 
 706   // transfer strings and comments from buffer to blob
 707   dest_blob->set_strings(_strings);
 708 
 709   // Done moving code bytes; were they the right size?
 710   assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
 711 
 712   // Flush generated code
 713   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
 714 }
 715 
 716 // Move all my code into another code buffer.  Consult applicable
 717 // relocs to repair embedded addresses.  The layout in the destination
 718 // CodeBuffer is different to the source CodeBuffer: the destination
 719 // CodeBuffer gets the final layout (consts, insts, stubs in order of
 720 // ascending address).
 721 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
 722   address dest_end = dest->_total_start + dest->_total_size;
 723   address dest_filled = NULL;
 724   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 725     // pull code out of each section
 726     const CodeSection* cs = code_section(n);
 727     if (cs->is_empty())  continue;  // skip trivial section
 728     CodeSection* dest_cs = dest->code_section(n);
 729     assert(cs->size() == dest_cs->size(), "sanity");
 730     csize_t usize = dest_cs->size();
 731     csize_t wsize = align_size_up(usize, HeapWordSize);
 732     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
 733     // Copy the code as aligned machine words.
 734     // This may also include an uninitialized partial word at the end.
 735     Copy::disjoint_words((HeapWord*)cs->start(),
 736                          (HeapWord*)dest_cs->start(),
 737                          wsize / HeapWordSize);
 738 
 739     if (dest->blob() == NULL) {
 740       // Destination is a final resting place, not just another buffer.
 741       // Normalize uninitialized bytes in the final padding.
 742       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
 743                           Assembler::code_fill_byte());
 744     }
 745     // Keep track of the highest filled address
 746     dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
 747 
 748     assert(cs->locs_start() != (relocInfo*)badAddress,
 749            "this section carries no reloc storage, but reloc was attempted");
 750 
 751     // Make the new code copy use the old copy's relocations:
 752     dest_cs->initialize_locs_from(cs);
 753   }
 754 
 755   // Do relocation after all sections are copied.
 756   // This is necessary if the code uses constants in stubs, which are
 757   // relocated when the corresponding instruction in the code (e.g., a
 758   // call) is relocated. Stubs are placed behind the main code
 759   // section, so that section has to be copied before relocating.
 760   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 761     // pull code out of each section
 762     const CodeSection* cs = code_section(n);
 763     if (cs->is_empty()) continue;  // skip trivial section
 764     CodeSection* dest_cs = dest->code_section(n);
 765     { // Repair the pc relative information in the code after the move
 766       RelocIterator iter(dest_cs);
 767       while (iter.next()) {
 768         iter.reloc()->fix_relocation_after_move(this, dest);
 769       }
 770     }
 771   }
 772 
 773   if (dest->blob() == NULL && dest_filled != NULL) {
 774     // Destination is a final resting place, not just another buffer.
 775     // Normalize uninitialized bytes in the final padding.
 776     Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
 777                         Assembler::code_fill_byte());
 778 
 779   }
 780 }
 781 
 782 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
 783                                                csize_t amount,
 784                                                csize_t* new_capacity) {
 785   csize_t new_total_cap = 0;
 786 
 787   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 788     const CodeSection* sect = code_section(n);
 789 
 790     if (!sect->is_empty()) {
 791       // Compute initial padding; assign it to the previous section,
 792       // even if it's empty (e.g. consts section can be empty).
 793       // Cf. compute_final_layout
 794       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
 795       if (padding != 0) {
 796         new_total_cap += padding;
 797         assert(n - 1 >= SECT_FIRST, "sanity");
 798         new_capacity[n - 1] += padding;
 799       }
 800     }
 801 
 802     csize_t exp = sect->size();  // 100% increase
 803     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
 804     if (sect == which_cs) {
 805       if (exp < amount)  exp = amount;
 806       if (StressCodeBuffers)  exp = amount;  // expand only slightly
 807     } else if (n == SECT_INSTS) {
 808       // scale down inst increases to a more modest 25%
 809       exp = 4*K + ((exp - 4*K) >> 2);
 810       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
 811     } else if (sect->is_empty()) {
 812       // do not grow an empty secondary section
 813       exp = 0;
 814     }
 815     // Allow for inter-section slop:
 816     exp += CodeSection::end_slop();
 817     csize_t new_cap = sect->size() + exp;
 818     if (new_cap < sect->capacity()) {
 819       // No need to expand after all.
 820       new_cap = sect->capacity();
 821     }
 822     new_capacity[n] = new_cap;
 823     new_total_cap += new_cap;
 824   }
 825 
 826   return new_total_cap;
 827 }
 828 
 829 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
 830 #ifndef PRODUCT
 831   if (PrintNMethods && (WizardMode || Verbose)) {
 832     tty->print("expanding CodeBuffer:");
 833     this->print();
 834   }
 835 
 836   if (StressCodeBuffers && blob() != NULL) {
 837     static int expand_count = 0;
 838     if (expand_count >= 0)  expand_count += 1;
 839     if (expand_count > 100 && is_power_of_2(expand_count)) {
 840       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
 841       // simulate an occasional allocation failure:
 842       free_blob();
 843     }
 844   }
 845 #endif //PRODUCT
 846 
 847   // Resizing must be allowed
 848   {
 849     if (blob() == NULL)  return;  // caller must check for blob == NULL
 850     for (int n = 0; n < (int)SECT_LIMIT; n++) {
 851       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
 852     }
 853   }
 854 
 855   // Figure new capacity for each section.
 856   csize_t new_capacity[SECT_LIMIT];
 857   csize_t new_total_cap
 858     = figure_expanded_capacities(which_cs, amount, new_capacity);
 859 
 860   // Create a new (temporary) code buffer to hold all the new data
 861   CodeBuffer cb(name(), new_total_cap, 0);
 862   if (cb.blob() == NULL) {
 863     // Failed to allocate in code cache.
 864     free_blob();
 865     return;
 866   }
 867 
 868   // Create an old code buffer to remember which addresses used to go where.
 869   // This will be useful when we do final assembly into the code cache,
 870   // because we will need to know how to warp any internal address that
 871   // has been created at any time in this CodeBuffer's past.
 872   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
 873   bxp->take_over_code_from(this);  // remember the old undersized blob
 874   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
 875   bxp->_before_expand = this->_before_expand;
 876   this->_before_expand = bxp;
 877 
 878   // Give each section its required (expanded) capacity.
 879   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
 880     CodeSection* cb_sect   = cb.code_section(n);
 881     CodeSection* this_sect = code_section(n);
 882     if (new_capacity[n] == 0)  continue;  // already nulled out
 883     if (n != SECT_INSTS) {
 884       cb.initialize_section_size(cb_sect, new_capacity[n]);
 885     }
 886     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
 887     address cb_start = cb_sect->start();
 888     cb_sect->set_end(cb_start + this_sect->size());
 889     if (this_sect->mark() == NULL) {
 890       cb_sect->clear_mark();
 891     } else {
 892       cb_sect->set_mark(cb_start + this_sect->mark_off());
 893     }
 894   }
 895 
 896   // Move all the code and relocations to the new blob:
 897   relocate_code_to(&cb);
 898 
 899   // Copy the temporary code buffer into the current code buffer.
 900   // Basically, do {*this = cb}, except for some control information.
 901   this->take_over_code_from(&cb);
 902   cb.set_blob(NULL);
 903 
 904   // Zap the old code buffer contents, to avoid mistakenly using them.
 905   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
 906                                  badCodeHeapFreeVal));
 907 
 908   _decode_begin = NULL;  // sanity
 909 
 910   // Make certain that the new sections are all snugly inside the new blob.
 911   verify_section_allocation();
 912 
 913 #ifndef PRODUCT
 914   if (PrintNMethods && (WizardMode || Verbose)) {
 915     tty->print("expanded CodeBuffer:");
 916     this->print();
 917   }
 918 #endif //PRODUCT
 919 }
 920 
 921 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
 922   // Must already have disposed of the old blob somehow.
 923   assert(blob() == NULL, "must be empty");
 924 #ifdef ASSERT
 925 
 926 #endif
 927   // Take the new blob away from cb.
 928   set_blob(cb->blob());
 929   // Take over all the section pointers.
 930   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 931     CodeSection* cb_sect   = cb->code_section(n);
 932     CodeSection* this_sect = code_section(n);
 933     this_sect->take_over_code_from(cb_sect);
 934   }
 935   _overflow_arena = cb->_overflow_arena;
 936   // Make sure the old cb won't try to use it or free it.
 937   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
 938 }
 939 
 940 void CodeBuffer::verify_section_allocation() {
 941   address tstart = _total_start;
 942   if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
 943   address tend   = tstart + _total_size;
 944   if (_blob != NULL) {
 945 
 946     guarantee(tstart >= _blob->content_begin(), "sanity");
 947     guarantee(tend   <= _blob->content_end(),   "sanity");
 948   }
 949   // Verify disjointness.
 950   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 951     CodeSection* sect = code_section(n);
 952     if (!sect->is_allocated() || sect->is_empty())  continue;
 953     guarantee((intptr_t)sect->start() % sect->alignment() == 0
 954            || sect->is_empty() || _blob == NULL,
 955            "start is aligned");
 956     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
 957       CodeSection* other = code_section(m);
 958       if (!other->is_allocated() || other == sect)  continue;
 959       guarantee(!other->contains(sect->start()    ), "sanity");
 960       // limit is an exclusive address and can be the start of another
 961       // section.
 962       guarantee(!other->contains(sect->limit() - 1), "sanity");
 963     }
 964     guarantee(sect->end() <= tend, "sanity");
 965     guarantee(sect->end() <= sect->limit(), "sanity");
 966   }
 967 }
 968 
 969 void CodeBuffer::log_section_sizes(const char* name) {
 970   if (xtty != NULL) {
 971     // log info about buffer usage
 972     xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
 973     for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
 974       CodeSection* sect = code_section(n);
 975       if (!sect->is_allocated() || sect->is_empty())  continue;
 976       xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
 977                      n, sect->limit() - sect->start(), sect->limit() - sect->end());
 978     }
 979     xtty->print_cr("</blob>");
 980   }
 981 }
 982 
 983 #ifndef PRODUCT
 984 
 985 void CodeSection::dump() {
 986   address ptr = start();
 987   for (csize_t step; ptr < end(); ptr += step) {
 988     step = end() - ptr;
 989     if (step > jintSize * 4)  step = jintSize * 4;
 990     tty->print(PTR_FORMAT ": ", ptr);
 991     while (step > 0) {
 992       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
 993       ptr += jintSize;
 994     }
 995     tty->cr();
 996   }
 997 }
 998 
 999 
1000 void CodeSection::decode() {
1001   Disassembler::decode(start(), end());
1002 }
1003 
1004 
1005 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1006   _strings.add_comment(offset, comment);
1007 }
1008 
1009 const char* CodeBuffer::code_string(const char* str) {
1010   return _strings.add_string(str);
1011 }
1012 
1013 class CodeString: public CHeapObj<mtCode> {
1014  private:
1015   friend class CodeStrings;
1016   const char * _string;
1017   CodeString*  _next;
1018   intptr_t     _offset;
1019 
1020   ~CodeString() {
1021     assert(_next == NULL, "wrong interface for freeing list");
1022     os::free((void*)_string, mtCode);
1023   }
1024 
1025   bool is_comment() const { return _offset >= 0; }
1026 
1027  public:
1028   CodeString(const char * string, intptr_t offset = -1)
1029     : _next(NULL), _offset(offset) {
1030     _string = os::strdup(string, mtCode);
1031   }
1032 
1033   const char * string() const { return _string; }
1034   intptr_t     offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset;  }
1035   CodeString* next()    const { return _next; }
1036 
1037   void set_next(CodeString* next) { _next = next; }
1038 
1039   CodeString* first_comment() {
1040     if (is_comment()) {
1041       return this;
1042     } else {
1043       return next_comment();
1044     }
1045   }
1046   CodeString* next_comment() const {
1047     CodeString* s = _next;
1048     while (s != NULL && !s->is_comment()) {
1049       s = s->_next;
1050     }
1051     return s;
1052   }
1053 };
1054 
1055 CodeString* CodeStrings::find(intptr_t offset) const {
1056   CodeString* a = _strings->first_comment();
1057   while (a != NULL && a->offset() != offset) {
1058     a = a->next_comment();
1059   }
1060   return a;
1061 }
1062 
1063 // Convenience for add_comment.
1064 CodeString* CodeStrings::find_last(intptr_t offset) const {
1065   CodeString* a = find(offset);
1066   if (a != NULL) {
1067     CodeString* c = NULL;
1068     while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1069       a = c;
1070     }
1071   }
1072   return a;
1073 }
1074 
1075 void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1076   CodeString* c      = new CodeString(comment, offset);
1077   CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1078 
1079   if (inspos) {
1080     // insert after already existing comments with same offset
1081     c->set_next(inspos->next());
1082     inspos->set_next(c);
1083   } else {
1084     // no comments with such offset, yet. Insert before anything else.
1085     c->set_next(_strings);
1086     _strings = c;
1087   }
1088 }
1089 
1090 void CodeStrings::assign(CodeStrings& other) {
1091   _strings = other._strings;
1092 }
1093 
1094 void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1095   if (_strings != NULL) {
1096     CodeString* c = find(offset);
1097     while (c && c->offset() == offset) {
1098       stream->bol();
1099       stream->print("  ;; ");
1100       stream->print_cr(c->string());
1101       c = c->next_comment();
1102     }
1103   }
1104 }
1105 
1106 
1107 void CodeStrings::free() {
1108   CodeString* n = _strings;
1109   while (n) {
1110     // unlink the node from the list saving a pointer to the next
1111     CodeString* p = n->next();
1112     n->set_next(NULL);
1113     delete n;
1114     n = p;
1115   }
1116   _strings = NULL;
1117 }
1118 
1119 const char* CodeStrings::add_string(const char * string) {
1120   CodeString* s = new CodeString(string);
1121   s->set_next(_strings);
1122   _strings = s;
1123   return s->string();
1124 }
1125 
1126 void CodeBuffer::decode() {
1127   ttyLocker ttyl;
1128   Disassembler::decode(decode_begin(), insts_end());
1129   _decode_begin = insts_end();
1130 }
1131 
1132 
1133 void CodeBuffer::skip_decode() {
1134   _decode_begin = insts_end();
1135 }
1136 
1137 
1138 void CodeBuffer::decode_all() {
1139   ttyLocker ttyl;
1140   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1141     // dump contents of each section
1142     CodeSection* cs = code_section(n);
1143     tty->print_cr("! %s:", code_section_name(n));
1144     if (cs != consts())
1145       cs->decode();
1146     else
1147       cs->dump();
1148   }
1149 }
1150 
1151 
1152 void CodeSection::print(const char* name) {
1153   csize_t locs_size = locs_end() - locs_start();
1154   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1155                 name, start(), end(), limit(), size(), capacity(),
1156                 is_frozen()? " [frozen]": "");
1157   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1158                 name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
1159   if (PrintRelocations) {
1160     RelocIterator iter(this);
1161     iter.print();
1162   }
1163 }
1164 
1165 void CodeBuffer::print() {
1166   if (this == NULL) {
1167     tty->print_cr("NULL CodeBuffer pointer");
1168     return;
1169   }
1170 
1171   tty->print_cr("CodeBuffer:");
1172   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1173     // print each section
1174     CodeSection* cs = code_section(n);
1175     cs->print(code_section_name(n));
1176   }
1177 }
1178 
1179 #endif // PRODUCT