1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/synchronizer.hpp"
  44 #include "runtime/timer.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #include "utilities/debug.hpp"
  47 #include "utilities/macros.hpp"
  48 
  49 #ifndef CC_INTERP
  50 #ifndef FAST_DISPATCH
  51 #define FAST_DISPATCH 1
  52 #endif
  53 #undef FAST_DISPATCH
  54 
  55 
  56 // Generation of Interpreter
  57 //
  58 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
  59 
  60 
  61 #define __ _masm->
  62 
  63 
  64 //----------------------------------------------------------------------------------------------------
  65 
  66 
  67 void InterpreterGenerator::save_native_result(void) {
  68   // result potentially in O0/O1: save it across calls
  69   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  70 
  71   // result potentially in F0/F1: save it across calls
  72   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  73 
  74   // save and restore any potential method result value around the unlocking operation
  75   __ stf(FloatRegisterImpl::D, F0, d_tmp);
  76 #ifdef _LP64
  77   __ stx(O0, l_tmp);
  78 #else
  79   __ std(O0, l_tmp);
  80 #endif
  81 }
  82 
  83 void InterpreterGenerator::restore_native_result(void) {
  84   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  85   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  86 
  87   // Restore any method result value
  88   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
  89 #ifdef _LP64
  90   __ ldx(l_tmp, O0);
  91 #else
  92   __ ldd(l_tmp, O0);
  93 #endif
  94 }
  95 
  96 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
  97   assert(!pass_oop || message == NULL, "either oop or message but not both");
  98   address entry = __ pc();
  99   // expression stack must be empty before entering the VM if an exception happened
 100   __ empty_expression_stack();
 101   // load exception object
 102   __ set((intptr_t)name, G3_scratch);
 103   if (pass_oop) {
 104     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 105   } else {
 106     __ set((intptr_t)message, G4_scratch);
 107     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 108   }
 109   // throw exception
 110   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 111   AddressLiteral thrower(Interpreter::throw_exception_entry());
 112   __ jump_to(thrower, G3_scratch);
 113   __ delayed()->nop();
 114   return entry;
 115 }
 116 
 117 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 118   address entry = __ pc();
 119   // expression stack must be empty before entering the VM if an exception
 120   // happened
 121   __ empty_expression_stack();
 122   // load exception object
 123   __ call_VM(Oexception,
 124              CAST_FROM_FN_PTR(address,
 125                               InterpreterRuntime::throw_ClassCastException),
 126              Otos_i);
 127   __ should_not_reach_here();
 128   return entry;
 129 }
 130 
 131 
 132 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 133   address entry = __ pc();
 134   // expression stack must be empty before entering the VM if an exception happened
 135   __ empty_expression_stack();
 136   // convention: expect aberrant index in register G3_scratch, then shuffle the
 137   // index to G4_scratch for the VM call
 138   __ mov(G3_scratch, G4_scratch);
 139   __ set((intptr_t)name, G3_scratch);
 140   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 141   __ should_not_reach_here();
 142   return entry;
 143 }
 144 
 145 
 146 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 147   address entry = __ pc();
 148   // expression stack must be empty before entering the VM if an exception happened
 149   __ empty_expression_stack();
 150   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 151   __ should_not_reach_here();
 152   return entry;
 153 }
 154 
 155 
 156 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 157   TosState incoming_state = state;
 158 
 159   Label cont;
 160   address compiled_entry = __ pc();
 161 
 162   address entry = __ pc();
 163 #if !defined(_LP64) && defined(COMPILER2)
 164   // All return values are where we want them, except for Longs.  C2 returns
 165   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 166   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 167   // build even if we are returning from interpreted we just do a little
 168   // stupid shuffing.
 169   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 170   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 171   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 172 
 173   if (incoming_state == ltos) {
 174     __ srl (G1,  0, O1);
 175     __ srlx(G1, 32, O0);
 176   }
 177 #endif // !_LP64 && COMPILER2
 178 
 179   __ bind(cont);
 180 
 181   // The callee returns with the stack possibly adjusted by adapter transition
 182   // We remove that possible adjustment here.
 183   // All interpreter local registers are untouched. Any result is passed back
 184   // in the O0/O1 or float registers. Before continuing, the arguments must be
 185   // popped from the java expression stack; i.e., Lesp must be adjusted.
 186 
 187   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 188 
 189   Label L_got_cache, L_giant_index;
 190   const Register cache = G3_scratch;
 191   const Register size  = G1_scratch;
 192   if (EnableInvokeDynamic) {
 193     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode.
 194     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokedynamic, Assembler::equal, Assembler::pn, L_giant_index);
 195   }
 196   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
 197   __ bind(L_got_cache);
 198   __ ld_ptr(cache, ConstantPoolCache::base_offset() +
 199                    ConstantPoolCacheEntry::flags_offset(), size);
 200   __ and3(size, 0xFF, size);                   // argument size in words
 201   __ sll(size, Interpreter::logStackElementSize, size); // each argument size in bytes
 202   __ add(Lesp, size, Lesp);                    // pop arguments
 203   __ dispatch_next(state, step);
 204 
 205   // out of the main line of code...
 206   if (EnableInvokeDynamic) {
 207     __ bind(L_giant_index);
 208     __ get_cache_and_index_at_bcp(cache, G1_scratch, 1, sizeof(u4));
 209     __ ba_short(L_got_cache);
 210   }
 211 
 212   return entry;
 213 }
 214 
 215 
 216 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 217   address entry = __ pc();
 218   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 219   { Label L;
 220     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 221     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 222     __ br_null_short(Gtemp, Assembler::pt, L);
 223     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 224     __ should_not_reach_here();
 225     __ bind(L);
 226   }
 227   __ dispatch_next(state, step);
 228   return entry;
 229 }
 230 
 231 // A result handler converts/unboxes a native call result into
 232 // a java interpreter/compiler result. The current frame is an
 233 // interpreter frame. The activation frame unwind code must be
 234 // consistent with that of TemplateTable::_return(...). In the
 235 // case of native methods, the caller's SP was not modified.
 236 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 237   address entry = __ pc();
 238   Register Itos_i  = Otos_i ->after_save();
 239   Register Itos_l  = Otos_l ->after_save();
 240   Register Itos_l1 = Otos_l1->after_save();
 241   Register Itos_l2 = Otos_l2->after_save();
 242   switch (type) {
 243     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 244     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 245     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 246     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 247     case T_LONG   :
 248 #ifndef _LP64
 249                     __ mov(O1, Itos_l2);  // move other half of long
 250 #endif              // ifdef or no ifdef, fall through to the T_INT case
 251     case T_INT    : __ mov(O0, Itos_i);                         break;
 252     case T_VOID   : /* nothing to do */                         break;
 253     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 254     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 255     case T_OBJECT :
 256       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 257       __ verify_oop(Itos_i);
 258       break;
 259     default       : ShouldNotReachHere();
 260   }
 261   __ ret();                           // return from interpreter activation
 262   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 263   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 264   return entry;
 265 }
 266 
 267 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 268   address entry = __ pc();
 269   __ push(state);
 270   __ call_VM(noreg, runtime_entry);
 271   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 272   return entry;
 273 }
 274 
 275 
 276 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 277   address entry = __ pc();
 278   __ dispatch_next(state);
 279   return entry;
 280 }
 281 
 282 //
 283 // Helpers for commoning out cases in the various type of method entries.
 284 //
 285 
 286 // increment invocation count & check for overflow
 287 //
 288 // Note: checking for negative value instead of overflow
 289 //       so we have a 'sticky' overflow test
 290 //
 291 // Lmethod: method
 292 // ??: invocation counter
 293 //
 294 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 295   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 296   if (TieredCompilation) {
 297     const int increment = InvocationCounter::count_increment;
 298     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
 299     Label no_mdo, done;
 300     if (ProfileInterpreter) {
 301       // If no method data exists, go to profile_continue.
 302       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 303       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 304       // Increment counter
 305       Address mdo_invocation_counter(G4_scratch,
 306                                      in_bytes(MethodData::invocation_counter_offset()) +
 307                                      in_bytes(InvocationCounter::counter_offset()));
 308       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 309                                  G3_scratch, Lscratch,
 310                                  Assembler::zero, overflow);
 311       __ ba_short(done);
 312     }
 313 
 314     // Increment counter in Method*
 315     __ bind(no_mdo);
 316     Address invocation_counter(Lmethod,
 317                                in_bytes(Method::invocation_counter_offset()) +
 318                                in_bytes(InvocationCounter::counter_offset()));
 319     __ increment_mask_and_jump(invocation_counter, increment, mask,
 320                                G3_scratch, Lscratch,
 321                                Assembler::zero, overflow);
 322     __ bind(done);
 323   } else {
 324     // Update standard invocation counters
 325     __ increment_invocation_counter(O0, G3_scratch);
 326     if (ProfileInterpreter) {  // %%% Merge this into MethodData*
 327       Address interpreter_invocation_counter(Lmethod,in_bytes(Method::interpreter_invocation_counter_offset()));
 328       __ ld(interpreter_invocation_counter, G3_scratch);
 329       __ inc(G3_scratch);
 330       __ st(G3_scratch, interpreter_invocation_counter);
 331     }
 332 
 333     if (ProfileInterpreter && profile_method != NULL) {
 334       // Test to see if we should create a method data oop
 335       AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
 336       __ load_contents(profile_limit, G3_scratch);
 337       __ cmp_and_br_short(O0, G3_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 338 
 339       // if no method data exists, go to profile_method
 340       __ test_method_data_pointer(*profile_method);
 341     }
 342 
 343     AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
 344     __ load_contents(invocation_limit, G3_scratch);
 345     __ cmp(O0, G3_scratch);
 346     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 347     __ delayed()->nop();
 348   }
 349 
 350 }
 351 
 352 // Allocate monitor and lock method (asm interpreter)
 353 // ebx - Method*
 354 //
 355 void InterpreterGenerator::lock_method(void) {
 356   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 357 
 358 #ifdef ASSERT
 359  { Label ok;
 360    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 361    __ br( Assembler::notZero, false, Assembler::pt, ok);
 362    __ delayed()->nop();
 363    __ stop("method doesn't need synchronization");
 364    __ bind(ok);
 365   }
 366 #endif // ASSERT
 367 
 368   // get synchronization object to O0
 369   { Label done;
 370     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 371     __ btst(JVM_ACC_STATIC, O0);
 372     __ br( Assembler::zero, true, Assembler::pt, done);
 373     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 374 
 375     __ ld_ptr( Lmethod, in_bytes(Method::const_offset()), O0);
 376     __ ld_ptr( O0, in_bytes(ConstMethod::constants_offset()), O0);
 377     __ ld_ptr( O0, ConstantPool::pool_holder_offset_in_bytes(), O0);
 378 
 379     // lock the mirror, not the Klass*
 380     __ ld_ptr( O0, mirror_offset, O0);
 381 
 382 #ifdef ASSERT
 383     __ tst(O0);
 384     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 385 #endif // ASSERT
 386 
 387     __ bind(done);
 388   }
 389 
 390   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 391   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 392   // __ untested("lock_object from method entry");
 393   __ lock_object(Lmonitors, O0);
 394 }
 395 
 396 
 397 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 398                                                          Register Rscratch,
 399                                                          Register Rscratch2) {
 400   const int page_size = os::vm_page_size();
 401   Label after_frame_check;
 402 
 403   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
 404 
 405   __ set(page_size, Rscratch);
 406   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 407 
 408   // get the stack base, and in debug, verify it is non-zero
 409   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
 410 #ifdef ASSERT
 411   Label base_not_zero;
 412   __ br_notnull_short(Rscratch, Assembler::pn, base_not_zero);
 413   __ stop("stack base is zero in generate_stack_overflow_check");
 414   __ bind(base_not_zero);
 415 #endif
 416 
 417   // get the stack size, and in debug, verify it is non-zero
 418   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
 419   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
 420 #ifdef ASSERT
 421   Label size_not_zero;
 422   __ br_notnull_short(Rscratch2, Assembler::pn, size_not_zero);
 423   __ stop("stack size is zero in generate_stack_overflow_check");
 424   __ bind(size_not_zero);
 425 #endif
 426 
 427   // compute the beginning of the protected zone minus the requested frame size
 428   __ sub( Rscratch, Rscratch2,   Rscratch );
 429   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
 430   __ add( Rscratch, Rscratch2,   Rscratch );
 431 
 432   // Add in the size of the frame (which is the same as subtracting it from the
 433   // SP, which would take another register
 434   __ add( Rscratch, Rframe_size, Rscratch );
 435 
 436   // the frame is greater than one page in size, so check against
 437   // the bottom of the stack
 438   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 439 
 440   // the stack will overflow, throw an exception
 441 
 442   // Note that SP is restored to sender's sp (in the delay slot). This
 443   // is necessary if the sender's frame is an extended compiled frame
 444   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 445   // adaptations.
 446 
 447   // Note also that the restored frame is not necessarily interpreted.
 448   // Use the shared runtime version of the StackOverflowError.
 449   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 450   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 451   __ jump_to(stub, Rscratch);
 452   __ delayed()->mov(O5_savedSP, SP);
 453 
 454   // if you get to here, then there is enough stack space
 455   __ bind( after_frame_check );
 456 }
 457 
 458 
 459 //
 460 // Generate a fixed interpreter frame. This is identical setup for interpreted
 461 // methods and for native methods hence the shared code.
 462 
 463 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 464   //
 465   //
 466   // The entry code sets up a new interpreter frame in 4 steps:
 467   //
 468   // 1) Increase caller's SP by for the extra local space needed:
 469   //    (check for overflow)
 470   //    Efficient implementation of xload/xstore bytecodes requires
 471   //    that arguments and non-argument locals are in a contigously
 472   //    addressable memory block => non-argument locals must be
 473   //    allocated in the caller's frame.
 474   //
 475   // 2) Create a new stack frame and register window:
 476   //    The new stack frame must provide space for the standard
 477   //    register save area, the maximum java expression stack size,
 478   //    the monitor slots (0 slots initially), and some frame local
 479   //    scratch locations.
 480   //
 481   // 3) The following interpreter activation registers must be setup:
 482   //    Lesp       : expression stack pointer
 483   //    Lbcp       : bytecode pointer
 484   //    Lmethod    : method
 485   //    Llocals    : locals pointer
 486   //    Lmonitors  : monitor pointer
 487   //    LcpoolCache: constant pool cache
 488   //
 489   // 4) Initialize the non-argument locals if necessary:
 490   //    Non-argument locals may need to be initialized to NULL
 491   //    for GC to work. If the oop-map information is accurate
 492   //    (in the absence of the JSR problem), no initialization
 493   //    is necessary.
 494   //
 495   // (gri - 2/25/2000)
 496 
 497 
 498   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 499 
 500   const int extra_space =
 501     rounded_vm_local_words +                   // frame local scratch space
 502     //6815692//Method::extra_stack_words() +       // extra push slots for MH adapters
 503     frame::memory_parameter_word_sp_offset +   // register save area
 504     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 505 
 506   const Register Glocals_size = G3;
 507   const Register RconstMethod = Glocals_size;
 508   const Register Otmp1 = O3;
 509   const Register Otmp2 = O4;
 510   // Lscratch can't be used as a temporary because the call_stub uses
 511   // it to assert that the stack frame was setup correctly.
 512   const Address constMethod       (G5_method, Method::const_offset());
 513   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
 514 
 515   __ ld_ptr( constMethod, RconstMethod );
 516   __ lduh( size_of_parameters, Glocals_size);
 517 
 518   // Gargs points to first local + BytesPerWord
 519   // Set the saved SP after the register window save
 520   //
 521   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 522   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 523   __ add(Gargs, Otmp1, Gargs);
 524 
 525   if (native_call) {
 526     __ calc_mem_param_words( Glocals_size, Gframe_size );
 527     __ add( Gframe_size,  extra_space, Gframe_size);
 528     __ round_to( Gframe_size, WordsPerLong );
 529     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 530   } else {
 531 
 532     //
 533     // Compute number of locals in method apart from incoming parameters
 534     //
 535     const Address size_of_locals    (Otmp1, ConstMethod::size_of_locals_offset());
 536     __ ld_ptr( constMethod, Otmp1 );
 537     __ lduh( size_of_locals, Otmp1 );
 538     __ sub( Otmp1, Glocals_size, Glocals_size );
 539     __ round_to( Glocals_size, WordsPerLong );
 540     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
 541 
 542     // see if the frame is greater than one page in size. If so,
 543     // then we need to verify there is enough stack space remaining
 544     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 545     __ ld_ptr( constMethod, Gframe_size );
 546     __ lduh( Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size );
 547     __ add( Gframe_size, extra_space, Gframe_size );
 548     __ round_to( Gframe_size, WordsPerLong );
 549     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 550 
 551     // Add in java locals size for stack overflow check only
 552     __ add( Gframe_size, Glocals_size, Gframe_size );
 553 
 554     const Register Otmp2 = O4;
 555     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 556     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
 557 
 558     __ sub( Gframe_size, Glocals_size, Gframe_size);
 559 
 560     //
 561     // bump SP to accomodate the extra locals
 562     //
 563     __ sub( SP, Glocals_size, SP );
 564   }
 565 
 566   //
 567   // now set up a stack frame with the size computed above
 568   //
 569   __ neg( Gframe_size );
 570   __ save( SP, Gframe_size, SP );
 571 
 572   //
 573   // now set up all the local cache registers
 574   //
 575   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 576   // that all present references to Lbyte_code initialize the register
 577   // immediately before use
 578   if (native_call) {
 579     __ mov(G0, Lbcp);
 580   } else {
 581     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 582     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 583   }
 584   __ mov( G5_method, Lmethod);                 // set Lmethod
 585   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 586   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 587 #ifdef _LP64
 588   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 589 #endif
 590   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 591 
 592   // setup interpreter activation registers
 593   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 594 
 595   if (ProfileInterpreter) {
 596 #ifdef FAST_DISPATCH
 597     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 598     // they both use I2.
 599     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 600 #endif // FAST_DISPATCH
 601     __ set_method_data_pointer();
 602   }
 603 
 604 }
 605 
 606 // Empty method, generate a very fast return.
 607 
 608 address InterpreterGenerator::generate_empty_entry(void) {
 609 
 610   // A method that does nother but return...
 611 
 612   address entry = __ pc();
 613   Label slow_path;
 614 
 615   // do nothing for empty methods (do not even increment invocation counter)
 616   if ( UseFastEmptyMethods) {
 617     // If we need a safepoint check, generate full interpreter entry.
 618     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 619     __ set(sync_state, G3_scratch);
 620     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
 621 
 622     // Code: _return
 623     __ retl();
 624     __ delayed()->mov(O5_savedSP, SP);
 625 
 626     __ bind(slow_path);
 627     (void) generate_normal_entry(false);
 628 
 629     return entry;
 630   }
 631   return NULL;
 632 }
 633 
 634 // Call an accessor method (assuming it is resolved, otherwise drop into
 635 // vanilla (slow path) entry
 636 
 637 // Generates code to elide accessor methods
 638 // Uses G3_scratch and G1_scratch as scratch
 639 address InterpreterGenerator::generate_accessor_entry(void) {
 640 
 641   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
 642   // parameter size = 1
 643   // Note: We can only use this code if the getfield has been resolved
 644   //       and if we don't have a null-pointer exception => check for
 645   //       these conditions first and use slow path if necessary.
 646   address entry = __ pc();
 647   Label slow_path;
 648 
 649 
 650   // XXX: for compressed oops pointer loading and decoding doesn't fit in
 651   // delay slot and damages G1
 652   if ( UseFastAccessorMethods && !UseCompressedOops ) {
 653     // Check if we need to reach a safepoint and generate full interpreter
 654     // frame if so.
 655     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 656     __ load_contents(sync_state, G3_scratch);
 657     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 658     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
 659 
 660     // Check if local 0 != NULL
 661     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 662     // check if local 0 == NULL and go the slow path
 663     __ br_null_short(Otos_i, Assembler::pn, slow_path);
 664 
 665 
 666     // read first instruction word and extract bytecode @ 1 and index @ 2
 667     // get first 4 bytes of the bytecodes (big endian!)
 668     __ ld_ptr(G5_method, Method::const_offset(), G1_scratch);
 669     __ ld(G1_scratch, ConstMethod::codes_offset(), G1_scratch);
 670 
 671     // move index @ 2 far left then to the right most two bytes.
 672     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
 673     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
 674                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
 675 
 676     // get constant pool cache
 677     __ ld_ptr(G5_method, Method::const_offset(), G3_scratch);
 678     __ ld_ptr(G3_scratch, ConstMethod::constants_offset(), G3_scratch);
 679     __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
 680 
 681     // get specific constant pool cache entry
 682     __ add(G3_scratch, G1_scratch, G3_scratch);
 683 
 684     // Check the constant Pool cache entry to see if it has been resolved.
 685     // If not, need the slow path.
 686     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
 687     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
 688     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
 689     __ and3(G1_scratch, 0xFF, G1_scratch);
 690     __ cmp_and_br_short(G1_scratch, Bytecodes::_getfield, Assembler::notEqual, Assembler::pn, slow_path);
 691 
 692     // Get the type and return field offset from the constant pool cache
 693     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
 694     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
 695 
 696     Label xreturn_path;
 697     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 698     // because they are different sizes.
 699     // Get the type from the constant pool cache
 700     __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
 701     // Make sure we don't need to mask G1_scratch after the above shift
 702     ConstantPoolCacheEntry::verify_tos_state_shift();
 703     __ cmp(G1_scratch, atos );
 704     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 705     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
 706     __ cmp(G1_scratch, itos);
 707     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 708     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
 709     __ cmp(G1_scratch, stos);
 710     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 711     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
 712     __ cmp(G1_scratch, ctos);
 713     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 714     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
 715 #ifdef ASSERT
 716     __ cmp(G1_scratch, btos);
 717     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 718     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
 719     __ should_not_reach_here();
 720 #endif
 721     __ ldsb(Otos_i, G3_scratch, Otos_i);
 722     __ bind(xreturn_path);
 723 
 724     // _ireturn/_areturn
 725     __ retl();                      // return from leaf routine
 726     __ delayed()->mov(O5_savedSP, SP);
 727 
 728     // Generate regular method entry
 729     __ bind(slow_path);
 730     (void) generate_normal_entry(false);
 731     return entry;
 732   }
 733   return NULL;
 734 }
 735 
 736 // Method entry for java.lang.ref.Reference.get.
 737 address InterpreterGenerator::generate_Reference_get_entry(void) {
 738 #if INCLUDE_ALL_GCS
 739   // Code: _aload_0, _getfield, _areturn
 740   // parameter size = 1
 741   //
 742   // The code that gets generated by this routine is split into 2 parts:
 743   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 744   //    2. The slow path - which is an expansion of the regular method entry.
 745   //
 746   // Notes:-
 747   // * In the G1 code we do not check whether we need to block for
 748   //   a safepoint. If G1 is enabled then we must execute the specialized
 749   //   code for Reference.get (except when the Reference object is null)
 750   //   so that we can log the value in the referent field with an SATB
 751   //   update buffer.
 752   //   If the code for the getfield template is modified so that the
 753   //   G1 pre-barrier code is executed when the current method is
 754   //   Reference.get() then going through the normal method entry
 755   //   will be fine.
 756   // * The G1 code can, however, check the receiver object (the instance
 757   //   of java.lang.Reference) and jump to the slow path if null. If the
 758   //   Reference object is null then we obviously cannot fetch the referent
 759   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 760   //   regular method entry code to generate the NPE.
 761   //
 762   // This code is based on generate_accessor_enty.
 763 
 764   address entry = __ pc();
 765 
 766   const int referent_offset = java_lang_ref_Reference::referent_offset;
 767   guarantee(referent_offset > 0, "referent offset not initialized");
 768 
 769   if (UseG1GC) {
 770      Label slow_path;
 771 
 772     // In the G1 code we don't check if we need to reach a safepoint. We
 773     // continue and the thread will safepoint at the next bytecode dispatch.
 774 
 775     // Check if local 0 != NULL
 776     // If the receiver is null then it is OK to jump to the slow path.
 777     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 778     // check if local 0 == NULL and go the slow path
 779     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 780 
 781 
 782     // Load the value of the referent field.
 783     if (Assembler::is_simm13(referent_offset)) {
 784       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 785     } else {
 786       __ set(referent_offset, G3_scratch);
 787       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 788     }
 789 
 790     // Generate the G1 pre-barrier code to log the value of
 791     // the referent field in an SATB buffer. Note with
 792     // these parameters the pre-barrier does not generate
 793     // the load of the previous value
 794 
 795     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 796                             Otos_i /* pre_val */,
 797                             G3_scratch /* tmp */,
 798                             true /* preserve_o_regs */);
 799 
 800     // _areturn
 801     __ retl();                      // return from leaf routine
 802     __ delayed()->mov(O5_savedSP, SP);
 803 
 804     // Generate regular method entry
 805     __ bind(slow_path);
 806     (void) generate_normal_entry(false);
 807     return entry;
 808   }
 809 #endif // INCLUDE_ALL_GCS
 810 
 811   // If G1 is not enabled then attempt to go through the accessor entry point
 812   // Reference.get is an accessor
 813   return generate_accessor_entry();
 814 }
 815 
 816 //
 817 // Interpreter stub for calling a native method. (asm interpreter)
 818 // This sets up a somewhat different looking stack for calling the native method
 819 // than the typical interpreter frame setup.
 820 //
 821 
 822 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 823   address entry = __ pc();
 824 
 825   // the following temporary registers are used during frame creation
 826   const Register Gtmp1 = G3_scratch ;
 827   const Register Gtmp2 = G1_scratch;
 828   bool inc_counter  = UseCompiler || CountCompiledCalls;
 829 
 830   // make sure registers are different!
 831   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 832 
 833   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
 834 
 835   const Register Glocals_size = G3;
 836   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 837 
 838   // make sure method is native & not abstract
 839   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 840 #ifdef ASSERT
 841   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
 842   {
 843     Label L;
 844     __ btst(JVM_ACC_NATIVE, Gtmp1);
 845     __ br(Assembler::notZero, false, Assembler::pt, L);
 846     __ delayed()->nop();
 847     __ stop("tried to execute non-native method as native");
 848     __ bind(L);
 849   }
 850   { Label L;
 851     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 852     __ br(Assembler::zero, false, Assembler::pt, L);
 853     __ delayed()->nop();
 854     __ stop("tried to execute abstract method as non-abstract");
 855     __ bind(L);
 856   }
 857 #endif // ASSERT
 858 
 859  // generate the code to allocate the interpreter stack frame
 860   generate_fixed_frame(true);
 861 
 862   //
 863   // No locals to initialize for native method
 864   //
 865 
 866   // this slot will be set later, we initialize it to null here just in
 867   // case we get a GC before the actual value is stored later
 868   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
 869 
 870   const Address do_not_unlock_if_synchronized(G2_thread,
 871     JavaThread::do_not_unlock_if_synchronized_offset());
 872   // Since at this point in the method invocation the exception handler
 873   // would try to exit the monitor of synchronized methods which hasn't
 874   // been entered yet, we set the thread local variable
 875   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 876   // runtime, exception handling i.e. unlock_if_synchronized_method will
 877   // check this thread local flag.
 878   // This flag has two effects, one is to force an unwind in the topmost
 879   // interpreter frame and not perform an unlock while doing so.
 880 
 881   __ movbool(true, G3_scratch);
 882   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 883 
 884   // increment invocation counter and check for overflow
 885   //
 886   // Note: checking for negative value instead of overflow
 887   //       so we have a 'sticky' overflow test (may be of
 888   //       importance as soon as we have true MT/MP)
 889   Label invocation_counter_overflow;
 890   Label Lcontinue;
 891   if (inc_counter) {
 892     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 893 
 894   }
 895   __ bind(Lcontinue);
 896 
 897   bang_stack_shadow_pages(true);
 898 
 899   // reset the _do_not_unlock_if_synchronized flag
 900   __ stbool(G0, do_not_unlock_if_synchronized);
 901 
 902   // check for synchronized methods
 903   // Must happen AFTER invocation_counter check and stack overflow check,
 904   // so method is not locked if overflows.
 905 
 906   if (synchronized) {
 907     lock_method();
 908   } else {
 909 #ifdef ASSERT
 910     { Label ok;
 911       __ ld(Laccess_flags, O0);
 912       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 913       __ br( Assembler::zero, false, Assembler::pt, ok);
 914       __ delayed()->nop();
 915       __ stop("method needs synchronization");
 916       __ bind(ok);
 917     }
 918 #endif // ASSERT
 919   }
 920 
 921 
 922   // start execution
 923   __ verify_thread();
 924 
 925   // JVMTI support
 926   __ notify_method_entry();
 927 
 928   // native call
 929 
 930   // (note that O0 is never an oop--at most it is a handle)
 931   // It is important not to smash any handles created by this call,
 932   // until any oop handle in O0 is dereferenced.
 933 
 934   // (note that the space for outgoing params is preallocated)
 935 
 936   // get signature handler
 937   { Label L;
 938     Address signature_handler(Lmethod, Method::signature_handler_offset());
 939     __ ld_ptr(signature_handler, G3_scratch);
 940     __ br_notnull_short(G3_scratch, Assembler::pt, L);
 941     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
 942     __ ld_ptr(signature_handler, G3_scratch);
 943     __ bind(L);
 944   }
 945 
 946   // Push a new frame so that the args will really be stored in
 947   // Copy a few locals across so the new frame has the variables
 948   // we need but these values will be dead at the jni call and
 949   // therefore not gc volatile like the values in the current
 950   // frame (Lmethod in particular)
 951 
 952   // Flush the method pointer to the register save area
 953   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 954   __ mov(Llocals, O1);
 955 
 956   // calculate where the mirror handle body is allocated in the interpreter frame:
 957   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
 958 
 959   // Calculate current frame size
 960   __ sub(SP, FP, O3);         // Calculate negative of current frame size
 961   __ save(SP, O3, SP);        // Allocate an identical sized frame
 962 
 963   // Note I7 has leftover trash. Slow signature handler will fill it in
 964   // should we get there. Normal jni call will set reasonable last_Java_pc
 965   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 966   // in it).
 967 
 968   // Load interpreter frame's Lmethod into same register here
 969 
 970   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 971 
 972   __ mov(I1, Llocals);
 973   __ mov(I2, Lscratch2);     // save the address of the mirror
 974 
 975 
 976   // ONLY Lmethod and Llocals are valid here!
 977 
 978   // call signature handler, It will move the arg properly since Llocals in current frame
 979   // matches that in outer frame
 980 
 981   __ callr(G3_scratch, 0);
 982   __ delayed()->nop();
 983 
 984   // Result handler is in Lscratch
 985 
 986   // Reload interpreter frame's Lmethod since slow signature handler may block
 987   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 988 
 989   { Label not_static;
 990 
 991     __ ld(Laccess_flags, O0);
 992     __ btst(JVM_ACC_STATIC, O0);
 993     __ br( Assembler::zero, false, Assembler::pt, not_static);
 994     // get native function entry point(O0 is a good temp until the very end)
 995     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
 996     // for static methods insert the mirror argument
 997     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 998 
 999     __ ld_ptr(Lmethod, Method:: const_offset(), O1);
1000     __ ld_ptr(O1, ConstMethod::constants_offset(), O1);
1001     __ ld_ptr(O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
1002     __ ld_ptr(O1, mirror_offset, O1);
1003 #ifdef ASSERT
1004     if (!PrintSignatureHandlers)  // do not dirty the output with this
1005     { Label L;
1006       __ br_notnull_short(O1, Assembler::pt, L);
1007       __ stop("mirror is missing");
1008       __ bind(L);
1009     }
1010 #endif // ASSERT
1011     __ st_ptr(O1, Lscratch2, 0);
1012     __ mov(Lscratch2, O1);
1013     __ bind(not_static);
1014   }
1015 
1016   // At this point, arguments have been copied off of stack into
1017   // their JNI positions, which are O1..O5 and SP[68..].
1018   // Oops are boxed in-place on the stack, with handles copied to arguments.
1019   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1020 
1021 #ifdef ASSERT
1022   { Label L;
1023     __ br_notnull_short(O0, Assembler::pt, L);
1024     __ stop("native entry point is missing");
1025     __ bind(L);
1026   }
1027 #endif // ASSERT
1028 
1029   //
1030   // setup the frame anchor
1031   //
1032   // The scavenge function only needs to know that the PC of this frame is
1033   // in the interpreter method entry code, it doesn't need to know the exact
1034   // PC and hence we can use O7 which points to the return address from the
1035   // previous call in the code stream (signature handler function)
1036   //
1037   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1038   // we have pushed the extra frame in order to protect the volatile register(s)
1039   // in that frame when we return from the jni call
1040   //
1041 
1042   __ set_last_Java_frame(FP, O7);
1043   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1044                    // not meaningless information that'll confuse me.
1045 
1046   // flush the windows now. We don't care about the current (protection) frame
1047   // only the outer frames
1048 
1049   __ flush_windows();
1050 
1051   // mark windows as flushed
1052   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1053   __ set(JavaFrameAnchor::flushed, G3_scratch);
1054   __ st(G3_scratch, flags);
1055 
1056   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1057 
1058   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1059 #ifdef ASSERT
1060   { Label L;
1061     __ ld(thread_state, G3_scratch);
1062     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1063     __ stop("Wrong thread state in native stub");
1064     __ bind(L);
1065   }
1066 #endif // ASSERT
1067   __ set(_thread_in_native, G3_scratch);
1068   __ st(G3_scratch, thread_state);
1069 
1070   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1071   __ save_thread(L7_thread_cache); // save Gthread
1072   __ callr(O0, 0);
1073   __ delayed()->
1074      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1075 
1076   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1077 
1078   __ restore_thread(L7_thread_cache); // restore G2_thread
1079   __ reinit_heapbase();
1080 
1081   // must we block?
1082 
1083   // Block, if necessary, before resuming in _thread_in_Java state.
1084   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1085   { Label no_block;
1086     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1087 
1088     // Switch thread to "native transition" state before reading the synchronization state.
1089     // This additional state is necessary because reading and testing the synchronization
1090     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1091     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1092     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1093     //     Thread A is resumed to finish this native method, but doesn't block here since it
1094     //     didn't see any synchronization is progress, and escapes.
1095     __ set(_thread_in_native_trans, G3_scratch);
1096     __ st(G3_scratch, thread_state);
1097     if(os::is_MP()) {
1098       if (UseMembar) {
1099         // Force this write out before the read below
1100         __ membar(Assembler::StoreLoad);
1101       } else {
1102         // Write serialization page so VM thread can do a pseudo remote membar.
1103         // We use the current thread pointer to calculate a thread specific
1104         // offset to write to within the page. This minimizes bus traffic
1105         // due to cache line collision.
1106         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1107       }
1108     }
1109     __ load_contents(sync_state, G3_scratch);
1110     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1111 
1112     Label L;
1113     __ br(Assembler::notEqual, false, Assembler::pn, L);
1114     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1115     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1116     __ bind(L);
1117 
1118     // Block.  Save any potential method result value before the operation and
1119     // use a leaf call to leave the last_Java_frame setup undisturbed.
1120     save_native_result();
1121     __ call_VM_leaf(L7_thread_cache,
1122                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1123                     G2_thread);
1124 
1125     // Restore any method result value
1126     restore_native_result();
1127     __ bind(no_block);
1128   }
1129 
1130   // Clear the frame anchor now
1131 
1132   __ reset_last_Java_frame();
1133 
1134   // Move the result handler address
1135   __ mov(Lscratch, G3_scratch);
1136   // return possible result to the outer frame
1137 #ifndef __LP64
1138   __ mov(O0, I0);
1139   __ restore(O1, G0, O1);
1140 #else
1141   __ restore(O0, G0, O0);
1142 #endif /* __LP64 */
1143 
1144   // Move result handler to expected register
1145   __ mov(G3_scratch, Lscratch);
1146 
1147   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1148   // switch to thread_in_Java.
1149 
1150   __ set(_thread_in_Java, G3_scratch);
1151   __ st(G3_scratch, thread_state);
1152 
1153   // reset handle block
1154   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1155   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1156 
1157   // If we have an oop result store it where it will be safe for any further gc
1158   // until we return now that we've released the handle it might be protected by
1159 
1160   {
1161     Label no_oop, store_result;
1162 
1163     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1164     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1165     __ addcc(G0, O0, O0);
1166     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
1167     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
1168     __ mov(G0, O0);
1169 
1170     __ bind(store_result);
1171     // Store it where gc will look for it and result handler expects it.
1172     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1173 
1174     __ bind(no_oop);
1175 
1176   }
1177 
1178 
1179   // handle exceptions (exception handling will handle unlocking!)
1180   { Label L;
1181     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1182     __ ld_ptr(exception_addr, Gtemp);
1183     __ br_null_short(Gtemp, Assembler::pt, L);
1184     // Note: This could be handled more efficiently since we know that the native
1185     //       method doesn't have an exception handler. We could directly return
1186     //       to the exception handler for the caller.
1187     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1188     __ should_not_reach_here();
1189     __ bind(L);
1190   }
1191 
1192   // JVMTI support (preserves thread register)
1193   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1194 
1195   if (synchronized) {
1196     // save and restore any potential method result value around the unlocking operation
1197     save_native_result();
1198 
1199     __ add( __ top_most_monitor(), O1);
1200     __ unlock_object(O1);
1201 
1202     restore_native_result();
1203   }
1204 
1205 #if defined(COMPILER2) && !defined(_LP64)
1206 
1207   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1208   // or compiled so just be safe.
1209 
1210   __ sllx(O0, 32, G1);          // Shift bits into high G1
1211   __ srl (O1, 0, O1);           // Zero extend O1
1212   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1213 
1214 #endif /* COMPILER2 && !_LP64 */
1215 
1216   // dispose of return address and remove activation
1217 #ifdef ASSERT
1218   {
1219     Label ok;
1220     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1221     __ stop("bad I5_savedSP value");
1222     __ should_not_reach_here();
1223     __ bind(ok);
1224   }
1225 #endif
1226   if (TraceJumps) {
1227     // Move target to register that is recordable
1228     __ mov(Lscratch, G3_scratch);
1229     __ JMP(G3_scratch, 0);
1230   } else {
1231     __ jmp(Lscratch, 0);
1232   }
1233   __ delayed()->nop();
1234 
1235 
1236   if (inc_counter) {
1237     // handle invocation counter overflow
1238     __ bind(invocation_counter_overflow);
1239     generate_counter_overflow(Lcontinue);
1240   }
1241 
1242 
1243 
1244   return entry;
1245 }
1246 
1247 
1248 // Generic method entry to (asm) interpreter
1249 //------------------------------------------------------------------------------------------------------------------------
1250 //
1251 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1252   address entry = __ pc();
1253 
1254   bool inc_counter  = UseCompiler || CountCompiledCalls;
1255 
1256   // the following temporary registers are used during frame creation
1257   const Register Gtmp1 = G3_scratch ;
1258   const Register Gtmp2 = G1_scratch;
1259 
1260   // make sure registers are different!
1261   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1262 
1263   const Address constMethod       (G5_method, Method::const_offset());
1264   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1265   // and use in the asserts.
1266   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1267 
1268   const Register Glocals_size = G3;
1269   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1270 
1271   // make sure method is not native & not abstract
1272   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1273 #ifdef ASSERT
1274   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1275   {
1276     Label L;
1277     __ btst(JVM_ACC_NATIVE, Gtmp1);
1278     __ br(Assembler::zero, false, Assembler::pt, L);
1279     __ delayed()->nop();
1280     __ stop("tried to execute native method as non-native");
1281     __ bind(L);
1282   }
1283   { Label L;
1284     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1285     __ br(Assembler::zero, false, Assembler::pt, L);
1286     __ delayed()->nop();
1287     __ stop("tried to execute abstract method as non-abstract");
1288     __ bind(L);
1289   }
1290 #endif // ASSERT
1291 
1292   // generate the code to allocate the interpreter stack frame
1293 
1294   generate_fixed_frame(false);
1295 
1296 #ifdef FAST_DISPATCH
1297   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1298                                           // set bytecode dispatch table base
1299 #endif
1300 
1301   //
1302   // Code to initialize the extra (i.e. non-parm) locals
1303   //
1304   Register init_value = noreg;    // will be G0 if we must clear locals
1305   // The way the code was setup before zerolocals was always true for vanilla java entries.
1306   // It could only be false for the specialized entries like accessor or empty which have
1307   // no extra locals so the testing was a waste of time and the extra locals were always
1308   // initialized. We removed this extra complication to already over complicated code.
1309 
1310   init_value = G0;
1311   Label clear_loop;
1312 
1313   const Register RconstMethod = O1;
1314   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1315   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
1316 
1317   // NOTE: If you change the frame layout, this code will need to
1318   // be updated!
1319   __ ld_ptr( constMethod, RconstMethod );
1320   __ lduh( size_of_locals, O2 );
1321   __ lduh( size_of_parameters, O1 );
1322   __ sll( O2, Interpreter::logStackElementSize, O2);
1323   __ sll( O1, Interpreter::logStackElementSize, O1 );
1324   __ sub( Llocals, O2, O2 );
1325   __ sub( Llocals, O1, O1 );
1326 
1327   __ bind( clear_loop );
1328   __ inc( O2, wordSize );
1329 
1330   __ cmp( O2, O1 );
1331   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1332   __ delayed()->st_ptr( init_value, O2, 0 );
1333 
1334   const Address do_not_unlock_if_synchronized(G2_thread,
1335     JavaThread::do_not_unlock_if_synchronized_offset());
1336   // Since at this point in the method invocation the exception handler
1337   // would try to exit the monitor of synchronized methods which hasn't
1338   // been entered yet, we set the thread local variable
1339   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1340   // runtime, exception handling i.e. unlock_if_synchronized_method will
1341   // check this thread local flag.
1342   __ movbool(true, G3_scratch);
1343   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1344 
1345   // increment invocation counter and check for overflow
1346   //
1347   // Note: checking for negative value instead of overflow
1348   //       so we have a 'sticky' overflow test (may be of
1349   //       importance as soon as we have true MT/MP)
1350   Label invocation_counter_overflow;
1351   Label profile_method;
1352   Label profile_method_continue;
1353   Label Lcontinue;
1354   if (inc_counter) {
1355     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1356     if (ProfileInterpreter) {
1357       __ bind(profile_method_continue);
1358     }
1359   }
1360   __ bind(Lcontinue);
1361 
1362   bang_stack_shadow_pages(false);
1363 
1364   // reset the _do_not_unlock_if_synchronized flag
1365   __ stbool(G0, do_not_unlock_if_synchronized);
1366 
1367   // check for synchronized methods
1368   // Must happen AFTER invocation_counter check and stack overflow check,
1369   // so method is not locked if overflows.
1370 
1371   if (synchronized) {
1372     lock_method();
1373   } else {
1374 #ifdef ASSERT
1375     { Label ok;
1376       __ ld(access_flags, O0);
1377       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1378       __ br( Assembler::zero, false, Assembler::pt, ok);
1379       __ delayed()->nop();
1380       __ stop("method needs synchronization");
1381       __ bind(ok);
1382     }
1383 #endif // ASSERT
1384   }
1385 
1386   // start execution
1387 
1388   __ verify_thread();
1389 
1390   // jvmti support
1391   __ notify_method_entry();
1392 
1393   // start executing instructions
1394   __ dispatch_next(vtos);
1395 
1396 
1397   if (inc_counter) {
1398     if (ProfileInterpreter) {
1399       // We have decided to profile this method in the interpreter
1400       __ bind(profile_method);
1401 
1402       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1403       __ set_method_data_pointer_for_bcp();
1404       __ ba_short(profile_method_continue);
1405     }
1406 
1407     // handle invocation counter overflow
1408     __ bind(invocation_counter_overflow);
1409     generate_counter_overflow(Lcontinue);
1410   }
1411 
1412 
1413   return entry;
1414 }
1415 
1416 
1417 //----------------------------------------------------------------------------------------------------
1418 // Entry points & stack frame layout
1419 //
1420 // Here we generate the various kind of entries into the interpreter.
1421 // The two main entry type are generic bytecode methods and native call method.
1422 // These both come in synchronized and non-synchronized versions but the
1423 // frame layout they create is very similar. The other method entry
1424 // types are really just special purpose entries that are really entry
1425 // and interpretation all in one. These are for trivial methods like
1426 // accessor, empty, or special math methods.
1427 //
1428 // When control flow reaches any of the entry types for the interpreter
1429 // the following holds ->
1430 //
1431 // C2 Calling Conventions:
1432 //
1433 // The entry code below assumes that the following registers are set
1434 // when coming in:
1435 //    G5_method: holds the Method* of the method to call
1436 //    Lesp:    points to the TOS of the callers expression stack
1437 //             after having pushed all the parameters
1438 //
1439 // The entry code does the following to setup an interpreter frame
1440 //   pop parameters from the callers stack by adjusting Lesp
1441 //   set O0 to Lesp
1442 //   compute X = (max_locals - num_parameters)
1443 //   bump SP up by X to accomadate the extra locals
1444 //   compute X = max_expression_stack
1445 //               + vm_local_words
1446 //               + 16 words of register save area
1447 //   save frame doing a save sp, -X, sp growing towards lower addresses
1448 //   set Lbcp, Lmethod, LcpoolCache
1449 //   set Llocals to i0
1450 //   set Lmonitors to FP - rounded_vm_local_words
1451 //   set Lesp to Lmonitors - 4
1452 //
1453 //  The frame has now been setup to do the rest of the entry code
1454 
1455 // Try this optimization:  Most method entries could live in a
1456 // "one size fits all" stack frame without all the dynamic size
1457 // calculations.  It might be profitable to do all this calculation
1458 // statically and approximately for "small enough" methods.
1459 
1460 //-----------------------------------------------------------------------------------------------
1461 
1462 // C1 Calling conventions
1463 //
1464 // Upon method entry, the following registers are setup:
1465 //
1466 // g2 G2_thread: current thread
1467 // g5 G5_method: method to activate
1468 // g4 Gargs  : pointer to last argument
1469 //
1470 //
1471 // Stack:
1472 //
1473 // +---------------+ <--- sp
1474 // |               |
1475 // : reg save area :
1476 // |               |
1477 // +---------------+ <--- sp + 0x40
1478 // |               |
1479 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1480 // |               |
1481 // +---------------+ <--- sp + 0x5c
1482 // |               |
1483 // :     free      :
1484 // |               |
1485 // +---------------+ <--- Gargs
1486 // |               |
1487 // :   arguments   :
1488 // |               |
1489 // +---------------+
1490 // |               |
1491 //
1492 //
1493 //
1494 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
1495 //
1496 // +---------------+ <--- sp
1497 // |               |
1498 // : reg save area :
1499 // |               |
1500 // +---------------+ <--- sp + 0x40
1501 // |               |
1502 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1503 // |               |
1504 // +---------------+ <--- sp + 0x5c
1505 // |               |
1506 // :               :
1507 // |               | <--- Lesp
1508 // +---------------+ <--- Lmonitors (fp - 0x18)
1509 // |   VM locals   |
1510 // +---------------+ <--- fp
1511 // |               |
1512 // : reg save area :
1513 // |               |
1514 // +---------------+ <--- fp + 0x40
1515 // |               |
1516 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1517 // |               |
1518 // +---------------+ <--- fp + 0x5c
1519 // |               |
1520 // :     free      :
1521 // |               |
1522 // +---------------+
1523 // |               |
1524 // : nonarg locals :
1525 // |               |
1526 // +---------------+
1527 // |               |
1528 // :   arguments   :
1529 // |               | <--- Llocals
1530 // +---------------+ <--- Gargs
1531 // |               |
1532 
1533 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
1534 
1535   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
1536   // expression stack, the callee will have callee_extra_locals (so we can account for
1537   // frame extension) and monitor_size for monitors. Basically we need to calculate
1538   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
1539   //
1540   //
1541   // The big complicating thing here is that we must ensure that the stack stays properly
1542   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
1543   // needs to be aligned for). We are given that the sp (fp) is already aligned by
1544   // the caller so we must ensure that it is properly aligned for our callee.
1545   //
1546   const int rounded_vm_local_words =
1547        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1548   // callee_locals and max_stack are counts, not the size in frame.
1549   const int locals_size =
1550        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
1551   const int max_stack_words = max_stack * Interpreter::stackElementWords;
1552   return (round_to((max_stack_words
1553                    //6815692//+ Method::extra_stack_words()
1554                    + rounded_vm_local_words
1555                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
1556                    // already rounded
1557                    + locals_size + monitor_size);
1558 }
1559 
1560 // How much stack a method top interpreter activation needs in words.
1561 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1562 
1563   // See call_stub code
1564   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
1565                                  WordsPerLong);    // 7 + register save area
1566 
1567   // Save space for one monitor to get into the interpreted method in case
1568   // the method is synchronized
1569   int monitor_size    = method->is_synchronized() ?
1570                                 1*frame::interpreter_frame_monitor_size() : 0;
1571   return size_activation_helper(method->max_locals(), method->max_stack(),
1572                                  monitor_size) + call_stub_size;
1573 }
1574 
1575 int AbstractInterpreter::layout_activation(Method* method,
1576                                            int tempcount,
1577                                            int popframe_extra_args,
1578                                            int moncount,
1579                                            int caller_actual_parameters,
1580                                            int callee_param_count,
1581                                            int callee_local_count,
1582                                            frame* caller,
1583                                            frame* interpreter_frame,
1584                                            bool is_top_frame,
1585                                            bool is_bottom_frame) {
1586   // Note: This calculation must exactly parallel the frame setup
1587   // in InterpreterGenerator::generate_fixed_frame.
1588   // If f!=NULL, set up the following variables:
1589   //   - Lmethod
1590   //   - Llocals
1591   //   - Lmonitors (to the indicated number of monitors)
1592   //   - Lesp (to the indicated number of temps)
1593   // The frame f (if not NULL) on entry is a description of the caller of the frame
1594   // we are about to layout. We are guaranteed that we will be able to fill in a
1595   // new interpreter frame as its callee (i.e. the stack space is allocated and
1596   // the amount was determined by an earlier call to this method with f == NULL).
1597   // On return f (if not NULL) while describe the interpreter frame we just layed out.
1598 
1599   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
1600   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1601 
1602   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
1603   //
1604   // Note: if you look closely this appears to be doing something much different
1605   // than generate_fixed_frame. What is happening is this. On sparc we have to do
1606   // this dance with interpreter_sp_adjustment because the window save area would
1607   // appear just below the bottom (tos) of the caller's java expression stack. Because
1608   // the interpreter want to have the locals completely contiguous generate_fixed_frame
1609   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
1610   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
1611   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
1612   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
1613   // because the oldest frame would have adjust its callers frame and yet that frame
1614   // already exists and isn't part of this array of frames we are unpacking. So at first
1615   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
1616   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
1617   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
1618   // add up. It does seem like it simpler to account for the adjustment here (and remove the
1619   // callee... parameters here). However this would mean that this routine would have to take
1620   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
1621   // and run the calling loop in the reverse order. This would also would appear to mean making
1622   // this code aware of what the interactions are when that initial caller fram was an osr or
1623   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
1624   // there is no sense in messing working code.
1625   //
1626 
1627   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
1628   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
1629 
1630   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
1631                                               monitor_size);
1632 
1633   if (interpreter_frame != NULL) {
1634     // The skeleton frame must already look like an interpreter frame
1635     // even if not fully filled out.
1636     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
1637 
1638     intptr_t* fp = interpreter_frame->fp();
1639 
1640     JavaThread* thread = JavaThread::current();
1641     RegisterMap map(thread, false);
1642     // More verification that skeleton frame is properly walkable
1643     assert(fp == caller->sp(), "fp must match");
1644 
1645     intptr_t* montop     = fp - rounded_vm_local_words;
1646 
1647     // preallocate monitors (cf. __ add_monitor_to_stack)
1648     intptr_t* monitors = montop - monitor_size;
1649 
1650     // preallocate stack space
1651     intptr_t*  esp = monitors - 1 -
1652                      (tempcount * Interpreter::stackElementWords) -
1653                      popframe_extra_args;
1654 
1655     int local_words = method->max_locals() * Interpreter::stackElementWords;
1656     NEEDS_CLEANUP;
1657     intptr_t* locals;
1658     if (caller->is_interpreted_frame()) {
1659       // Can force the locals area to end up properly overlapping the top of the expression stack.
1660       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
1661       // Note that this computation means we replace size_of_parameters() values from the caller
1662       // interpreter frame's expression stack with our argument locals
1663       int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
1664       locals = Lesp_ptr + parm_words;
1665       int delta = local_words - parm_words;
1666       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
1667       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
1668       if (!is_bottom_frame) {
1669         // Llast_SP is set below for the current frame to SP (with the
1670         // extra space for the callee's locals). Here we adjust
1671         // Llast_SP for the caller's frame, removing the extra space
1672         // for the current method's locals.
1673         *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
1674       } else {
1675         assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
1676       }
1677     } else {
1678       assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
1679       // Don't have Lesp available; lay out locals block in the caller
1680       // adjacent to the register window save area.
1681       //
1682       // Compiled frames do not allocate a varargs area which is why this if
1683       // statement is needed.
1684       //
1685       if (caller->is_compiled_frame()) {
1686         locals = fp + frame::register_save_words + local_words - 1;
1687       } else {
1688         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
1689       }
1690       if (!caller->is_entry_frame()) {
1691         // Caller wants his own SP back
1692         int caller_frame_size = caller->cb()->frame_size();
1693         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
1694       }
1695     }
1696     if (TraceDeoptimization) {
1697       if (caller->is_entry_frame()) {
1698         // make sure I5_savedSP and the entry frames notion of saved SP
1699         // agree.  This assertion duplicate a check in entry frame code
1700         // but catches the failure earlier.
1701         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
1702                "would change callers SP");
1703       }
1704       if (caller->is_entry_frame()) {
1705         tty->print("entry ");
1706       }
1707       if (caller->is_compiled_frame()) {
1708         tty->print("compiled ");
1709         if (caller->is_deoptimized_frame()) {
1710           tty->print("(deopt) ");
1711         }
1712       }
1713       if (caller->is_interpreted_frame()) {
1714         tty->print("interpreted ");
1715       }
1716       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
1717       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
1718       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
1719       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
1720       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
1721       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
1722       tty->print_cr("Llocals = 0x%x", locals);
1723       tty->print_cr("Lesp = 0x%x", esp);
1724       tty->print_cr("Lmonitors = 0x%x", monitors);
1725     }
1726 
1727     if (method->max_locals() > 0) {
1728       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
1729       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
1730       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
1731       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
1732     }
1733 #ifdef _LP64
1734     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
1735 #endif
1736 
1737     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
1738     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
1739     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
1740     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
1741     // Llast_SP will be same as SP as there is no adapter space
1742     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
1743     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
1744 #ifdef FAST_DISPATCH
1745     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
1746 #endif
1747 
1748 
1749 #ifdef ASSERT
1750     BasicObjectLock* mp = (BasicObjectLock*)monitors;
1751 
1752     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
1753     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
1754     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
1755     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
1756     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
1757 
1758     // check bounds
1759     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
1760     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
1761     assert(lo < monitors && montop <= hi, "monitors in bounds");
1762     assert(lo <= esp && esp < monitors, "esp in bounds");
1763 #endif // ASSERT
1764   }
1765 
1766   return raw_frame_size;
1767 }
1768 
1769 //----------------------------------------------------------------------------------------------------
1770 // Exceptions
1771 void TemplateInterpreterGenerator::generate_throw_exception() {
1772 
1773   // Entry point in previous activation (i.e., if the caller was interpreted)
1774   Interpreter::_rethrow_exception_entry = __ pc();
1775   // O0: exception
1776 
1777   // entry point for exceptions thrown within interpreter code
1778   Interpreter::_throw_exception_entry = __ pc();
1779   __ verify_thread();
1780   // expression stack is undefined here
1781   // O0: exception, i.e. Oexception
1782   // Lbcp: exception bcx
1783   __ verify_oop(Oexception);
1784 
1785 
1786   // expression stack must be empty before entering the VM in case of an exception
1787   __ empty_expression_stack();
1788   // find exception handler address and preserve exception oop
1789   // call C routine to find handler and jump to it
1790   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1791   __ push_ptr(O1); // push exception for exception handler bytecodes
1792 
1793   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1794   __ delayed()->nop();
1795 
1796 
1797   // if the exception is not handled in the current frame
1798   // the frame is removed and the exception is rethrown
1799   // (i.e. exception continuation is _rethrow_exception)
1800   //
1801   // Note: At this point the bci is still the bxi for the instruction which caused
1802   //       the exception and the expression stack is empty. Thus, for any VM calls
1803   //       at this point, GC will find a legal oop map (with empty expression stack).
1804 
1805   // in current activation
1806   // tos: exception
1807   // Lbcp: exception bcp
1808 
1809   //
1810   // JVMTI PopFrame support
1811   //
1812 
1813   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1814   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1815   // Set the popframe_processing bit in popframe_condition indicating that we are
1816   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1817   // popframe handling cycles.
1818 
1819   __ ld(popframe_condition_addr, G3_scratch);
1820   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1821   __ stw(G3_scratch, popframe_condition_addr);
1822 
1823   // Empty the expression stack, as in normal exception handling
1824   __ empty_expression_stack();
1825   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1826 
1827   {
1828     // Check to see whether we are returning to a deoptimized frame.
1829     // (The PopFrame call ensures that the caller of the popped frame is
1830     // either interpreted or compiled and deoptimizes it if compiled.)
1831     // In this case, we can't call dispatch_next() after the frame is
1832     // popped, but instead must save the incoming arguments and restore
1833     // them after deoptimization has occurred.
1834     //
1835     // Note that we don't compare the return PC against the
1836     // deoptimization blob's unpack entry because of the presence of
1837     // adapter frames in C2.
1838     Label caller_not_deoptimized;
1839     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1840     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1841 
1842     const Register Gtmp1 = G3_scratch;
1843     const Register Gtmp2 = G1_scratch;
1844     const Register RconstMethod = Gtmp1;
1845     const Address constMethod(Lmethod, Method::const_offset());
1846     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1847 
1848     // Compute size of arguments for saving when returning to deoptimized caller
1849     __ ld_ptr(constMethod, RconstMethod);
1850     __ lduh(size_of_parameters, Gtmp1);
1851     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1852     __ sub(Llocals, Gtmp1, Gtmp2);
1853     __ add(Gtmp2, wordSize, Gtmp2);
1854     // Save these arguments
1855     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1856     // Inform deoptimization that it is responsible for restoring these arguments
1857     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1858     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1859     __ st(Gtmp1, popframe_condition_addr);
1860 
1861     // Return from the current method
1862     // The caller's SP was adjusted upon method entry to accomodate
1863     // the callee's non-argument locals. Undo that adjustment.
1864     __ ret();
1865     __ delayed()->restore(I5_savedSP, G0, SP);
1866 
1867     __ bind(caller_not_deoptimized);
1868   }
1869 
1870   // Clear the popframe condition flag
1871   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1872 
1873   // Get out of the current method (how this is done depends on the particular compiler calling
1874   // convention that the interpreter currently follows)
1875   // The caller's SP was adjusted upon method entry to accomodate
1876   // the callee's non-argument locals. Undo that adjustment.
1877   __ restore(I5_savedSP, G0, SP);
1878   // The method data pointer was incremented already during
1879   // call profiling. We have to restore the mdp for the current bcp.
1880   if (ProfileInterpreter) {
1881     __ set_method_data_pointer_for_bcp();
1882   }
1883   // Resume bytecode interpretation at the current bcp
1884   __ dispatch_next(vtos);
1885   // end of JVMTI PopFrame support
1886 
1887   Interpreter::_remove_activation_entry = __ pc();
1888 
1889   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1890   __ pop_ptr(Oexception);                                  // get exception
1891 
1892   // Intel has the following comment:
1893   //// remove the activation (without doing throws on illegalMonitorExceptions)
1894   // They remove the activation without checking for bad monitor state.
1895   // %%% We should make sure this is the right semantics before implementing.
1896 
1897   __ set_vm_result(Oexception);
1898   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1899 
1900   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1901 
1902   __ get_vm_result(Oexception);
1903   __ verify_oop(Oexception);
1904 
1905     const int return_reg_adjustment = frame::pc_return_offset;
1906   Address issuing_pc_addr(I7, return_reg_adjustment);
1907 
1908   // We are done with this activation frame; find out where to go next.
1909   // The continuation point will be an exception handler, which expects
1910   // the following registers set up:
1911   //
1912   // Oexception: exception
1913   // Oissuing_pc: the local call that threw exception
1914   // Other On: garbage
1915   // In/Ln:  the contents of the caller's register window
1916   //
1917   // We do the required restore at the last possible moment, because we
1918   // need to preserve some state across a runtime call.
1919   // (Remember that the caller activation is unknown--it might not be
1920   // interpreted, so things like Lscratch are useless in the caller.)
1921 
1922   // Although the Intel version uses call_C, we can use the more
1923   // compact call_VM.  (The only real difference on SPARC is a
1924   // harmlessly ignored [re]set_last_Java_frame, compared with
1925   // the Intel code which lacks this.)
1926   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1927   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1928   __ super_call_VM_leaf(L7_thread_cache,
1929                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1930                         G2_thread, Oissuing_pc->after_save());
1931 
1932   // The caller's SP was adjusted upon method entry to accomodate
1933   // the callee's non-argument locals. Undo that adjustment.
1934   __ JMP(O0, 0);                         // return exception handler in caller
1935   __ delayed()->restore(I5_savedSP, G0, SP);
1936 
1937   // (same old exception object is already in Oexception; see above)
1938   // Note that an "issuing PC" is actually the next PC after the call
1939 }
1940 
1941 
1942 //
1943 // JVMTI ForceEarlyReturn support
1944 //
1945 
1946 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1947   address entry = __ pc();
1948 
1949   __ empty_expression_stack();
1950   __ load_earlyret_value(state);
1951 
1952   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1953   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1954 
1955   // Clear the earlyret state
1956   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1957 
1958   __ remove_activation(state,
1959                        /* throw_monitor_exception */ false,
1960                        /* install_monitor_exception */ false);
1961 
1962   // The caller's SP was adjusted upon method entry to accomodate
1963   // the callee's non-argument locals. Undo that adjustment.
1964   __ ret();                             // return to caller
1965   __ delayed()->restore(I5_savedSP, G0, SP);
1966 
1967   return entry;
1968 } // end of JVMTI ForceEarlyReturn support
1969 
1970 
1971 //------------------------------------------------------------------------------------------------------------------------
1972 // Helper for vtos entry point generation
1973 
1974 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1975   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1976   Label L;
1977   aep = __ pc(); __ push_ptr(); __ ba_short(L);
1978   fep = __ pc(); __ push_f();   __ ba_short(L);
1979   dep = __ pc(); __ push_d();   __ ba_short(L);
1980   lep = __ pc(); __ push_l();   __ ba_short(L);
1981   iep = __ pc(); __ push_i();
1982   bep = cep = sep = iep;                        // there aren't any
1983   vep = __ pc(); __ bind(L);                    // fall through
1984   generate_and_dispatch(t);
1985 }
1986 
1987 // --------------------------------------------------------------------------------
1988 
1989 
1990 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1991  : TemplateInterpreterGenerator(code) {
1992    generate_all(); // down here so it can be "virtual"
1993 }
1994 
1995 // --------------------------------------------------------------------------------
1996 
1997 // Non-product code
1998 #ifndef PRODUCT
1999 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2000   address entry = __ pc();
2001 
2002   __ push(state);
2003   __ mov(O7, Lscratch); // protect return address within interpreter
2004 
2005   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
2006   __ mov( Otos_l2, G3_scratch );
2007   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
2008   __ mov(Lscratch, O7); // restore return address
2009   __ pop(state);
2010   __ retl();
2011   __ delayed()->nop();
2012 
2013   return entry;
2014 }
2015 
2016 
2017 // helpers for generate_and_dispatch
2018 
2019 void TemplateInterpreterGenerator::count_bytecode() {
2020   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
2021 }
2022 
2023 
2024 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2025   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
2026 }
2027 
2028 
2029 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2030   AddressLiteral index   (&BytecodePairHistogram::_index);
2031   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
2032 
2033   // get index, shift out old bytecode, bring in new bytecode, and store it
2034   // _index = (_index >> log2_number_of_codes) |
2035   //          (bytecode << log2_number_of_codes);
2036 
2037   __ load_contents(index, G4_scratch);
2038   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
2039   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
2040   __ or3( G3_scratch,  G4_scratch, G4_scratch );
2041   __ store_contents(G4_scratch, index, G3_scratch);
2042 
2043   // bump bucket contents
2044   // _counters[_index] ++;
2045 
2046   __ set(counters, G3_scratch);                       // loads into G3_scratch
2047   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
2048   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
2049   __ ld (G3_scratch, 0, G4_scratch);
2050   __ inc (G4_scratch);
2051   __ st (G4_scratch, 0, G3_scratch);
2052 }
2053 
2054 
2055 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2056   // Call a little run-time stub to avoid blow-up for each bytecode.
2057   // The run-time runtime saves the right registers, depending on
2058   // the tosca in-state for the given template.
2059   address entry = Interpreter::trace_code(t->tos_in());
2060   guarantee(entry != NULL, "entry must have been generated");
2061   __ call(entry, relocInfo::none);
2062   __ delayed()->nop();
2063 }
2064 
2065 
2066 void TemplateInterpreterGenerator::stop_interpreter_at() {
2067   AddressLiteral counter(&BytecodeCounter::_counter_value);
2068   __ load_contents(counter, G3_scratch);
2069   AddressLiteral stop_at(&StopInterpreterAt);
2070   __ load_ptr_contents(stop_at, G4_scratch);
2071   __ cmp(G3_scratch, G4_scratch);
2072   __ breakpoint_trap(Assembler::equal, Assembler::icc);
2073 }
2074 #endif // not PRODUCT
2075 #endif // !CC_INTERP