1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/synchronizer.hpp"
  44 #include "runtime/timer.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #include "utilities/debug.hpp"
  47 #include "utilities/macros.hpp"
  48 
  49 #define __ _masm->
  50 
  51 
  52 #ifndef CC_INTERP
  53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
  55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
  56 
  57 //------------------------------------------------------------------------------------------------------------------------
  58 
  59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  60   address entry = __ pc();
  61 
  62   // Note: There should be a minimal interpreter frame set up when stack
  63   // overflow occurs since we check explicitly for it now.
  64   //
  65 #ifdef ASSERT
  66   { Label L;
  67     __ lea(rax, Address(rbp,
  68                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
  69     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
  70                         //  (stack grows negative)
  71     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
  72     __ stop ("interpreter frame not set up");
  73     __ bind(L);
  74   }
  75 #endif // ASSERT
  76   // Restore bcp under the assumption that the current frame is still
  77   // interpreted
  78   __ restore_bcp();
  79 
  80   // expression stack must be empty before entering the VM if an exception
  81   // happened
  82   __ empty_expression_stack();
  83   __ empty_FPU_stack();
  84   // throw exception
  85   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
  86   return entry;
  87 }
  88 
  89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
  90   address entry = __ pc();
  91   // expression stack must be empty before entering the VM if an exception happened
  92   __ empty_expression_stack();
  93   __ empty_FPU_stack();
  94   // setup parameters
  95   // ??? convention: expect aberrant index in register rbx,
  96   __ lea(rax, ExternalAddress((address)name));
  97   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
  98   return entry;
  99 }
 100 
 101 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 102   address entry = __ pc();
 103   // object is at TOS
 104   __ pop(rax);
 105   // expression stack must be empty before entering the VM if an exception
 106   // happened
 107   __ empty_expression_stack();
 108   __ empty_FPU_stack();
 109   __ call_VM(noreg,
 110              CAST_FROM_FN_PTR(address,
 111                               InterpreterRuntime::throw_ClassCastException),
 112              rax);
 113   return entry;
 114 }
 115 
 116 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 117   assert(!pass_oop || message == NULL, "either oop or message but not both");
 118   address entry = __ pc();
 119   if (pass_oop) {
 120     // object is at TOS
 121     __ pop(rbx);
 122   }
 123   // expression stack must be empty before entering the VM if an exception happened
 124   __ empty_expression_stack();
 125   __ empty_FPU_stack();
 126   // setup parameters
 127   __ lea(rax, ExternalAddress((address)name));
 128   if (pass_oop) {
 129     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
 130   } else {
 131     if (message != NULL) {
 132       __ lea(rbx, ExternalAddress((address)message));
 133     } else {
 134       __ movptr(rbx, NULL_WORD);
 135     }
 136     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
 137   }
 138   // throw exception
 139   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 140   return entry;
 141 }
 142 
 143 
 144 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 145   address entry = __ pc();
 146   // NULL last_sp until next java call
 147   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 148   __ dispatch_next(state);
 149   return entry;
 150 }
 151 
 152 
 153 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 154   TosState incoming_state = state;
 155   address entry = __ pc();
 156 
 157 #ifdef COMPILER2
 158   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
 159   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
 160     for (int i = 1; i < 8; i++) {
 161         __ ffree(i);
 162     }
 163   } else if (UseSSE < 2) {
 164     __ empty_FPU_stack();
 165   }
 166 #endif
 167   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
 168     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
 169   } else {
 170     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
 171   }
 172 
 173   // In SSE mode, interpreter returns FP results in xmm0 but they need
 174   // to end up back on the FPU so it can operate on them.
 175   if (incoming_state == ftos && UseSSE >= 1) {
 176     __ subptr(rsp, wordSize);
 177     __ movflt(Address(rsp, 0), xmm0);
 178     __ fld_s(Address(rsp, 0));
 179     __ addptr(rsp, wordSize);
 180   } else if (incoming_state == dtos && UseSSE >= 2) {
 181     __ subptr(rsp, 2*wordSize);
 182     __ movdbl(Address(rsp, 0), xmm0);
 183     __ fld_d(Address(rsp, 0));
 184     __ addptr(rsp, 2*wordSize);
 185   }
 186 
 187   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
 188 
 189   // Restore stack bottom in case i2c adjusted stack
 190   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
 191   // and NULL it as marker that rsp is now tos until next java call
 192   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 193 
 194   __ restore_bcp();
 195   __ restore_locals();
 196 
 197   Label L_got_cache, L_giant_index;
 198   if (EnableInvokeDynamic) {
 199     __ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
 200     __ jcc(Assembler::equal, L_giant_index);
 201   }
 202   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
 203   __ bind(L_got_cache);
 204   __ movl(rbx, Address(rbx, rcx,
 205                     Address::times_ptr, ConstantPoolCache::base_offset() +
 206                     ConstantPoolCacheEntry::flags_offset()));
 207   __ andptr(rbx, 0xFF);
 208   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
 209   __ dispatch_next(state, step);
 210 
 211   // out of the main line of code...
 212   if (EnableInvokeDynamic) {
 213     __ bind(L_giant_index);
 214     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
 215     __ jmp(L_got_cache);
 216   }
 217 
 218   return entry;
 219 }
 220 
 221 
 222 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 223   address entry = __ pc();
 224 
 225   // In SSE mode, FP results are in xmm0
 226   if (state == ftos && UseSSE > 0) {
 227     __ subptr(rsp, wordSize);
 228     __ movflt(Address(rsp, 0), xmm0);
 229     __ fld_s(Address(rsp, 0));
 230     __ addptr(rsp, wordSize);
 231   } else if (state == dtos && UseSSE >= 2) {
 232     __ subptr(rsp, 2*wordSize);
 233     __ movdbl(Address(rsp, 0), xmm0);
 234     __ fld_d(Address(rsp, 0));
 235     __ addptr(rsp, 2*wordSize);
 236   }
 237 
 238   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
 239 
 240   // The stack is not extended by deopt but we must NULL last_sp as this
 241   // entry is like a "return".
 242   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 243   __ restore_bcp();
 244   __ restore_locals();
 245   // handle exceptions
 246   { Label L;
 247     const Register thread = rcx;
 248     __ get_thread(thread);
 249     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 250     __ jcc(Assembler::zero, L);
 251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 252     __ should_not_reach_here();
 253     __ bind(L);
 254   }
 255   __ dispatch_next(state, step);
 256   return entry;
 257 }
 258 
 259 
 260 int AbstractInterpreter::BasicType_as_index(BasicType type) {
 261   int i = 0;
 262   switch (type) {
 263     case T_BOOLEAN: i = 0; break;
 264     case T_CHAR   : i = 1; break;
 265     case T_BYTE   : i = 2; break;
 266     case T_SHORT  : i = 3; break;
 267     case T_INT    : // fall through
 268     case T_LONG   : // fall through
 269     case T_VOID   : i = 4; break;
 270     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
 271     case T_DOUBLE : i = 6; break;
 272     case T_OBJECT : // fall through
 273     case T_ARRAY  : i = 7; break;
 274     default       : ShouldNotReachHere();
 275   }
 276   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
 277   return i;
 278 }
 279 
 280 
 281 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 282   address entry = __ pc();
 283   switch (type) {
 284     case T_BOOLEAN: __ c2bool(rax);            break;
 285     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
 286     case T_BYTE   : __ sign_extend_byte (rax); break;
 287     case T_SHORT  : __ sign_extend_short(rax); break;
 288     case T_INT    : /* nothing to do */        break;
 289     case T_DOUBLE :
 290     case T_FLOAT  :
 291       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 292         __ pop(t);                            // remove return address first
 293         // Must return a result for interpreter or compiler. In SSE
 294         // mode, results are returned in xmm0 and the FPU stack must
 295         // be empty.
 296         if (type == T_FLOAT && UseSSE >= 1) {
 297           // Load ST0
 298           __ fld_d(Address(rsp, 0));
 299           // Store as float and empty fpu stack
 300           __ fstp_s(Address(rsp, 0));
 301           // and reload
 302           __ movflt(xmm0, Address(rsp, 0));
 303         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
 304           __ movdbl(xmm0, Address(rsp, 0));
 305         } else {
 306           // restore ST0
 307           __ fld_d(Address(rsp, 0));
 308         }
 309         // and pop the temp
 310         __ addptr(rsp, 2 * wordSize);
 311         __ push(t);                           // restore return address
 312       }
 313       break;
 314     case T_OBJECT :
 315       // retrieve result from frame
 316       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
 317       // and verify it
 318       __ verify_oop(rax);
 319       break;
 320     default       : ShouldNotReachHere();
 321   }
 322   __ ret(0);                                   // return from result handler
 323   return entry;
 324 }
 325 
 326 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 327   address entry = __ pc();
 328   __ push(state);
 329   __ call_VM(noreg, runtime_entry);
 330   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 331   return entry;
 332 }
 333 
 334 
 335 // Helpers for commoning out cases in the various type of method entries.
 336 //
 337 
 338 // increment invocation count & check for overflow
 339 //
 340 // Note: checking for negative value instead of overflow
 341 //       so we have a 'sticky' overflow test
 342 //
 343 // rbx,: method
 344 // rcx: invocation counter
 345 //
 346 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 347   const Address invocation_counter(rbx, in_bytes(Method::invocation_counter_offset()) +
 348                                         in_bytes(InvocationCounter::counter_offset()));
 349   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 350   if (TieredCompilation) {
 351     int increment = InvocationCounter::count_increment;
 352     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
 353     Label no_mdo, done;
 354     if (ProfileInterpreter) {
 355       // Are we profiling?
 356       __ movptr(rax, Address(rbx, Method::method_data_offset()));
 357       __ testptr(rax, rax);
 358       __ jccb(Assembler::zero, no_mdo);
 359       // Increment counter in the MDO
 360       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
 361                                                 in_bytes(InvocationCounter::counter_offset()));
 362       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
 363       __ jmpb(done);
 364     }
 365     __ bind(no_mdo);
 366     // Increment counter in Method* (we don't need to load it, it's in rcx).
 367     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
 368     __ bind(done);
 369   } else {
 370     const Address backedge_counter  (rbx, Method::backedge_counter_offset() +
 371                                           InvocationCounter::counter_offset());
 372 
 373     if (ProfileInterpreter) { // %%% Merge this into MethodData*
 374       __ incrementl(Address(rbx,Method::interpreter_invocation_counter_offset()));
 375     }
 376     // Update standard invocation counters
 377     __ movl(rax, backedge_counter);               // load backedge counter
 378 
 379     __ incrementl(rcx, InvocationCounter::count_increment);
 380     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
 381 
 382     __ movl(invocation_counter, rcx);             // save invocation count
 383     __ addl(rcx, rax);                            // add both counters
 384 
 385     // profile_method is non-null only for interpreted method so
 386     // profile_method != NULL == !native_call
 387     // BytecodeInterpreter only calls for native so code is elided.
 388 
 389     if (ProfileInterpreter && profile_method != NULL) {
 390       // Test to see if we should create a method data oop
 391       __ cmp32(rcx,
 392                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
 393       __ jcc(Assembler::less, *profile_method_continue);
 394 
 395       // if no method data exists, go to profile_method
 396       __ test_method_data_pointer(rax, *profile_method);
 397     }
 398 
 399     __ cmp32(rcx,
 400              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 401     __ jcc(Assembler::aboveEqual, *overflow);
 402   }
 403 }
 404 
 405 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 406 
 407   // Asm interpreter on entry
 408   // rdi - locals
 409   // rsi - bcp
 410   // rbx, - method
 411   // rdx - cpool
 412   // rbp, - interpreter frame
 413 
 414   // C++ interpreter on entry
 415   // rsi - new interpreter state pointer
 416   // rbp - interpreter frame pointer
 417   // rbx - method
 418 
 419   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 420   // rbx, - method
 421   // rcx - rcvr (assuming there is one)
 422   // top of stack return address of interpreter caller
 423   // rsp - sender_sp
 424 
 425   // C++ interpreter only
 426   // rsi - previous interpreter state pointer
 427 
 428   // InterpreterRuntime::frequency_counter_overflow takes one argument
 429   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
 430   // The call returns the address of the verified entry point for the method or NULL
 431   // if the compilation did not complete (either went background or bailed out).
 432   __ movptr(rax, (intptr_t)false);
 433   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
 434 
 435   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
 436 
 437   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
 438   // and jump to the interpreted entry.
 439   __ jmp(*do_continue, relocInfo::none);
 440 
 441 }
 442 
 443 void InterpreterGenerator::generate_stack_overflow_check(void) {
 444   // see if we've got enough room on the stack for locals plus overhead.
 445   // the expression stack grows down incrementally, so the normal guard
 446   // page mechanism will work for that.
 447   //
 448   // Registers live on entry:
 449   //
 450   // Asm interpreter
 451   // rdx: number of additional locals this frame needs (what we must check)
 452   // rbx,: Method*
 453 
 454   // destroyed on exit
 455   // rax,
 456 
 457   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
 458   // generate_method_entry) so the guard should work for them too.
 459   //
 460 
 461   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
 462   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
 463 
 464   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
 465   // be sure to change this if you add/subtract anything to/from the overhead area
 466   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
 467 
 468   const int page_size = os::vm_page_size();
 469 
 470   Label after_frame_check;
 471 
 472   // see if the frame is greater than one page in size. If so,
 473   // then we need to verify there is enough stack space remaining
 474   // for the additional locals.
 475   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
 476   __ jcc(Assembler::belowEqual, after_frame_check);
 477 
 478   // compute rsp as if this were going to be the last frame on
 479   // the stack before the red zone
 480 
 481   Label after_frame_check_pop;
 482 
 483   __ push(rsi);
 484 
 485   const Register thread = rsi;
 486 
 487   __ get_thread(thread);
 488 
 489   const Address stack_base(thread, Thread::stack_base_offset());
 490   const Address stack_size(thread, Thread::stack_size_offset());
 491 
 492   // locals + overhead, in bytes
 493   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
 494 
 495 #ifdef ASSERT
 496   Label stack_base_okay, stack_size_okay;
 497   // verify that thread stack base is non-zero
 498   __ cmpptr(stack_base, (int32_t)NULL_WORD);
 499   __ jcc(Assembler::notEqual, stack_base_okay);
 500   __ stop("stack base is zero");
 501   __ bind(stack_base_okay);
 502   // verify that thread stack size is non-zero
 503   __ cmpptr(stack_size, 0);
 504   __ jcc(Assembler::notEqual, stack_size_okay);
 505   __ stop("stack size is zero");
 506   __ bind(stack_size_okay);
 507 #endif
 508 
 509   // Add stack base to locals and subtract stack size
 510   __ addptr(rax, stack_base);
 511   __ subptr(rax, stack_size);
 512 
 513   // Use the maximum number of pages we might bang.
 514   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 515                                                                               (StackRedPages+StackYellowPages);
 516   __ addptr(rax, max_pages * page_size);
 517 
 518   // check against the current stack bottom
 519   __ cmpptr(rsp, rax);
 520   __ jcc(Assembler::above, after_frame_check_pop);
 521 
 522   __ pop(rsi);  // get saved bcp / (c++ prev state ).
 523 
 524   // Restore sender's sp as SP. This is necessary if the sender's
 525   // frame is an extended compiled frame (see gen_c2i_adapter())
 526   // and safer anyway in case of JSR292 adaptations.
 527 
 528   __ pop(rax); // return address must be moved if SP is changed
 529   __ mov(rsp, rsi);
 530   __ push(rax);
 531 
 532   // Note: the restored frame is not necessarily interpreted.
 533   // Use the shared runtime version of the StackOverflowError.
 534   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 535   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
 536   // all done with frame size check
 537   __ bind(after_frame_check_pop);
 538   __ pop(rsi);
 539 
 540   __ bind(after_frame_check);
 541 }
 542 
 543 // Allocate monitor and lock method (asm interpreter)
 544 // rbx, - Method*
 545 //
 546 void InterpreterGenerator::lock_method(void) {
 547   // synchronize method
 548   const Address access_flags      (rbx, Method::access_flags_offset());
 549   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 550   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 551 
 552   #ifdef ASSERT
 553     { Label L;
 554       __ movl(rax, access_flags);
 555       __ testl(rax, JVM_ACC_SYNCHRONIZED);
 556       __ jcc(Assembler::notZero, L);
 557       __ stop("method doesn't need synchronization");
 558       __ bind(L);
 559     }
 560   #endif // ASSERT
 561   // get synchronization object
 562   { Label done;
 563     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 564     __ movl(rax, access_flags);
 565     __ testl(rax, JVM_ACC_STATIC);
 566     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
 567     __ jcc(Assembler::zero, done);
 568     __ movptr(rax, Address(rbx, Method::const_offset()));
 569     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
 570     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
 571     __ movptr(rax, Address(rax, mirror_offset));
 572     __ bind(done);
 573   }
 574   // add space for monitor & lock
 575   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
 576   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
 577   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
 578   __ mov(rdx, rsp);                                                    // object address
 579   __ lock_object(rdx);
 580 }
 581 
 582 //
 583 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
 584 // and for native methods hence the shared code.
 585 
 586 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 587   // initialize fixed part of activation frame
 588   __ push(rax);                                       // save return address
 589   __ enter();                                         // save old & set new rbp,
 590 
 591 
 592   __ push(rsi);                                       // set sender sp
 593   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
 594   __ movptr(rsi, Address(rbx,Method::const_offset())); // get ConstMethod*
 595   __ lea(rsi, Address(rsi,ConstMethod::codes_offset())); // get codebase
 596   __ push(rbx);                                      // save Method*
 597   if (ProfileInterpreter) {
 598     Label method_data_continue;
 599     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
 600     __ testptr(rdx, rdx);
 601     __ jcc(Assembler::zero, method_data_continue);
 602     __ addptr(rdx, in_bytes(MethodData::data_offset()));
 603     __ bind(method_data_continue);
 604     __ push(rdx);                                       // set the mdp (method data pointer)
 605   } else {
 606     __ push(0);
 607   }
 608 
 609   __ movptr(rdx, Address(rbx, Method::const_offset()));
 610   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
 611   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
 612   __ push(rdx);                                       // set constant pool cache
 613   __ push(rdi);                                       // set locals pointer
 614   if (native_call) {
 615     __ push(0);                                       // no bcp
 616   } else {
 617     __ push(rsi);                                     // set bcp
 618     }
 619   __ push(0);                                         // reserve word for pointer to expression stack bottom
 620   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
 621 }
 622 
 623 // End of helpers
 624 
 625 //
 626 // Various method entries
 627 //------------------------------------------------------------------------------------------------------------------------
 628 //
 629 //
 630 
 631 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
 632 
 633 address InterpreterGenerator::generate_accessor_entry(void) {
 634 
 635   // rbx,: Method*
 636   // rcx: receiver (preserve for slow entry into asm interpreter)
 637 
 638   // rsi: senderSP must preserved for slow path, set SP to it on fast path
 639 
 640   address entry_point = __ pc();
 641   Label xreturn_path;
 642 
 643   // do fastpath for resolved accessor methods
 644   if (UseFastAccessorMethods) {
 645     Label slow_path;
 646     // If we need a safepoint check, generate full interpreter entry.
 647     ExternalAddress state(SafepointSynchronize::address_of_state());
 648     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 649              SafepointSynchronize::_not_synchronized);
 650 
 651     __ jcc(Assembler::notEqual, slow_path);
 652     // ASM/C++ Interpreter
 653     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
 654     // Note: We can only use this code if the getfield has been resolved
 655     //       and if we don't have a null-pointer exception => check for
 656     //       these conditions first and use slow path if necessary.
 657     // rbx,: method
 658     // rcx: receiver
 659     __ movptr(rax, Address(rsp, wordSize));
 660 
 661     // check if local 0 != NULL and read field
 662     __ testptr(rax, rax);
 663     __ jcc(Assembler::zero, slow_path);
 664 
 665     // read first instruction word and extract bytecode @ 1 and index @ 2
 666     __ movptr(rdx, Address(rbx, Method::const_offset()));
 667     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
 668     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
 669     // Shift codes right to get the index on the right.
 670     // The bytecode fetched looks like <index><0xb4><0x2a>
 671     __ shrl(rdx, 2*BitsPerByte);
 672     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
 673     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
 674 
 675     // rax,: local 0
 676     // rbx,: method
 677     // rcx: receiver - do not destroy since it is needed for slow path!
 678     // rcx: scratch
 679     // rdx: constant pool cache index
 680     // rdi: constant pool cache
 681     // rsi: sender sp
 682 
 683     // check if getfield has been resolved and read constant pool cache entry
 684     // check the validity of the cache entry by testing whether _indices field
 685     // contains Bytecode::_getfield in b1 byte.
 686     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
 687     __ movl(rcx,
 688             Address(rdi,
 689                     rdx,
 690                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 691     __ shrl(rcx, 2*BitsPerByte);
 692     __ andl(rcx, 0xFF);
 693     __ cmpl(rcx, Bytecodes::_getfield);
 694     __ jcc(Assembler::notEqual, slow_path);
 695 
 696     // Note: constant pool entry is not valid before bytecode is resolved
 697     __ movptr(rcx,
 698               Address(rdi,
 699                       rdx,
 700                       Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
 701     __ movl(rdx,
 702             Address(rdi,
 703                     rdx,
 704                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 705 
 706     Label notByte, notShort, notChar;
 707     const Address field_address (rax, rcx, Address::times_1);
 708 
 709     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 710     // because they are different sizes.
 711     // Use the type from the constant pool cache
 712     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
 713     // Make sure we don't need to mask rdx after the above shift
 714     ConstantPoolCacheEntry::verify_tos_state_shift();
 715     __ cmpl(rdx, btos);
 716     __ jcc(Assembler::notEqual, notByte);
 717     __ load_signed_byte(rax, field_address);
 718     __ jmp(xreturn_path);
 719 
 720     __ bind(notByte);
 721     __ cmpl(rdx, stos);
 722     __ jcc(Assembler::notEqual, notShort);
 723     __ load_signed_short(rax, field_address);
 724     __ jmp(xreturn_path);
 725 
 726     __ bind(notShort);
 727     __ cmpl(rdx, ctos);
 728     __ jcc(Assembler::notEqual, notChar);
 729     __ load_unsigned_short(rax, field_address);
 730     __ jmp(xreturn_path);
 731 
 732     __ bind(notChar);
 733 #ifdef ASSERT
 734     Label okay;
 735     __ cmpl(rdx, atos);
 736     __ jcc(Assembler::equal, okay);
 737     __ cmpl(rdx, itos);
 738     __ jcc(Assembler::equal, okay);
 739     __ stop("what type is this?");
 740     __ bind(okay);
 741 #endif // ASSERT
 742     // All the rest are a 32 bit wordsize
 743     // This is ok for now. Since fast accessors should be going away
 744     __ movptr(rax, field_address);
 745 
 746     __ bind(xreturn_path);
 747 
 748     // _ireturn/_areturn
 749     __ pop(rdi);                               // get return address
 750     __ mov(rsp, rsi);                          // set sp to sender sp
 751     __ jmp(rdi);
 752 
 753     // generate a vanilla interpreter entry as the slow path
 754     __ bind(slow_path);
 755 
 756     (void) generate_normal_entry(false);
 757     return entry_point;
 758   }
 759   return NULL;
 760 
 761 }
 762 
 763 // Method entry for java.lang.ref.Reference.get.
 764 address InterpreterGenerator::generate_Reference_get_entry(void) {
 765 #if INCLUDE_ALL_GCS
 766   // Code: _aload_0, _getfield, _areturn
 767   // parameter size = 1
 768   //
 769   // The code that gets generated by this routine is split into 2 parts:
 770   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 771   //    2. The slow path - which is an expansion of the regular method entry.
 772   //
 773   // Notes:-
 774   // * In the G1 code we do not check whether we need to block for
 775   //   a safepoint. If G1 is enabled then we must execute the specialized
 776   //   code for Reference.get (except when the Reference object is null)
 777   //   so that we can log the value in the referent field with an SATB
 778   //   update buffer.
 779   //   If the code for the getfield template is modified so that the
 780   //   G1 pre-barrier code is executed when the current method is
 781   //   Reference.get() then going through the normal method entry
 782   //   will be fine.
 783   // * The G1 code below can, however, check the receiver object (the instance
 784   //   of java.lang.Reference) and jump to the slow path if null. If the
 785   //   Reference object is null then we obviously cannot fetch the referent
 786   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 787   //   regular method entry code to generate the NPE.
 788   //
 789   // This code is based on generate_accessor_enty.
 790 
 791   // rbx,: Method*
 792   // rcx: receiver (preserve for slow entry into asm interpreter)
 793 
 794   // rsi: senderSP must preserved for slow path, set SP to it on fast path
 795 
 796   address entry = __ pc();
 797 
 798   const int referent_offset = java_lang_ref_Reference::referent_offset;
 799   guarantee(referent_offset > 0, "referent offset not initialized");
 800 
 801   if (UseG1GC) {
 802     Label slow_path;
 803 
 804     // Check if local 0 != NULL
 805     // If the receiver is null then it is OK to jump to the slow path.
 806     __ movptr(rax, Address(rsp, wordSize));
 807     __ testptr(rax, rax);
 808     __ jcc(Assembler::zero, slow_path);
 809 
 810     // rax: local 0 (must be preserved across the G1 barrier call)
 811     //
 812     // rbx: method (at this point it's scratch)
 813     // rcx: receiver (at this point it's scratch)
 814     // rdx: scratch
 815     // rdi: scratch
 816     //
 817     // rsi: sender sp
 818 
 819     // Preserve the sender sp in case the pre-barrier
 820     // calls the runtime
 821     __ push(rsi);
 822 
 823     // Load the value of the referent field.
 824     const Address field_address(rax, referent_offset);
 825     __ movptr(rax, field_address);
 826 
 827     // Generate the G1 pre-barrier code to log the value of
 828     // the referent field in an SATB buffer.
 829     __ get_thread(rcx);
 830     __ g1_write_barrier_pre(noreg /* obj */,
 831                             rax /* pre_val */,
 832                             rcx /* thread */,
 833                             rbx /* tmp */,
 834                             true /* tosca_save */,
 835                             true /* expand_call */);
 836 
 837     // _areturn
 838     __ pop(rsi);                // get sender sp
 839     __ pop(rdi);                // get return address
 840     __ mov(rsp, rsi);           // set sp to sender sp
 841     __ jmp(rdi);
 842 
 843     __ bind(slow_path);
 844     (void) generate_normal_entry(false);
 845 
 846     return entry;
 847   }
 848 #endif // INCLUDE_ALL_GCS
 849 
 850   // If G1 is not enabled then attempt to go through the accessor entry point
 851   // Reference.get is an accessor
 852   return generate_accessor_entry();
 853 }
 854 
 855 //
 856 // Interpreter stub for calling a native method. (asm interpreter)
 857 // This sets up a somewhat different looking stack for calling the native method
 858 // than the typical interpreter frame setup.
 859 //
 860 
 861 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 862   // determine code generation flags
 863   bool inc_counter  = UseCompiler || CountCompiledCalls;
 864 
 865   // rbx,: Method*
 866   // rsi: sender sp
 867   // rsi: previous interpreter state (C++ interpreter) must preserve
 868   address entry_point = __ pc();
 869 
 870   const Address constMethod       (rbx, Method::const_offset());
 871   const Address invocation_counter(rbx, Method::invocation_counter_offset() + InvocationCounter::counter_offset());
 872   const Address access_flags      (rbx, Method::access_flags_offset());
 873   const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
 874 
 875   // get parameter size (always needed)
 876   __ movptr(rcx, constMethod);
 877   __ load_unsigned_short(rcx, size_of_parameters);
 878 
 879   // native calls don't need the stack size check since they have no expression stack
 880   // and the arguments are already on the stack and we only add a handful of words
 881   // to the stack
 882 
 883   // rbx,: Method*
 884   // rcx: size of parameters
 885   // rsi: sender sp
 886 
 887   __ pop(rax);                                       // get return address
 888   // for natives the size of locals is zero
 889 
 890   // compute beginning of parameters (rdi)
 891   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
 892 
 893 
 894   // add 2 zero-initialized slots for native calls
 895   // NULL result handler
 896   __ push((int32_t)NULL_WORD);
 897   // NULL oop temp (mirror or jni oop result)
 898   __ push((int32_t)NULL_WORD);
 899 
 900   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
 901   // initialize fixed part of activation frame
 902 
 903   generate_fixed_frame(true);
 904 
 905   // make sure method is native & not abstract
 906 #ifdef ASSERT
 907   __ movl(rax, access_flags);
 908   {
 909     Label L;
 910     __ testl(rax, JVM_ACC_NATIVE);
 911     __ jcc(Assembler::notZero, L);
 912     __ stop("tried to execute non-native method as native");
 913     __ bind(L);
 914   }
 915   { Label L;
 916     __ testl(rax, JVM_ACC_ABSTRACT);
 917     __ jcc(Assembler::zero, L);
 918     __ stop("tried to execute abstract method in interpreter");
 919     __ bind(L);
 920   }
 921 #endif
 922 
 923   // Since at this point in the method invocation the exception handler
 924   // would try to exit the monitor of synchronized methods which hasn't
 925   // been entered yet, we set the thread local variable
 926   // _do_not_unlock_if_synchronized to true. The remove_activation will
 927   // check this flag.
 928 
 929   __ get_thread(rax);
 930   const Address do_not_unlock_if_synchronized(rax,
 931         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 932   __ movbool(do_not_unlock_if_synchronized, true);
 933 
 934   // increment invocation count & check for overflow
 935   Label invocation_counter_overflow;
 936   if (inc_counter) {
 937     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 938   }
 939 
 940   Label continue_after_compile;
 941   __ bind(continue_after_compile);
 942 
 943   bang_stack_shadow_pages(true);
 944 
 945   // reset the _do_not_unlock_if_synchronized flag
 946   __ get_thread(rax);
 947   __ movbool(do_not_unlock_if_synchronized, false);
 948 
 949   // check for synchronized methods
 950   // Must happen AFTER invocation_counter check and stack overflow check,
 951   // so method is not locked if overflows.
 952   //
 953   if (synchronized) {
 954     lock_method();
 955   } else {
 956     // no synchronization necessary
 957 #ifdef ASSERT
 958       { Label L;
 959         __ movl(rax, access_flags);
 960         __ testl(rax, JVM_ACC_SYNCHRONIZED);
 961         __ jcc(Assembler::zero, L);
 962         __ stop("method needs synchronization");
 963         __ bind(L);
 964       }
 965 #endif
 966   }
 967 
 968   // start execution
 969 #ifdef ASSERT
 970   { Label L;
 971     const Address monitor_block_top (rbp,
 972                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
 973     __ movptr(rax, monitor_block_top);
 974     __ cmpptr(rax, rsp);
 975     __ jcc(Assembler::equal, L);
 976     __ stop("broken stack frame setup in interpreter");
 977     __ bind(L);
 978   }
 979 #endif
 980 
 981   // jvmti/dtrace support
 982   __ notify_method_entry();
 983 
 984   // work registers
 985   const Register method = rbx;
 986   const Register thread = rdi;
 987   const Register t      = rcx;
 988 
 989   // allocate space for parameters
 990   __ get_method(method);
 991   __ movptr(t, Address(method, Method::const_offset()));
 992   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
 993 
 994   __ shlptr(t, Interpreter::logStackElementSize);
 995   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
 996   __ subptr(rsp, t);
 997   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
 998 
 999   // get signature handler
1000   { Label L;
1001     __ movptr(t, Address(method, Method::signature_handler_offset()));
1002     __ testptr(t, t);
1003     __ jcc(Assembler::notZero, L);
1004     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1005     __ get_method(method);
1006     __ movptr(t, Address(method, Method::signature_handler_offset()));
1007     __ bind(L);
1008   }
1009 
1010   // call signature handler
1011   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
1012   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
1013   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
1014   // The generated handlers do not touch RBX (the method oop).
1015   // However, large signatures cannot be cached and are generated
1016   // each time here.  The slow-path generator will blow RBX
1017   // sometime, so we must reload it after the call.
1018   __ call(t);
1019   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
1020 
1021   // result handler is in rax,
1022   // set result handler
1023   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
1024 
1025   // pass mirror handle if static call
1026   { Label L;
1027     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1028     __ movl(t, Address(method, Method::access_flags_offset()));
1029     __ testl(t, JVM_ACC_STATIC);
1030     __ jcc(Assembler::zero, L);
1031     // get mirror
1032     __ movptr(t, Address(method, Method:: const_offset()));
1033     __ movptr(t, Address(t, ConstMethod::constants_offset()));
1034     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
1035     __ movptr(t, Address(t, mirror_offset));
1036     // copy mirror into activation frame
1037     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
1038     // pass handle to mirror
1039     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
1040     __ movptr(Address(rsp, wordSize), t);
1041     __ bind(L);
1042   }
1043 
1044   // get native function entry point
1045   { Label L;
1046     __ movptr(rax, Address(method, Method::native_function_offset()));
1047     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1048     __ cmpptr(rax, unsatisfied.addr());
1049     __ jcc(Assembler::notEqual, L);
1050     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1051     __ get_method(method);
1052     __ movptr(rax, Address(method, Method::native_function_offset()));
1053     __ bind(L);
1054   }
1055 
1056   // pass JNIEnv
1057   __ get_thread(thread);
1058   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1059   __ movptr(Address(rsp, 0), t);
1060 
1061   // set_last_Java_frame_before_call
1062   // It is enough that the pc()
1063   // points into the right code segment. It does not have to be the correct return pc.
1064   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1065 
1066   // change thread state
1067 #ifdef ASSERT
1068   { Label L;
1069     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1070     __ cmpl(t, _thread_in_Java);
1071     __ jcc(Assembler::equal, L);
1072     __ stop("Wrong thread state in native stub");
1073     __ bind(L);
1074   }
1075 #endif
1076 
1077   // Change state to native
1078   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1079   __ call(rax);
1080 
1081   // result potentially in rdx:rax or ST0
1082 
1083   // Either restore the MXCSR register after returning from the JNI Call
1084   // or verify that it wasn't changed.
1085   if (VM_Version::supports_sse()) {
1086     if (RestoreMXCSROnJNICalls) {
1087       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
1088     }
1089     else if (CheckJNICalls ) {
1090       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
1091     }
1092   }
1093 
1094   // Either restore the x87 floating pointer control word after returning
1095   // from the JNI call or verify that it wasn't changed.
1096   if (CheckJNICalls) {
1097     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
1098   }
1099 
1100   // save potential result in ST(0) & rdx:rax
1101   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
1102   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
1103   // It is safe to do this push because state is _thread_in_native and return address will be found
1104   // via _last_native_pc and not via _last_jave_sp
1105 
1106   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
1107   // If the order changes or anything else is added to the stack the code in
1108   // interpreter_frame_result will have to be changed.
1109 
1110   { Label L;
1111     Label push_double;
1112     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1113     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1114     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
1115               float_handler.addr());
1116     __ jcc(Assembler::equal, push_double);
1117     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
1118               double_handler.addr());
1119     __ jcc(Assembler::notEqual, L);
1120     __ bind(push_double);
1121     __ push(dtos);
1122     __ bind(L);
1123   }
1124   __ push(ltos);
1125 
1126   // change thread state
1127   __ get_thread(thread);
1128   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1129   if(os::is_MP()) {
1130     if (UseMembar) {
1131       // Force this write out before the read below
1132       __ membar(Assembler::Membar_mask_bits(
1133            Assembler::LoadLoad | Assembler::LoadStore |
1134            Assembler::StoreLoad | Assembler::StoreStore));
1135     } else {
1136       // Write serialization page so VM thread can do a pseudo remote membar.
1137       // We use the current thread pointer to calculate a thread specific
1138       // offset to write to within the page. This minimizes bus traffic
1139       // due to cache line collision.
1140       __ serialize_memory(thread, rcx);
1141     }
1142   }
1143 
1144   if (AlwaysRestoreFPU) {
1145     //  Make sure the control word is correct.
1146     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1147   }
1148 
1149   // check for safepoint operation in progress and/or pending suspend requests
1150   { Label Continue;
1151 
1152     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1153              SafepointSynchronize::_not_synchronized);
1154 
1155     Label L;
1156     __ jcc(Assembler::notEqual, L);
1157     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1158     __ jcc(Assembler::equal, Continue);
1159     __ bind(L);
1160 
1161     // Don't use call_VM as it will see a possible pending exception and forward it
1162     // and never return here preventing us from clearing _last_native_pc down below.
1163     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1164     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1165     // by hand.
1166     //
1167     __ push(thread);
1168     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1169                                             JavaThread::check_special_condition_for_native_trans)));
1170     __ increment(rsp, wordSize);
1171     __ get_thread(thread);
1172 
1173     __ bind(Continue);
1174   }
1175 
1176   // change thread state
1177   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1178 
1179   __ reset_last_Java_frame(thread, true, true);
1180 
1181   // reset handle block
1182   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1183   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
1184 
1185   // If result was an oop then unbox and save it in the frame
1186   { Label L;
1187     Label no_oop, store_result;
1188     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
1189     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
1190               handler.addr());
1191     __ jcc(Assembler::notEqual, no_oop);
1192     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
1193     __ pop(ltos);
1194     __ testptr(rax, rax);
1195     __ jcc(Assembler::zero, store_result);
1196     // unbox
1197     __ movptr(rax, Address(rax, 0));
1198     __ bind(store_result);
1199     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
1200     // keep stack depth as expected by pushing oop which will eventually be discarded
1201     __ push(ltos);
1202     __ bind(no_oop);
1203   }
1204 
1205   {
1206      Label no_reguard;
1207      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1208      __ jcc(Assembler::notEqual, no_reguard);
1209 
1210      __ pusha();
1211      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1212      __ popa();
1213 
1214      __ bind(no_reguard);
1215    }
1216 
1217   // restore rsi to have legal interpreter frame,
1218   // i.e., bci == 0 <=> rsi == code_base()
1219   // Can't call_VM until bcp is within reasonable.
1220   __ get_method(method);      // method is junk from thread_in_native to now.
1221   __ movptr(rsi, Address(method,Method::const_offset()));   // get ConstMethod*
1222   __ lea(rsi, Address(rsi,ConstMethod::codes_offset()));    // get codebase
1223 
1224   // handle exceptions (exception handling will handle unlocking!)
1225   { Label L;
1226     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1227     __ jcc(Assembler::zero, L);
1228     // Note: At some point we may want to unify this with the code used in call_VM_base();
1229     //       i.e., we should use the StubRoutines::forward_exception code. For now this
1230     //       doesn't work here because the rsp is not correctly set at this point.
1231     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1232     __ should_not_reach_here();
1233     __ bind(L);
1234   }
1235 
1236   // do unlocking if necessary
1237   { Label L;
1238     __ movl(t, Address(method, Method::access_flags_offset()));
1239     __ testl(t, JVM_ACC_SYNCHRONIZED);
1240     __ jcc(Assembler::zero, L);
1241     // the code below should be shared with interpreter macro assembler implementation
1242     { Label unlock;
1243       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1244       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1245       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1246 
1247       __ lea(rdx, monitor);                   // address of first monitor
1248 
1249       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
1250       __ testptr(t, t);
1251       __ jcc(Assembler::notZero, unlock);
1252 
1253       // Entry already unlocked, need to throw exception
1254       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1255       __ should_not_reach_here();
1256 
1257       __ bind(unlock);
1258       __ unlock_object(rdx);
1259     }
1260     __ bind(L);
1261   }
1262 
1263   // jvmti/dtrace support
1264   // Note: This must happen _after_ handling/throwing any exceptions since
1265   //       the exception handler code notifies the runtime of method exits
1266   //       too. If this happens before, method entry/exit notifications are
1267   //       not properly paired (was bug - gri 11/22/99).
1268   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1269 
1270   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1271   __ pop(ltos);
1272   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
1273   __ call(t);
1274 
1275   // remove activation
1276   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1277   __ leave();                                // remove frame anchor
1278   __ pop(rdi);                               // get return address
1279   __ mov(rsp, t);                            // set sp to sender sp
1280   __ jmp(rdi);
1281 
1282   if (inc_counter) {
1283     // Handle overflow of counter and compile method
1284     __ bind(invocation_counter_overflow);
1285     generate_counter_overflow(&continue_after_compile);
1286   }
1287 
1288   return entry_point;
1289 }
1290 
1291 //
1292 // Generic interpreted method entry to (asm) interpreter
1293 //
1294 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1295   // determine code generation flags
1296   bool inc_counter  = UseCompiler || CountCompiledCalls;
1297 
1298   // rbx,: Method*
1299   // rsi: sender sp
1300   address entry_point = __ pc();
1301 
1302   const Address constMethod       (rbx, Method::const_offset());
1303   const Address invocation_counter(rbx, Method::invocation_counter_offset() + InvocationCounter::counter_offset());
1304   const Address access_flags      (rbx, Method::access_flags_offset());
1305   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
1306   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
1307 
1308   // get parameter size (always needed)
1309   __ movptr(rdx, constMethod);
1310   __ load_unsigned_short(rcx, size_of_parameters);
1311 
1312   // rbx,: Method*
1313   // rcx: size of parameters
1314 
1315   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
1316 
1317   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
1318   __ subl(rdx, rcx);                                // rdx = no. of additional locals
1319 
1320   // see if we've got enough room on the stack for locals plus overhead.
1321   generate_stack_overflow_check();
1322 
1323   // get return address
1324   __ pop(rax);
1325 
1326   // compute beginning of parameters (rdi)
1327   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
1328 
1329   // rdx - # of additional locals
1330   // allocate space for locals
1331   // explicitly initialize locals
1332   {
1333     Label exit, loop;
1334     __ testl(rdx, rdx);
1335     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
1336     __ bind(loop);
1337     __ push((int32_t)NULL_WORD);                      // initialize local variables
1338     __ decrement(rdx);                                // until everything initialized
1339     __ jcc(Assembler::greater, loop);
1340     __ bind(exit);
1341   }
1342 
1343   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
1344   // initialize fixed part of activation frame
1345   generate_fixed_frame(false);
1346 
1347   // make sure method is not native & not abstract
1348 #ifdef ASSERT
1349   __ movl(rax, access_flags);
1350   {
1351     Label L;
1352     __ testl(rax, JVM_ACC_NATIVE);
1353     __ jcc(Assembler::zero, L);
1354     __ stop("tried to execute native method as non-native");
1355     __ bind(L);
1356   }
1357   { Label L;
1358     __ testl(rax, JVM_ACC_ABSTRACT);
1359     __ jcc(Assembler::zero, L);
1360     __ stop("tried to execute abstract method in interpreter");
1361     __ bind(L);
1362   }
1363 #endif
1364 
1365   // Since at this point in the method invocation the exception handler
1366   // would try to exit the monitor of synchronized methods which hasn't
1367   // been entered yet, we set the thread local variable
1368   // _do_not_unlock_if_synchronized to true. The remove_activation will
1369   // check this flag.
1370 
1371   __ get_thread(rax);
1372   const Address do_not_unlock_if_synchronized(rax,
1373         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1374   __ movbool(do_not_unlock_if_synchronized, true);
1375 
1376   // increment invocation count & check for overflow
1377   Label invocation_counter_overflow;
1378   Label profile_method;
1379   Label profile_method_continue;
1380   if (inc_counter) {
1381     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1382     if (ProfileInterpreter) {
1383       __ bind(profile_method_continue);
1384     }
1385   }
1386   Label continue_after_compile;
1387   __ bind(continue_after_compile);
1388 
1389   bang_stack_shadow_pages(false);
1390 
1391   // reset the _do_not_unlock_if_synchronized flag
1392   __ get_thread(rax);
1393   __ movbool(do_not_unlock_if_synchronized, false);
1394 
1395   // check for synchronized methods
1396   // Must happen AFTER invocation_counter check and stack overflow check,
1397   // so method is not locked if overflows.
1398   //
1399   if (synchronized) {
1400     // Allocate monitor and lock method
1401     lock_method();
1402   } else {
1403     // no synchronization necessary
1404 #ifdef ASSERT
1405       { Label L;
1406         __ movl(rax, access_flags);
1407         __ testl(rax, JVM_ACC_SYNCHRONIZED);
1408         __ jcc(Assembler::zero, L);
1409         __ stop("method needs synchronization");
1410         __ bind(L);
1411       }
1412 #endif
1413   }
1414 
1415   // start execution
1416 #ifdef ASSERT
1417   { Label L;
1418      const Address monitor_block_top (rbp,
1419                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1420     __ movptr(rax, monitor_block_top);
1421     __ cmpptr(rax, rsp);
1422     __ jcc(Assembler::equal, L);
1423     __ stop("broken stack frame setup in interpreter");
1424     __ bind(L);
1425   }
1426 #endif
1427 
1428   // jvmti support
1429   __ notify_method_entry();
1430 
1431   __ dispatch_next(vtos);
1432 
1433   // invocation counter overflow
1434   if (inc_counter) {
1435     if (ProfileInterpreter) {
1436       // We have decided to profile this method in the interpreter
1437       __ bind(profile_method);
1438       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1439       __ set_method_data_pointer_for_bcp();
1440       __ get_method(rbx);
1441       __ jmp(profile_method_continue);
1442     }
1443     // Handle overflow of counter and compile method
1444     __ bind(invocation_counter_overflow);
1445     generate_counter_overflow(&continue_after_compile);
1446   }
1447 
1448   return entry_point;
1449 }
1450 
1451 //------------------------------------------------------------------------------------------------------------------------
1452 // Entry points
1453 //
1454 // Here we generate the various kind of entries into the interpreter.
1455 // The two main entry type are generic bytecode methods and native call method.
1456 // These both come in synchronized and non-synchronized versions but the
1457 // frame layout they create is very similar. The other method entry
1458 // types are really just special purpose entries that are really entry
1459 // and interpretation all in one. These are for trivial methods like
1460 // accessor, empty, or special math methods.
1461 //
1462 // When control flow reaches any of the entry types for the interpreter
1463 // the following holds ->
1464 //
1465 // Arguments:
1466 //
1467 // rbx,: Method*
1468 // rcx: receiver
1469 //
1470 //
1471 // Stack layout immediately at entry
1472 //
1473 // [ return address     ] <--- rsp
1474 // [ parameter n        ]
1475 //   ...
1476 // [ parameter 1        ]
1477 // [ expression stack   ] (caller's java expression stack)
1478 
1479 // Assuming that we don't go to one of the trivial specialized
1480 // entries the stack will look like below when we are ready to execute
1481 // the first bytecode (or call the native routine). The register usage
1482 // will be as the template based interpreter expects (see interpreter_x86.hpp).
1483 //
1484 // local variables follow incoming parameters immediately; i.e.
1485 // the return address is moved to the end of the locals).
1486 //
1487 // [ monitor entry      ] <--- rsp
1488 //   ...
1489 // [ monitor entry      ]
1490 // [ expr. stack bottom ]
1491 // [ saved rsi          ]
1492 // [ current rdi        ]
1493 // [ Method*            ]
1494 // [ saved rbp,          ] <--- rbp,
1495 // [ return address     ]
1496 // [ local variable m   ]
1497 //   ...
1498 // [ local variable 1   ]
1499 // [ parameter n        ]
1500 //   ...
1501 // [ parameter 1        ] <--- rdi
1502 
1503 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
1504   // determine code generation flags
1505   bool synchronized = false;
1506   address entry_point = NULL;
1507 
1508   switch (kind) {
1509     case Interpreter::zerolocals             :                                                                             break;
1510     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
1511     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
1512     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
1513     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
1514     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
1515     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
1516 
1517     case Interpreter::java_lang_math_sin     : // fall thru
1518     case Interpreter::java_lang_math_cos     : // fall thru
1519     case Interpreter::java_lang_math_tan     : // fall thru
1520     case Interpreter::java_lang_math_abs     : // fall thru
1521     case Interpreter::java_lang_math_log     : // fall thru
1522     case Interpreter::java_lang_math_log10   : // fall thru
1523     case Interpreter::java_lang_math_sqrt    : // fall thru
1524     case Interpreter::java_lang_math_pow     : // fall thru
1525     case Interpreter::java_lang_math_exp     : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
1526     case Interpreter::java_lang_ref_reference_get
1527                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
1528     default:
1529       fatal(err_msg("unexpected method kind: %d", kind));
1530       break;
1531   }
1532 
1533   if (entry_point) return entry_point;
1534 
1535   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
1536 
1537 }
1538 
1539 // These should never be compiled since the interpreter will prefer
1540 // the compiled version to the intrinsic version.
1541 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1542   switch (method_kind(m)) {
1543     case Interpreter::java_lang_math_sin     : // fall thru
1544     case Interpreter::java_lang_math_cos     : // fall thru
1545     case Interpreter::java_lang_math_tan     : // fall thru
1546     case Interpreter::java_lang_math_abs     : // fall thru
1547     case Interpreter::java_lang_math_log     : // fall thru
1548     case Interpreter::java_lang_math_log10   : // fall thru
1549     case Interpreter::java_lang_math_sqrt    : // fall thru
1550     case Interpreter::java_lang_math_pow     : // fall thru
1551     case Interpreter::java_lang_math_exp     :
1552       return false;
1553     default:
1554       return true;
1555   }
1556 }
1557 
1558 // How much stack a method activation needs in words.
1559 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1560 
1561   const int stub_code = 4;  // see generate_call_stub
1562   // Save space for one monitor to get into the interpreted method in case
1563   // the method is synchronized
1564   int monitor_size    = method->is_synchronized() ?
1565                                 1*frame::interpreter_frame_monitor_size() : 0;
1566 
1567   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
1568   // be sure to change this if you add/subtract anything to/from the overhead area
1569   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
1570 
1571   const int extra_stack = Method::extra_stack_entries();
1572   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
1573                            Interpreter::stackElementWords;
1574   return overhead_size + method_stack + stub_code;
1575 }
1576 
1577 // asm based interpreter deoptimization helpers
1578 
1579 int AbstractInterpreter::layout_activation(Method* method,
1580                                            int tempcount,
1581                                            int popframe_extra_args,
1582                                            int moncount,
1583                                            int caller_actual_parameters,
1584                                            int callee_param_count,
1585                                            int callee_locals,
1586                                            frame* caller,
1587                                            frame* interpreter_frame,
1588                                            bool is_top_frame,
1589                                            bool is_bottom_frame) {
1590   // Note: This calculation must exactly parallel the frame setup
1591   // in AbstractInterpreterGenerator::generate_method_entry.
1592   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
1593   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
1594   // as determined by a previous call to this method.
1595   // It is also guaranteed to be walkable even though it is in a skeletal state
1596   // NOTE: return size is in words not bytes
1597 
1598   // fixed size of an interpreter frame:
1599   int max_locals = method->max_locals() * Interpreter::stackElementWords;
1600   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
1601                      Interpreter::stackElementWords;
1602 
1603   int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
1604 
1605   // Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
1606   // Since the callee parameters already account for the callee's params we only need to account for
1607   // the extra locals.
1608 
1609 
1610   int size = overhead +
1611          ((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
1612          (moncount*frame::interpreter_frame_monitor_size()) +
1613          tempcount*Interpreter::stackElementWords + popframe_extra_args;
1614 
1615   if (interpreter_frame != NULL) {
1616 #ifdef ASSERT
1617     if (!EnableInvokeDynamic)
1618       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
1619       // Probably, since deoptimization doesn't work yet.
1620       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
1621     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
1622 #endif
1623 
1624     interpreter_frame->interpreter_frame_set_method(method);
1625     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
1626     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
1627     // and sender_sp is fp+8
1628     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
1629 
1630 #ifdef ASSERT
1631     if (caller->is_interpreted_frame()) {
1632       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
1633     }
1634 #endif
1635 
1636     interpreter_frame->interpreter_frame_set_locals(locals);
1637     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
1638     BasicObjectLock* monbot = montop - moncount;
1639     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
1640 
1641     // Set last_sp
1642     intptr_t*  rsp = (intptr_t*) monbot  -
1643                      tempcount*Interpreter::stackElementWords -
1644                      popframe_extra_args;
1645     interpreter_frame->interpreter_frame_set_last_sp(rsp);
1646 
1647     // All frames but the initial (oldest) interpreter frame we fill in have a
1648     // value for sender_sp that allows walking the stack but isn't
1649     // truly correct. Correct the value here.
1650 
1651     if (extra_locals != 0 &&
1652         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
1653       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
1654     }
1655     *interpreter_frame->interpreter_frame_cache_addr() =
1656       method->constants()->cache();
1657   }
1658   return size;
1659 }
1660 
1661 
1662 //------------------------------------------------------------------------------------------------------------------------
1663 // Exceptions
1664 
1665 void TemplateInterpreterGenerator::generate_throw_exception() {
1666   // Entry point in previous activation (i.e., if the caller was interpreted)
1667   Interpreter::_rethrow_exception_entry = __ pc();
1668   const Register thread = rcx;
1669 
1670   // Restore sp to interpreter_frame_last_sp even though we are going
1671   // to empty the expression stack for the exception processing.
1672   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
1673   // rax,: exception
1674   // rdx: return address/pc that threw exception
1675   __ restore_bcp();                              // rsi points to call/send
1676   __ restore_locals();
1677 
1678   // Entry point for exceptions thrown within interpreter code
1679   Interpreter::_throw_exception_entry = __ pc();
1680   // expression stack is undefined here
1681   // rax,: exception
1682   // rsi: exception bcp
1683   __ verify_oop(rax);
1684 
1685   // expression stack must be empty before entering the VM in case of an exception
1686   __ empty_expression_stack();
1687   __ empty_FPU_stack();
1688   // find exception handler address and preserve exception oop
1689   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
1690   // rax,: exception handler entry point
1691   // rdx: preserved exception oop
1692   // rsi: bcp for exception handler
1693   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
1694   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
1695 
1696   // If the exception is not handled in the current frame the frame is removed and
1697   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
1698   //
1699   // Note: At this point the bci is still the bxi for the instruction which caused
1700   //       the exception and the expression stack is empty. Thus, for any VM calls
1701   //       at this point, GC will find a legal oop map (with empty expression stack).
1702 
1703   // In current activation
1704   // tos: exception
1705   // rsi: exception bcp
1706 
1707   //
1708   // JVMTI PopFrame support
1709   //
1710 
1711    Interpreter::_remove_activation_preserving_args_entry = __ pc();
1712   __ empty_expression_stack();
1713   __ empty_FPU_stack();
1714   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
1715   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1716   // popframe handling cycles.
1717   __ get_thread(thread);
1718   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
1719   __ orl(rdx, JavaThread::popframe_processing_bit);
1720   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
1721 
1722   {
1723     // Check to see whether we are returning to a deoptimized frame.
1724     // (The PopFrame call ensures that the caller of the popped frame is
1725     // either interpreted or compiled and deoptimizes it if compiled.)
1726     // In this case, we can't call dispatch_next() after the frame is
1727     // popped, but instead must save the incoming arguments and restore
1728     // them after deoptimization has occurred.
1729     //
1730     // Note that we don't compare the return PC against the
1731     // deoptimization blob's unpack entry because of the presence of
1732     // adapter frames in C2.
1733     Label caller_not_deoptimized;
1734     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
1735     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
1736     __ testl(rax, rax);
1737     __ jcc(Assembler::notZero, caller_not_deoptimized);
1738 
1739     // Compute size of arguments for saving when returning to deoptimized caller
1740     __ get_method(rax);
1741     __ movptr(rax, Address(rax, Method::const_offset()));
1742     __ load_unsigned_short(rax, Address(rax, ConstMethod::size_of_parameters_offset()));
1743     __ shlptr(rax, Interpreter::logStackElementSize);
1744     __ restore_locals();
1745     __ subptr(rdi, rax);
1746     __ addptr(rdi, wordSize);
1747     // Save these arguments
1748     __ get_thread(thread);
1749     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
1750 
1751     __ remove_activation(vtos, rdx,
1752                          /* throw_monitor_exception */ false,
1753                          /* install_monitor_exception */ false,
1754                          /* notify_jvmdi */ false);
1755 
1756     // Inform deoptimization that it is responsible for restoring these arguments
1757     __ get_thread(thread);
1758     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
1759 
1760     // Continue in deoptimization handler
1761     __ jmp(rdx);
1762 
1763     __ bind(caller_not_deoptimized);
1764   }
1765 
1766   __ remove_activation(vtos, rdx,
1767                        /* throw_monitor_exception */ false,
1768                        /* install_monitor_exception */ false,
1769                        /* notify_jvmdi */ false);
1770 
1771   // Finish with popframe handling
1772   // A previous I2C followed by a deoptimization might have moved the
1773   // outgoing arguments further up the stack. PopFrame expects the
1774   // mutations to those outgoing arguments to be preserved and other
1775   // constraints basically require this frame to look exactly as
1776   // though it had previously invoked an interpreted activation with
1777   // no space between the top of the expression stack (current
1778   // last_sp) and the top of stack. Rather than force deopt to
1779   // maintain this kind of invariant all the time we call a small
1780   // fixup routine to move the mutated arguments onto the top of our
1781   // expression stack if necessary.
1782   __ mov(rax, rsp);
1783   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1784   __ get_thread(thread);
1785   // PC must point into interpreter here
1786   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1787   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
1788   __ get_thread(thread);
1789   __ reset_last_Java_frame(thread, true, true);
1790   // Restore the last_sp and null it out
1791   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1792   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
1793 
1794   __ restore_bcp();
1795   __ restore_locals();
1796   // The method data pointer was incremented already during
1797   // call profiling. We have to restore the mdp for the current bcp.
1798   if (ProfileInterpreter) {
1799     __ set_method_data_pointer_for_bcp();
1800   }
1801 
1802   // Clear the popframe condition flag
1803   __ get_thread(thread);
1804   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
1805 
1806   __ dispatch_next(vtos);
1807   // end of PopFrame support
1808 
1809   Interpreter::_remove_activation_entry = __ pc();
1810 
1811   // preserve exception over this code sequence
1812   __ pop_ptr(rax);
1813   __ get_thread(thread);
1814   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
1815   // remove the activation (without doing throws on illegalMonitorExceptions)
1816   __ remove_activation(vtos, rdx, false, true, false);
1817   // restore exception
1818   __ get_thread(thread);
1819   __ get_vm_result(rax, thread);
1820 
1821   // Inbetween activations - previous activation type unknown yet
1822   // compute continuation point - the continuation point expects
1823   // the following registers set up:
1824   //
1825   // rax: exception
1826   // rdx: return address/pc that threw exception
1827   // rsp: expression stack of caller
1828   // rbp: rbp, of caller
1829   __ push(rax);                                  // save exception
1830   __ push(rdx);                                  // save return address
1831   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
1832   __ mov(rbx, rax);                              // save exception handler
1833   __ pop(rdx);                                   // restore return address
1834   __ pop(rax);                                   // restore exception
1835   // Note that an "issuing PC" is actually the next PC after the call
1836   __ jmp(rbx);                                   // jump to exception handler of caller
1837 }
1838 
1839 
1840 //
1841 // JVMTI ForceEarlyReturn support
1842 //
1843 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1844   address entry = __ pc();
1845   const Register thread = rcx;
1846 
1847   __ restore_bcp();
1848   __ restore_locals();
1849   __ empty_expression_stack();
1850   __ empty_FPU_stack();
1851   __ load_earlyret_value(state);
1852 
1853   __ get_thread(thread);
1854   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
1855   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
1856 
1857   // Clear the earlyret state
1858   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
1859 
1860   __ remove_activation(state, rsi,
1861                        false, /* throw_monitor_exception */
1862                        false, /* install_monitor_exception */
1863                        true); /* notify_jvmdi */
1864   __ jmp(rsi);
1865   return entry;
1866 } // end of ForceEarlyReturn support
1867 
1868 
1869 //------------------------------------------------------------------------------------------------------------------------
1870 // Helper for vtos entry point generation
1871 
1872 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1873   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1874   Label L;
1875   fep = __ pc(); __ push(ftos); __ jmp(L);
1876   dep = __ pc(); __ push(dtos); __ jmp(L);
1877   lep = __ pc(); __ push(ltos); __ jmp(L);
1878   aep = __ pc(); __ push(atos); __ jmp(L);
1879   bep = cep = sep =             // fall through
1880   iep = __ pc(); __ push(itos); // fall through
1881   vep = __ pc(); __ bind(L);    // fall through
1882   generate_and_dispatch(t);
1883 }
1884 
1885 //------------------------------------------------------------------------------------------------------------------------
1886 // Generation of individual instructions
1887 
1888 // helpers for generate_and_dispatch
1889 
1890 
1891 
1892 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1893  : TemplateInterpreterGenerator(code) {
1894    generate_all(); // down here so it can be "virtual"
1895 }
1896 
1897 //------------------------------------------------------------------------------------------------------------------------
1898 
1899 // Non-product code
1900 #ifndef PRODUCT
1901 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1902   address entry = __ pc();
1903 
1904   // prepare expression stack
1905   __ pop(rcx);          // pop return address so expression stack is 'pure'
1906   __ push(state);       // save tosca
1907 
1908   // pass tosca registers as arguments & call tracer
1909   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
1910   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
1911   __ pop(state);        // restore tosca
1912 
1913   // return
1914   __ jmp(rcx);
1915 
1916   return entry;
1917 }
1918 
1919 
1920 void TemplateInterpreterGenerator::count_bytecode() {
1921   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
1922 }
1923 
1924 
1925 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1926   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
1927 }
1928 
1929 
1930 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1931   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
1932   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
1933   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
1934   ExternalAddress table((address) BytecodePairHistogram::_counters);
1935   Address index(noreg, rbx, Address::times_4);
1936   __ incrementl(ArrayAddress(table, index));
1937 }
1938 
1939 
1940 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1941   // Call a little run-time stub to avoid blow-up for each bytecode.
1942   // The run-time runtime saves the right registers, depending on
1943   // the tosca in-state for the given template.
1944   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1945          "entry must have been generated");
1946   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
1947 }
1948 
1949 
1950 void TemplateInterpreterGenerator::stop_interpreter_at() {
1951   Label L;
1952   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
1953            StopInterpreterAt);
1954   __ jcc(Assembler::notEqual, L);
1955   __ int3();
1956   __ bind(L);
1957 }
1958 #endif // !PRODUCT
1959 #endif // CC_INTERP