1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc_interface/collectedHeap.hpp"
  36 #include "memory/barrierSet.hpp"
  37 #include "memory/cardTableModRefBS.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 
  42 
  43 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  44 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  45 // fast versions of NegF/NegD and AbsF/AbsD.
  46 
  47 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  48 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  49   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  50   // of 128-bits operands for SSE instructions.
  51   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  52   // Store the value to a 128-bits operand.
  53   operand[0] = lo;
  54   operand[1] = hi;
  55   return operand;
  56 }
  57 
  58 // Buffer for 128-bits masks used by SSE instructions.
  59 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  60 
  61 // Static initialization during VM startup.
  62 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  63 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  64 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  65 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  66 
  67 
  68 
  69 NEEDS_CLEANUP // remove this definitions ?
  70 const Register IC_Klass    = rax;   // where the IC klass is cached
  71 const Register SYNC_header = rax;   // synchronization header
  72 const Register SHIFT_count = rcx;   // where count for shift operations must be
  73 
  74 #define __ _masm->
  75 
  76 
  77 static void select_different_registers(Register preserve,
  78                                        Register extra,
  79                                        Register &tmp1,
  80                                        Register &tmp2) {
  81   if (tmp1 == preserve) {
  82     assert_different_registers(tmp1, tmp2, extra);
  83     tmp1 = extra;
  84   } else if (tmp2 == preserve) {
  85     assert_different_registers(tmp1, tmp2, extra);
  86     tmp2 = extra;
  87   }
  88   assert_different_registers(preserve, tmp1, tmp2);
  89 }
  90 
  91 
  92 
  93 static void select_different_registers(Register preserve,
  94                                        Register extra,
  95                                        Register &tmp1,
  96                                        Register &tmp2,
  97                                        Register &tmp3) {
  98   if (tmp1 == preserve) {
  99     assert_different_registers(tmp1, tmp2, tmp3, extra);
 100     tmp1 = extra;
 101   } else if (tmp2 == preserve) {
 102     assert_different_registers(tmp1, tmp2, tmp3, extra);
 103     tmp2 = extra;
 104   } else if (tmp3 == preserve) {
 105     assert_different_registers(tmp1, tmp2, tmp3, extra);
 106     tmp3 = extra;
 107   }
 108   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 109 }
 110 
 111 
 112 
 113 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 114   if (opr->is_constant()) {
 115     LIR_Const* constant = opr->as_constant_ptr();
 116     switch (constant->type()) {
 117       case T_INT: {
 118         return true;
 119       }
 120 
 121       default:
 122         return false;
 123     }
 124   }
 125   return false;
 126 }
 127 
 128 
 129 LIR_Opr LIR_Assembler::receiverOpr() {
 130   return FrameMap::receiver_opr;
 131 }
 132 
 133 LIR_Opr LIR_Assembler::osrBufferPointer() {
 134   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 135 }
 136 
 137 //--------------fpu register translations-----------------------
 138 
 139 
 140 address LIR_Assembler::float_constant(float f) {
 141   address const_addr = __ float_constant(f);
 142   if (const_addr == NULL) {
 143     bailout("const section overflow");
 144     return __ code()->consts()->start();
 145   } else {
 146     return const_addr;
 147   }
 148 }
 149 
 150 
 151 address LIR_Assembler::double_constant(double d) {
 152   address const_addr = __ double_constant(d);
 153   if (const_addr == NULL) {
 154     bailout("const section overflow");
 155     return __ code()->consts()->start();
 156   } else {
 157     return const_addr;
 158   }
 159 }
 160 
 161 
 162 void LIR_Assembler::set_24bit_FPU() {
 163   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 164 }
 165 
 166 void LIR_Assembler::reset_FPU() {
 167   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 168 }
 169 
 170 void LIR_Assembler::fpop() {
 171   __ fpop();
 172 }
 173 
 174 void LIR_Assembler::fxch(int i) {
 175   __ fxch(i);
 176 }
 177 
 178 void LIR_Assembler::fld(int i) {
 179   __ fld_s(i);
 180 }
 181 
 182 void LIR_Assembler::ffree(int i) {
 183   __ ffree(i);
 184 }
 185 
 186 void LIR_Assembler::breakpoint() {
 187   __ int3();
 188 }
 189 
 190 void LIR_Assembler::push(LIR_Opr opr) {
 191   if (opr->is_single_cpu()) {
 192     __ push_reg(opr->as_register());
 193   } else if (opr->is_double_cpu()) {
 194     NOT_LP64(__ push_reg(opr->as_register_hi()));
 195     __ push_reg(opr->as_register_lo());
 196   } else if (opr->is_stack()) {
 197     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 198   } else if (opr->is_constant()) {
 199     LIR_Const* const_opr = opr->as_constant_ptr();
 200     if (const_opr->type() == T_OBJECT) {
 201       __ push_oop(const_opr->as_jobject());
 202     } else if (const_opr->type() == T_INT) {
 203       __ push_jint(const_opr->as_jint());
 204     } else {
 205       ShouldNotReachHere();
 206     }
 207 
 208   } else {
 209     ShouldNotReachHere();
 210   }
 211 }
 212 
 213 void LIR_Assembler::pop(LIR_Opr opr) {
 214   if (opr->is_single_cpu()) {
 215     __ pop_reg(opr->as_register());
 216   } else {
 217     ShouldNotReachHere();
 218   }
 219 }
 220 
 221 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 222   return addr->base()->is_illegal() && addr->index()->is_illegal();
 223 }
 224 
 225 //-------------------------------------------
 226 
 227 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 228   return as_Address(addr, rscratch1);
 229 }
 230 
 231 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 232   if (addr->base()->is_illegal()) {
 233     assert(addr->index()->is_illegal(), "must be illegal too");
 234     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 235     if (! __ reachable(laddr)) {
 236       __ movptr(tmp, laddr.addr());
 237       Address res(tmp, 0);
 238       return res;
 239     } else {
 240       return __ as_Address(laddr);
 241     }
 242   }
 243 
 244   Register base = addr->base()->as_pointer_register();
 245 
 246   if (addr->index()->is_illegal()) {
 247     return Address( base, addr->disp());
 248   } else if (addr->index()->is_cpu_register()) {
 249     Register index = addr->index()->as_pointer_register();
 250     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 251   } else if (addr->index()->is_constant()) {
 252     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 253     assert(Assembler::is_simm32(addr_offset), "must be");
 254 
 255     return Address(base, addr_offset);
 256   } else {
 257     Unimplemented();
 258     return Address();
 259   }
 260 }
 261 
 262 
 263 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 264   Address base = as_Address(addr);
 265   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 266 }
 267 
 268 
 269 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 270   return as_Address(addr);
 271 }
 272 
 273 
 274 void LIR_Assembler::osr_entry() {
 275   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 276   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 277   ValueStack* entry_state = osr_entry->state();
 278   int number_of_locks = entry_state->locks_size();
 279 
 280   // we jump here if osr happens with the interpreter
 281   // state set up to continue at the beginning of the
 282   // loop that triggered osr - in particular, we have
 283   // the following registers setup:
 284   //
 285   // rcx: osr buffer
 286   //
 287 
 288   // build frame
 289   ciMethod* m = compilation()->method();
 290   __ build_frame(initial_frame_size_in_bytes());
 291 
 292   // OSR buffer is
 293   //
 294   // locals[nlocals-1..0]
 295   // monitors[0..number_of_locks]
 296   //
 297   // locals is a direct copy of the interpreter frame so in the osr buffer
 298   // so first slot in the local array is the last local from the interpreter
 299   // and last slot is local[0] (receiver) from the interpreter
 300   //
 301   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 302   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 303   // in the interpreter frame (the method lock if a sync method)
 304 
 305   // Initialize monitors in the compiled activation.
 306   //   rcx: pointer to osr buffer
 307   //
 308   // All other registers are dead at this point and the locals will be
 309   // copied into place by code emitted in the IR.
 310 
 311   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 312   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 313     int monitor_offset = BytesPerWord * method()->max_locals() +
 314       (2 * BytesPerWord) * (number_of_locks - 1);
 315     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 316     // the OSR buffer using 2 word entries: first the lock and then
 317     // the oop.
 318     for (int i = 0; i < number_of_locks; i++) {
 319       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 320 #ifdef ASSERT
 321       // verify the interpreter's monitor has a non-null object
 322       {
 323         Label L;
 324         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 325         __ jcc(Assembler::notZero, L);
 326         __ stop("locked object is NULL");
 327         __ bind(L);
 328       }
 329 #endif
 330       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 331       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 332       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 333       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 334     }
 335   }
 336 }
 337 
 338 
 339 // inline cache check; done before the frame is built.
 340 int LIR_Assembler::check_icache() {
 341   Register receiver = FrameMap::receiver_opr->as_register();
 342   Register ic_klass = IC_Klass;
 343   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 344   const bool do_post_padding = VerifyOops || UseCompressedKlassPointers;
 345   if (!do_post_padding) {
 346     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 347     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 348       __ nop();
 349     }
 350   }
 351   int offset = __ offset();
 352   __ inline_cache_check(receiver, IC_Klass);
 353   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 354   if (do_post_padding) {
 355     // force alignment after the cache check.
 356     // It's been verified to be aligned if !VerifyOops
 357     __ align(CodeEntryAlignment);
 358   }
 359   return offset;
 360 }
 361 
 362 
 363 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 364   jobject o = NULL;
 365   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 366   __ movoop(reg, o);
 367   patching_epilog(patch, lir_patch_normal, reg, info);
 368 }
 369 
 370 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 371   Metadata* o = NULL;
 372   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 373   __ mov_metadata(reg, o);
 374   patching_epilog(patch, lir_patch_normal, reg, info);
 375 }
 376 
 377 // This specifies the rsp decrement needed to build the frame
 378 int LIR_Assembler::initial_frame_size_in_bytes() {
 379   // if rounding, must let FrameMap know!
 380 
 381   // The frame_map records size in slots (32bit word)
 382 
 383   // subtract two words to account for return address and link
 384   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 385 }
 386 
 387 
 388 int LIR_Assembler::emit_exception_handler() {
 389   // if the last instruction is a call (typically to do a throw which
 390   // is coming at the end after block reordering) the return address
 391   // must still point into the code area in order to avoid assertion
 392   // failures when searching for the corresponding bci => add a nop
 393   // (was bug 5/14/1999 - gri)
 394   __ nop();
 395 
 396   // generate code for exception handler
 397   address handler_base = __ start_a_stub(exception_handler_size);
 398   if (handler_base == NULL) {
 399     // not enough space left for the handler
 400     bailout("exception handler overflow");
 401     return -1;
 402   }
 403 
 404   int offset = code_offset();
 405 
 406   // the exception oop and pc are in rax, and rdx
 407   // no other registers need to be preserved, so invalidate them
 408   __ invalidate_registers(false, true, true, false, true, true);
 409 
 410   // check that there is really an exception
 411   __ verify_not_null_oop(rax);
 412 
 413   // search an exception handler (rax: exception oop, rdx: throwing pc)
 414   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 415   __ should_not_reach_here();
 416   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
 417   __ end_a_stub();
 418 
 419   return offset;
 420 }
 421 
 422 
 423 // Emit the code to remove the frame from the stack in the exception
 424 // unwind path.
 425 int LIR_Assembler::emit_unwind_handler() {
 426 #ifndef PRODUCT
 427   if (CommentedAssembly) {
 428     _masm->block_comment("Unwind handler");
 429   }
 430 #endif
 431 
 432   int offset = code_offset();
 433 
 434   // Fetch the exception from TLS and clear out exception related thread state
 435   __ get_thread(rsi);
 436   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
 437   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 438   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 439 
 440   __ bind(_unwind_handler_entry);
 441   __ verify_not_null_oop(rax);
 442   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 443     __ mov(rsi, rax);  // Preserve the exception
 444   }
 445 
 446   // Preform needed unlocking
 447   MonitorExitStub* stub = NULL;
 448   if (method()->is_synchronized()) {
 449     monitor_address(0, FrameMap::rax_opr);
 450     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 451     __ unlock_object(rdi, rbx, rax, *stub->entry());
 452     __ bind(*stub->continuation());
 453   }
 454 
 455   if (compilation()->env()->dtrace_method_probes()) {
 456     __ get_thread(rax);
 457     __ movptr(Address(rsp, 0), rax);
 458     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 459     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 460   }
 461 
 462   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 463     __ mov(rax, rsi);  // Restore the exception
 464   }
 465 
 466   // remove the activation and dispatch to the unwind handler
 467   __ remove_frame(initial_frame_size_in_bytes());
 468   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 469 
 470   // Emit the slow path assembly
 471   if (stub != NULL) {
 472     stub->emit_code(this);
 473   }
 474 
 475   return offset;
 476 }
 477 
 478 
 479 int LIR_Assembler::emit_deopt_handler() {
 480   // if the last instruction is a call (typically to do a throw which
 481   // is coming at the end after block reordering) the return address
 482   // must still point into the code area in order to avoid assertion
 483   // failures when searching for the corresponding bci => add a nop
 484   // (was bug 5/14/1999 - gri)
 485   __ nop();
 486 
 487   // generate code for exception handler
 488   address handler_base = __ start_a_stub(deopt_handler_size);
 489   if (handler_base == NULL) {
 490     // not enough space left for the handler
 491     bailout("deopt handler overflow");
 492     return -1;
 493   }
 494 
 495   int offset = code_offset();
 496   InternalAddress here(__ pc());
 497 
 498   __ pushptr(here.addr());
 499   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 500   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
 501   __ end_a_stub();
 502 
 503   return offset;
 504 }
 505 
 506 
 507 // This is the fast version of java.lang.String.compare; it has not
 508 // OSR-entry and therefore, we generate a slow version for OSR's
 509 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 510   __ movptr (rbx, rcx); // receiver is in rcx
 511   __ movptr (rax, arg1->as_register());
 512 
 513   // Get addresses of first characters from both Strings
 514   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 515   if (java_lang_String::has_offset_field()) {
 516     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 517     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 518     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 519   } else {
 520     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
 521     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 522   }
 523 
 524   // rbx, may be NULL
 525   add_debug_info_for_null_check_here(info);
 526   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 527   if (java_lang_String::has_offset_field()) {
 528     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 529     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 530     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 531   } else {
 532     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
 533     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 534   }
 535 
 536   // compute minimum length (in rax) and difference of lengths (on top of stack)
 537   __ mov   (rcx, rbx);
 538   __ subptr(rbx, rax); // subtract lengths
 539   __ push  (rbx);      // result
 540   __ cmov  (Assembler::lessEqual, rax, rcx);
 541 
 542   // is minimum length 0?
 543   Label noLoop, haveResult;
 544   __ testptr (rax, rax);
 545   __ jcc (Assembler::zero, noLoop);
 546 
 547   // compare first characters
 548   __ load_unsigned_short(rcx, Address(rdi, 0));
 549   __ load_unsigned_short(rbx, Address(rsi, 0));
 550   __ subl(rcx, rbx);
 551   __ jcc(Assembler::notZero, haveResult);
 552   // starting loop
 553   __ decrement(rax); // we already tested index: skip one
 554   __ jcc(Assembler::zero, noLoop);
 555 
 556   // set rsi.edi to the end of the arrays (arrays have same length)
 557   // negate the index
 558 
 559   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 560   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 561   __ negptr(rax);
 562 
 563   // compare the strings in a loop
 564 
 565   Label loop;
 566   __ align(wordSize);
 567   __ bind(loop);
 568   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 569   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 570   __ subl(rcx, rbx);
 571   __ jcc(Assembler::notZero, haveResult);
 572   __ increment(rax);
 573   __ jcc(Assembler::notZero, loop);
 574 
 575   // strings are equal up to min length
 576 
 577   __ bind(noLoop);
 578   __ pop(rax);
 579   return_op(LIR_OprFact::illegalOpr);
 580 
 581   __ bind(haveResult);
 582   // leave instruction is going to discard the TOS value
 583   __ mov (rax, rcx); // result of call is in rax,
 584 }
 585 
 586 
 587 void LIR_Assembler::return_op(LIR_Opr result) {
 588   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 589   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 590     assert(result->fpu() == 0, "result must already be on TOS");
 591   }
 592 
 593   // Pop the stack before the safepoint code
 594   __ remove_frame(initial_frame_size_in_bytes());
 595 
 596   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 597 
 598   // Note: we do not need to round double result; float result has the right precision
 599   // the poll sets the condition code, but no data registers
 600   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 601                               relocInfo::poll_return_type);
 602 
 603   if (Assembler::is_polling_page_far()) {
 604     __ lea(rscratch1, polling_page);
 605     __ relocate(relocInfo::poll_return_type);
 606     __ testl(rax, Address(rscratch1, 0));
 607   } else {
 608     __ testl(rax, polling_page);
 609   }
 610   __ ret(0);
 611 }
 612 
 613 
 614 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 615   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 616                               relocInfo::poll_type);
 617   guarantee(info != NULL, "Shouldn't be NULL");
 618   int offset = __ offset();
 619   if (Assembler::is_polling_page_far()) {
 620     __ lea(rscratch1, polling_page);
 621     offset = __ offset();
 622     add_debug_info_for_branch(info);
 623     __ testl(rax, Address(rscratch1, 0));
 624   } else {
 625     add_debug_info_for_branch(info);
 626     __ testl(rax, polling_page);
 627   }
 628   return offset;
 629 }
 630 
 631 
 632 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 633   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 634 }
 635 
 636 void LIR_Assembler::swap_reg(Register a, Register b) {
 637   __ xchgptr(a, b);
 638 }
 639 
 640 
 641 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 642   assert(src->is_constant(), "should not call otherwise");
 643   assert(dest->is_register(), "should not call otherwise");
 644   LIR_Const* c = src->as_constant_ptr();
 645 
 646   switch (c->type()) {
 647     case T_INT: {
 648       assert(patch_code == lir_patch_none, "no patching handled here");
 649       __ movl(dest->as_register(), c->as_jint());
 650       break;
 651     }
 652 
 653     case T_ADDRESS: {
 654       assert(patch_code == lir_patch_none, "no patching handled here");
 655       __ movptr(dest->as_register(), c->as_jint());
 656       break;
 657     }
 658 
 659     case T_LONG: {
 660       assert(patch_code == lir_patch_none, "no patching handled here");
 661 #ifdef _LP64
 662       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 663 #else
 664       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 665       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 666 #endif // _LP64
 667       break;
 668     }
 669 
 670     case T_OBJECT: {
 671       if (patch_code != lir_patch_none) {
 672         jobject2reg_with_patching(dest->as_register(), info);
 673       } else {
 674         __ movoop(dest->as_register(), c->as_jobject());
 675       }
 676       break;
 677     }
 678 
 679     case T_METADATA: {
 680       if (patch_code != lir_patch_none) {
 681         klass2reg_with_patching(dest->as_register(), info);
 682       } else {
 683         __ mov_metadata(dest->as_register(), c->as_metadata());
 684       }
 685       break;
 686     }
 687 
 688     case T_FLOAT: {
 689       if (dest->is_single_xmm()) {
 690         if (c->is_zero_float()) {
 691           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 692         } else {
 693           __ movflt(dest->as_xmm_float_reg(),
 694                    InternalAddress(float_constant(c->as_jfloat())));
 695         }
 696       } else {
 697         assert(dest->is_single_fpu(), "must be");
 698         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 699         if (c->is_zero_float()) {
 700           __ fldz();
 701         } else if (c->is_one_float()) {
 702           __ fld1();
 703         } else {
 704           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 705         }
 706       }
 707       break;
 708     }
 709 
 710     case T_DOUBLE: {
 711       if (dest->is_double_xmm()) {
 712         if (c->is_zero_double()) {
 713           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 714         } else {
 715           __ movdbl(dest->as_xmm_double_reg(),
 716                     InternalAddress(double_constant(c->as_jdouble())));
 717         }
 718       } else {
 719         assert(dest->is_double_fpu(), "must be");
 720         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 721         if (c->is_zero_double()) {
 722           __ fldz();
 723         } else if (c->is_one_double()) {
 724           __ fld1();
 725         } else {
 726           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 727         }
 728       }
 729       break;
 730     }
 731 
 732     default:
 733       ShouldNotReachHere();
 734   }
 735 }
 736 
 737 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 738   assert(src->is_constant(), "should not call otherwise");
 739   assert(dest->is_stack(), "should not call otherwise");
 740   LIR_Const* c = src->as_constant_ptr();
 741 
 742   switch (c->type()) {
 743     case T_INT:  // fall through
 744     case T_FLOAT:
 745       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 746       break;
 747 
 748     case T_ADDRESS:
 749       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 750       break;
 751 
 752     case T_OBJECT:
 753       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 754       break;
 755 
 756     case T_LONG:  // fall through
 757     case T_DOUBLE:
 758 #ifdef _LP64
 759       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 760                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 761 #else
 762       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 763                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 764       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 765                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 766 #endif // _LP64
 767       break;
 768 
 769     default:
 770       ShouldNotReachHere();
 771   }
 772 }
 773 
 774 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 775   assert(src->is_constant(), "should not call otherwise");
 776   assert(dest->is_address(), "should not call otherwise");
 777   LIR_Const* c = src->as_constant_ptr();
 778   LIR_Address* addr = dest->as_address_ptr();
 779 
 780   int null_check_here = code_offset();
 781   switch (type) {
 782     case T_INT:    // fall through
 783     case T_FLOAT:
 784       __ movl(as_Address(addr), c->as_jint_bits());
 785       break;
 786 
 787     case T_ADDRESS:
 788       __ movptr(as_Address(addr), c->as_jint_bits());
 789       break;
 790 
 791     case T_OBJECT:  // fall through
 792     case T_ARRAY:
 793       if (c->as_jobject() == NULL) {
 794         if (UseCompressedOops && !wide) {
 795           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 796         } else {
 797           __ movptr(as_Address(addr), NULL_WORD);
 798         }
 799       } else {
 800         if (is_literal_address(addr)) {
 801           ShouldNotReachHere();
 802           __ movoop(as_Address(addr, noreg), c->as_jobject());
 803         } else {
 804 #ifdef _LP64
 805           __ movoop(rscratch1, c->as_jobject());
 806           if (UseCompressedOops && !wide) {
 807             __ encode_heap_oop(rscratch1);
 808             null_check_here = code_offset();
 809             __ movl(as_Address_lo(addr), rscratch1);
 810           } else {
 811             null_check_here = code_offset();
 812             __ movptr(as_Address_lo(addr), rscratch1);
 813           }
 814 #else
 815           __ movoop(as_Address(addr), c->as_jobject());
 816 #endif
 817         }
 818       }
 819       break;
 820 
 821     case T_LONG:    // fall through
 822     case T_DOUBLE:
 823 #ifdef _LP64
 824       if (is_literal_address(addr)) {
 825         ShouldNotReachHere();
 826         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 827       } else {
 828         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 829         null_check_here = code_offset();
 830         __ movptr(as_Address_lo(addr), r10);
 831       }
 832 #else
 833       // Always reachable in 32bit so this doesn't produce useless move literal
 834       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 835       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 836 #endif // _LP64
 837       break;
 838 
 839     case T_BOOLEAN: // fall through
 840     case T_BYTE:
 841       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 842       break;
 843 
 844     case T_CHAR:    // fall through
 845     case T_SHORT:
 846       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 847       break;
 848 
 849     default:
 850       ShouldNotReachHere();
 851   };
 852 
 853   if (info != NULL) {
 854     add_debug_info_for_null_check(null_check_here, info);
 855   }
 856 }
 857 
 858 
 859 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 860   assert(src->is_register(), "should not call otherwise");
 861   assert(dest->is_register(), "should not call otherwise");
 862 
 863   // move between cpu-registers
 864   if (dest->is_single_cpu()) {
 865 #ifdef _LP64
 866     if (src->type() == T_LONG) {
 867       // Can do LONG -> OBJECT
 868       move_regs(src->as_register_lo(), dest->as_register());
 869       return;
 870     }
 871 #endif
 872     assert(src->is_single_cpu(), "must match");
 873     if (src->type() == T_OBJECT) {
 874       __ verify_oop(src->as_register());
 875     }
 876     move_regs(src->as_register(), dest->as_register());
 877 
 878   } else if (dest->is_double_cpu()) {
 879 #ifdef _LP64
 880     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 881       // Surprising to me but we can see move of a long to t_object
 882       __ verify_oop(src->as_register());
 883       move_regs(src->as_register(), dest->as_register_lo());
 884       return;
 885     }
 886 #endif
 887     assert(src->is_double_cpu(), "must match");
 888     Register f_lo = src->as_register_lo();
 889     Register f_hi = src->as_register_hi();
 890     Register t_lo = dest->as_register_lo();
 891     Register t_hi = dest->as_register_hi();
 892 #ifdef _LP64
 893     assert(f_hi == f_lo, "must be same");
 894     assert(t_hi == t_lo, "must be same");
 895     move_regs(f_lo, t_lo);
 896 #else
 897     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 898 
 899 
 900     if (f_lo == t_hi && f_hi == t_lo) {
 901       swap_reg(f_lo, f_hi);
 902     } else if (f_hi == t_lo) {
 903       assert(f_lo != t_hi, "overwriting register");
 904       move_regs(f_hi, t_hi);
 905       move_regs(f_lo, t_lo);
 906     } else {
 907       assert(f_hi != t_lo, "overwriting register");
 908       move_regs(f_lo, t_lo);
 909       move_regs(f_hi, t_hi);
 910     }
 911 #endif // LP64
 912 
 913     // special moves from fpu-register to xmm-register
 914     // necessary for method results
 915   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 916     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 917     __ fld_s(Address(rsp, 0));
 918   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 919     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 920     __ fld_d(Address(rsp, 0));
 921   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 922     __ fstp_s(Address(rsp, 0));
 923     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 924   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 925     __ fstp_d(Address(rsp, 0));
 926     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 927 
 928     // move between xmm-registers
 929   } else if (dest->is_single_xmm()) {
 930     assert(src->is_single_xmm(), "must match");
 931     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 932   } else if (dest->is_double_xmm()) {
 933     assert(src->is_double_xmm(), "must match");
 934     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 935 
 936     // move between fpu-registers (no instruction necessary because of fpu-stack)
 937   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 938     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 939     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 940   } else {
 941     ShouldNotReachHere();
 942   }
 943 }
 944 
 945 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 946   assert(src->is_register(), "should not call otherwise");
 947   assert(dest->is_stack(), "should not call otherwise");
 948 
 949   if (src->is_single_cpu()) {
 950     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 951     if (type == T_OBJECT || type == T_ARRAY) {
 952       __ verify_oop(src->as_register());
 953       __ movptr (dst, src->as_register());
 954     } else if (type == T_METADATA) {
 955       __ movptr (dst, src->as_register());
 956     } else {
 957       __ movl (dst, src->as_register());
 958     }
 959 
 960   } else if (src->is_double_cpu()) {
 961     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 962     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 963     __ movptr (dstLO, src->as_register_lo());
 964     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 965 
 966   } else if (src->is_single_xmm()) {
 967     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 968     __ movflt(dst_addr, src->as_xmm_float_reg());
 969 
 970   } else if (src->is_double_xmm()) {
 971     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 972     __ movdbl(dst_addr, src->as_xmm_double_reg());
 973 
 974   } else if (src->is_single_fpu()) {
 975     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 976     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 977     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 978     else                   __ fst_s  (dst_addr);
 979 
 980   } else if (src->is_double_fpu()) {
 981     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 982     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 983     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 984     else                   __ fst_d  (dst_addr);
 985 
 986   } else {
 987     ShouldNotReachHere();
 988   }
 989 }
 990 
 991 
 992 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 993   LIR_Address* to_addr = dest->as_address_ptr();
 994   PatchingStub* patch = NULL;
 995   Register compressed_src = rscratch1;
 996 
 997   if (type == T_ARRAY || type == T_OBJECT) {
 998     __ verify_oop(src->as_register());
 999 #ifdef _LP64
1000     if (UseCompressedOops && !wide) {
1001       __ movptr(compressed_src, src->as_register());
1002       __ encode_heap_oop(compressed_src);
1003     }
1004 #endif
1005   }
1006 
1007   if (patch_code != lir_patch_none) {
1008     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1009     Address toa = as_Address(to_addr);
1010     assert(toa.disp() != 0, "must have");
1011   }
1012 
1013   int null_check_here = code_offset();
1014   switch (type) {
1015     case T_FLOAT: {
1016       if (src->is_single_xmm()) {
1017         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1018       } else {
1019         assert(src->is_single_fpu(), "must be");
1020         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1021         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1022         else                    __ fst_s (as_Address(to_addr));
1023       }
1024       break;
1025     }
1026 
1027     case T_DOUBLE: {
1028       if (src->is_double_xmm()) {
1029         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1030       } else {
1031         assert(src->is_double_fpu(), "must be");
1032         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1033         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1034         else                    __ fst_d (as_Address(to_addr));
1035       }
1036       break;
1037     }
1038 
1039     case T_ARRAY:   // fall through
1040     case T_OBJECT:  // fall through
1041       if (UseCompressedOops && !wide) {
1042         __ movl(as_Address(to_addr), compressed_src);
1043       } else {
1044         __ movptr(as_Address(to_addr), src->as_register());
1045       }
1046       break;
1047     case T_METADATA:
1048       // We get here to store a method pointer to the stack to pass to
1049       // a dtrace runtime call. This can't work on 64 bit with
1050       // compressed klass ptrs: T_METADATA can be a compressed klass
1051       // ptr or a 64 bit method pointer.
1052       LP64_ONLY(ShouldNotReachHere());
1053       __ movptr(as_Address(to_addr), src->as_register());
1054       break;
1055     case T_ADDRESS:
1056       __ movptr(as_Address(to_addr), src->as_register());
1057       break;
1058     case T_INT:
1059       __ movl(as_Address(to_addr), src->as_register());
1060       break;
1061 
1062     case T_LONG: {
1063       Register from_lo = src->as_register_lo();
1064       Register from_hi = src->as_register_hi();
1065 #ifdef _LP64
1066       __ movptr(as_Address_lo(to_addr), from_lo);
1067 #else
1068       Register base = to_addr->base()->as_register();
1069       Register index = noreg;
1070       if (to_addr->index()->is_register()) {
1071         index = to_addr->index()->as_register();
1072       }
1073       if (base == from_lo || index == from_lo) {
1074         assert(base != from_hi, "can't be");
1075         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1076         __ movl(as_Address_hi(to_addr), from_hi);
1077         if (patch != NULL) {
1078           patching_epilog(patch, lir_patch_high, base, info);
1079           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1080           patch_code = lir_patch_low;
1081         }
1082         __ movl(as_Address_lo(to_addr), from_lo);
1083       } else {
1084         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1085         __ movl(as_Address_lo(to_addr), from_lo);
1086         if (patch != NULL) {
1087           patching_epilog(patch, lir_patch_low, base, info);
1088           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1089           patch_code = lir_patch_high;
1090         }
1091         __ movl(as_Address_hi(to_addr), from_hi);
1092       }
1093 #endif // _LP64
1094       break;
1095     }
1096 
1097     case T_BYTE:    // fall through
1098     case T_BOOLEAN: {
1099       Register src_reg = src->as_register();
1100       Address dst_addr = as_Address(to_addr);
1101       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1102       __ movb(dst_addr, src_reg);
1103       break;
1104     }
1105 
1106     case T_CHAR:    // fall through
1107     case T_SHORT:
1108       __ movw(as_Address(to_addr), src->as_register());
1109       break;
1110 
1111     default:
1112       ShouldNotReachHere();
1113   }
1114   if (info != NULL) {
1115     add_debug_info_for_null_check(null_check_here, info);
1116   }
1117 
1118   if (patch_code != lir_patch_none) {
1119     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1120   }
1121 }
1122 
1123 
1124 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1125   assert(src->is_stack(), "should not call otherwise");
1126   assert(dest->is_register(), "should not call otherwise");
1127 
1128   if (dest->is_single_cpu()) {
1129     if (type == T_ARRAY || type == T_OBJECT) {
1130       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1131       __ verify_oop(dest->as_register());
1132     } else if (type == T_METADATA) {
1133       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1134     } else {
1135       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1136     }
1137 
1138   } else if (dest->is_double_cpu()) {
1139     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1140     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1141     __ movptr(dest->as_register_lo(), src_addr_LO);
1142     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1143 
1144   } else if (dest->is_single_xmm()) {
1145     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1146     __ movflt(dest->as_xmm_float_reg(), src_addr);
1147 
1148   } else if (dest->is_double_xmm()) {
1149     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1150     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1151 
1152   } else if (dest->is_single_fpu()) {
1153     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1154     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1155     __ fld_s(src_addr);
1156 
1157   } else if (dest->is_double_fpu()) {
1158     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1159     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1160     __ fld_d(src_addr);
1161 
1162   } else {
1163     ShouldNotReachHere();
1164   }
1165 }
1166 
1167 
1168 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1169   if (src->is_single_stack()) {
1170     if (type == T_OBJECT || type == T_ARRAY) {
1171       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1172       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1173     } else {
1174 #ifndef _LP64
1175       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1176       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1177 #else
1178       //no pushl on 64bits
1179       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1180       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1181 #endif
1182     }
1183 
1184   } else if (src->is_double_stack()) {
1185 #ifdef _LP64
1186     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1187     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1188 #else
1189     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1190     // push and pop the part at src + wordSize, adding wordSize for the previous push
1191     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1192     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1193     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1194 #endif // _LP64
1195 
1196   } else {
1197     ShouldNotReachHere();
1198   }
1199 }
1200 
1201 
1202 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1203   assert(src->is_address(), "should not call otherwise");
1204   assert(dest->is_register(), "should not call otherwise");
1205 
1206   LIR_Address* addr = src->as_address_ptr();
1207   Address from_addr = as_Address(addr);
1208 
1209   switch (type) {
1210     case T_BOOLEAN: // fall through
1211     case T_BYTE:    // fall through
1212     case T_CHAR:    // fall through
1213     case T_SHORT:
1214       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1215         // on pre P6 processors we may get partial register stalls
1216         // so blow away the value of to_rinfo before loading a
1217         // partial word into it.  Do it here so that it precedes
1218         // the potential patch point below.
1219         __ xorptr(dest->as_register(), dest->as_register());
1220       }
1221       break;
1222   }
1223 
1224   PatchingStub* patch = NULL;
1225   if (patch_code != lir_patch_none) {
1226     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1227     assert(from_addr.disp() != 0, "must have");
1228   }
1229   if (info != NULL) {
1230     add_debug_info_for_null_check_here(info);
1231   }
1232 
1233   switch (type) {
1234     case T_FLOAT: {
1235       if (dest->is_single_xmm()) {
1236         __ movflt(dest->as_xmm_float_reg(), from_addr);
1237       } else {
1238         assert(dest->is_single_fpu(), "must be");
1239         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1240         __ fld_s(from_addr);
1241       }
1242       break;
1243     }
1244 
1245     case T_DOUBLE: {
1246       if (dest->is_double_xmm()) {
1247         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1248       } else {
1249         assert(dest->is_double_fpu(), "must be");
1250         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1251         __ fld_d(from_addr);
1252       }
1253       break;
1254     }
1255 
1256     case T_OBJECT:  // fall through
1257     case T_ARRAY:   // fall through
1258       if (UseCompressedOops && !wide) {
1259         __ movl(dest->as_register(), from_addr);
1260       } else {
1261         __ movptr(dest->as_register(), from_addr);
1262       }
1263       break;
1264 
1265     case T_ADDRESS:
1266       if (UseCompressedKlassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1267         __ movl(dest->as_register(), from_addr);
1268       } else {
1269         __ movptr(dest->as_register(), from_addr);
1270       }
1271       break;
1272     case T_INT:
1273       __ movl(dest->as_register(), from_addr);
1274       break;
1275 
1276     case T_LONG: {
1277       Register to_lo = dest->as_register_lo();
1278       Register to_hi = dest->as_register_hi();
1279 #ifdef _LP64
1280       __ movptr(to_lo, as_Address_lo(addr));
1281 #else
1282       Register base = addr->base()->as_register();
1283       Register index = noreg;
1284       if (addr->index()->is_register()) {
1285         index = addr->index()->as_register();
1286       }
1287       if ((base == to_lo && index == to_hi) ||
1288           (base == to_hi && index == to_lo)) {
1289         // addresses with 2 registers are only formed as a result of
1290         // array access so this code will never have to deal with
1291         // patches or null checks.
1292         assert(info == NULL && patch == NULL, "must be");
1293         __ lea(to_hi, as_Address(addr));
1294         __ movl(to_lo, Address(to_hi, 0));
1295         __ movl(to_hi, Address(to_hi, BytesPerWord));
1296       } else if (base == to_lo || index == to_lo) {
1297         assert(base != to_hi, "can't be");
1298         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1299         __ movl(to_hi, as_Address_hi(addr));
1300         if (patch != NULL) {
1301           patching_epilog(patch, lir_patch_high, base, info);
1302           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1303           patch_code = lir_patch_low;
1304         }
1305         __ movl(to_lo, as_Address_lo(addr));
1306       } else {
1307         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1308         __ movl(to_lo, as_Address_lo(addr));
1309         if (patch != NULL) {
1310           patching_epilog(patch, lir_patch_low, base, info);
1311           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1312           patch_code = lir_patch_high;
1313         }
1314         __ movl(to_hi, as_Address_hi(addr));
1315       }
1316 #endif // _LP64
1317       break;
1318     }
1319 
1320     case T_BOOLEAN: // fall through
1321     case T_BYTE: {
1322       Register dest_reg = dest->as_register();
1323       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1324       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1325         __ movsbl(dest_reg, from_addr);
1326       } else {
1327         __ movb(dest_reg, from_addr);
1328         __ shll(dest_reg, 24);
1329         __ sarl(dest_reg, 24);
1330       }
1331       break;
1332     }
1333 
1334     case T_CHAR: {
1335       Register dest_reg = dest->as_register();
1336       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1337       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1338         __ movzwl(dest_reg, from_addr);
1339       } else {
1340         __ movw(dest_reg, from_addr);
1341       }
1342       break;
1343     }
1344 
1345     case T_SHORT: {
1346       Register dest_reg = dest->as_register();
1347       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1348         __ movswl(dest_reg, from_addr);
1349       } else {
1350         __ movw(dest_reg, from_addr);
1351         __ shll(dest_reg, 16);
1352         __ sarl(dest_reg, 16);
1353       }
1354       break;
1355     }
1356 
1357     default:
1358       ShouldNotReachHere();
1359   }
1360 
1361   if (patch != NULL) {
1362     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1363   }
1364 
1365   if (type == T_ARRAY || type == T_OBJECT) {
1366 #ifdef _LP64
1367     if (UseCompressedOops && !wide) {
1368       __ decode_heap_oop(dest->as_register());
1369     }
1370 #endif
1371     __ verify_oop(dest->as_register());
1372   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1373 #ifdef _LP64
1374     if (UseCompressedKlassPointers) {
1375       __ decode_klass_not_null(dest->as_register());
1376     }
1377 #endif
1378   }
1379 }
1380 
1381 
1382 void LIR_Assembler::prefetchr(LIR_Opr src) {
1383   LIR_Address* addr = src->as_address_ptr();
1384   Address from_addr = as_Address(addr);
1385 
1386   if (VM_Version::supports_sse()) {
1387     switch (ReadPrefetchInstr) {
1388       case 0:
1389         __ prefetchnta(from_addr); break;
1390       case 1:
1391         __ prefetcht0(from_addr); break;
1392       case 2:
1393         __ prefetcht2(from_addr); break;
1394       default:
1395         ShouldNotReachHere(); break;
1396     }
1397   } else if (VM_Version::supports_3dnow_prefetch()) {
1398     __ prefetchr(from_addr);
1399   }
1400 }
1401 
1402 
1403 void LIR_Assembler::prefetchw(LIR_Opr src) {
1404   LIR_Address* addr = src->as_address_ptr();
1405   Address from_addr = as_Address(addr);
1406 
1407   if (VM_Version::supports_sse()) {
1408     switch (AllocatePrefetchInstr) {
1409       case 0:
1410         __ prefetchnta(from_addr); break;
1411       case 1:
1412         __ prefetcht0(from_addr); break;
1413       case 2:
1414         __ prefetcht2(from_addr); break;
1415       case 3:
1416         __ prefetchw(from_addr); break;
1417       default:
1418         ShouldNotReachHere(); break;
1419     }
1420   } else if (VM_Version::supports_3dnow_prefetch()) {
1421     __ prefetchw(from_addr);
1422   }
1423 }
1424 
1425 
1426 NEEDS_CLEANUP; // This could be static?
1427 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1428   int elem_size = type2aelembytes(type);
1429   switch (elem_size) {
1430     case 1: return Address::times_1;
1431     case 2: return Address::times_2;
1432     case 4: return Address::times_4;
1433     case 8: return Address::times_8;
1434   }
1435   ShouldNotReachHere();
1436   return Address::no_scale;
1437 }
1438 
1439 
1440 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1441   switch (op->code()) {
1442     case lir_idiv:
1443     case lir_irem:
1444       arithmetic_idiv(op->code(),
1445                       op->in_opr1(),
1446                       op->in_opr2(),
1447                       op->in_opr3(),
1448                       op->result_opr(),
1449                       op->info());
1450       break;
1451     default:      ShouldNotReachHere(); break;
1452   }
1453 }
1454 
1455 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1456 #ifdef ASSERT
1457   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1458   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1459   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1460 #endif
1461 
1462   if (op->cond() == lir_cond_always) {
1463     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1464     __ jmp (*(op->label()));
1465   } else {
1466     Assembler::Condition acond = Assembler::zero;
1467     if (op->code() == lir_cond_float_branch) {
1468       assert(op->ublock() != NULL, "must have unordered successor");
1469       __ jcc(Assembler::parity, *(op->ublock()->label()));
1470       switch(op->cond()) {
1471         case lir_cond_equal:        acond = Assembler::equal;      break;
1472         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1473         case lir_cond_less:         acond = Assembler::below;      break;
1474         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1475         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1476         case lir_cond_greater:      acond = Assembler::above;      break;
1477         default:                         ShouldNotReachHere();
1478       }
1479     } else {
1480       switch (op->cond()) {
1481         case lir_cond_equal:        acond = Assembler::equal;       break;
1482         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1483         case lir_cond_less:         acond = Assembler::less;        break;
1484         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1485         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1486         case lir_cond_greater:      acond = Assembler::greater;     break;
1487         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1488         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1489         default:                         ShouldNotReachHere();
1490       }
1491     }
1492     __ jcc(acond,*(op->label()));
1493   }
1494 }
1495 
1496 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1497   LIR_Opr src  = op->in_opr();
1498   LIR_Opr dest = op->result_opr();
1499 
1500   switch (op->bytecode()) {
1501     case Bytecodes::_i2l:
1502 #ifdef _LP64
1503       __ movl2ptr(dest->as_register_lo(), src->as_register());
1504 #else
1505       move_regs(src->as_register(), dest->as_register_lo());
1506       move_regs(src->as_register(), dest->as_register_hi());
1507       __ sarl(dest->as_register_hi(), 31);
1508 #endif // LP64
1509       break;
1510 
1511     case Bytecodes::_l2i:
1512 #ifdef _LP64
1513       __ movl(dest->as_register(), src->as_register_lo());
1514 #else
1515       move_regs(src->as_register_lo(), dest->as_register());
1516 #endif
1517       break;
1518 
1519     case Bytecodes::_i2b:
1520       move_regs(src->as_register(), dest->as_register());
1521       __ sign_extend_byte(dest->as_register());
1522       break;
1523 
1524     case Bytecodes::_i2c:
1525       move_regs(src->as_register(), dest->as_register());
1526       __ andl(dest->as_register(), 0xFFFF);
1527       break;
1528 
1529     case Bytecodes::_i2s:
1530       move_regs(src->as_register(), dest->as_register());
1531       __ sign_extend_short(dest->as_register());
1532       break;
1533 
1534 
1535     case Bytecodes::_f2d:
1536     case Bytecodes::_d2f:
1537       if (dest->is_single_xmm()) {
1538         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1539       } else if (dest->is_double_xmm()) {
1540         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1541       } else {
1542         assert(src->fpu() == dest->fpu(), "register must be equal");
1543         // do nothing (float result is rounded later through spilling)
1544       }
1545       break;
1546 
1547     case Bytecodes::_i2f:
1548     case Bytecodes::_i2d:
1549       if (dest->is_single_xmm()) {
1550         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1551       } else if (dest->is_double_xmm()) {
1552         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1553       } else {
1554         assert(dest->fpu() == 0, "result must be on TOS");
1555         __ movl(Address(rsp, 0), src->as_register());
1556         __ fild_s(Address(rsp, 0));
1557       }
1558       break;
1559 
1560     case Bytecodes::_f2i:
1561     case Bytecodes::_d2i:
1562       if (src->is_single_xmm()) {
1563         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1564       } else if (src->is_double_xmm()) {
1565         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1566       } else {
1567         assert(src->fpu() == 0, "input must be on TOS");
1568         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1569         __ fist_s(Address(rsp, 0));
1570         __ movl(dest->as_register(), Address(rsp, 0));
1571         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1572       }
1573 
1574       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1575       assert(op->stub() != NULL, "stub required");
1576       __ cmpl(dest->as_register(), 0x80000000);
1577       __ jcc(Assembler::equal, *op->stub()->entry());
1578       __ bind(*op->stub()->continuation());
1579       break;
1580 
1581     case Bytecodes::_l2f:
1582     case Bytecodes::_l2d:
1583       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1584       assert(dest->fpu() == 0, "result must be on TOS");
1585 
1586       __ movptr(Address(rsp, 0),            src->as_register_lo());
1587       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1588       __ fild_d(Address(rsp, 0));
1589       // float result is rounded later through spilling
1590       break;
1591 
1592     case Bytecodes::_f2l:
1593     case Bytecodes::_d2l:
1594       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1595       assert(src->fpu() == 0, "input must be on TOS");
1596       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1597 
1598       // instruction sequence too long to inline it here
1599       {
1600         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1601       }
1602       break;
1603 
1604     default: ShouldNotReachHere();
1605   }
1606 }
1607 
1608 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1609   if (op->init_check()) {
1610     __ cmpb(Address(op->klass()->as_register(),
1611                     InstanceKlass::init_state_offset()),
1612                     InstanceKlass::fully_initialized);
1613     add_debug_info_for_null_check_here(op->stub()->info());
1614     __ jcc(Assembler::notEqual, *op->stub()->entry());
1615   }
1616   __ allocate_object(op->obj()->as_register(),
1617                      op->tmp1()->as_register(),
1618                      op->tmp2()->as_register(),
1619                      op->header_size(),
1620                      op->object_size(),
1621                      op->klass()->as_register(),
1622                      *op->stub()->entry());
1623   __ bind(*op->stub()->continuation());
1624 }
1625 
1626 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1627   Register len =  op->len()->as_register();
1628   LP64_ONLY( __ movslq(len, len); )
1629 
1630   if (UseSlowPath ||
1631       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1632       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1633     __ jmp(*op->stub()->entry());
1634   } else {
1635     Register tmp1 = op->tmp1()->as_register();
1636     Register tmp2 = op->tmp2()->as_register();
1637     Register tmp3 = op->tmp3()->as_register();
1638     if (len == tmp1) {
1639       tmp1 = tmp3;
1640     } else if (len == tmp2) {
1641       tmp2 = tmp3;
1642     } else if (len == tmp3) {
1643       // everything is ok
1644     } else {
1645       __ mov(tmp3, len);
1646     }
1647     __ allocate_array(op->obj()->as_register(),
1648                       len,
1649                       tmp1,
1650                       tmp2,
1651                       arrayOopDesc::header_size(op->type()),
1652                       array_element_size(op->type()),
1653                       op->klass()->as_register(),
1654                       *op->stub()->entry());
1655   }
1656   __ bind(*op->stub()->continuation());
1657 }
1658 
1659 void LIR_Assembler::type_profile_helper(Register mdo,
1660                                         ciMethodData *md, ciProfileData *data,
1661                                         Register recv, Label* update_done) {
1662   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1663     Label next_test;
1664     // See if the receiver is receiver[n].
1665     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1666     __ jccb(Assembler::notEqual, next_test);
1667     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1668     __ addptr(data_addr, DataLayout::counter_increment);
1669     __ jmp(*update_done);
1670     __ bind(next_test);
1671   }
1672 
1673   // Didn't find receiver; find next empty slot and fill it in
1674   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1675     Label next_test;
1676     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1677     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1678     __ jccb(Assembler::notEqual, next_test);
1679     __ movptr(recv_addr, recv);
1680     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1681     __ jmp(*update_done);
1682     __ bind(next_test);
1683   }
1684 }
1685 
1686 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1687   // we always need a stub for the failure case.
1688   CodeStub* stub = op->stub();
1689   Register obj = op->object()->as_register();
1690   Register k_RInfo = op->tmp1()->as_register();
1691   Register klass_RInfo = op->tmp2()->as_register();
1692   Register dst = op->result_opr()->as_register();
1693   ciKlass* k = op->klass();
1694   Register Rtmp1 = noreg;
1695 
1696   // check if it needs to be profiled
1697   ciMethodData* md;
1698   ciProfileData* data;
1699 
1700   if (op->should_profile()) {
1701     ciMethod* method = op->profiled_method();
1702     assert(method != NULL, "Should have method");
1703     int bci = op->profiled_bci();
1704     md = method->method_data_or_null();
1705     assert(md != NULL, "Sanity");
1706     data = md->bci_to_data(bci);
1707     assert(data != NULL,                "need data for type check");
1708     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1709   }
1710   Label profile_cast_success, profile_cast_failure;
1711   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1712   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1713 
1714   if (obj == k_RInfo) {
1715     k_RInfo = dst;
1716   } else if (obj == klass_RInfo) {
1717     klass_RInfo = dst;
1718   }
1719   if (k->is_loaded() && !UseCompressedKlassPointers) {
1720     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1721   } else {
1722     Rtmp1 = op->tmp3()->as_register();
1723     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1724   }
1725 
1726   assert_different_registers(obj, k_RInfo, klass_RInfo);
1727   if (!k->is_loaded()) {
1728     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1729   } else {
1730 #ifdef _LP64
1731     __ mov_metadata(k_RInfo, k->constant_encoding());
1732 #endif // _LP64
1733   }
1734   assert(obj != k_RInfo, "must be different");
1735 
1736   __ cmpptr(obj, (int32_t)NULL_WORD);
1737   if (op->should_profile()) {
1738     Label not_null;
1739     __ jccb(Assembler::notEqual, not_null);
1740     // Object is null; update MDO and exit
1741     Register mdo  = klass_RInfo;
1742     __ mov_metadata(mdo, md->constant_encoding());
1743     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1744     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1745     __ orl(data_addr, header_bits);
1746     __ jmp(*obj_is_null);
1747     __ bind(not_null);
1748   } else {
1749     __ jcc(Assembler::equal, *obj_is_null);
1750   }
1751   __ verify_oop(obj);
1752 
1753   if (op->fast_check()) {
1754     // get object class
1755     // not a safepoint as obj null check happens earlier
1756 #ifdef _LP64
1757     if (UseCompressedKlassPointers) {
1758       __ load_klass(Rtmp1, obj);
1759       __ cmpptr(k_RInfo, Rtmp1);
1760     } else {
1761       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1762     }
1763 #else
1764     if (k->is_loaded()) {
1765       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1766     } else {
1767       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1768     }
1769 #endif
1770     __ jcc(Assembler::notEqual, *failure_target);
1771     // successful cast, fall through to profile or jump
1772   } else {
1773     // get object class
1774     // not a safepoint as obj null check happens earlier
1775     __ load_klass(klass_RInfo, obj);
1776     if (k->is_loaded()) {
1777       // See if we get an immediate positive hit
1778 #ifdef _LP64
1779       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1780 #else
1781       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1782 #endif // _LP64
1783       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1784         __ jcc(Assembler::notEqual, *failure_target);
1785         // successful cast, fall through to profile or jump
1786       } else {
1787         // See if we get an immediate positive hit
1788         __ jcc(Assembler::equal, *success_target);
1789         // check for self
1790 #ifdef _LP64
1791         __ cmpptr(klass_RInfo, k_RInfo);
1792 #else
1793         __ cmpklass(klass_RInfo, k->constant_encoding());
1794 #endif // _LP64
1795         __ jcc(Assembler::equal, *success_target);
1796 
1797         __ push(klass_RInfo);
1798 #ifdef _LP64
1799         __ push(k_RInfo);
1800 #else
1801         __ pushklass(k->constant_encoding());
1802 #endif // _LP64
1803         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1804         __ pop(klass_RInfo);
1805         __ pop(klass_RInfo);
1806         // result is a boolean
1807         __ cmpl(klass_RInfo, 0);
1808         __ jcc(Assembler::equal, *failure_target);
1809         // successful cast, fall through to profile or jump
1810       }
1811     } else {
1812       // perform the fast part of the checking logic
1813       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1814       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1815       __ push(klass_RInfo);
1816       __ push(k_RInfo);
1817       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1818       __ pop(klass_RInfo);
1819       __ pop(k_RInfo);
1820       // result is a boolean
1821       __ cmpl(k_RInfo, 0);
1822       __ jcc(Assembler::equal, *failure_target);
1823       // successful cast, fall through to profile or jump
1824     }
1825   }
1826   if (op->should_profile()) {
1827     Register mdo  = klass_RInfo, recv = k_RInfo;
1828     __ bind(profile_cast_success);
1829     __ mov_metadata(mdo, md->constant_encoding());
1830     __ load_klass(recv, obj);
1831     Label update_done;
1832     type_profile_helper(mdo, md, data, recv, success);
1833     __ jmp(*success);
1834 
1835     __ bind(profile_cast_failure);
1836     __ mov_metadata(mdo, md->constant_encoding());
1837     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1838     __ subptr(counter_addr, DataLayout::counter_increment);
1839     __ jmp(*failure);
1840   }
1841   __ jmp(*success);
1842 }
1843 
1844 
1845 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1846   LIR_Code code = op->code();
1847   if (code == lir_store_check) {
1848     Register value = op->object()->as_register();
1849     Register array = op->array()->as_register();
1850     Register k_RInfo = op->tmp1()->as_register();
1851     Register klass_RInfo = op->tmp2()->as_register();
1852     Register Rtmp1 = op->tmp3()->as_register();
1853 
1854     CodeStub* stub = op->stub();
1855 
1856     // check if it needs to be profiled
1857     ciMethodData* md;
1858     ciProfileData* data;
1859 
1860     if (op->should_profile()) {
1861       ciMethod* method = op->profiled_method();
1862       assert(method != NULL, "Should have method");
1863       int bci = op->profiled_bci();
1864       md = method->method_data_or_null();
1865       assert(md != NULL, "Sanity");
1866       data = md->bci_to_data(bci);
1867       assert(data != NULL,                "need data for type check");
1868       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1869     }
1870     Label profile_cast_success, profile_cast_failure, done;
1871     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1872     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1873 
1874     __ cmpptr(value, (int32_t)NULL_WORD);
1875     if (op->should_profile()) {
1876       Label not_null;
1877       __ jccb(Assembler::notEqual, not_null);
1878       // Object is null; update MDO and exit
1879       Register mdo  = klass_RInfo;
1880       __ mov_metadata(mdo, md->constant_encoding());
1881       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1882       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1883       __ orl(data_addr, header_bits);
1884       __ jmp(done);
1885       __ bind(not_null);
1886     } else {
1887       __ jcc(Assembler::equal, done);
1888     }
1889 
1890     add_debug_info_for_null_check_here(op->info_for_exception());
1891     __ load_klass(k_RInfo, array);
1892     __ load_klass(klass_RInfo, value);
1893 
1894     // get instance klass (it's already uncompressed)
1895     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1896     // perform the fast part of the checking logic
1897     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1898     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1899     __ push(klass_RInfo);
1900     __ push(k_RInfo);
1901     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1902     __ pop(klass_RInfo);
1903     __ pop(k_RInfo);
1904     // result is a boolean
1905     __ cmpl(k_RInfo, 0);
1906     __ jcc(Assembler::equal, *failure_target);
1907     // fall through to the success case
1908 
1909     if (op->should_profile()) {
1910       Register mdo  = klass_RInfo, recv = k_RInfo;
1911       __ bind(profile_cast_success);
1912       __ mov_metadata(mdo, md->constant_encoding());
1913       __ load_klass(recv, value);
1914       Label update_done;
1915       type_profile_helper(mdo, md, data, recv, &done);
1916       __ jmpb(done);
1917 
1918       __ bind(profile_cast_failure);
1919       __ mov_metadata(mdo, md->constant_encoding());
1920       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1921       __ subptr(counter_addr, DataLayout::counter_increment);
1922       __ jmp(*stub->entry());
1923     }
1924 
1925     __ bind(done);
1926   } else
1927     if (code == lir_checkcast) {
1928       Register obj = op->object()->as_register();
1929       Register dst = op->result_opr()->as_register();
1930       Label success;
1931       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1932       __ bind(success);
1933       if (dst != obj) {
1934         __ mov(dst, obj);
1935       }
1936     } else
1937       if (code == lir_instanceof) {
1938         Register obj = op->object()->as_register();
1939         Register dst = op->result_opr()->as_register();
1940         Label success, failure, done;
1941         emit_typecheck_helper(op, &success, &failure, &failure);
1942         __ bind(failure);
1943         __ xorptr(dst, dst);
1944         __ jmpb(done);
1945         __ bind(success);
1946         __ movptr(dst, 1);
1947         __ bind(done);
1948       } else {
1949         ShouldNotReachHere();
1950       }
1951 
1952 }
1953 
1954 
1955 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1956   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1957     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1958     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1959     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1960     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1961     Register addr = op->addr()->as_register();
1962     if (os::is_MP()) {
1963       __ lock();
1964     }
1965     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1966 
1967   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1968     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1969     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1970     Register newval = op->new_value()->as_register();
1971     Register cmpval = op->cmp_value()->as_register();
1972     assert(cmpval == rax, "wrong register");
1973     assert(newval != NULL, "new val must be register");
1974     assert(cmpval != newval, "cmp and new values must be in different registers");
1975     assert(cmpval != addr, "cmp and addr must be in different registers");
1976     assert(newval != addr, "new value and addr must be in different registers");
1977 
1978     if ( op->code() == lir_cas_obj) {
1979 #ifdef _LP64
1980       if (UseCompressedOops) {
1981         __ encode_heap_oop(cmpval);
1982         __ mov(rscratch1, newval);
1983         __ encode_heap_oop(rscratch1);
1984         if (os::is_MP()) {
1985           __ lock();
1986         }
1987         // cmpval (rax) is implicitly used by this instruction
1988         __ cmpxchgl(rscratch1, Address(addr, 0));
1989       } else
1990 #endif
1991       {
1992         if (os::is_MP()) {
1993           __ lock();
1994         }
1995         __ cmpxchgptr(newval, Address(addr, 0));
1996       }
1997     } else {
1998       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1999       if (os::is_MP()) {
2000         __ lock();
2001       }
2002       __ cmpxchgl(newval, Address(addr, 0));
2003     }
2004 #ifdef _LP64
2005   } else if (op->code() == lir_cas_long) {
2006     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2007     Register newval = op->new_value()->as_register_lo();
2008     Register cmpval = op->cmp_value()->as_register_lo();
2009     assert(cmpval == rax, "wrong register");
2010     assert(newval != NULL, "new val must be register");
2011     assert(cmpval != newval, "cmp and new values must be in different registers");
2012     assert(cmpval != addr, "cmp and addr must be in different registers");
2013     assert(newval != addr, "new value and addr must be in different registers");
2014     if (os::is_MP()) {
2015       __ lock();
2016     }
2017     __ cmpxchgq(newval, Address(addr, 0));
2018 #endif // _LP64
2019   } else {
2020     Unimplemented();
2021   }
2022 }
2023 
2024 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
2025   Assembler::Condition acond, ncond;
2026   switch (condition) {
2027     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2028     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2029     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2030     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2031     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2032     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2033     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2034     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2035     default:                    ShouldNotReachHere();
2036   }
2037 
2038   if (opr1->is_cpu_register()) {
2039     reg2reg(opr1, result);
2040   } else if (opr1->is_stack()) {
2041     stack2reg(opr1, result, result->type());
2042   } else if (opr1->is_constant()) {
2043     const2reg(opr1, result, lir_patch_none, NULL);
2044   } else {
2045     ShouldNotReachHere();
2046   }
2047 
2048   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2049     // optimized version that does not require a branch
2050     if (opr2->is_single_cpu()) {
2051       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2052       __ cmov(ncond, result->as_register(), opr2->as_register());
2053     } else if (opr2->is_double_cpu()) {
2054       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2055       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2056       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2057       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2058     } else if (opr2->is_single_stack()) {
2059       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2060     } else if (opr2->is_double_stack()) {
2061       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2062       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2063     } else {
2064       ShouldNotReachHere();
2065     }
2066 
2067   } else {
2068     Label skip;
2069     __ jcc (acond, skip);
2070     if (opr2->is_cpu_register()) {
2071       reg2reg(opr2, result);
2072     } else if (opr2->is_stack()) {
2073       stack2reg(opr2, result, result->type());
2074     } else if (opr2->is_constant()) {
2075       const2reg(opr2, result, lir_patch_none, NULL);
2076     } else {
2077       ShouldNotReachHere();
2078     }
2079     __ bind(skip);
2080   }
2081 }
2082 
2083 
2084 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2085   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2086 
2087   if (left->is_single_cpu()) {
2088     assert(left == dest, "left and dest must be equal");
2089     Register lreg = left->as_register();
2090 
2091     if (right->is_single_cpu()) {
2092       // cpu register - cpu register
2093       Register rreg = right->as_register();
2094       switch (code) {
2095         case lir_add: __ addl (lreg, rreg); break;
2096         case lir_sub: __ subl (lreg, rreg); break;
2097         case lir_mul: __ imull(lreg, rreg); break;
2098         default:      ShouldNotReachHere();
2099       }
2100 
2101     } else if (right->is_stack()) {
2102       // cpu register - stack
2103       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2104       switch (code) {
2105         case lir_add: __ addl(lreg, raddr); break;
2106         case lir_sub: __ subl(lreg, raddr); break;
2107         default:      ShouldNotReachHere();
2108       }
2109 
2110     } else if (right->is_constant()) {
2111       // cpu register - constant
2112       jint c = right->as_constant_ptr()->as_jint();
2113       switch (code) {
2114         case lir_add: {
2115           __ incrementl(lreg, c);
2116           break;
2117         }
2118         case lir_sub: {
2119           __ decrementl(lreg, c);
2120           break;
2121         }
2122         default: ShouldNotReachHere();
2123       }
2124 
2125     } else {
2126       ShouldNotReachHere();
2127     }
2128 
2129   } else if (left->is_double_cpu()) {
2130     assert(left == dest, "left and dest must be equal");
2131     Register lreg_lo = left->as_register_lo();
2132     Register lreg_hi = left->as_register_hi();
2133 
2134     if (right->is_double_cpu()) {
2135       // cpu register - cpu register
2136       Register rreg_lo = right->as_register_lo();
2137       Register rreg_hi = right->as_register_hi();
2138       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2139       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2140       switch (code) {
2141         case lir_add:
2142           __ addptr(lreg_lo, rreg_lo);
2143           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2144           break;
2145         case lir_sub:
2146           __ subptr(lreg_lo, rreg_lo);
2147           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2148           break;
2149         case lir_mul:
2150 #ifdef _LP64
2151           __ imulq(lreg_lo, rreg_lo);
2152 #else
2153           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2154           __ imull(lreg_hi, rreg_lo);
2155           __ imull(rreg_hi, lreg_lo);
2156           __ addl (rreg_hi, lreg_hi);
2157           __ mull (rreg_lo);
2158           __ addl (lreg_hi, rreg_hi);
2159 #endif // _LP64
2160           break;
2161         default:
2162           ShouldNotReachHere();
2163       }
2164 
2165     } else if (right->is_constant()) {
2166       // cpu register - constant
2167 #ifdef _LP64
2168       jlong c = right->as_constant_ptr()->as_jlong_bits();
2169       __ movptr(r10, (intptr_t) c);
2170       switch (code) {
2171         case lir_add:
2172           __ addptr(lreg_lo, r10);
2173           break;
2174         case lir_sub:
2175           __ subptr(lreg_lo, r10);
2176           break;
2177         default:
2178           ShouldNotReachHere();
2179       }
2180 #else
2181       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2182       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2183       switch (code) {
2184         case lir_add:
2185           __ addptr(lreg_lo, c_lo);
2186           __ adcl(lreg_hi, c_hi);
2187           break;
2188         case lir_sub:
2189           __ subptr(lreg_lo, c_lo);
2190           __ sbbl(lreg_hi, c_hi);
2191           break;
2192         default:
2193           ShouldNotReachHere();
2194       }
2195 #endif // _LP64
2196 
2197     } else {
2198       ShouldNotReachHere();
2199     }
2200 
2201   } else if (left->is_single_xmm()) {
2202     assert(left == dest, "left and dest must be equal");
2203     XMMRegister lreg = left->as_xmm_float_reg();
2204 
2205     if (right->is_single_xmm()) {
2206       XMMRegister rreg = right->as_xmm_float_reg();
2207       switch (code) {
2208         case lir_add: __ addss(lreg, rreg);  break;
2209         case lir_sub: __ subss(lreg, rreg);  break;
2210         case lir_mul_strictfp: // fall through
2211         case lir_mul: __ mulss(lreg, rreg);  break;
2212         case lir_div_strictfp: // fall through
2213         case lir_div: __ divss(lreg, rreg);  break;
2214         default: ShouldNotReachHere();
2215       }
2216     } else {
2217       Address raddr;
2218       if (right->is_single_stack()) {
2219         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2220       } else if (right->is_constant()) {
2221         // hack for now
2222         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2223       } else {
2224         ShouldNotReachHere();
2225       }
2226       switch (code) {
2227         case lir_add: __ addss(lreg, raddr);  break;
2228         case lir_sub: __ subss(lreg, raddr);  break;
2229         case lir_mul_strictfp: // fall through
2230         case lir_mul: __ mulss(lreg, raddr);  break;
2231         case lir_div_strictfp: // fall through
2232         case lir_div: __ divss(lreg, raddr);  break;
2233         default: ShouldNotReachHere();
2234       }
2235     }
2236 
2237   } else if (left->is_double_xmm()) {
2238     assert(left == dest, "left and dest must be equal");
2239 
2240     XMMRegister lreg = left->as_xmm_double_reg();
2241     if (right->is_double_xmm()) {
2242       XMMRegister rreg = right->as_xmm_double_reg();
2243       switch (code) {
2244         case lir_add: __ addsd(lreg, rreg);  break;
2245         case lir_sub: __ subsd(lreg, rreg);  break;
2246         case lir_mul_strictfp: // fall through
2247         case lir_mul: __ mulsd(lreg, rreg);  break;
2248         case lir_div_strictfp: // fall through
2249         case lir_div: __ divsd(lreg, rreg);  break;
2250         default: ShouldNotReachHere();
2251       }
2252     } else {
2253       Address raddr;
2254       if (right->is_double_stack()) {
2255         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2256       } else if (right->is_constant()) {
2257         // hack for now
2258         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2259       } else {
2260         ShouldNotReachHere();
2261       }
2262       switch (code) {
2263         case lir_add: __ addsd(lreg, raddr);  break;
2264         case lir_sub: __ subsd(lreg, raddr);  break;
2265         case lir_mul_strictfp: // fall through
2266         case lir_mul: __ mulsd(lreg, raddr);  break;
2267         case lir_div_strictfp: // fall through
2268         case lir_div: __ divsd(lreg, raddr);  break;
2269         default: ShouldNotReachHere();
2270       }
2271     }
2272 
2273   } else if (left->is_single_fpu()) {
2274     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2275 
2276     if (right->is_single_fpu()) {
2277       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2278 
2279     } else {
2280       assert(left->fpu_regnr() == 0, "left must be on TOS");
2281       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2282 
2283       Address raddr;
2284       if (right->is_single_stack()) {
2285         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2286       } else if (right->is_constant()) {
2287         address const_addr = float_constant(right->as_jfloat());
2288         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2289         // hack for now
2290         raddr = __ as_Address(InternalAddress(const_addr));
2291       } else {
2292         ShouldNotReachHere();
2293       }
2294 
2295       switch (code) {
2296         case lir_add: __ fadd_s(raddr); break;
2297         case lir_sub: __ fsub_s(raddr); break;
2298         case lir_mul_strictfp: // fall through
2299         case lir_mul: __ fmul_s(raddr); break;
2300         case lir_div_strictfp: // fall through
2301         case lir_div: __ fdiv_s(raddr); break;
2302         default:      ShouldNotReachHere();
2303       }
2304     }
2305 
2306   } else if (left->is_double_fpu()) {
2307     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2308 
2309     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2310       // Double values require special handling for strictfp mul/div on x86
2311       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2312       __ fmulp(left->fpu_regnrLo() + 1);
2313     }
2314 
2315     if (right->is_double_fpu()) {
2316       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2317 
2318     } else {
2319       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2320       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2321 
2322       Address raddr;
2323       if (right->is_double_stack()) {
2324         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2325       } else if (right->is_constant()) {
2326         // hack for now
2327         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2328       } else {
2329         ShouldNotReachHere();
2330       }
2331 
2332       switch (code) {
2333         case lir_add: __ fadd_d(raddr); break;
2334         case lir_sub: __ fsub_d(raddr); break;
2335         case lir_mul_strictfp: // fall through
2336         case lir_mul: __ fmul_d(raddr); break;
2337         case lir_div_strictfp: // fall through
2338         case lir_div: __ fdiv_d(raddr); break;
2339         default: ShouldNotReachHere();
2340       }
2341     }
2342 
2343     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2344       // Double values require special handling for strictfp mul/div on x86
2345       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2346       __ fmulp(dest->fpu_regnrLo() + 1);
2347     }
2348 
2349   } else if (left->is_single_stack() || left->is_address()) {
2350     assert(left == dest, "left and dest must be equal");
2351 
2352     Address laddr;
2353     if (left->is_single_stack()) {
2354       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2355     } else if (left->is_address()) {
2356       laddr = as_Address(left->as_address_ptr());
2357     } else {
2358       ShouldNotReachHere();
2359     }
2360 
2361     if (right->is_single_cpu()) {
2362       Register rreg = right->as_register();
2363       switch (code) {
2364         case lir_add: __ addl(laddr, rreg); break;
2365         case lir_sub: __ subl(laddr, rreg); break;
2366         default:      ShouldNotReachHere();
2367       }
2368     } else if (right->is_constant()) {
2369       jint c = right->as_constant_ptr()->as_jint();
2370       switch (code) {
2371         case lir_add: {
2372           __ incrementl(laddr, c);
2373           break;
2374         }
2375         case lir_sub: {
2376           __ decrementl(laddr, c);
2377           break;
2378         }
2379         default: ShouldNotReachHere();
2380       }
2381     } else {
2382       ShouldNotReachHere();
2383     }
2384 
2385   } else {
2386     ShouldNotReachHere();
2387   }
2388 }
2389 
2390 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2391   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2392   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2393   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2394 
2395   bool left_is_tos = (left_index == 0);
2396   bool dest_is_tos = (dest_index == 0);
2397   int non_tos_index = (left_is_tos ? right_index : left_index);
2398 
2399   switch (code) {
2400     case lir_add:
2401       if (pop_fpu_stack)       __ faddp(non_tos_index);
2402       else if (dest_is_tos)    __ fadd (non_tos_index);
2403       else                     __ fadda(non_tos_index);
2404       break;
2405 
2406     case lir_sub:
2407       if (left_is_tos) {
2408         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2409         else if (dest_is_tos)  __ fsub  (non_tos_index);
2410         else                   __ fsubra(non_tos_index);
2411       } else {
2412         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2413         else if (dest_is_tos)  __ fsubr (non_tos_index);
2414         else                   __ fsuba (non_tos_index);
2415       }
2416       break;
2417 
2418     case lir_mul_strictfp: // fall through
2419     case lir_mul:
2420       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2421       else if (dest_is_tos)    __ fmul (non_tos_index);
2422       else                     __ fmula(non_tos_index);
2423       break;
2424 
2425     case lir_div_strictfp: // fall through
2426     case lir_div:
2427       if (left_is_tos) {
2428         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2429         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2430         else                   __ fdivra(non_tos_index);
2431       } else {
2432         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2433         else if (dest_is_tos)  __ fdivr (non_tos_index);
2434         else                   __ fdiva (non_tos_index);
2435       }
2436       break;
2437 
2438     case lir_rem:
2439       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2440       __ fremr(noreg);
2441       break;
2442 
2443     default:
2444       ShouldNotReachHere();
2445   }
2446 }
2447 
2448 
2449 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2450   if (value->is_double_xmm()) {
2451     switch(code) {
2452       case lir_abs :
2453         {
2454           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2455             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2456           }
2457           __ andpd(dest->as_xmm_double_reg(),
2458                     ExternalAddress((address)double_signmask_pool));
2459         }
2460         break;
2461 
2462       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2463       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2464       default      : ShouldNotReachHere();
2465     }
2466 
2467   } else if (value->is_double_fpu()) {
2468     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2469     switch(code) {
2470       case lir_log   : __ flog() ; break;
2471       case lir_log10 : __ flog10() ; break;
2472       case lir_abs   : __ fabs() ; break;
2473       case lir_sqrt  : __ fsqrt(); break;
2474       case lir_sin   :
2475         // Should consider not saving rbx, if not necessary
2476         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2477         break;
2478       case lir_cos :
2479         // Should consider not saving rbx, if not necessary
2480         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2481         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2482         break;
2483       case lir_tan :
2484         // Should consider not saving rbx, if not necessary
2485         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2486         break;
2487       case lir_exp :
2488         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
2489         break;
2490       case lir_pow :
2491         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
2492         break;
2493       default      : ShouldNotReachHere();
2494     }
2495   } else {
2496     Unimplemented();
2497   }
2498 }
2499 
2500 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2501   // assert(left->destroys_register(), "check");
2502   if (left->is_single_cpu()) {
2503     Register reg = left->as_register();
2504     if (right->is_constant()) {
2505       int val = right->as_constant_ptr()->as_jint();
2506       switch (code) {
2507         case lir_logic_and: __ andl (reg, val); break;
2508         case lir_logic_or:  __ orl  (reg, val); break;
2509         case lir_logic_xor: __ xorl (reg, val); break;
2510         default: ShouldNotReachHere();
2511       }
2512     } else if (right->is_stack()) {
2513       // added support for stack operands
2514       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2515       switch (code) {
2516         case lir_logic_and: __ andl (reg, raddr); break;
2517         case lir_logic_or:  __ orl  (reg, raddr); break;
2518         case lir_logic_xor: __ xorl (reg, raddr); break;
2519         default: ShouldNotReachHere();
2520       }
2521     } else {
2522       Register rright = right->as_register();
2523       switch (code) {
2524         case lir_logic_and: __ andptr (reg, rright); break;
2525         case lir_logic_or : __ orptr  (reg, rright); break;
2526         case lir_logic_xor: __ xorptr (reg, rright); break;
2527         default: ShouldNotReachHere();
2528       }
2529     }
2530     move_regs(reg, dst->as_register());
2531   } else {
2532     Register l_lo = left->as_register_lo();
2533     Register l_hi = left->as_register_hi();
2534     if (right->is_constant()) {
2535 #ifdef _LP64
2536       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2537       switch (code) {
2538         case lir_logic_and:
2539           __ andq(l_lo, rscratch1);
2540           break;
2541         case lir_logic_or:
2542           __ orq(l_lo, rscratch1);
2543           break;
2544         case lir_logic_xor:
2545           __ xorq(l_lo, rscratch1);
2546           break;
2547         default: ShouldNotReachHere();
2548       }
2549 #else
2550       int r_lo = right->as_constant_ptr()->as_jint_lo();
2551       int r_hi = right->as_constant_ptr()->as_jint_hi();
2552       switch (code) {
2553         case lir_logic_and:
2554           __ andl(l_lo, r_lo);
2555           __ andl(l_hi, r_hi);
2556           break;
2557         case lir_logic_or:
2558           __ orl(l_lo, r_lo);
2559           __ orl(l_hi, r_hi);
2560           break;
2561         case lir_logic_xor:
2562           __ xorl(l_lo, r_lo);
2563           __ xorl(l_hi, r_hi);
2564           break;
2565         default: ShouldNotReachHere();
2566       }
2567 #endif // _LP64
2568     } else {
2569 #ifdef _LP64
2570       Register r_lo;
2571       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2572         r_lo = right->as_register();
2573       } else {
2574         r_lo = right->as_register_lo();
2575       }
2576 #else
2577       Register r_lo = right->as_register_lo();
2578       Register r_hi = right->as_register_hi();
2579       assert(l_lo != r_hi, "overwriting registers");
2580 #endif
2581       switch (code) {
2582         case lir_logic_and:
2583           __ andptr(l_lo, r_lo);
2584           NOT_LP64(__ andptr(l_hi, r_hi);)
2585           break;
2586         case lir_logic_or:
2587           __ orptr(l_lo, r_lo);
2588           NOT_LP64(__ orptr(l_hi, r_hi);)
2589           break;
2590         case lir_logic_xor:
2591           __ xorptr(l_lo, r_lo);
2592           NOT_LP64(__ xorptr(l_hi, r_hi);)
2593           break;
2594         default: ShouldNotReachHere();
2595       }
2596     }
2597 
2598     Register dst_lo = dst->as_register_lo();
2599     Register dst_hi = dst->as_register_hi();
2600 
2601 #ifdef _LP64
2602     move_regs(l_lo, dst_lo);
2603 #else
2604     if (dst_lo == l_hi) {
2605       assert(dst_hi != l_lo, "overwriting registers");
2606       move_regs(l_hi, dst_hi);
2607       move_regs(l_lo, dst_lo);
2608     } else {
2609       assert(dst_lo != l_hi, "overwriting registers");
2610       move_regs(l_lo, dst_lo);
2611       move_regs(l_hi, dst_hi);
2612     }
2613 #endif // _LP64
2614   }
2615 }
2616 
2617 
2618 // we assume that rax, and rdx can be overwritten
2619 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2620 
2621   assert(left->is_single_cpu(),   "left must be register");
2622   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2623   assert(result->is_single_cpu(), "result must be register");
2624 
2625   //  assert(left->destroys_register(), "check");
2626   //  assert(right->destroys_register(), "check");
2627 
2628   Register lreg = left->as_register();
2629   Register dreg = result->as_register();
2630 
2631   if (right->is_constant()) {
2632     int divisor = right->as_constant_ptr()->as_jint();
2633     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2634     if (code == lir_idiv) {
2635       assert(lreg == rax, "must be rax,");
2636       assert(temp->as_register() == rdx, "tmp register must be rdx");
2637       __ cdql(); // sign extend into rdx:rax
2638       if (divisor == 2) {
2639         __ subl(lreg, rdx);
2640       } else {
2641         __ andl(rdx, divisor - 1);
2642         __ addl(lreg, rdx);
2643       }
2644       __ sarl(lreg, log2_intptr(divisor));
2645       move_regs(lreg, dreg);
2646     } else if (code == lir_irem) {
2647       Label done;
2648       __ mov(dreg, lreg);
2649       __ andl(dreg, 0x80000000 | (divisor - 1));
2650       __ jcc(Assembler::positive, done);
2651       __ decrement(dreg);
2652       __ orl(dreg, ~(divisor - 1));
2653       __ increment(dreg);
2654       __ bind(done);
2655     } else {
2656       ShouldNotReachHere();
2657     }
2658   } else {
2659     Register rreg = right->as_register();
2660     assert(lreg == rax, "left register must be rax,");
2661     assert(rreg != rdx, "right register must not be rdx");
2662     assert(temp->as_register() == rdx, "tmp register must be rdx");
2663 
2664     move_regs(lreg, rax);
2665 
2666     int idivl_offset = __ corrected_idivl(rreg);
2667     add_debug_info_for_div0(idivl_offset, info);
2668     if (code == lir_irem) {
2669       move_regs(rdx, dreg); // result is in rdx
2670     } else {
2671       move_regs(rax, dreg);
2672     }
2673   }
2674 }
2675 
2676 
2677 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2678   if (opr1->is_single_cpu()) {
2679     Register reg1 = opr1->as_register();
2680     if (opr2->is_single_cpu()) {
2681       // cpu register - cpu register
2682       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2683         __ cmpptr(reg1, opr2->as_register());
2684       } else {
2685         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2686         __ cmpl(reg1, opr2->as_register());
2687       }
2688     } else if (opr2->is_stack()) {
2689       // cpu register - stack
2690       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2691         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2692       } else {
2693         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2694       }
2695     } else if (opr2->is_constant()) {
2696       // cpu register - constant
2697       LIR_Const* c = opr2->as_constant_ptr();
2698       if (c->type() == T_INT) {
2699         __ cmpl(reg1, c->as_jint());
2700       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2701         // In 64bit oops are single register
2702         jobject o = c->as_jobject();
2703         if (o == NULL) {
2704           __ cmpptr(reg1, (int32_t)NULL_WORD);
2705         } else {
2706 #ifdef _LP64
2707           __ movoop(rscratch1, o);
2708           __ cmpptr(reg1, rscratch1);
2709 #else
2710           __ cmpoop(reg1, c->as_jobject());
2711 #endif // _LP64
2712         }
2713       } else {
2714         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
2715       }
2716       // cpu register - address
2717     } else if (opr2->is_address()) {
2718       if (op->info() != NULL) {
2719         add_debug_info_for_null_check_here(op->info());
2720       }
2721       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2722     } else {
2723       ShouldNotReachHere();
2724     }
2725 
2726   } else if(opr1->is_double_cpu()) {
2727     Register xlo = opr1->as_register_lo();
2728     Register xhi = opr1->as_register_hi();
2729     if (opr2->is_double_cpu()) {
2730 #ifdef _LP64
2731       __ cmpptr(xlo, opr2->as_register_lo());
2732 #else
2733       // cpu register - cpu register
2734       Register ylo = opr2->as_register_lo();
2735       Register yhi = opr2->as_register_hi();
2736       __ subl(xlo, ylo);
2737       __ sbbl(xhi, yhi);
2738       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2739         __ orl(xhi, xlo);
2740       }
2741 #endif // _LP64
2742     } else if (opr2->is_constant()) {
2743       // cpu register - constant 0
2744       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2745 #ifdef _LP64
2746       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2747 #else
2748       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2749       __ orl(xhi, xlo);
2750 #endif // _LP64
2751     } else {
2752       ShouldNotReachHere();
2753     }
2754 
2755   } else if (opr1->is_single_xmm()) {
2756     XMMRegister reg1 = opr1->as_xmm_float_reg();
2757     if (opr2->is_single_xmm()) {
2758       // xmm register - xmm register
2759       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2760     } else if (opr2->is_stack()) {
2761       // xmm register - stack
2762       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2763     } else if (opr2->is_constant()) {
2764       // xmm register - constant
2765       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2766     } else if (opr2->is_address()) {
2767       // xmm register - address
2768       if (op->info() != NULL) {
2769         add_debug_info_for_null_check_here(op->info());
2770       }
2771       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2772     } else {
2773       ShouldNotReachHere();
2774     }
2775 
2776   } else if (opr1->is_double_xmm()) {
2777     XMMRegister reg1 = opr1->as_xmm_double_reg();
2778     if (opr2->is_double_xmm()) {
2779       // xmm register - xmm register
2780       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2781     } else if (opr2->is_stack()) {
2782       // xmm register - stack
2783       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2784     } else if (opr2->is_constant()) {
2785       // xmm register - constant
2786       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2787     } else if (opr2->is_address()) {
2788       // xmm register - address
2789       if (op->info() != NULL) {
2790         add_debug_info_for_null_check_here(op->info());
2791       }
2792       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2793     } else {
2794       ShouldNotReachHere();
2795     }
2796 
2797   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2798     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2799     assert(opr2->is_fpu_register(), "both must be registers");
2800     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2801 
2802   } else if (opr1->is_address() && opr2->is_constant()) {
2803     LIR_Const* c = opr2->as_constant_ptr();
2804 #ifdef _LP64
2805     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2806       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2807       __ movoop(rscratch1, c->as_jobject());
2808     }
2809 #endif // LP64
2810     if (op->info() != NULL) {
2811       add_debug_info_for_null_check_here(op->info());
2812     }
2813     // special case: address - constant
2814     LIR_Address* addr = opr1->as_address_ptr();
2815     if (c->type() == T_INT) {
2816       __ cmpl(as_Address(addr), c->as_jint());
2817     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2818 #ifdef _LP64
2819       // %%% Make this explode if addr isn't reachable until we figure out a
2820       // better strategy by giving noreg as the temp for as_Address
2821       __ cmpptr(rscratch1, as_Address(addr, noreg));
2822 #else
2823       __ cmpoop(as_Address(addr), c->as_jobject());
2824 #endif // _LP64
2825     } else {
2826       ShouldNotReachHere();
2827     }
2828 
2829   } else {
2830     ShouldNotReachHere();
2831   }
2832 }
2833 
2834 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2835   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2836     if (left->is_single_xmm()) {
2837       assert(right->is_single_xmm(), "must match");
2838       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2839     } else if (left->is_double_xmm()) {
2840       assert(right->is_double_xmm(), "must match");
2841       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2842 
2843     } else {
2844       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2845       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2846 
2847       assert(left->fpu() == 0, "left must be on TOS");
2848       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2849                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2850     }
2851   } else {
2852     assert(code == lir_cmp_l2i, "check");
2853 #ifdef _LP64
2854     Label done;
2855     Register dest = dst->as_register();
2856     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2857     __ movl(dest, -1);
2858     __ jccb(Assembler::less, done);
2859     __ set_byte_if_not_zero(dest);
2860     __ movzbl(dest, dest);
2861     __ bind(done);
2862 #else
2863     __ lcmp2int(left->as_register_hi(),
2864                 left->as_register_lo(),
2865                 right->as_register_hi(),
2866                 right->as_register_lo());
2867     move_regs(left->as_register_hi(), dst->as_register());
2868 #endif // _LP64
2869   }
2870 }
2871 
2872 
2873 void LIR_Assembler::align_call(LIR_Code code) {
2874   if (os::is_MP()) {
2875     // make sure that the displacement word of the call ends up word aligned
2876     int offset = __ offset();
2877     switch (code) {
2878       case lir_static_call:
2879       case lir_optvirtual_call:
2880       case lir_dynamic_call:
2881         offset += NativeCall::displacement_offset;
2882         break;
2883       case lir_icvirtual_call:
2884         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2885       break;
2886       case lir_virtual_call:  // currently, sparc-specific for niagara
2887       default: ShouldNotReachHere();
2888     }
2889     while (offset++ % BytesPerWord != 0) {
2890       __ nop();
2891     }
2892   }
2893 }
2894 
2895 
2896 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2897   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2898          "must be aligned");
2899   __ call(AddressLiteral(op->addr(), rtype));
2900   add_call_info(code_offset(), op->info());
2901 }
2902 
2903 
2904 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2905   __ ic_call(op->addr());
2906   add_call_info(code_offset(), op->info());
2907   assert(!os::is_MP() ||
2908          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2909          "must be aligned");
2910 }
2911 
2912 
2913 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2914 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2915   ShouldNotReachHere();
2916 }
2917 
2918 
2919 void LIR_Assembler::emit_static_call_stub() {
2920   address call_pc = __ pc();
2921   address stub = __ start_a_stub(call_stub_size);
2922   if (stub == NULL) {
2923     bailout("static call stub overflow");
2924     return;
2925   }
2926 
2927   int start = __ offset();
2928   if (os::is_MP()) {
2929     // make sure that the displacement word of the call ends up word aligned
2930     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2931     while (offset++ % BytesPerWord != 0) {
2932       __ nop();
2933     }
2934   }
2935   __ relocate(static_stub_Relocation::spec(call_pc));
2936   __ mov_metadata(rbx, (Metadata*)NULL);
2937   // must be set to -1 at code generation time
2938   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2939   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2940   __ jump(RuntimeAddress(__ pc()));
2941 
2942   assert(__ offset() - start <= call_stub_size, "stub too big");
2943   __ end_a_stub();
2944 }
2945 
2946 
2947 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2948   assert(exceptionOop->as_register() == rax, "must match");
2949   assert(exceptionPC->as_register() == rdx, "must match");
2950 
2951   // exception object is not added to oop map by LinearScan
2952   // (LinearScan assumes that no oops are in fixed registers)
2953   info->add_register_oop(exceptionOop);
2954   Runtime1::StubID unwind_id;
2955 
2956   // get current pc information
2957   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2958   int pc_for_athrow_offset = __ offset();
2959   InternalAddress pc_for_athrow(__ pc());
2960   __ lea(exceptionPC->as_register(), pc_for_athrow);
2961   add_call_info(pc_for_athrow_offset, info); // for exception handler
2962 
2963   __ verify_not_null_oop(rax);
2964   // search an exception handler (rax: exception oop, rdx: throwing pc)
2965   if (compilation()->has_fpu_code()) {
2966     unwind_id = Runtime1::handle_exception_id;
2967   } else {
2968     unwind_id = Runtime1::handle_exception_nofpu_id;
2969   }
2970   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2971 
2972   // enough room for two byte trap
2973   __ nop();
2974 }
2975 
2976 
2977 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2978   assert(exceptionOop->as_register() == rax, "must match");
2979 
2980   __ jmp(_unwind_handler_entry);
2981 }
2982 
2983 
2984 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2985 
2986   // optimized version for linear scan:
2987   // * count must be already in ECX (guaranteed by LinearScan)
2988   // * left and dest must be equal
2989   // * tmp must be unused
2990   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2991   assert(left == dest, "left and dest must be equal");
2992   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2993 
2994   if (left->is_single_cpu()) {
2995     Register value = left->as_register();
2996     assert(value != SHIFT_count, "left cannot be ECX");
2997 
2998     switch (code) {
2999       case lir_shl:  __ shll(value); break;
3000       case lir_shr:  __ sarl(value); break;
3001       case lir_ushr: __ shrl(value); break;
3002       default: ShouldNotReachHere();
3003     }
3004   } else if (left->is_double_cpu()) {
3005     Register lo = left->as_register_lo();
3006     Register hi = left->as_register_hi();
3007     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3008 #ifdef _LP64
3009     switch (code) {
3010       case lir_shl:  __ shlptr(lo);        break;
3011       case lir_shr:  __ sarptr(lo);        break;
3012       case lir_ushr: __ shrptr(lo);        break;
3013       default: ShouldNotReachHere();
3014     }
3015 #else
3016 
3017     switch (code) {
3018       case lir_shl:  __ lshl(hi, lo);        break;
3019       case lir_shr:  __ lshr(hi, lo, true);  break;
3020       case lir_ushr: __ lshr(hi, lo, false); break;
3021       default: ShouldNotReachHere();
3022     }
3023 #endif // LP64
3024   } else {
3025     ShouldNotReachHere();
3026   }
3027 }
3028 
3029 
3030 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3031   if (dest->is_single_cpu()) {
3032     // first move left into dest so that left is not destroyed by the shift
3033     Register value = dest->as_register();
3034     count = count & 0x1F; // Java spec
3035 
3036     move_regs(left->as_register(), value);
3037     switch (code) {
3038       case lir_shl:  __ shll(value, count); break;
3039       case lir_shr:  __ sarl(value, count); break;
3040       case lir_ushr: __ shrl(value, count); break;
3041       default: ShouldNotReachHere();
3042     }
3043   } else if (dest->is_double_cpu()) {
3044 #ifndef _LP64
3045     Unimplemented();
3046 #else
3047     // first move left into dest so that left is not destroyed by the shift
3048     Register value = dest->as_register_lo();
3049     count = count & 0x1F; // Java spec
3050 
3051     move_regs(left->as_register_lo(), value);
3052     switch (code) {
3053       case lir_shl:  __ shlptr(value, count); break;
3054       case lir_shr:  __ sarptr(value, count); break;
3055       case lir_ushr: __ shrptr(value, count); break;
3056       default: ShouldNotReachHere();
3057     }
3058 #endif // _LP64
3059   } else {
3060     ShouldNotReachHere();
3061   }
3062 }
3063 
3064 
3065 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3066   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3067   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3068   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3069   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3070 }
3071 
3072 
3073 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3074   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3075   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3076   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3077   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3078 }
3079 
3080 
3081 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3082   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3083   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3084   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3085   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3086 }
3087 
3088 
3089 // This code replaces a call to arraycopy; no exception may
3090 // be thrown in this code, they must be thrown in the System.arraycopy
3091 // activation frame; we could save some checks if this would not be the case
3092 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3093   ciArrayKlass* default_type = op->expected_type();
3094   Register src = op->src()->as_register();
3095   Register dst = op->dst()->as_register();
3096   Register src_pos = op->src_pos()->as_register();
3097   Register dst_pos = op->dst_pos()->as_register();
3098   Register length  = op->length()->as_register();
3099   Register tmp = op->tmp()->as_register();
3100 
3101   CodeStub* stub = op->stub();
3102   int flags = op->flags();
3103   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3104   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3105 
3106   // if we don't know anything, just go through the generic arraycopy
3107   if (default_type == NULL) {
3108     Label done;
3109     // save outgoing arguments on stack in case call to System.arraycopy is needed
3110     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3111     // for interpreter calling conventions. Now we have to do it in new style conventions.
3112     // For the moment until C1 gets the new register allocator I just force all the
3113     // args to the right place (except the register args) and then on the back side
3114     // reload the register args properly if we go slow path. Yuck
3115 
3116     // These are proper for the calling convention
3117     store_parameter(length, 2);
3118     store_parameter(dst_pos, 1);
3119     store_parameter(dst, 0);
3120 
3121     // these are just temporary placements until we need to reload
3122     store_parameter(src_pos, 3);
3123     store_parameter(src, 4);
3124     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3125 
3126     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3127 
3128     address copyfunc_addr = StubRoutines::generic_arraycopy();
3129 
3130     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3131 #ifdef _LP64
3132     // The arguments are in java calling convention so we can trivially shift them to C
3133     // convention
3134     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3135     __ mov(c_rarg0, j_rarg0);
3136     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3137     __ mov(c_rarg1, j_rarg1);
3138     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3139     __ mov(c_rarg2, j_rarg2);
3140     assert_different_registers(c_rarg3, j_rarg4);
3141     __ mov(c_rarg3, j_rarg3);
3142 #ifdef _WIN64
3143     // Allocate abi space for args but be sure to keep stack aligned
3144     __ subptr(rsp, 6*wordSize);
3145     store_parameter(j_rarg4, 4);
3146     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3147       __ call(RuntimeAddress(C_entry));
3148     } else {
3149 #ifndef PRODUCT
3150       if (PrintC1Statistics) {
3151         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3152       }
3153 #endif
3154       __ call(RuntimeAddress(copyfunc_addr));
3155     }
3156     __ addptr(rsp, 6*wordSize);
3157 #else
3158     __ mov(c_rarg4, j_rarg4);
3159     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3160       __ call(RuntimeAddress(C_entry));
3161     } else {
3162 #ifndef PRODUCT
3163       if (PrintC1Statistics) {
3164         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3165       }
3166 #endif
3167       __ call(RuntimeAddress(copyfunc_addr));
3168     }
3169 #endif // _WIN64
3170 #else
3171     __ push(length);
3172     __ push(dst_pos);
3173     __ push(dst);
3174     __ push(src_pos);
3175     __ push(src);
3176 
3177     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3178       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3179     } else {
3180 #ifndef PRODUCT
3181       if (PrintC1Statistics) {
3182         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3183       }
3184 #endif
3185       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3186     }
3187 
3188 #endif // _LP64
3189 
3190     __ cmpl(rax, 0);
3191     __ jcc(Assembler::equal, *stub->continuation());
3192 
3193     if (copyfunc_addr != NULL) {
3194       __ mov(tmp, rax);
3195       __ xorl(tmp, -1);
3196     }
3197 
3198     // Reload values from the stack so they are where the stub
3199     // expects them.
3200     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3201     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3202     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3203     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3204     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3205 
3206     if (copyfunc_addr != NULL) {
3207       __ subl(length, tmp);
3208       __ addl(src_pos, tmp);
3209       __ addl(dst_pos, tmp);
3210     }
3211     __ jmp(*stub->entry());
3212 
3213     __ bind(*stub->continuation());
3214     return;
3215   }
3216 
3217   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3218 
3219   int elem_size = type2aelembytes(basic_type);
3220   int shift_amount;
3221   Address::ScaleFactor scale;
3222 
3223   switch (elem_size) {
3224     case 1 :
3225       shift_amount = 0;
3226       scale = Address::times_1;
3227       break;
3228     case 2 :
3229       shift_amount = 1;
3230       scale = Address::times_2;
3231       break;
3232     case 4 :
3233       shift_amount = 2;
3234       scale = Address::times_4;
3235       break;
3236     case 8 :
3237       shift_amount = 3;
3238       scale = Address::times_8;
3239       break;
3240     default:
3241       ShouldNotReachHere();
3242   }
3243 
3244   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3245   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3246   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3247   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3248 
3249   // length and pos's are all sign extended at this point on 64bit
3250 
3251   // test for NULL
3252   if (flags & LIR_OpArrayCopy::src_null_check) {
3253     __ testptr(src, src);
3254     __ jcc(Assembler::zero, *stub->entry());
3255   }
3256   if (flags & LIR_OpArrayCopy::dst_null_check) {
3257     __ testptr(dst, dst);
3258     __ jcc(Assembler::zero, *stub->entry());
3259   }
3260 
3261   // check if negative
3262   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3263     __ testl(src_pos, src_pos);
3264     __ jcc(Assembler::less, *stub->entry());
3265   }
3266   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3267     __ testl(dst_pos, dst_pos);
3268     __ jcc(Assembler::less, *stub->entry());
3269   }
3270 
3271   if (flags & LIR_OpArrayCopy::src_range_check) {
3272     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3273     __ cmpl(tmp, src_length_addr);
3274     __ jcc(Assembler::above, *stub->entry());
3275   }
3276   if (flags & LIR_OpArrayCopy::dst_range_check) {
3277     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3278     __ cmpl(tmp, dst_length_addr);
3279     __ jcc(Assembler::above, *stub->entry());
3280   }
3281 
3282   if (flags & LIR_OpArrayCopy::length_positive_check) {
3283     __ testl(length, length);
3284     __ jcc(Assembler::less, *stub->entry());
3285     __ jcc(Assembler::zero, *stub->continuation());
3286   }
3287 
3288 #ifdef _LP64
3289   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3290   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3291 #endif
3292 
3293   if (flags & LIR_OpArrayCopy::type_check) {
3294     // We don't know the array types are compatible
3295     if (basic_type != T_OBJECT) {
3296       // Simple test for basic type arrays
3297       if (UseCompressedKlassPointers) {
3298         __ movl(tmp, src_klass_addr);
3299         __ cmpl(tmp, dst_klass_addr);
3300       } else {
3301         __ movptr(tmp, src_klass_addr);
3302         __ cmpptr(tmp, dst_klass_addr);
3303       }
3304       __ jcc(Assembler::notEqual, *stub->entry());
3305     } else {
3306       // For object arrays, if src is a sub class of dst then we can
3307       // safely do the copy.
3308       Label cont, slow;
3309 
3310       __ push(src);
3311       __ push(dst);
3312 
3313       __ load_klass(src, src);
3314       __ load_klass(dst, dst);
3315 
3316       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3317 
3318       __ push(src);
3319       __ push(dst);
3320       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3321       __ pop(dst);
3322       __ pop(src);
3323 
3324       __ cmpl(src, 0);
3325       __ jcc(Assembler::notEqual, cont);
3326 
3327       __ bind(slow);
3328       __ pop(dst);
3329       __ pop(src);
3330 
3331       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3332       if (copyfunc_addr != NULL) { // use stub if available
3333         // src is not a sub class of dst so we have to do a
3334         // per-element check.
3335 
3336         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3337         if ((flags & mask) != mask) {
3338           // Check that at least both of them object arrays.
3339           assert(flags & mask, "one of the two should be known to be an object array");
3340 
3341           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3342             __ load_klass(tmp, src);
3343           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3344             __ load_klass(tmp, dst);
3345           }
3346           int lh_offset = in_bytes(Klass::layout_helper_offset());
3347           Address klass_lh_addr(tmp, lh_offset);
3348           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3349           __ cmpl(klass_lh_addr, objArray_lh);
3350           __ jcc(Assembler::notEqual, *stub->entry());
3351         }
3352 
3353        // Spill because stubs can use any register they like and it's
3354        // easier to restore just those that we care about.
3355        store_parameter(dst, 0);
3356        store_parameter(dst_pos, 1);
3357        store_parameter(length, 2);
3358        store_parameter(src_pos, 3);
3359        store_parameter(src, 4);
3360 
3361 #ifndef _LP64
3362         __ movptr(tmp, dst_klass_addr);
3363         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3364         __ push(tmp);
3365         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3366         __ push(tmp);
3367         __ push(length);
3368         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3369         __ push(tmp);
3370         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3371         __ push(tmp);
3372 
3373         __ call_VM_leaf(copyfunc_addr, 5);
3374 #else
3375         __ movl2ptr(length, length); //higher 32bits must be null
3376 
3377         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3378         assert_different_registers(c_rarg0, dst, dst_pos, length);
3379         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3380         assert_different_registers(c_rarg1, dst, length);
3381 
3382         __ mov(c_rarg2, length);
3383         assert_different_registers(c_rarg2, dst);
3384 
3385 #ifdef _WIN64
3386         // Allocate abi space for args but be sure to keep stack aligned
3387         __ subptr(rsp, 6*wordSize);
3388         __ load_klass(c_rarg3, dst);
3389         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3390         store_parameter(c_rarg3, 4);
3391         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3392         __ call(RuntimeAddress(copyfunc_addr));
3393         __ addptr(rsp, 6*wordSize);
3394 #else
3395         __ load_klass(c_rarg4, dst);
3396         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3397         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3398         __ call(RuntimeAddress(copyfunc_addr));
3399 #endif
3400 
3401 #endif
3402 
3403 #ifndef PRODUCT
3404         if (PrintC1Statistics) {
3405           Label failed;
3406           __ testl(rax, rax);
3407           __ jcc(Assembler::notZero, failed);
3408           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3409           __ bind(failed);
3410         }
3411 #endif
3412 
3413         __ testl(rax, rax);
3414         __ jcc(Assembler::zero, *stub->continuation());
3415 
3416 #ifndef PRODUCT
3417         if (PrintC1Statistics) {
3418           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3419         }
3420 #endif
3421 
3422         __ mov(tmp, rax);
3423 
3424         __ xorl(tmp, -1);
3425 
3426         // Restore previously spilled arguments
3427         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3428         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3429         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3430         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3431         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3432 
3433 
3434         __ subl(length, tmp);
3435         __ addl(src_pos, tmp);
3436         __ addl(dst_pos, tmp);
3437       }
3438 
3439       __ jmp(*stub->entry());
3440 
3441       __ bind(cont);
3442       __ pop(dst);
3443       __ pop(src);
3444     }
3445   }
3446 
3447 #ifdef ASSERT
3448   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3449     // Sanity check the known type with the incoming class.  For the
3450     // primitive case the types must match exactly with src.klass and
3451     // dst.klass each exactly matching the default type.  For the
3452     // object array case, if no type check is needed then either the
3453     // dst type is exactly the expected type and the src type is a
3454     // subtype which we can't check or src is the same array as dst
3455     // but not necessarily exactly of type default_type.
3456     Label known_ok, halt;
3457     __ mov_metadata(tmp, default_type->constant_encoding());
3458 #ifdef _LP64
3459     if (UseCompressedKlassPointers) {
3460       __ encode_klass_not_null(tmp);
3461     }
3462 #endif
3463 
3464     if (basic_type != T_OBJECT) {
3465 
3466       if (UseCompressedKlassPointers)          __ cmpl(tmp, dst_klass_addr);
3467       else                   __ cmpptr(tmp, dst_klass_addr);
3468       __ jcc(Assembler::notEqual, halt);
3469       if (UseCompressedKlassPointers)          __ cmpl(tmp, src_klass_addr);
3470       else                   __ cmpptr(tmp, src_klass_addr);
3471       __ jcc(Assembler::equal, known_ok);
3472     } else {
3473       if (UseCompressedKlassPointers)          __ cmpl(tmp, dst_klass_addr);
3474       else                   __ cmpptr(tmp, dst_klass_addr);
3475       __ jcc(Assembler::equal, known_ok);
3476       __ cmpptr(src, dst);
3477       __ jcc(Assembler::equal, known_ok);
3478     }
3479     __ bind(halt);
3480     __ stop("incorrect type information in arraycopy");
3481     __ bind(known_ok);
3482   }
3483 #endif
3484 
3485 #ifndef PRODUCT
3486   if (PrintC1Statistics) {
3487     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3488   }
3489 #endif
3490 
3491 #ifdef _LP64
3492   assert_different_registers(c_rarg0, dst, dst_pos, length);
3493   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3494   assert_different_registers(c_rarg1, length);
3495   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3496   __ mov(c_rarg2, length);
3497 
3498 #else
3499   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3500   store_parameter(tmp, 0);
3501   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3502   store_parameter(tmp, 1);
3503   store_parameter(length, 2);
3504 #endif // _LP64
3505 
3506   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3507   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3508   const char *name;
3509   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3510   __ call_VM_leaf(entry, 0);
3511 
3512   __ bind(*stub->continuation());
3513 }
3514 
3515 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3516   assert(op->crc()->is_single_cpu(),  "crc must be register");
3517   assert(op->val()->is_single_cpu(),  "byte value must be register");
3518   assert(op->result_opr()->is_single_cpu(), "result must be register");
3519   Register crc = op->crc()->as_register();
3520   Register val = op->val()->as_register();
3521   Register res = op->result_opr()->as_register();
3522 
3523   assert_different_registers(val, crc, res);
3524 
3525   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3526   __ notl(crc); // ~crc
3527   __ update_byte_crc32(crc, val, res);
3528   __ notl(crc); // ~crc
3529   __ mov(res, crc);
3530 }
3531 
3532 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3533   Register obj = op->obj_opr()->as_register();  // may not be an oop
3534   Register hdr = op->hdr_opr()->as_register();
3535   Register lock = op->lock_opr()->as_register();
3536   if (!UseFastLocking) {
3537     __ jmp(*op->stub()->entry());
3538   } else if (op->code() == lir_lock) {
3539     Register scratch = noreg;
3540     if (UseBiasedLocking) {
3541       scratch = op->scratch_opr()->as_register();
3542     }
3543     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3544     // add debug info for NullPointerException only if one is possible
3545     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3546     if (op->info() != NULL) {
3547       add_debug_info_for_null_check(null_check_offset, op->info());
3548     }
3549     // done
3550   } else if (op->code() == lir_unlock) {
3551     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3552     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3553   } else {
3554     Unimplemented();
3555   }
3556   __ bind(*op->stub()->continuation());
3557 }
3558 
3559 
3560 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3561   ciMethod* method = op->profiled_method();
3562   int bci          = op->profiled_bci();
3563   ciMethod* callee = op->profiled_callee();
3564 
3565   // Update counter for all call types
3566   ciMethodData* md = method->method_data_or_null();
3567   assert(md != NULL, "Sanity");
3568   ciProfileData* data = md->bci_to_data(bci);
3569   assert(data->is_CounterData(), "need CounterData for calls");
3570   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3571   Register mdo  = op->mdo()->as_register();
3572   __ mov_metadata(mdo, md->constant_encoding());
3573   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3574   Bytecodes::Code bc = method->java_code_at_bci(bci);
3575   const bool callee_is_static = callee->is_loaded() && callee->is_static();
3576   // Perform additional virtual call profiling for invokevirtual and
3577   // invokeinterface bytecodes
3578   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3579       !callee_is_static &&  // required for optimized MH invokes
3580       C1ProfileVirtualCalls) {
3581     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3582     Register recv = op->recv()->as_register();
3583     assert_different_registers(mdo, recv);
3584     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3585     ciKlass* known_klass = op->known_holder();
3586     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3587       // We know the type that will be seen at this call site; we can
3588       // statically update the MethodData* rather than needing to do
3589       // dynamic tests on the receiver type
3590 
3591       // NOTE: we should probably put a lock around this search to
3592       // avoid collisions by concurrent compilations
3593       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3594       uint i;
3595       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3596         ciKlass* receiver = vc_data->receiver(i);
3597         if (known_klass->equals(receiver)) {
3598           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3599           __ addptr(data_addr, DataLayout::counter_increment);
3600           return;
3601         }
3602       }
3603 
3604       // Receiver type not found in profile data; select an empty slot
3605 
3606       // Note that this is less efficient than it should be because it
3607       // always does a write to the receiver part of the
3608       // VirtualCallData rather than just the first time
3609       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3610         ciKlass* receiver = vc_data->receiver(i);
3611         if (receiver == NULL) {
3612           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3613           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3614           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3615           __ addptr(data_addr, DataLayout::counter_increment);
3616           return;
3617         }
3618       }
3619     } else {
3620       __ load_klass(recv, recv);
3621       Label update_done;
3622       type_profile_helper(mdo, md, data, recv, &update_done);
3623       // Receiver did not match any saved receiver and there is no empty row for it.
3624       // Increment total counter to indicate polymorphic case.
3625       __ addptr(counter_addr, DataLayout::counter_increment);
3626 
3627       __ bind(update_done);
3628     }
3629   } else {
3630     // Static call
3631     __ addptr(counter_addr, DataLayout::counter_increment);
3632   }
3633 }
3634 
3635 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3636   Unimplemented();
3637 }
3638 
3639 
3640 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3641   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3642 }
3643 
3644 
3645 void LIR_Assembler::align_backward_branch_target() {
3646   __ align(BytesPerWord);
3647 }
3648 
3649 
3650 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3651   if (left->is_single_cpu()) {
3652     __ negl(left->as_register());
3653     move_regs(left->as_register(), dest->as_register());
3654 
3655   } else if (left->is_double_cpu()) {
3656     Register lo = left->as_register_lo();
3657 #ifdef _LP64
3658     Register dst = dest->as_register_lo();
3659     __ movptr(dst, lo);
3660     __ negptr(dst);
3661 #else
3662     Register hi = left->as_register_hi();
3663     __ lneg(hi, lo);
3664     if (dest->as_register_lo() == hi) {
3665       assert(dest->as_register_hi() != lo, "destroying register");
3666       move_regs(hi, dest->as_register_hi());
3667       move_regs(lo, dest->as_register_lo());
3668     } else {
3669       move_regs(lo, dest->as_register_lo());
3670       move_regs(hi, dest->as_register_hi());
3671     }
3672 #endif // _LP64
3673 
3674   } else if (dest->is_single_xmm()) {
3675     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3676       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3677     }
3678     __ xorps(dest->as_xmm_float_reg(),
3679              ExternalAddress((address)float_signflip_pool));
3680 
3681   } else if (dest->is_double_xmm()) {
3682     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3683       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3684     }
3685     __ xorpd(dest->as_xmm_double_reg(),
3686              ExternalAddress((address)double_signflip_pool));
3687 
3688   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3689     assert(left->fpu() == 0, "arg must be on TOS");
3690     assert(dest->fpu() == 0, "dest must be TOS");
3691     __ fchs();
3692 
3693   } else {
3694     ShouldNotReachHere();
3695   }
3696 }
3697 
3698 
3699 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3700   assert(addr->is_address() && dest->is_register(), "check");
3701   Register reg;
3702   reg = dest->as_pointer_register();
3703   __ lea(reg, as_Address(addr->as_address_ptr()));
3704 }
3705 
3706 
3707 
3708 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3709   assert(!tmp->is_valid(), "don't need temporary");
3710   __ call(RuntimeAddress(dest));
3711   if (info != NULL) {
3712     add_call_info_here(info);
3713   }
3714 }
3715 
3716 
3717 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3718   assert(type == T_LONG, "only for volatile long fields");
3719 
3720   if (info != NULL) {
3721     add_debug_info_for_null_check_here(info);
3722   }
3723 
3724   if (src->is_double_xmm()) {
3725     if (dest->is_double_cpu()) {
3726 #ifdef _LP64
3727       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3728 #else
3729       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3730       __ psrlq(src->as_xmm_double_reg(), 32);
3731       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3732 #endif // _LP64
3733     } else if (dest->is_double_stack()) {
3734       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3735     } else if (dest->is_address()) {
3736       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3737     } else {
3738       ShouldNotReachHere();
3739     }
3740 
3741   } else if (dest->is_double_xmm()) {
3742     if (src->is_double_stack()) {
3743       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3744     } else if (src->is_address()) {
3745       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3746     } else {
3747       ShouldNotReachHere();
3748     }
3749 
3750   } else if (src->is_double_fpu()) {
3751     assert(src->fpu_regnrLo() == 0, "must be TOS");
3752     if (dest->is_double_stack()) {
3753       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3754     } else if (dest->is_address()) {
3755       __ fistp_d(as_Address(dest->as_address_ptr()));
3756     } else {
3757       ShouldNotReachHere();
3758     }
3759 
3760   } else if (dest->is_double_fpu()) {
3761     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3762     if (src->is_double_stack()) {
3763       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3764     } else if (src->is_address()) {
3765       __ fild_d(as_Address(src->as_address_ptr()));
3766     } else {
3767       ShouldNotReachHere();
3768     }
3769   } else {
3770     ShouldNotReachHere();
3771   }
3772 }
3773 
3774 #ifdef ASSERT
3775 // emit run-time assertion
3776 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3777   assert(op->code() == lir_assert, "must be");
3778 
3779   if (op->in_opr1()->is_valid()) {
3780     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3781     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3782   } else {
3783     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3784     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3785   }
3786 
3787   Label ok;
3788   if (op->condition() != lir_cond_always) {
3789     Assembler::Condition acond = Assembler::zero;
3790     switch (op->condition()) {
3791       case lir_cond_equal:        acond = Assembler::equal;       break;
3792       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3793       case lir_cond_less:         acond = Assembler::less;        break;
3794       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3795       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3796       case lir_cond_greater:      acond = Assembler::greater;     break;
3797       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3798       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3799       default:                    ShouldNotReachHere();
3800     }
3801     __ jcc(acond, ok);
3802   }
3803   if (op->halt()) {
3804     const char* str = __ code_string(op->msg());
3805     __ stop(str);
3806   } else {
3807     breakpoint();
3808   }
3809   __ bind(ok);
3810 }
3811 #endif
3812 
3813 void LIR_Assembler::membar() {
3814   // QQQ sparc TSO uses this,
3815   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3816 }
3817 
3818 void LIR_Assembler::membar_acquire() {
3819   // No x86 machines currently require load fences
3820   // __ load_fence();
3821 }
3822 
3823 void LIR_Assembler::membar_release() {
3824   // No x86 machines currently require store fences
3825   // __ store_fence();
3826 }
3827 
3828 void LIR_Assembler::membar_loadload() {
3829   // no-op
3830   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3831 }
3832 
3833 void LIR_Assembler::membar_storestore() {
3834   // no-op
3835   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3836 }
3837 
3838 void LIR_Assembler::membar_loadstore() {
3839   // no-op
3840   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3841 }
3842 
3843 void LIR_Assembler::membar_storeload() {
3844   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3845 }
3846 
3847 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3848   assert(result_reg->is_register(), "check");
3849 #ifdef _LP64
3850   // __ get_thread(result_reg->as_register_lo());
3851   __ mov(result_reg->as_register(), r15_thread);
3852 #else
3853   __ get_thread(result_reg->as_register());
3854 #endif // _LP64
3855 }
3856 
3857 
3858 void LIR_Assembler::peephole(LIR_List*) {
3859   // do nothing for now
3860 }
3861 
3862 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3863   assert(data == dest, "xchg/xadd uses only 2 operands");
3864 
3865   if (data->type() == T_INT) {
3866     if (code == lir_xadd) {
3867       if (os::is_MP()) {
3868         __ lock();
3869       }
3870       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3871     } else {
3872       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3873     }
3874   } else if (data->is_oop()) {
3875     assert (code == lir_xchg, "xadd for oops");
3876     Register obj = data->as_register();
3877 #ifdef _LP64
3878     if (UseCompressedOops) {
3879       __ encode_heap_oop(obj);
3880       __ xchgl(obj, as_Address(src->as_address_ptr()));
3881       __ decode_heap_oop(obj);
3882     } else {
3883       __ xchgptr(obj, as_Address(src->as_address_ptr()));
3884     }
3885 #else
3886     __ xchgl(obj, as_Address(src->as_address_ptr()));
3887 #endif
3888   } else if (data->type() == T_LONG) {
3889 #ifdef _LP64
3890     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
3891     if (code == lir_xadd) {
3892       if (os::is_MP()) {
3893         __ lock();
3894       }
3895       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
3896     } else {
3897       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
3898     }
3899 #else
3900     ShouldNotReachHere();
3901 #endif
3902   } else {
3903     ShouldNotReachHere();
3904   }
3905 }
3906 
3907 #undef __