1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76 
  77 private:
  78   // Every data layout begins with a header.  This header
  79   // contains a tag, which is used to indicate the size/layout
  80   // of the data, 4 bits of flags, which can be used in any way,
  81   // 4 bits of trap history (none/one reason/many reasons),
  82   // and a bci, which is used to tie this piece of data to a
  83   // specific bci in the bytecodes.
  84   union {
  85     intptr_t _bits;
  86     struct {
  87       u1 _tag;
  88       u1 _flags;
  89       u2 _bci;
  90     } _struct;
  91   } _header;
  92 
  93   // The data layout has an arbitrary number of cells, each sized
  94   // to accomodate a pointer or an integer.
  95   intptr_t _cells[1];
  96 
  97   // Some types of data layouts need a length field.
  98   static bool needs_array_len(u1 tag);
  99 
 100 public:
 101   enum {
 102     counter_increment = 1
 103   };
 104 
 105   enum {
 106     cell_size = sizeof(intptr_t)
 107   };
 108 
 109   // Tag values
 110   enum {
 111     no_tag,
 112     bit_data_tag,
 113     counter_data_tag,
 114     jump_data_tag,
 115     receiver_type_data_tag,
 116     virtual_call_data_tag,
 117     ret_data_tag,
 118     branch_data_tag,
 119     multi_branch_data_tag,
 120     arg_info_data_tag
 121   };
 122 
 123   enum {
 124     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 125     // The trap state breaks down further as [recompile:1 | reason:3].
 126     // This further breakdown is defined in deoptimization.cpp.
 127     // See Deoptimization::trap_state_reason for an assert that
 128     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 129     //
 130     // The trap_state is collected only if ProfileTraps is true.
 131     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 132     trap_shift = BitsPerByte - trap_bits,
 133     trap_mask = right_n_bits(trap_bits),
 134     trap_mask_in_place = (trap_mask << trap_shift),
 135     flag_limit = trap_shift,
 136     flag_mask = right_n_bits(flag_limit),
 137     first_flag = 0
 138   };
 139 
 140   // Size computation
 141   static int header_size_in_bytes() {
 142     return cell_size;
 143   }
 144   static int header_size_in_cells() {
 145     return 1;
 146   }
 147 
 148   static int compute_size_in_bytes(int cell_count) {
 149     return header_size_in_bytes() + cell_count * cell_size;
 150   }
 151 
 152   // Initialization
 153   void initialize(u1 tag, u2 bci, int cell_count);
 154 
 155   // Accessors
 156   u1 tag() {
 157     return _header._struct._tag;
 158   }
 159 
 160   // Return a few bits of trap state.  Range is [0..trap_mask].
 161   // The state tells if traps with zero, one, or many reasons have occurred.
 162   // It also tells whether zero or many recompilations have occurred.
 163   // The associated trap histogram in the MDO itself tells whether
 164   // traps are common or not.  If a BCI shows that a trap X has
 165   // occurred, and the MDO shows N occurrences of X, we make the
 166   // simplifying assumption that all N occurrences can be blamed
 167   // on that BCI.
 168   int trap_state() {
 169     return ((_header._struct._flags >> trap_shift) & trap_mask);
 170   }
 171 
 172   void set_trap_state(int new_state) {
 173     assert(ProfileTraps, "used only under +ProfileTraps");
 174     uint old_flags = (_header._struct._flags & flag_mask);
 175     _header._struct._flags = (new_state << trap_shift) | old_flags;
 176   }
 177 
 178   u1 flags() {
 179     return _header._struct._flags;
 180   }
 181 
 182   u2 bci() {
 183     return _header._struct._bci;
 184   }
 185 
 186   void set_header(intptr_t value) {
 187     _header._bits = value;
 188   }
 189   void release_set_header(intptr_t value) {
 190     OrderAccess::release_store_ptr(&_header._bits, value);
 191   }
 192   intptr_t header() {
 193     return _header._bits;
 194   }
 195   void set_cell_at(int index, intptr_t value) {
 196     _cells[index] = value;
 197   }
 198   void release_set_cell_at(int index, intptr_t value) {
 199     OrderAccess::release_store_ptr(&_cells[index], value);
 200   }
 201   intptr_t cell_at(int index) {
 202     return _cells[index];
 203   }
 204 
 205   void set_flag_at(int flag_number) {
 206     assert(flag_number < flag_limit, "oob");
 207     _header._struct._flags |= (0x1 << flag_number);
 208   }
 209   bool flag_at(int flag_number) {
 210     assert(flag_number < flag_limit, "oob");
 211     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 212   }
 213 
 214   // Low-level support for code generation.
 215   static ByteSize header_offset() {
 216     return byte_offset_of(DataLayout, _header);
 217   }
 218   static ByteSize tag_offset() {
 219     return byte_offset_of(DataLayout, _header._struct._tag);
 220   }
 221   static ByteSize flags_offset() {
 222     return byte_offset_of(DataLayout, _header._struct._flags);
 223   }
 224   static ByteSize bci_offset() {
 225     return byte_offset_of(DataLayout, _header._struct._bci);
 226   }
 227   static ByteSize cell_offset(int index) {
 228     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 229   }
 230   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 231   static int flag_number_to_byte_constant(int flag_number) {
 232     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 233     DataLayout temp; temp.set_header(0);
 234     temp.set_flag_at(flag_number);
 235     return temp._header._struct._flags;
 236   }
 237   // Return a value which, when or-ed as a word into _header, sets the flag.
 238   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 239     DataLayout temp; temp.set_header(0);
 240     temp._header._struct._flags = byte_constant;
 241     return temp._header._bits;
 242   }
 243 
 244   ProfileData* data_in();
 245 
 246   // GC support
 247   void clean_weak_klass_links(BoolObjectClosure* cl);
 248 };
 249 
 250 
 251 // ProfileData class hierarchy
 252 class ProfileData;
 253 class   BitData;
 254 class     CounterData;
 255 class       ReceiverTypeData;
 256 class         VirtualCallData;
 257 class       RetData;
 258 class   JumpData;
 259 class     BranchData;
 260 class   ArrayData;
 261 class     MultiBranchData;
 262 class     ArgInfoData;
 263 
 264 
 265 // ProfileData
 266 //
 267 // A ProfileData object is created to refer to a section of profiling
 268 // data in a structured way.
 269 class ProfileData : public ResourceObj {
 270 private:
 271 #ifndef PRODUCT
 272   enum {
 273     tab_width_one = 16,
 274     tab_width_two = 36
 275   };
 276 #endif // !PRODUCT
 277 
 278   // This is a pointer to a section of profiling data.
 279   DataLayout* _data;
 280 
 281 protected:
 282   DataLayout* data() { return _data; }
 283 
 284   enum {
 285     cell_size = DataLayout::cell_size
 286   };
 287 
 288 public:
 289   // How many cells are in this?
 290   virtual int cell_count() {
 291     ShouldNotReachHere();
 292     return -1;
 293   }
 294 
 295   // Return the size of this data.
 296   int size_in_bytes() {
 297     return DataLayout::compute_size_in_bytes(cell_count());
 298   }
 299 
 300 protected:
 301   // Low-level accessors for underlying data
 302   void set_intptr_at(int index, intptr_t value) {
 303     assert(0 <= index && index < cell_count(), "oob");
 304     data()->set_cell_at(index, value);
 305   }
 306   void release_set_intptr_at(int index, intptr_t value) {
 307     assert(0 <= index && index < cell_count(), "oob");
 308     data()->release_set_cell_at(index, value);
 309   }
 310   intptr_t intptr_at(int index) {
 311     assert(0 <= index && index < cell_count(), "oob");
 312     return data()->cell_at(index);
 313   }
 314   void set_uint_at(int index, uint value) {
 315     set_intptr_at(index, (intptr_t) value);
 316   }
 317   void release_set_uint_at(int index, uint value) {
 318     release_set_intptr_at(index, (intptr_t) value);
 319   }
 320   uint uint_at(int index) {
 321     return (uint)intptr_at(index);
 322   }
 323   void set_int_at(int index, int value) {
 324     set_intptr_at(index, (intptr_t) value);
 325   }
 326   void release_set_int_at(int index, int value) {
 327     release_set_intptr_at(index, (intptr_t) value);
 328   }
 329   int int_at(int index) {
 330     return (int)intptr_at(index);
 331   }
 332   int int_at_unchecked(int index) {
 333     return (int)data()->cell_at(index);
 334   }
 335   void set_oop_at(int index, oop value) {
 336     set_intptr_at(index, (intptr_t) value);
 337   }
 338   oop oop_at(int index) {
 339     return (oop)intptr_at(index);
 340   }
 341 
 342   void set_flag_at(int flag_number) {
 343     data()->set_flag_at(flag_number);
 344   }
 345   bool flag_at(int flag_number) {
 346     return data()->flag_at(flag_number);
 347   }
 348 
 349   // two convenient imports for use by subclasses:
 350   static ByteSize cell_offset(int index) {
 351     return DataLayout::cell_offset(index);
 352   }
 353   static int flag_number_to_byte_constant(int flag_number) {
 354     return DataLayout::flag_number_to_byte_constant(flag_number);
 355   }
 356 
 357   ProfileData(DataLayout* data) {
 358     _data = data;
 359   }
 360 
 361 public:
 362   // Constructor for invalid ProfileData.
 363   ProfileData();
 364 
 365   u2 bci() {
 366     return data()->bci();
 367   }
 368 
 369   address dp() {
 370     return (address)_data;
 371   }
 372 
 373   int trap_state() {
 374     return data()->trap_state();
 375   }
 376   void set_trap_state(int new_state) {
 377     data()->set_trap_state(new_state);
 378   }
 379 
 380   // Type checking
 381   virtual bool is_BitData()         { return false; }
 382   virtual bool is_CounterData()     { return false; }
 383   virtual bool is_JumpData()        { return false; }
 384   virtual bool is_ReceiverTypeData(){ return false; }
 385   virtual bool is_VirtualCallData() { return false; }
 386   virtual bool is_RetData()         { return false; }
 387   virtual bool is_BranchData()      { return false; }
 388   virtual bool is_ArrayData()       { return false; }
 389   virtual bool is_MultiBranchData() { return false; }
 390   virtual bool is_ArgInfoData()     { return false; }
 391 
 392 
 393   BitData* as_BitData() {
 394     assert(is_BitData(), "wrong type");
 395     return is_BitData()         ? (BitData*)        this : NULL;
 396   }
 397   CounterData* as_CounterData() {
 398     assert(is_CounterData(), "wrong type");
 399     return is_CounterData()     ? (CounterData*)    this : NULL;
 400   }
 401   JumpData* as_JumpData() {
 402     assert(is_JumpData(), "wrong type");
 403     return is_JumpData()        ? (JumpData*)       this : NULL;
 404   }
 405   ReceiverTypeData* as_ReceiverTypeData() {
 406     assert(is_ReceiverTypeData(), "wrong type");
 407     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 408   }
 409   VirtualCallData* as_VirtualCallData() {
 410     assert(is_VirtualCallData(), "wrong type");
 411     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 412   }
 413   RetData* as_RetData() {
 414     assert(is_RetData(), "wrong type");
 415     return is_RetData()         ? (RetData*)        this : NULL;
 416   }
 417   BranchData* as_BranchData() {
 418     assert(is_BranchData(), "wrong type");
 419     return is_BranchData()      ? (BranchData*)     this : NULL;
 420   }
 421   ArrayData* as_ArrayData() {
 422     assert(is_ArrayData(), "wrong type");
 423     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 424   }
 425   MultiBranchData* as_MultiBranchData() {
 426     assert(is_MultiBranchData(), "wrong type");
 427     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 428   }
 429   ArgInfoData* as_ArgInfoData() {
 430     assert(is_ArgInfoData(), "wrong type");
 431     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 432   }
 433 
 434 
 435   // Subclass specific initialization
 436   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 437 
 438   // GC support
 439   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 440 
 441   // CI translation: ProfileData can represent both MethodDataOop data
 442   // as well as CIMethodData data. This function is provided for translating
 443   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 444   // most ProfileData don't require any translation, so we provide the null
 445   // translation here, and the required translators are in the ci subclasses.
 446   virtual void translate_from(ProfileData* data) {}
 447 
 448   virtual void print_data_on(outputStream* st) {
 449     ShouldNotReachHere();
 450   }
 451 
 452 #ifndef PRODUCT
 453   void print_shared(outputStream* st, const char* name);
 454   void tab(outputStream* st);
 455 #endif
 456 };
 457 
 458 // BitData
 459 //
 460 // A BitData holds a flag or two in its header.
 461 class BitData : public ProfileData {
 462 protected:
 463   enum {
 464     // null_seen:
 465     //  saw a null operand (cast/aastore/instanceof)
 466     null_seen_flag              = DataLayout::first_flag + 0
 467   };
 468   enum { bit_cell_count = 0 };  // no additional data fields needed.
 469 public:
 470   BitData(DataLayout* layout) : ProfileData(layout) {
 471   }
 472 
 473   virtual bool is_BitData() { return true; }
 474 
 475   static int static_cell_count() {
 476     return bit_cell_count;
 477   }
 478 
 479   virtual int cell_count() {
 480     return static_cell_count();
 481   }
 482 
 483   // Accessor
 484 
 485   // The null_seen flag bit is specially known to the interpreter.
 486   // Consulting it allows the compiler to avoid setting up null_check traps.
 487   bool null_seen()     { return flag_at(null_seen_flag); }
 488   void set_null_seen()    { set_flag_at(null_seen_flag); }
 489 
 490 
 491   // Code generation support
 492   static int null_seen_byte_constant() {
 493     return flag_number_to_byte_constant(null_seen_flag);
 494   }
 495 
 496   static ByteSize bit_data_size() {
 497     return cell_offset(bit_cell_count);
 498   }
 499 
 500 #ifndef PRODUCT
 501   void print_data_on(outputStream* st);
 502 #endif
 503 };
 504 
 505 // CounterData
 506 //
 507 // A CounterData corresponds to a simple counter.
 508 class CounterData : public BitData {
 509 protected:
 510   enum {
 511     count_off,
 512     counter_cell_count
 513   };
 514 public:
 515   CounterData(DataLayout* layout) : BitData(layout) {}
 516 
 517   virtual bool is_CounterData() { return true; }
 518 
 519   static int static_cell_count() {
 520     return counter_cell_count;
 521   }
 522 
 523   virtual int cell_count() {
 524     return static_cell_count();
 525   }
 526 
 527   // Direct accessor
 528   uint count() {
 529     return uint_at(count_off);
 530   }
 531 
 532   // Code generation support
 533   static ByteSize count_offset() {
 534     return cell_offset(count_off);
 535   }
 536   static ByteSize counter_data_size() {
 537     return cell_offset(counter_cell_count);
 538   }
 539 
 540   void set_count(uint count) {
 541     set_uint_at(count_off, count);
 542   }
 543 
 544 #ifndef PRODUCT
 545   void print_data_on(outputStream* st);
 546 #endif
 547 };
 548 
 549 // JumpData
 550 //
 551 // A JumpData is used to access profiling information for a direct
 552 // branch.  It is a counter, used for counting the number of branches,
 553 // plus a data displacement, used for realigning the data pointer to
 554 // the corresponding target bci.
 555 class JumpData : public ProfileData {
 556 protected:
 557   enum {
 558     taken_off_set,
 559     displacement_off_set,
 560     jump_cell_count
 561   };
 562 
 563   void set_displacement(int displacement) {
 564     set_int_at(displacement_off_set, displacement);
 565   }
 566 
 567 public:
 568   JumpData(DataLayout* layout) : ProfileData(layout) {
 569     assert(layout->tag() == DataLayout::jump_data_tag ||
 570       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 571   }
 572 
 573   virtual bool is_JumpData() { return true; }
 574 
 575   static int static_cell_count() {
 576     return jump_cell_count;
 577   }
 578 
 579   virtual int cell_count() {
 580     return static_cell_count();
 581   }
 582 
 583   // Direct accessor
 584   uint taken() {
 585     return uint_at(taken_off_set);
 586   }
 587 
 588   void set_taken(uint cnt) {
 589     set_uint_at(taken_off_set, cnt);
 590   }
 591 
 592   // Saturating counter
 593   uint inc_taken() {
 594     uint cnt = taken() + 1;
 595     // Did we wrap? Will compiler screw us??
 596     if (cnt == 0) cnt--;
 597     set_uint_at(taken_off_set, cnt);
 598     return cnt;
 599   }
 600 
 601   int displacement() {
 602     return int_at(displacement_off_set);
 603   }
 604 
 605   // Code generation support
 606   static ByteSize taken_offset() {
 607     return cell_offset(taken_off_set);
 608   }
 609 
 610   static ByteSize displacement_offset() {
 611     return cell_offset(displacement_off_set);
 612   }
 613 
 614   // Specific initialization.
 615   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 616 
 617 #ifndef PRODUCT
 618   void print_data_on(outputStream* st);
 619 #endif
 620 };
 621 
 622 // ReceiverTypeData
 623 //
 624 // A ReceiverTypeData is used to access profiling information about a
 625 // dynamic type check.  It consists of a counter which counts the total times
 626 // that the check is reached, and a series of (Klass*, count) pairs
 627 // which are used to store a type profile for the receiver of the check.
 628 class ReceiverTypeData : public CounterData {
 629 protected:
 630   enum {
 631     receiver0_offset = counter_cell_count,
 632     count0_offset,
 633     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
 634   };
 635 
 636 public:
 637   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
 638     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
 639            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
 640   }
 641 
 642   virtual bool is_ReceiverTypeData() { return true; }
 643 
 644   static int static_cell_count() {
 645     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
 646   }
 647 
 648   virtual int cell_count() {
 649     return static_cell_count();
 650   }
 651 
 652   // Direct accessors
 653   static uint row_limit() {
 654     return TypeProfileWidth;
 655   }
 656   static int receiver_cell_index(uint row) {
 657     return receiver0_offset + row * receiver_type_row_cell_count;
 658   }
 659   static int receiver_count_cell_index(uint row) {
 660     return count0_offset + row * receiver_type_row_cell_count;
 661   }
 662 
 663   Klass* receiver(uint row) {
 664     assert(row < row_limit(), "oob");
 665 
 666     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
 667     assert(recv == NULL || recv->is_klass(), "wrong type");
 668     return recv;
 669   }
 670 
 671   void set_receiver(uint row, Klass* k) {
 672     assert((uint)row < row_limit(), "oob");
 673     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
 674   }
 675 
 676   uint receiver_count(uint row) {
 677     assert(row < row_limit(), "oob");
 678     return uint_at(receiver_count_cell_index(row));
 679   }
 680 
 681   void set_receiver_count(uint row, uint count) {
 682     assert(row < row_limit(), "oob");
 683     set_uint_at(receiver_count_cell_index(row), count);
 684   }
 685 
 686   void clear_row(uint row) {
 687     assert(row < row_limit(), "oob");
 688     // Clear total count - indicator of polymorphic call site.
 689     // The site may look like as monomorphic after that but
 690     // it allow to have more accurate profiling information because
 691     // there was execution phase change since klasses were unloaded.
 692     // If the site is still polymorphic then MDO will be updated
 693     // to reflect it. But it could be the case that the site becomes
 694     // only bimorphic. Then keeping total count not 0 will be wrong.
 695     // Even if we use monomorphic (when it is not) for compilation
 696     // we will only have trap, deoptimization and recompile again
 697     // with updated MDO after executing method in Interpreter.
 698     // An additional receiver will be recorded in the cleaned row
 699     // during next call execution.
 700     //
 701     // Note: our profiling logic works with empty rows in any slot.
 702     // We do sorting a profiling info (ciCallProfile) for compilation.
 703     //
 704     set_count(0);
 705     set_receiver(row, NULL);
 706     set_receiver_count(row, 0);
 707   }
 708 
 709   // Code generation support
 710   static ByteSize receiver_offset(uint row) {
 711     return cell_offset(receiver_cell_index(row));
 712   }
 713   static ByteSize receiver_count_offset(uint row) {
 714     return cell_offset(receiver_count_cell_index(row));
 715   }
 716   static ByteSize receiver_type_data_size() {
 717     return cell_offset(static_cell_count());
 718   }
 719 
 720   // GC support
 721   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 722 
 723 #ifndef PRODUCT
 724   void print_receiver_data_on(outputStream* st);
 725   void print_data_on(outputStream* st);
 726 #endif
 727 };
 728 
 729 // VirtualCallData
 730 //
 731 // A VirtualCallData is used to access profiling information about a
 732 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
 733 class VirtualCallData : public ReceiverTypeData {
 734 public:
 735   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
 736     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
 737   }
 738 
 739   virtual bool is_VirtualCallData() { return true; }
 740 
 741   static int static_cell_count() {
 742     // At this point we could add more profile state, e.g., for arguments.
 743     // But for now it's the same size as the base record type.
 744     return ReceiverTypeData::static_cell_count();
 745   }
 746 
 747   virtual int cell_count() {
 748     return static_cell_count();
 749   }
 750 
 751   // Direct accessors
 752   static ByteSize virtual_call_data_size() {
 753     return cell_offset(static_cell_count());
 754   }
 755 
 756 #ifndef PRODUCT
 757   void print_data_on(outputStream* st);
 758 #endif
 759 };
 760 
 761 // RetData
 762 //
 763 // A RetData is used to access profiling information for a ret bytecode.
 764 // It is composed of a count of the number of times that the ret has
 765 // been executed, followed by a series of triples of the form
 766 // (bci, count, di) which count the number of times that some bci was the
 767 // target of the ret and cache a corresponding data displacement.
 768 class RetData : public CounterData {
 769 protected:
 770   enum {
 771     bci0_offset = counter_cell_count,
 772     count0_offset,
 773     displacement0_offset,
 774     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
 775   };
 776 
 777   void set_bci(uint row, int bci) {
 778     assert((uint)row < row_limit(), "oob");
 779     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
 780   }
 781   void release_set_bci(uint row, int bci) {
 782     assert((uint)row < row_limit(), "oob");
 783     // 'release' when setting the bci acts as a valid flag for other
 784     // threads wrt bci_count and bci_displacement.
 785     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
 786   }
 787   void set_bci_count(uint row, uint count) {
 788     assert((uint)row < row_limit(), "oob");
 789     set_uint_at(count0_offset + row * ret_row_cell_count, count);
 790   }
 791   void set_bci_displacement(uint row, int disp) {
 792     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
 793   }
 794 
 795 public:
 796   RetData(DataLayout* layout) : CounterData(layout) {
 797     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
 798   }
 799 
 800   virtual bool is_RetData() { return true; }
 801 
 802   enum {
 803     no_bci = -1 // value of bci when bci1/2 are not in use.
 804   };
 805 
 806   static int static_cell_count() {
 807     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
 808   }
 809 
 810   virtual int cell_count() {
 811     return static_cell_count();
 812   }
 813 
 814   static uint row_limit() {
 815     return BciProfileWidth;
 816   }
 817   static int bci_cell_index(uint row) {
 818     return bci0_offset + row * ret_row_cell_count;
 819   }
 820   static int bci_count_cell_index(uint row) {
 821     return count0_offset + row * ret_row_cell_count;
 822   }
 823   static int bci_displacement_cell_index(uint row) {
 824     return displacement0_offset + row * ret_row_cell_count;
 825   }
 826 
 827   // Direct accessors
 828   int bci(uint row) {
 829     return int_at(bci_cell_index(row));
 830   }
 831   uint bci_count(uint row) {
 832     return uint_at(bci_count_cell_index(row));
 833   }
 834   int bci_displacement(uint row) {
 835     return int_at(bci_displacement_cell_index(row));
 836   }
 837 
 838   // Interpreter Runtime support
 839   address fixup_ret(int return_bci, MethodData* mdo);
 840 
 841   // Code generation support
 842   static ByteSize bci_offset(uint row) {
 843     return cell_offset(bci_cell_index(row));
 844   }
 845   static ByteSize bci_count_offset(uint row) {
 846     return cell_offset(bci_count_cell_index(row));
 847   }
 848   static ByteSize bci_displacement_offset(uint row) {
 849     return cell_offset(bci_displacement_cell_index(row));
 850   }
 851 
 852   // Specific initialization.
 853   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 854 
 855 #ifndef PRODUCT
 856   void print_data_on(outputStream* st);
 857 #endif
 858 };
 859 
 860 // BranchData
 861 //
 862 // A BranchData is used to access profiling data for a two-way branch.
 863 // It consists of taken and not_taken counts as well as a data displacement
 864 // for the taken case.
 865 class BranchData : public JumpData {
 866 protected:
 867   enum {
 868     not_taken_off_set = jump_cell_count,
 869     branch_cell_count
 870   };
 871 
 872   void set_displacement(int displacement) {
 873     set_int_at(displacement_off_set, displacement);
 874   }
 875 
 876 public:
 877   BranchData(DataLayout* layout) : JumpData(layout) {
 878     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
 879   }
 880 
 881   virtual bool is_BranchData() { return true; }
 882 
 883   static int static_cell_count() {
 884     return branch_cell_count;
 885   }
 886 
 887   virtual int cell_count() {
 888     return static_cell_count();
 889   }
 890 
 891   // Direct accessor
 892   uint not_taken() {
 893     return uint_at(not_taken_off_set);
 894   }
 895 
 896   void set_not_taken(uint cnt) {
 897     set_uint_at(not_taken_off_set, cnt);
 898   }
 899 
 900   uint inc_not_taken() {
 901     uint cnt = not_taken() + 1;
 902     // Did we wrap? Will compiler screw us??
 903     if (cnt == 0) cnt--;
 904     set_uint_at(not_taken_off_set, cnt);
 905     return cnt;
 906   }
 907 
 908   // Code generation support
 909   static ByteSize not_taken_offset() {
 910     return cell_offset(not_taken_off_set);
 911   }
 912   static ByteSize branch_data_size() {
 913     return cell_offset(branch_cell_count);
 914   }
 915 
 916   // Specific initialization.
 917   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 918 
 919 #ifndef PRODUCT
 920   void print_data_on(outputStream* st);
 921 #endif
 922 };
 923 
 924 // ArrayData
 925 //
 926 // A ArrayData is a base class for accessing profiling data which does
 927 // not have a statically known size.  It consists of an array length
 928 // and an array start.
 929 class ArrayData : public ProfileData {
 930 protected:
 931   friend class DataLayout;
 932 
 933   enum {
 934     array_len_off_set,
 935     array_start_off_set
 936   };
 937 
 938   uint array_uint_at(int index) {
 939     int aindex = index + array_start_off_set;
 940     return uint_at(aindex);
 941   }
 942   int array_int_at(int index) {
 943     int aindex = index + array_start_off_set;
 944     return int_at(aindex);
 945   }
 946   oop array_oop_at(int index) {
 947     int aindex = index + array_start_off_set;
 948     return oop_at(aindex);
 949   }
 950   void array_set_int_at(int index, int value) {
 951     int aindex = index + array_start_off_set;
 952     set_int_at(aindex, value);
 953   }
 954 
 955   // Code generation support for subclasses.
 956   static ByteSize array_element_offset(int index) {
 957     return cell_offset(array_start_off_set + index);
 958   }
 959 
 960 public:
 961   ArrayData(DataLayout* layout) : ProfileData(layout) {}
 962 
 963   virtual bool is_ArrayData() { return true; }
 964 
 965   static int static_cell_count() {
 966     return -1;
 967   }
 968 
 969   int array_len() {
 970     return int_at_unchecked(array_len_off_set);
 971   }
 972 
 973   virtual int cell_count() {
 974     return array_len() + 1;
 975   }
 976 
 977   // Code generation support
 978   static ByteSize array_len_offset() {
 979     return cell_offset(array_len_off_set);
 980   }
 981   static ByteSize array_start_offset() {
 982     return cell_offset(array_start_off_set);
 983   }
 984 };
 985 
 986 // MultiBranchData
 987 //
 988 // A MultiBranchData is used to access profiling information for
 989 // a multi-way branch (*switch bytecodes).  It consists of a series
 990 // of (count, displacement) pairs, which count the number of times each
 991 // case was taken and specify the data displacment for each branch target.
 992 class MultiBranchData : public ArrayData {
 993 protected:
 994   enum {
 995     default_count_off_set,
 996     default_disaplacement_off_set,
 997     case_array_start
 998   };
 999   enum {
1000     relative_count_off_set,
1001     relative_displacement_off_set,
1002     per_case_cell_count
1003   };
1004 
1005   void set_default_displacement(int displacement) {
1006     array_set_int_at(default_disaplacement_off_set, displacement);
1007   }
1008   void set_displacement_at(int index, int displacement) {
1009     array_set_int_at(case_array_start +
1010                      index * per_case_cell_count +
1011                      relative_displacement_off_set,
1012                      displacement);
1013   }
1014 
1015 public:
1016   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1017     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1018   }
1019 
1020   virtual bool is_MultiBranchData() { return true; }
1021 
1022   static int compute_cell_count(BytecodeStream* stream);
1023 
1024   int number_of_cases() {
1025     int alen = array_len() - 2; // get rid of default case here.
1026     assert(alen % per_case_cell_count == 0, "must be even");
1027     return (alen / per_case_cell_count);
1028   }
1029 
1030   uint default_count() {
1031     return array_uint_at(default_count_off_set);
1032   }
1033   int default_displacement() {
1034     return array_int_at(default_disaplacement_off_set);
1035   }
1036 
1037   uint count_at(int index) {
1038     return array_uint_at(case_array_start +
1039                          index * per_case_cell_count +
1040                          relative_count_off_set);
1041   }
1042   int displacement_at(int index) {
1043     return array_int_at(case_array_start +
1044                         index * per_case_cell_count +
1045                         relative_displacement_off_set);
1046   }
1047 
1048   // Code generation support
1049   static ByteSize default_count_offset() {
1050     return array_element_offset(default_count_off_set);
1051   }
1052   static ByteSize default_displacement_offset() {
1053     return array_element_offset(default_disaplacement_off_set);
1054   }
1055   static ByteSize case_count_offset(int index) {
1056     return case_array_offset() +
1057            (per_case_size() * index) +
1058            relative_count_offset();
1059   }
1060   static ByteSize case_array_offset() {
1061     return array_element_offset(case_array_start);
1062   }
1063   static ByteSize per_case_size() {
1064     return in_ByteSize(per_case_cell_count) * cell_size;
1065   }
1066   static ByteSize relative_count_offset() {
1067     return in_ByteSize(relative_count_off_set) * cell_size;
1068   }
1069   static ByteSize relative_displacement_offset() {
1070     return in_ByteSize(relative_displacement_off_set) * cell_size;
1071   }
1072 
1073   // Specific initialization.
1074   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1075 
1076 #ifndef PRODUCT
1077   void print_data_on(outputStream* st);
1078 #endif
1079 };
1080 
1081 class ArgInfoData : public ArrayData {
1082 
1083 public:
1084   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1085     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1086   }
1087 
1088   virtual bool is_ArgInfoData() { return true; }
1089 
1090 
1091   int number_of_args() {
1092     return array_len();
1093   }
1094 
1095   uint arg_modified(int arg) {
1096     return array_uint_at(arg);
1097   }
1098 
1099   void set_arg_modified(int arg, uint val) {
1100     array_set_int_at(arg, val);
1101   }
1102 
1103 #ifndef PRODUCT
1104   void print_data_on(outputStream* st);
1105 #endif
1106 };
1107 
1108 // MethodData*
1109 //
1110 // A MethodData* holds information which has been collected about
1111 // a method.  Its layout looks like this:
1112 //
1113 // -----------------------------
1114 // | header                    |
1115 // | klass                     |
1116 // -----------------------------
1117 // | method                    |
1118 // | size of the MethodData* |
1119 // -----------------------------
1120 // | Data entries...           |
1121 // |   (variable size)         |
1122 // |                           |
1123 // .                           .
1124 // .                           .
1125 // .                           .
1126 // |                           |
1127 // -----------------------------
1128 //
1129 // The data entry area is a heterogeneous array of DataLayouts. Each
1130 // DataLayout in the array corresponds to a specific bytecode in the
1131 // method.  The entries in the array are sorted by the corresponding
1132 // bytecode.  Access to the data is via resource-allocated ProfileData,
1133 // which point to the underlying blocks of DataLayout structures.
1134 //
1135 // During interpretation, if profiling in enabled, the interpreter
1136 // maintains a method data pointer (mdp), which points at the entry
1137 // in the array corresponding to the current bci.  In the course of
1138 // intepretation, when a bytecode is encountered that has profile data
1139 // associated with it, the entry pointed to by mdp is updated, then the
1140 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1141 // is NULL to begin with, the interpreter assumes that the current method
1142 // is not (yet) being profiled.
1143 //
1144 // In MethodData* parlance, "dp" is a "data pointer", the actual address
1145 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1146 // from the base of the data entry array.  A "displacement" is the byte offset
1147 // in certain ProfileData objects that indicate the amount the mdp must be
1148 // adjusted in the event of a change in control flow.
1149 //
1150 
1151 class MethodData : public Metadata {
1152   friend class VMStructs;
1153 private:
1154   friend class ProfileData;
1155 
1156   // Back pointer to the Method*
1157   Method* _method;
1158 
1159   // Size of this oop in bytes
1160   int _size;
1161 
1162   // Cached hint for bci_to_dp and bci_to_data
1163   int _hint_di;
1164 
1165   MethodData(methodHandle method, int size, TRAPS);
1166 public:
1167   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
1168   MethodData() {}; // For ciMethodData
1169 
1170   bool is_methodData() const volatile { return true; }
1171 
1172   // Whole-method sticky bits and flags
1173   enum {
1174     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
1175     _trap_hist_mask     = max_jubyte,
1176     _extra_data_count   = 4     // extra DataLayout headers, for trap history
1177   }; // Public flag values
1178 private:
1179   uint _nof_decompiles;             // count of all nmethod removals
1180   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
1181   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
1182   union {
1183     intptr_t _align;
1184     u1 _array[_trap_hist_limit];
1185   } _trap_hist;
1186 
1187   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1188   intx              _eflags;          // flags on escape information
1189   intx              _arg_local;       // bit set of non-escaping arguments
1190   intx              _arg_stack;       // bit set of stack-allocatable arguments
1191   intx              _arg_returned;    // bit set of returned arguments
1192 
1193   int _creation_mileage;              // method mileage at MDO creation
1194 
1195   // How many invocations has this MDO seen?
1196   // These counters are used to determine the exact age of MDO.
1197   // We need those because in tiered a method can be concurrently
1198   // executed at different levels.
1199   InvocationCounter _invocation_counter;
1200   // Same for backedges.
1201   InvocationCounter _backedge_counter;
1202   // Counter values at the time profiling started.
1203   int               _invocation_counter_start;
1204   int               _backedge_counter_start;
1205   // Number of loops and blocks is computed when compiling the first
1206   // time with C1. It is used to determine if method is trivial.
1207   short             _num_loops;
1208   short             _num_blocks;
1209   // Highest compile level this method has ever seen.
1210   u1                _highest_comp_level;
1211   // Same for OSR level
1212   u1                _highest_osr_comp_level;
1213   // Does this method contain anything worth profiling?
1214   bool              _would_profile;
1215 
1216   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
1217   int _data_size;
1218 
1219   // Beginning of the data entries
1220   intptr_t _data[1];
1221 
1222   // Helper for size computation
1223   static int compute_data_size(BytecodeStream* stream);
1224   static int bytecode_cell_count(Bytecodes::Code code);
1225   enum { no_profile_data = -1, variable_cell_count = -2 };
1226 
1227   // Helper for initialization
1228   DataLayout* data_layout_at(int data_index) const {
1229     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
1230     return (DataLayout*) (((address)_data) + data_index);
1231   }
1232 
1233   // Initialize an individual data segment.  Returns the size of
1234   // the segment in bytes.
1235   int initialize_data(BytecodeStream* stream, int data_index);
1236 
1237   // Helper for data_at
1238   DataLayout* limit_data_position() const {
1239     return (DataLayout*)((address)data_base() + _data_size);
1240   }
1241   bool out_of_bounds(int data_index) const {
1242     return data_index >= data_size();
1243   }
1244 
1245   // Give each of the data entries a chance to perform specific
1246   // data initialization.
1247   void post_initialize(BytecodeStream* stream);
1248 
1249   // hint accessors
1250   int      hint_di() const  { return _hint_di; }
1251   void set_hint_di(int di)  {
1252     assert(!out_of_bounds(di), "hint_di out of bounds");
1253     _hint_di = di;
1254   }
1255   ProfileData* data_before(int bci) {
1256     // avoid SEGV on this edge case
1257     if (data_size() == 0)
1258       return NULL;
1259     int hint = hint_di();
1260     if (data_layout_at(hint)->bci() <= bci)
1261       return data_at(hint);
1262     return first_data();
1263   }
1264 
1265   // What is the index of the first data entry?
1266   int first_di() const { return 0; }
1267 
1268   // Find or create an extra ProfileData:
1269   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
1270 
1271   // return the argument info cell
1272   ArgInfoData *arg_info();
1273 
1274 public:
1275   static int header_size() {
1276     return sizeof(MethodData)/wordSize;
1277   }
1278 
1279   // Compute the size of a MethodData* before it is created.
1280   static int compute_allocation_size_in_bytes(methodHandle method);
1281   static int compute_allocation_size_in_words(methodHandle method);
1282   static int compute_extra_data_count(int data_size, int empty_bc_count);
1283 
1284   // Determine if a given bytecode can have profile information.
1285   static bool bytecode_has_profile(Bytecodes::Code code) {
1286     return bytecode_cell_count(code) != no_profile_data;
1287   }
1288 
1289   // reset into original state
1290   void init();
1291 
1292   // My size
1293   int size_in_bytes() const { return _size; }
1294   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
1295 #if INCLUDE_SERVICES
1296   void collect_statistics(KlassSizeStats *sz) const;
1297 #endif
1298 
1299   int      creation_mileage() const  { return _creation_mileage; }
1300   void set_creation_mileage(int x)   { _creation_mileage = x; }
1301 
1302   int invocation_count() {
1303     if (invocation_counter()->carry()) {
1304       return InvocationCounter::count_limit;
1305     }
1306     return invocation_counter()->count();
1307   }
1308   int backedge_count() {
1309     if (backedge_counter()->carry()) {
1310       return InvocationCounter::count_limit;
1311     }
1312     return backedge_counter()->count();
1313   }
1314 
1315   int invocation_count_start() {
1316     if (invocation_counter()->carry()) {
1317       return 0;
1318     }
1319     return _invocation_counter_start;
1320   }
1321 
1322   int backedge_count_start() {
1323     if (backedge_counter()->carry()) {
1324       return 0;
1325     }
1326     return _backedge_counter_start;
1327   }
1328 
1329   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
1330   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
1331 
1332   void reset_start_counters() {
1333     _invocation_counter_start = invocation_count();
1334     _backedge_counter_start = backedge_count();
1335   }
1336 
1337   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
1338   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
1339 
1340   void set_would_profile(bool p)              { _would_profile = p;    }
1341   bool would_profile() const                  { return _would_profile; }
1342 
1343   int highest_comp_level() const              { return _highest_comp_level;      }
1344   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
1345   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
1346   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
1347 
1348   int num_loops() const                       { return _num_loops;  }
1349   void set_num_loops(int n)                   { _num_loops = n;     }
1350   int num_blocks() const                      { return _num_blocks; }
1351   void set_num_blocks(int n)                  { _num_blocks = n;    }
1352 
1353   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
1354   static int mileage_of(Method* m);
1355 
1356   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1357   enum EscapeFlag {
1358     estimated    = 1 << 0,
1359     return_local = 1 << 1,
1360     return_allocated = 1 << 2,
1361     allocated_escapes = 1 << 3,
1362     unknown_modified = 1 << 4
1363   };
1364 
1365   intx eflags()                                  { return _eflags; }
1366   intx arg_local()                               { return _arg_local; }
1367   intx arg_stack()                               { return _arg_stack; }
1368   intx arg_returned()                            { return _arg_returned; }
1369   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
1370                                                    assert(aid != NULL, "arg_info must be not null");
1371                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1372                                                    return aid->arg_modified(a); }
1373 
1374   void set_eflags(intx v)                        { _eflags = v; }
1375   void set_arg_local(intx v)                     { _arg_local = v; }
1376   void set_arg_stack(intx v)                     { _arg_stack = v; }
1377   void set_arg_returned(intx v)                  { _arg_returned = v; }
1378   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
1379                                                    assert(aid != NULL, "arg_info must be not null");
1380                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1381                                                    aid->set_arg_modified(a, v); }
1382 
1383   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
1384 
1385   // Location and size of data area
1386   address data_base() const {
1387     return (address) _data;
1388   }
1389   int data_size() const {
1390     return _data_size;
1391   }
1392 
1393   // Accessors
1394   Method* method() const { return _method; }
1395 
1396   // Get the data at an arbitrary (sort of) data index.
1397   ProfileData* data_at(int data_index) const;
1398 
1399   // Walk through the data in order.
1400   ProfileData* first_data() const { return data_at(first_di()); }
1401   ProfileData* next_data(ProfileData* current) const;
1402   bool is_valid(ProfileData* current) const { return current != NULL; }
1403 
1404   // Convert a dp (data pointer) to a di (data index).
1405   int dp_to_di(address dp) const {
1406     return dp - ((address)_data);
1407   }
1408 
1409   address di_to_dp(int di) {
1410     return (address)data_layout_at(di);
1411   }
1412 
1413   // bci to di/dp conversion.
1414   address bci_to_dp(int bci);
1415   int bci_to_di(int bci) {
1416     return dp_to_di(bci_to_dp(bci));
1417   }
1418 
1419   // Get the data at an arbitrary bci, or NULL if there is none.
1420   ProfileData* bci_to_data(int bci);
1421 
1422   // Same, but try to create an extra_data record if one is needed:
1423   ProfileData* allocate_bci_to_data(int bci) {
1424     ProfileData* data = bci_to_data(bci);
1425     return (data != NULL) ? data : bci_to_extra_data(bci, true);
1426   }
1427 
1428   // Add a handful of extra data records, for trap tracking.
1429   DataLayout* extra_data_base() const { return limit_data_position(); }
1430   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
1431   int extra_data_size() const { return (address)extra_data_limit()
1432                                - (address)extra_data_base(); }
1433   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
1434 
1435   // Return (uint)-1 for overflow.
1436   uint trap_count(int reason) const {
1437     assert((uint)reason < _trap_hist_limit, "oob");
1438     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
1439   }
1440   // For loops:
1441   static uint trap_reason_limit() { return _trap_hist_limit; }
1442   static uint trap_count_limit()  { return _trap_hist_mask; }
1443   uint inc_trap_count(int reason) {
1444     // Count another trap, anywhere in this method.
1445     assert(reason >= 0, "must be single trap");
1446     if ((uint)reason < _trap_hist_limit) {
1447       uint cnt1 = 1 + _trap_hist._array[reason];
1448       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
1449         _trap_hist._array[reason] = cnt1;
1450         return cnt1;
1451       } else {
1452         return _trap_hist_mask + (++_nof_overflow_traps);
1453       }
1454     } else {
1455       // Could not represent the count in the histogram.
1456       return (++_nof_overflow_traps);
1457     }
1458   }
1459 
1460   uint overflow_trap_count() const {
1461     return _nof_overflow_traps;
1462   }
1463   uint overflow_recompile_count() const {
1464     return _nof_overflow_recompiles;
1465   }
1466   void inc_overflow_recompile_count() {
1467     _nof_overflow_recompiles += 1;
1468   }
1469   uint decompile_count() const {
1470     return _nof_decompiles;
1471   }
1472   void inc_decompile_count() {
1473     _nof_decompiles += 1;
1474     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
1475       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
1476     }
1477   }
1478 
1479   // Support for code generation
1480   static ByteSize data_offset() {
1481     return byte_offset_of(MethodData, _data[0]);
1482   }
1483 
1484   static ByteSize invocation_counter_offset() {
1485     return byte_offset_of(MethodData, _invocation_counter);
1486   }
1487   static ByteSize backedge_counter_offset() {
1488     return byte_offset_of(MethodData, _backedge_counter);
1489   }
1490 
1491   // Deallocation support - no pointer fields to deallocate
1492   void deallocate_contents(ClassLoaderData* loader_data) {}
1493 
1494   // GC support
1495   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
1496 
1497   // Printing
1498 #ifndef PRODUCT
1499   void print_on      (outputStream* st) const;
1500 #endif
1501   void print_value_on(outputStream* st) const;
1502 
1503 #ifndef PRODUCT
1504   // printing support for method data
1505   void print_data_on(outputStream* st) const;
1506 #endif
1507 
1508   const char* internal_name() const { return "{method data}"; }
1509 
1510   // verification
1511   void verify_on(outputStream* st);
1512   void verify_data_on(outputStream* st);
1513 };
1514 
1515 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP