1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_C1_C1_LIR_HPP
  26 #define SHARE_VM_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_ValueType.hpp"
  29 #include "oops/method.hpp"
  30 
  31 class BlockBegin;
  32 class BlockList;
  33 class LIR_Assembler;
  34 class CodeEmitInfo;
  35 class CodeStub;
  36 class CodeStubList;
  37 class ArrayCopyStub;
  38 class LIR_Op;
  39 class ciType;
  40 class ValueType;
  41 class LIR_OpVisitState;
  42 class FpuStackSim;
  43 
  44 //---------------------------------------------------------------------
  45 //                 LIR Operands
  46 //  LIR_OprDesc
  47 //    LIR_OprPtr
  48 //      LIR_Const
  49 //      LIR_Address
  50 //---------------------------------------------------------------------
  51 class LIR_OprDesc;
  52 class LIR_OprPtr;
  53 class LIR_Const;
  54 class LIR_Address;
  55 class LIR_OprVisitor;
  56 
  57 
  58 typedef LIR_OprDesc* LIR_Opr;
  59 typedef int          RegNr;
  60 
  61 define_array(LIR_OprArray, LIR_Opr)
  62 define_stack(LIR_OprList, LIR_OprArray)
  63 
  64 define_array(LIR_OprRefArray, LIR_Opr*)
  65 define_stack(LIR_OprRefList, LIR_OprRefArray)
  66 
  67 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  68 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  69 
  70 define_array(LIR_OpArray, LIR_Op*)
  71 define_stack(LIR_OpList, LIR_OpArray)
  72 
  73 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  74 class LIR_OprPtr: public CompilationResourceObj {
  75  public:
  76   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  77   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  78 
  79   virtual LIR_Const*  as_constant()              { return NULL; }
  80   virtual LIR_Address* as_address()              { return NULL; }
  81   virtual BasicType type() const                 = 0;
  82   virtual void print_value_on(outputStream* out) const = 0;
  83 };
  84 
  85 
  86 
  87 // LIR constants
  88 class LIR_Const: public LIR_OprPtr {
  89  private:
  90   JavaValue _value;
  91 
  92   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  93   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  94   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  95 
  96  public:
  97   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  98   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  99   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
 100   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
 101   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
 102   LIR_Const(void* p) {
 103 #ifdef _LP64
 104     assert(sizeof(jlong) >= sizeof(p), "too small");;
 105     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 106 #else
 107     assert(sizeof(jint) >= sizeof(p), "too small");;
 108     _value.set_type(T_INT);     _value.set_jint((jint)p);
 109 #endif
 110   }
 111   LIR_Const(Metadata* m) {
 112     _value.set_type(T_METADATA);
 113 #ifdef _LP64
 114     _value.set_jlong((jlong)m);
 115 #else
 116     _value.set_jint((jint)m);
 117 #endif // _LP64
 118   }
 119 
 120   virtual BasicType type()       const { return _value.get_type(); }
 121   virtual LIR_Const* as_constant()     { return this; }
 122 
 123   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 124   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 125   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 126   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 127   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 128   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 129   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 130 
 131 #ifdef _LP64
 132   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 133   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 134 #else
 135   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 136   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 137 #endif
 138 
 139 
 140   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 141   jint      as_jint_lo_bits() const    {
 142     if (type() == T_DOUBLE) {
 143       return low(jlong_cast(_value.get_jdouble()));
 144     } else {
 145       return as_jint_lo();
 146     }
 147   }
 148   jint      as_jint_hi_bits() const    {
 149     if (type() == T_DOUBLE) {
 150       return high(jlong_cast(_value.get_jdouble()));
 151     } else {
 152       return as_jint_hi();
 153     }
 154   }
 155   jlong      as_jlong_bits() const    {
 156     if (type() == T_DOUBLE) {
 157       return jlong_cast(_value.get_jdouble());
 158     } else {
 159       return as_jlong();
 160     }
 161   }
 162 
 163   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 164 
 165 
 166   bool is_zero_float() {
 167     jfloat f = as_jfloat();
 168     jfloat ok = 0.0f;
 169     return jint_cast(f) == jint_cast(ok);
 170   }
 171 
 172   bool is_one_float() {
 173     jfloat f = as_jfloat();
 174     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 175   }
 176 
 177   bool is_zero_double() {
 178     jdouble d = as_jdouble();
 179     jdouble ok = 0.0;
 180     return jlong_cast(d) == jlong_cast(ok);
 181   }
 182 
 183   bool is_one_double() {
 184     jdouble d = as_jdouble();
 185     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 186   }
 187 };
 188 
 189 
 190 //---------------------LIR Operand descriptor------------------------------------
 191 //
 192 // The class LIR_OprDesc represents a LIR instruction operand;
 193 // it can be a register (ALU/FPU), stack location or a constant;
 194 // Constants and addresses are represented as resource area allocated
 195 // structures (see above).
 196 // Registers and stack locations are inlined into the this pointer
 197 // (see value function).
 198 
 199 class LIR_OprDesc: public CompilationResourceObj {
 200  public:
 201   // value structure:
 202   //     data       opr-type opr-kind
 203   // +--------------+-------+-------+
 204   // [max...........|7 6 5 4|3 2 1 0]
 205   //                             ^
 206   //                    is_pointer bit
 207   //
 208   // lowest bit cleared, means it is a structure pointer
 209   // we need  4 bits to represent types
 210 
 211  private:
 212   friend class LIR_OprFact;
 213 
 214   // Conversion
 215   intptr_t value() const                         { return (intptr_t) this; }
 216 
 217   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 218     return (value() & mask) == masked_value;
 219   }
 220 
 221   enum OprKind {
 222       pointer_value      = 0
 223     , stack_value        = 1
 224     , cpu_register       = 3
 225     , fpu_register       = 5
 226     , illegal_value      = 7
 227   };
 228 
 229   enum OprBits {
 230       pointer_bits   = 1
 231     , kind_bits      = 3
 232     , type_bits      = 4
 233     , size_bits      = 2
 234     , destroys_bits  = 1
 235     , virtual_bits   = 1
 236     , is_xmm_bits    = 1
 237     , last_use_bits  = 1
 238     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 239     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 240                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 241     , data_bits      = BitsPerInt - non_data_bits
 242     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 243   };
 244 
 245   enum OprShift {
 246       kind_shift     = 0
 247     , type_shift     = kind_shift     + kind_bits
 248     , size_shift     = type_shift     + type_bits
 249     , destroys_shift = size_shift     + size_bits
 250     , last_use_shift = destroys_shift + destroys_bits
 251     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 252     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 253     , is_xmm_shift   = virtual_shift + virtual_bits
 254     , data_shift     = is_xmm_shift + is_xmm_bits
 255     , reg1_shift = data_shift
 256     , reg2_shift = data_shift + reg_bits
 257 
 258   };
 259 
 260   enum OprSize {
 261       single_size = 0 << size_shift
 262     , double_size = 1 << size_shift
 263   };
 264 
 265   enum OprMask {
 266       kind_mask      = right_n_bits(kind_bits)
 267     , type_mask      = right_n_bits(type_bits) << type_shift
 268     , size_mask      = right_n_bits(size_bits) << size_shift
 269     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 270     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 271     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 272     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 273     , pointer_mask   = right_n_bits(pointer_bits)
 274     , lower_reg_mask = right_n_bits(reg_bits)
 275     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 276   };
 277 
 278   uintptr_t data() const                         { return value() >> data_shift; }
 279   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 280   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 281   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 282   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 283 
 284   static char type_char(BasicType t);
 285 
 286  public:
 287   enum {
 288     vreg_base = ConcreteRegisterImpl::number_of_registers,
 289     vreg_max = (1 << data_bits) - 1
 290   };
 291 
 292   static inline LIR_Opr illegalOpr();
 293 
 294   enum OprType {
 295       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 296     , int_type      = 1 << type_shift
 297     , long_type     = 2 << type_shift
 298     , object_type   = 3 << type_shift
 299     , address_type  = 4 << type_shift
 300     , float_type    = 5 << type_shift
 301     , double_type   = 6 << type_shift
 302     , metadata_type = 7 << type_shift
 303   };
 304   friend OprType as_OprType(BasicType t);
 305   friend BasicType as_BasicType(OprType t);
 306 
 307   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 308   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 309 
 310   static OprSize size_for(BasicType t) {
 311     switch (t) {
 312       case T_LONG:
 313       case T_DOUBLE:
 314         return double_size;
 315         break;
 316 
 317       case T_FLOAT:
 318       case T_BOOLEAN:
 319       case T_CHAR:
 320       case T_BYTE:
 321       case T_SHORT:
 322       case T_INT:
 323       case T_ADDRESS:
 324       case T_OBJECT:
 325       case T_ARRAY:
 326       case T_METADATA:
 327         return single_size;
 328         break;
 329 
 330       default:
 331         ShouldNotReachHere();
 332         return single_size;
 333       }
 334   }
 335 
 336 
 337   void validate_type() const PRODUCT_RETURN;
 338 
 339   BasicType type() const {
 340     if (is_pointer()) {
 341       return pointer()->type();
 342     }
 343     return as_BasicType(type_field());
 344   }
 345 
 346 
 347   ValueType* value_type() const                  { return as_ValueType(type()); }
 348 
 349   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 350 
 351   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 352   // checks whether types are same
 353   bool is_same_type(LIR_Opr opr) const     {
 354     assert(type_field() != unknown_type &&
 355            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 356     return type_field() == opr->type_field();
 357   }
 358   bool is_same_register(LIR_Opr opr) {
 359     return (is_register() && opr->is_register() &&
 360             kind_field() == opr->kind_field() &&
 361             (value() & no_type_mask) == (opr->value() & no_type_mask));
 362   }
 363 
 364   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 365   bool is_illegal() const      { return kind_field() == illegal_value; }
 366   bool is_valid() const        { return kind_field() != illegal_value; }
 367 
 368   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 369   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 370 
 371   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 372   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 373 
 374   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 375   bool is_oop() const;
 376 
 377   // semantic for fpu- and xmm-registers:
 378   // * is_float and is_double return true for xmm_registers
 379   //   (so is_single_fpu and is_single_xmm are true)
 380   // * So you must always check for is_???_xmm prior to is_???_fpu to
 381   //   distinguish between fpu- and xmm-registers
 382 
 383   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 384   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 385   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 386 
 387   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 388   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 389   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 390   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 391   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 392 
 393   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 394   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 395   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 396   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 397   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 398 
 399   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 400   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 401   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 402 
 403   // fast accessor functions for special bits that do not work for pointers
 404   // (in this functions, the check for is_pointer() is omitted)
 405   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 406   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 407   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 408   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 409   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 410 
 411   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 412   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 413   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 414   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 415 
 416 
 417   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 418   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 419   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 420   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 421   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 422   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 423   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 424   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 425   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 426   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 427   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 428   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 429 
 430   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 431   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 432   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 433 
 434   Register as_register()    const;
 435   Register as_register_lo() const;
 436   Register as_register_hi() const;
 437 
 438   Register as_pointer_register() {
 439 #ifdef _LP64
 440     if (is_double_cpu()) {
 441       assert(as_register_lo() == as_register_hi(), "should be a single register");
 442       return as_register_lo();
 443     }
 444 #endif
 445     return as_register();
 446   }
 447 
 448 #ifdef X86
 449   XMMRegister as_xmm_float_reg() const;
 450   XMMRegister as_xmm_double_reg() const;
 451   // for compatibility with RInfo
 452   int fpu () const                                  { return lo_reg_half(); }
 453 #endif // X86
 454 #if defined(SPARC) || defined(ARM) || defined(PPC)
 455   FloatRegister as_float_reg   () const;
 456   FloatRegister as_double_reg  () const;
 457 #endif
 458 
 459   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 460   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 461   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 462   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 463   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 464 
 465   void print() const PRODUCT_RETURN;
 466   void print(outputStream* out) const PRODUCT_RETURN;
 467 };
 468 
 469 
 470 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 471   switch (type) {
 472   case T_INT:      return LIR_OprDesc::int_type;
 473   case T_LONG:     return LIR_OprDesc::long_type;
 474   case T_FLOAT:    return LIR_OprDesc::float_type;
 475   case T_DOUBLE:   return LIR_OprDesc::double_type;
 476   case T_OBJECT:
 477   case T_ARRAY:    return LIR_OprDesc::object_type;
 478   case T_ADDRESS:  return LIR_OprDesc::address_type;
 479   case T_METADATA: return LIR_OprDesc::metadata_type;
 480   case T_ILLEGAL:  // fall through
 481   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 482   }
 483 }
 484 
 485 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 486   switch (t) {
 487   case LIR_OprDesc::int_type:     return T_INT;
 488   case LIR_OprDesc::long_type:    return T_LONG;
 489   case LIR_OprDesc::float_type:   return T_FLOAT;
 490   case LIR_OprDesc::double_type:  return T_DOUBLE;
 491   case LIR_OprDesc::object_type:  return T_OBJECT;
 492   case LIR_OprDesc::address_type: return T_ADDRESS;
 493   case LIR_OprDesc::metadata_type:return T_METADATA;
 494   case LIR_OprDesc::unknown_type: // fall through
 495   default: ShouldNotReachHere();  return T_ILLEGAL;
 496   }
 497 }
 498 
 499 
 500 // LIR_Address
 501 class LIR_Address: public LIR_OprPtr {
 502  friend class LIR_OpVisitState;
 503 
 504  public:
 505   // NOTE: currently these must be the log2 of the scale factor (and
 506   // must also be equivalent to the ScaleFactor enum in
 507   // assembler_i486.hpp)
 508   enum Scale {
 509     times_1  =  0,
 510     times_2  =  1,
 511     times_4  =  2,
 512     times_8  =  3
 513   };
 514 
 515  private:
 516   LIR_Opr   _base;
 517   LIR_Opr   _index;
 518   Scale     _scale;
 519   intx      _disp;
 520   BasicType _type;
 521 
 522  public:
 523   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 524        _base(base)
 525      , _index(index)
 526      , _scale(times_1)
 527      , _type(type)
 528      , _disp(0) { verify(); }
 529 
 530   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 531        _base(base)
 532      , _index(LIR_OprDesc::illegalOpr())
 533      , _scale(times_1)
 534      , _type(type)
 535      , _disp(disp) { verify(); }
 536 
 537   LIR_Address(LIR_Opr base, BasicType type):
 538        _base(base)
 539      , _index(LIR_OprDesc::illegalOpr())
 540      , _scale(times_1)
 541      , _type(type)
 542      , _disp(0) { verify(); }
 543 
 544 #if defined(X86) || defined(ARM)
 545   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 546        _base(base)
 547      , _index(index)
 548      , _scale(scale)
 549      , _type(type)
 550      , _disp(disp) { verify(); }
 551 #endif // X86 || ARM
 552 
 553   LIR_Opr base()  const                          { return _base;  }
 554   LIR_Opr index() const                          { return _index; }
 555   Scale   scale() const                          { return _scale; }
 556   intx    disp()  const                          { return _disp;  }
 557 
 558   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 559 
 560   virtual LIR_Address* as_address()              { return this;   }
 561   virtual BasicType type() const                 { return _type; }
 562   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 563 
 564   void verify() const PRODUCT_RETURN;
 565 
 566   static Scale scale(BasicType type);
 567 };
 568 
 569 
 570 // operand factory
 571 class LIR_OprFact: public AllStatic {
 572  public:
 573 
 574   static LIR_Opr illegalOpr;
 575 
 576   static LIR_Opr single_cpu(int reg) {
 577     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 578                                LIR_OprDesc::int_type             |
 579                                LIR_OprDesc::cpu_register         |
 580                                LIR_OprDesc::single_size);
 581   }
 582   static LIR_Opr single_cpu_oop(int reg) {
 583     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 584                                LIR_OprDesc::object_type          |
 585                                LIR_OprDesc::cpu_register         |
 586                                LIR_OprDesc::single_size);
 587   }
 588   static LIR_Opr single_cpu_address(int reg) {
 589     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 590                                LIR_OprDesc::address_type         |
 591                                LIR_OprDesc::cpu_register         |
 592                                LIR_OprDesc::single_size);
 593   }
 594   static LIR_Opr single_cpu_metadata(int reg) {
 595     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 596                                LIR_OprDesc::metadata_type        |
 597                                LIR_OprDesc::cpu_register         |
 598                                LIR_OprDesc::single_size);
 599   }
 600   static LIR_Opr double_cpu(int reg1, int reg2) {
 601     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 602     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 603                                (reg2 << LIR_OprDesc::reg2_shift) |
 604                                LIR_OprDesc::long_type            |
 605                                LIR_OprDesc::cpu_register         |
 606                                LIR_OprDesc::double_size);
 607   }
 608 
 609   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 610                                                                              LIR_OprDesc::float_type           |
 611                                                                              LIR_OprDesc::fpu_register         |
 612                                                                              LIR_OprDesc::single_size); }
 613 #if defined(ARM)
 614   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
 615   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 616   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
 617 #endif
 618 #ifdef SPARC
 619   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 620                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 621                                                                              LIR_OprDesc::double_type          |
 622                                                                              LIR_OprDesc::fpu_register         |
 623                                                                              LIR_OprDesc::double_size); }
 624 #endif
 625 #ifdef X86
 626   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 627                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 628                                                                              LIR_OprDesc::double_type          |
 629                                                                              LIR_OprDesc::fpu_register         |
 630                                                                              LIR_OprDesc::double_size); }
 631 
 632   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 633                                                                              LIR_OprDesc::float_type           |
 634                                                                              LIR_OprDesc::fpu_register         |
 635                                                                              LIR_OprDesc::single_size          |
 636                                                                              LIR_OprDesc::is_xmm_mask); }
 637   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 638                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 639                                                                              LIR_OprDesc::double_type          |
 640                                                                              LIR_OprDesc::fpu_register         |
 641                                                                              LIR_OprDesc::double_size          |
 642                                                                              LIR_OprDesc::is_xmm_mask); }
 643 #endif // X86
 644 #ifdef PPC
 645   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 646                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 647                                                                              LIR_OprDesc::double_type          |
 648                                                                              LIR_OprDesc::fpu_register         |
 649                                                                              LIR_OprDesc::double_size); }
 650   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
 651                                                                              LIR_OprDesc::float_type           |
 652                                                                              LIR_OprDesc::cpu_register         |
 653                                                                              LIR_OprDesc::single_size); }
 654   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
 655                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
 656                                                                              LIR_OprDesc::double_type          |
 657                                                                              LIR_OprDesc::cpu_register         |
 658                                                                              LIR_OprDesc::double_size); }
 659 #endif // PPC
 660 
 661   static LIR_Opr virtual_register(int index, BasicType type) {
 662     LIR_Opr res;
 663     switch (type) {
 664       case T_OBJECT: // fall through
 665       case T_ARRAY:
 666         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 667                                             LIR_OprDesc::object_type  |
 668                                             LIR_OprDesc::cpu_register |
 669                                             LIR_OprDesc::single_size  |
 670                                             LIR_OprDesc::virtual_mask);
 671         break;
 672 
 673       case T_METADATA:
 674         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 675                                             LIR_OprDesc::metadata_type|
 676                                             LIR_OprDesc::cpu_register |
 677                                             LIR_OprDesc::single_size  |
 678                                             LIR_OprDesc::virtual_mask);
 679         break;
 680 
 681       case T_INT:
 682         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 683                                   LIR_OprDesc::int_type              |
 684                                   LIR_OprDesc::cpu_register          |
 685                                   LIR_OprDesc::single_size           |
 686                                   LIR_OprDesc::virtual_mask);
 687         break;
 688 
 689       case T_ADDRESS:
 690         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 691                                   LIR_OprDesc::address_type          |
 692                                   LIR_OprDesc::cpu_register          |
 693                                   LIR_OprDesc::single_size           |
 694                                   LIR_OprDesc::virtual_mask);
 695         break;
 696 
 697       case T_LONG:
 698         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 699                                   LIR_OprDesc::long_type             |
 700                                   LIR_OprDesc::cpu_register          |
 701                                   LIR_OprDesc::double_size           |
 702                                   LIR_OprDesc::virtual_mask);
 703         break;
 704 
 705 #ifdef __SOFTFP__
 706       case T_FLOAT:
 707         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 708                                   LIR_OprDesc::float_type  |
 709                                   LIR_OprDesc::cpu_register |
 710                                   LIR_OprDesc::single_size |
 711                                   LIR_OprDesc::virtual_mask);
 712         break;
 713       case T_DOUBLE:
 714         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 715                                   LIR_OprDesc::double_type |
 716                                   LIR_OprDesc::cpu_register |
 717                                   LIR_OprDesc::double_size |
 718                                   LIR_OprDesc::virtual_mask);
 719         break;
 720 #else // __SOFTFP__
 721       case T_FLOAT:
 722         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 723                                   LIR_OprDesc::float_type           |
 724                                   LIR_OprDesc::fpu_register         |
 725                                   LIR_OprDesc::single_size          |
 726                                   LIR_OprDesc::virtual_mask);
 727         break;
 728 
 729       case
 730         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 731                                             LIR_OprDesc::double_type           |
 732                                             LIR_OprDesc::fpu_register          |
 733                                             LIR_OprDesc::double_size           |
 734                                             LIR_OprDesc::virtual_mask);
 735         break;
 736 #endif // __SOFTFP__
 737       default:       ShouldNotReachHere(); res = illegalOpr;
 738     }
 739 
 740 #ifdef ASSERT
 741     res->validate_type();
 742     assert(res->vreg_number() == index, "conversion check");
 743     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 744     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 745 
 746     // old-style calculation; check if old and new method are equal
 747     LIR_OprDesc::OprType t = as_OprType(type);
 748 #ifdef __SOFTFP__
 749     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 750                                t |
 751                                LIR_OprDesc::cpu_register |
 752                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 753 #else // __SOFTFP__
 754     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 755                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 756                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 757     assert(res == old_res, "old and new method not equal");
 758 #endif // __SOFTFP__
 759 #endif // ASSERT
 760 
 761     return res;
 762   }
 763 
 764   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 765   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 766   // index 2.
 767   static LIR_Opr stack(int index, BasicType type) {
 768     LIR_Opr res;
 769     switch (type) {
 770       case T_OBJECT: // fall through
 771       case T_ARRAY:
 772         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 773                                   LIR_OprDesc::object_type           |
 774                                   LIR_OprDesc::stack_value           |
 775                                   LIR_OprDesc::single_size);
 776         break;
 777 
 778       case T_METADATA:
 779         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 780                                   LIR_OprDesc::metadata_type         |
 781                                   LIR_OprDesc::stack_value           |
 782                                   LIR_OprDesc::single_size);
 783         break;
 784       case T_INT:
 785         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 786                                   LIR_OprDesc::int_type              |
 787                                   LIR_OprDesc::stack_value           |
 788                                   LIR_OprDesc::single_size);
 789         break;
 790 
 791       case T_ADDRESS:
 792         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 793                                   LIR_OprDesc::address_type          |
 794                                   LIR_OprDesc::stack_value           |
 795                                   LIR_OprDesc::single_size);
 796         break;
 797 
 798       case T_LONG:
 799         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 800                                   LIR_OprDesc::long_type             |
 801                                   LIR_OprDesc::stack_value           |
 802                                   LIR_OprDesc::double_size);
 803         break;
 804 
 805       case T_FLOAT:
 806         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 807                                   LIR_OprDesc::float_type            |
 808                                   LIR_OprDesc::stack_value           |
 809                                   LIR_OprDesc::single_size);
 810         break;
 811       case T_DOUBLE:
 812         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 813                                   LIR_OprDesc::double_type           |
 814                                   LIR_OprDesc::stack_value           |
 815                                   LIR_OprDesc::double_size);
 816         break;
 817 
 818       default:       ShouldNotReachHere(); res = illegalOpr;
 819     }
 820 
 821 #ifdef ASSERT
 822     assert(index >= 0, "index must be positive");
 823     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 824 
 825     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 826                                           LIR_OprDesc::stack_value           |
 827                                           as_OprType(type)                   |
 828                                           LIR_OprDesc::size_for(type));
 829     assert(res == old_res, "old and new method not equal");
 830 #endif
 831 
 832     return res;
 833   }
 834 
 835   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 836   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 837   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 838   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 839   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 840   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 841   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 842   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 843   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 844   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 845   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 846 
 847   static LIR_Opr value_type(ValueType* type);
 848   static LIR_Opr dummy_value_type(ValueType* type);
 849 };
 850 
 851 
 852 //-------------------------------------------------------------------------------
 853 //                   LIR Instructions
 854 //-------------------------------------------------------------------------------
 855 //
 856 // Note:
 857 //  - every instruction has a result operand
 858 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 859 //  - every instruction has a LIR_OpCode operand
 860 //  - LIR_OpN, means an instruction that has N input operands
 861 //
 862 // class hierarchy:
 863 //
 864 class  LIR_Op;
 865 class    LIR_Op0;
 866 class      LIR_OpLabel;
 867 class    LIR_Op1;
 868 class      LIR_OpBranch;
 869 class      LIR_OpConvert;
 870 class      LIR_OpAllocObj;
 871 class      LIR_OpRoundFP;
 872 class    LIR_Op2;
 873 class    LIR_OpDelay;
 874 class    LIR_Op3;
 875 class      LIR_OpAllocArray;
 876 class    LIR_OpCall;
 877 class      LIR_OpJavaCall;
 878 class      LIR_OpRTCall;
 879 class    LIR_OpArrayCopy;
 880 class    LIR_OpUpdateCRC32;
 881 class    LIR_OpLock;
 882 class    LIR_OpTypeCheck;
 883 class    LIR_OpCompareAndSwap;
 884 class    LIR_OpProfileCall;
 885 #ifdef ASSERT
 886 class    LIR_OpAssert;
 887 #endif
 888 
 889 // LIR operation codes
 890 enum LIR_Code {
 891     lir_none
 892   , begin_op0
 893       , lir_word_align
 894       , lir_label
 895       , lir_nop
 896       , lir_backwardbranch_target
 897       , lir_std_entry
 898       , lir_osr_entry
 899       , lir_build_frame
 900       , lir_fpop_raw
 901       , lir_24bit_FPU
 902       , lir_reset_FPU
 903       , lir_breakpoint
 904       , lir_rtcall
 905       , lir_membar
 906       , lir_membar_acquire
 907       , lir_membar_release
 908       , lir_membar_loadload
 909       , lir_membar_storestore
 910       , lir_membar_loadstore
 911       , lir_membar_storeload
 912       , lir_get_thread
 913   , end_op0
 914   , begin_op1
 915       , lir_fxch
 916       , lir_fld
 917       , lir_ffree
 918       , lir_push
 919       , lir_pop
 920       , lir_null_check
 921       , lir_return
 922       , lir_leal
 923       , lir_neg
 924       , lir_branch
 925       , lir_cond_float_branch
 926       , lir_move
 927       , lir_prefetchr
 928       , lir_prefetchw
 929       , lir_convert
 930       , lir_alloc_object
 931       , lir_monaddr
 932       , lir_roundfp
 933       , lir_safepoint
 934       , lir_pack64
 935       , lir_unpack64
 936       , lir_unwind
 937   , end_op1
 938   , begin_op2
 939       , lir_cmp
 940       , lir_cmp_l2i
 941       , lir_ucmp_fd2i
 942       , lir_cmp_fd2i
 943       , lir_cmove
 944       , lir_add
 945       , lir_sub
 946       , lir_mul
 947       , lir_mul_strictfp
 948       , lir_div
 949       , lir_div_strictfp
 950       , lir_rem
 951       , lir_sqrt
 952       , lir_abs
 953       , lir_sin
 954       , lir_cos
 955       , lir_tan
 956       , lir_log
 957       , lir_log10
 958       , lir_exp
 959       , lir_pow
 960       , lir_logic_and
 961       , lir_logic_or
 962       , lir_logic_xor
 963       , lir_shl
 964       , lir_shr
 965       , lir_ushr
 966       , lir_alloc_array
 967       , lir_throw
 968       , lir_compare_to
 969       , lir_xadd
 970       , lir_xchg
 971   , end_op2
 972   , begin_op3
 973       , lir_idiv
 974       , lir_irem
 975   , end_op3
 976   , begin_opJavaCall
 977       , lir_static_call
 978       , lir_optvirtual_call
 979       , lir_icvirtual_call
 980       , lir_virtual_call
 981       , lir_dynamic_call
 982   , end_opJavaCall
 983   , begin_opArrayCopy
 984       , lir_arraycopy
 985   , end_opArrayCopy
 986   , begin_opUpdateCRC32
 987       , lir_updatecrc32
 988   , end_opUpdateCRC32
 989   , begin_opLock
 990     , lir_lock
 991     , lir_unlock
 992   , end_opLock
 993   , begin_delay_slot
 994     , lir_delay_slot
 995   , end_delay_slot
 996   , begin_opTypeCheck
 997     , lir_instanceof
 998     , lir_checkcast
 999     , lir_store_check
1000   , end_opTypeCheck
1001   , begin_opCompareAndSwap
1002     , lir_cas_long
1003     , lir_cas_obj
1004     , lir_cas_int
1005   , end_opCompareAndSwap
1006   , begin_opMDOProfile
1007     , lir_profile_call
1008   , end_opMDOProfile
1009   , begin_opAssert
1010     , lir_assert
1011   , end_opAssert
1012 };
1013 
1014 
1015 enum LIR_Condition {
1016     lir_cond_equal
1017   , lir_cond_notEqual
1018   , lir_cond_less
1019   , lir_cond_lessEqual
1020   , lir_cond_greaterEqual
1021   , lir_cond_greater
1022   , lir_cond_belowEqual
1023   , lir_cond_aboveEqual
1024   , lir_cond_always
1025   , lir_cond_unknown = -1
1026 };
1027 
1028 
1029 enum LIR_PatchCode {
1030   lir_patch_none,
1031   lir_patch_low,
1032   lir_patch_high,
1033   lir_patch_normal
1034 };
1035 
1036 
1037 enum LIR_MoveKind {
1038   lir_move_normal,
1039   lir_move_volatile,
1040   lir_move_unaligned,
1041   lir_move_wide,
1042   lir_move_max_flag
1043 };
1044 
1045 
1046 // --------------------------------------------------
1047 // LIR_Op
1048 // --------------------------------------------------
1049 class LIR_Op: public CompilationResourceObj {
1050  friend class LIR_OpVisitState;
1051 
1052 #ifdef ASSERT
1053  private:
1054   const char *  _file;
1055   int           _line;
1056 #endif
1057 
1058  protected:
1059   LIR_Opr       _result;
1060   unsigned short _code;
1061   unsigned short _flags;
1062   CodeEmitInfo* _info;
1063   int           _id;     // value id for register allocation
1064   int           _fpu_pop_count;
1065   Instruction*  _source; // for debugging
1066 
1067   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1068 
1069  protected:
1070   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1071 
1072  public:
1073   LIR_Op()
1074     : _result(LIR_OprFact::illegalOpr)
1075     , _code(lir_none)
1076     , _flags(0)
1077     , _info(NULL)
1078 #ifdef ASSERT
1079     , _file(NULL)
1080     , _line(0)
1081 #endif
1082     , _fpu_pop_count(0)
1083     , _source(NULL)
1084     , _id(-1)                             {}
1085 
1086   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1087     : _result(result)
1088     , _code(code)
1089     , _flags(0)
1090     , _info(info)
1091 #ifdef ASSERT
1092     , _file(NULL)
1093     , _line(0)
1094 #endif
1095     , _fpu_pop_count(0)
1096     , _source(NULL)
1097     , _id(-1)                             {}
1098 
1099   CodeEmitInfo* info() const                  { return _info;   }
1100   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1101   LIR_Opr result_opr() const                  { return _result; }
1102   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1103 
1104 #ifdef ASSERT
1105   void set_file_and_line(const char * file, int line) {
1106     _file = file;
1107     _line = line;
1108   }
1109 #endif
1110 
1111   virtual const char * name() const PRODUCT_RETURN0;
1112 
1113   int id()             const                  { return _id;     }
1114   void set_id(int id)                         { _id = id; }
1115 
1116   // FPU stack simulation helpers -- only used on Intel
1117   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1118   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1119   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1120 
1121   Instruction* source() const                 { return _source; }
1122   void set_source(Instruction* ins)           { _source = ins; }
1123 
1124   virtual void emit_code(LIR_Assembler* masm) = 0;
1125   virtual void print_instr(outputStream* out) const   = 0;
1126   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1127 
1128   virtual LIR_OpCall* as_OpCall() { return NULL; }
1129   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1130   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1131   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1132   virtual LIR_OpLock* as_OpLock() { return NULL; }
1133   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1134   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1135   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1136   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1137   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1138   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1139   virtual LIR_Op0* as_Op0() { return NULL; }
1140   virtual LIR_Op1* as_Op1() { return NULL; }
1141   virtual LIR_Op2* as_Op2() { return NULL; }
1142   virtual LIR_Op3* as_Op3() { return NULL; }
1143   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1144   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1145   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1146   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1147   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1148 #ifdef ASSERT
1149   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1150 #endif
1151 
1152   virtual void verify() const {}
1153 };
1154 
1155 // for calls
1156 class LIR_OpCall: public LIR_Op {
1157  friend class LIR_OpVisitState;
1158 
1159  protected:
1160   address      _addr;
1161   LIR_OprList* _arguments;
1162  protected:
1163   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1164              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1165     : LIR_Op(code, result, info)
1166     , _arguments(arguments)
1167     , _addr(addr) {}
1168 
1169  public:
1170   address addr() const                           { return _addr; }
1171   const LIR_OprList* arguments() const           { return _arguments; }
1172   virtual LIR_OpCall* as_OpCall()                { return this; }
1173 };
1174 
1175 
1176 // --------------------------------------------------
1177 // LIR_OpJavaCall
1178 // --------------------------------------------------
1179 class LIR_OpJavaCall: public LIR_OpCall {
1180  friend class LIR_OpVisitState;
1181 
1182  private:
1183   ciMethod* _method;
1184   LIR_Opr   _receiver;
1185   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1186 
1187  public:
1188   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1189                  LIR_Opr receiver, LIR_Opr result,
1190                  address addr, LIR_OprList* arguments,
1191                  CodeEmitInfo* info)
1192   : LIR_OpCall(code, addr, result, arguments, info)
1193   , _receiver(receiver)
1194   , _method(method)
1195   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1196   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1197 
1198   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1199                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1200                  LIR_OprList* arguments, CodeEmitInfo* info)
1201   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1202   , _receiver(receiver)
1203   , _method(method)
1204   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1205   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1206 
1207   LIR_Opr receiver() const                       { return _receiver; }
1208   ciMethod* method() const                       { return _method;   }
1209 
1210   // JSR 292 support.
1211   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1212   bool is_method_handle_invoke() const {
1213     return
1214       method()->is_compiled_lambda_form()  // Java-generated adapter
1215       ||
1216       method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1217   }
1218 
1219   intptr_t vtable_offset() const {
1220     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1221     return (intptr_t) addr();
1222   }
1223 
1224   virtual void emit_code(LIR_Assembler* masm);
1225   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1226   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1227 };
1228 
1229 // --------------------------------------------------
1230 // LIR_OpLabel
1231 // --------------------------------------------------
1232 // Location where a branch can continue
1233 class LIR_OpLabel: public LIR_Op {
1234  friend class LIR_OpVisitState;
1235 
1236  private:
1237   Label* _label;
1238  public:
1239   LIR_OpLabel(Label* lbl)
1240    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1241    , _label(lbl)                                 {}
1242   Label* label() const                           { return _label; }
1243 
1244   virtual void emit_code(LIR_Assembler* masm);
1245   virtual LIR_OpLabel* as_OpLabel() { return this; }
1246   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1247 };
1248 
1249 // LIR_OpArrayCopy
1250 class LIR_OpArrayCopy: public LIR_Op {
1251  friend class LIR_OpVisitState;
1252 
1253  private:
1254   ArrayCopyStub*  _stub;
1255   LIR_Opr   _src;
1256   LIR_Opr   _src_pos;
1257   LIR_Opr   _dst;
1258   LIR_Opr   _dst_pos;
1259   LIR_Opr   _length;
1260   LIR_Opr   _tmp;
1261   ciArrayKlass* _expected_type;
1262   int       _flags;
1263 
1264 public:
1265   enum Flags {
1266     src_null_check         = 1 << 0,
1267     dst_null_check         = 1 << 1,
1268     src_pos_positive_check = 1 << 2,
1269     dst_pos_positive_check = 1 << 3,
1270     length_positive_check  = 1 << 4,
1271     src_range_check        = 1 << 5,
1272     dst_range_check        = 1 << 6,
1273     type_check             = 1 << 7,
1274     overlapping            = 1 << 8,
1275     unaligned              = 1 << 9,
1276     src_objarray           = 1 << 10,
1277     dst_objarray           = 1 << 11,
1278     all_flags              = (1 << 12) - 1
1279   };
1280 
1281   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1282                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1283 
1284   LIR_Opr src() const                            { return _src; }
1285   LIR_Opr src_pos() const                        { return _src_pos; }
1286   LIR_Opr dst() const                            { return _dst; }
1287   LIR_Opr dst_pos() const                        { return _dst_pos; }
1288   LIR_Opr length() const                         { return _length; }
1289   LIR_Opr tmp() const                            { return _tmp; }
1290   int flags() const                              { return _flags; }
1291   ciArrayKlass* expected_type() const            { return _expected_type; }
1292   ArrayCopyStub* stub() const                    { return _stub; }
1293 
1294   virtual void emit_code(LIR_Assembler* masm);
1295   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1296   void print_instr(outputStream* out) const PRODUCT_RETURN;
1297 };
1298 
1299 // LIR_OpUpdateCRC32
1300 class LIR_OpUpdateCRC32: public LIR_Op {
1301   friend class LIR_OpVisitState;
1302 
1303 private:
1304   LIR_Opr   _crc;
1305   LIR_Opr   _val;
1306 
1307 public:
1308 
1309   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1310 
1311   LIR_Opr crc() const                            { return _crc; }
1312   LIR_Opr val() const                            { return _val; }
1313 
1314   virtual void emit_code(LIR_Assembler* masm);
1315   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1316   void print_instr(outputStream* out) const PRODUCT_RETURN;
1317 };
1318 
1319 // --------------------------------------------------
1320 // LIR_Op0
1321 // --------------------------------------------------
1322 class LIR_Op0: public LIR_Op {
1323  friend class LIR_OpVisitState;
1324 
1325  public:
1326   LIR_Op0(LIR_Code code)
1327    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1328   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1329    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1330 
1331   virtual void emit_code(LIR_Assembler* masm);
1332   virtual LIR_Op0* as_Op0() { return this; }
1333   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1334 };
1335 
1336 
1337 // --------------------------------------------------
1338 // LIR_Op1
1339 // --------------------------------------------------
1340 
1341 class LIR_Op1: public LIR_Op {
1342  friend class LIR_OpVisitState;
1343 
1344  protected:
1345   LIR_Opr         _opr;   // input operand
1346   BasicType       _type;  // Operand types
1347   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1348 
1349   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1350 
1351   void set_kind(LIR_MoveKind kind) {
1352     assert(code() == lir_move, "must be");
1353     _flags = kind;
1354   }
1355 
1356  public:
1357   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1358     : LIR_Op(code, result, info)
1359     , _opr(opr)
1360     , _patch(patch)
1361     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1362 
1363   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1364     : LIR_Op(code, result, info)
1365     , _opr(opr)
1366     , _patch(patch)
1367     , _type(type)                      {
1368     assert(code == lir_move, "must be");
1369     set_kind(kind);
1370   }
1371 
1372   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1373     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1374     , _opr(opr)
1375     , _patch(lir_patch_none)
1376     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1377 
1378   LIR_Opr in_opr()           const               { return _opr;   }
1379   LIR_PatchCode patch_code() const               { return _patch; }
1380   BasicType type()           const               { return _type;  }
1381 
1382   LIR_MoveKind move_kind() const {
1383     assert(code() == lir_move, "must be");
1384     return (LIR_MoveKind)_flags;
1385   }
1386 
1387   virtual void emit_code(LIR_Assembler* masm);
1388   virtual LIR_Op1* as_Op1() { return this; }
1389   virtual const char * name() const PRODUCT_RETURN0;
1390 
1391   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1392 
1393   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1394   virtual void verify() const;
1395 };
1396 
1397 
1398 // for runtime calls
1399 class LIR_OpRTCall: public LIR_OpCall {
1400  friend class LIR_OpVisitState;
1401 
1402  private:
1403   LIR_Opr _tmp;
1404  public:
1405   LIR_OpRTCall(address addr, LIR_Opr tmp,
1406                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1407     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1408     , _tmp(tmp) {}
1409 
1410   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1411   virtual void emit_code(LIR_Assembler* masm);
1412   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1413 
1414   LIR_Opr tmp() const                            { return _tmp; }
1415 
1416   virtual void verify() const;
1417 };
1418 
1419 
1420 class LIR_OpBranch: public LIR_Op {
1421  friend class LIR_OpVisitState;
1422 
1423  private:
1424   LIR_Condition _cond;
1425   BasicType     _type;
1426   Label*        _label;
1427   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1428   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1429   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1430 
1431  public:
1432   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1433     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1434     , _cond(cond)
1435     , _type(type)
1436     , _label(lbl)
1437     , _block(NULL)
1438     , _ublock(NULL)
1439     , _stub(NULL) { }
1440 
1441   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1442   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1443 
1444   // for unordered comparisons
1445   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1446 
1447   LIR_Condition cond()        const              { return _cond;        }
1448   BasicType     type()        const              { return _type;        }
1449   Label*        label()       const              { return _label;       }
1450   BlockBegin*   block()       const              { return _block;       }
1451   BlockBegin*   ublock()      const              { return _ublock;      }
1452   CodeStub*     stub()        const              { return _stub;       }
1453 
1454   void          change_block(BlockBegin* b);
1455   void          change_ublock(BlockBegin* b);
1456   void          negate_cond();
1457 
1458   virtual void emit_code(LIR_Assembler* masm);
1459   virtual LIR_OpBranch* as_OpBranch() { return this; }
1460   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1461 };
1462 
1463 
1464 class ConversionStub;
1465 
1466 class LIR_OpConvert: public LIR_Op1 {
1467  friend class LIR_OpVisitState;
1468 
1469  private:
1470    Bytecodes::Code _bytecode;
1471    ConversionStub* _stub;
1472 #ifdef PPC
1473   LIR_Opr _tmp1;
1474   LIR_Opr _tmp2;
1475 #endif
1476 
1477  public:
1478    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1479      : LIR_Op1(lir_convert, opr, result)
1480      , _stub(stub)
1481 #ifdef PPC
1482      , _tmp1(LIR_OprDesc::illegalOpr())
1483      , _tmp2(LIR_OprDesc::illegalOpr())
1484 #endif
1485      , _bytecode(code)                           {}
1486 
1487 #ifdef PPC
1488    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1489                  ,LIR_Opr tmp1, LIR_Opr tmp2)
1490      : LIR_Op1(lir_convert, opr, result)
1491      , _stub(stub)
1492      , _tmp1(tmp1)
1493      , _tmp2(tmp2)
1494      , _bytecode(code)                           {}
1495 #endif
1496 
1497   Bytecodes::Code bytecode() const               { return _bytecode; }
1498   ConversionStub* stub() const                   { return _stub; }
1499 #ifdef PPC
1500   LIR_Opr tmp1() const                           { return _tmp1; }
1501   LIR_Opr tmp2() const                           { return _tmp2; }
1502 #endif
1503 
1504   virtual void emit_code(LIR_Assembler* masm);
1505   virtual LIR_OpConvert* as_OpConvert() { return this; }
1506   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1507 
1508   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1509 };
1510 
1511 
1512 // LIR_OpAllocObj
1513 class LIR_OpAllocObj : public LIR_Op1 {
1514  friend class LIR_OpVisitState;
1515 
1516  private:
1517   LIR_Opr _tmp1;
1518   LIR_Opr _tmp2;
1519   LIR_Opr _tmp3;
1520   LIR_Opr _tmp4;
1521   int     _hdr_size;
1522   int     _obj_size;
1523   CodeStub* _stub;
1524   bool    _init_check;
1525 
1526  public:
1527   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1528                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1529                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1530     : LIR_Op1(lir_alloc_object, klass, result)
1531     , _tmp1(t1)
1532     , _tmp2(t2)
1533     , _tmp3(t3)
1534     , _tmp4(t4)
1535     , _hdr_size(hdr_size)
1536     , _obj_size(obj_size)
1537     , _init_check(init_check)
1538     , _stub(stub)                                { }
1539 
1540   LIR_Opr klass()        const                   { return in_opr();     }
1541   LIR_Opr obj()          const                   { return result_opr(); }
1542   LIR_Opr tmp1()         const                   { return _tmp1;        }
1543   LIR_Opr tmp2()         const                   { return _tmp2;        }
1544   LIR_Opr tmp3()         const                   { return _tmp3;        }
1545   LIR_Opr tmp4()         const                   { return _tmp4;        }
1546   int     header_size()  const                   { return _hdr_size;    }
1547   int     object_size()  const                   { return _obj_size;    }
1548   bool    init_check()   const                   { return _init_check;  }
1549   CodeStub* stub()       const                   { return _stub;        }
1550 
1551   virtual void emit_code(LIR_Assembler* masm);
1552   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1553   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1554 };
1555 
1556 
1557 // LIR_OpRoundFP
1558 class LIR_OpRoundFP : public LIR_Op1 {
1559  friend class LIR_OpVisitState;
1560 
1561  private:
1562   LIR_Opr _tmp;
1563 
1564  public:
1565   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1566     : LIR_Op1(lir_roundfp, reg, result)
1567     , _tmp(stack_loc_temp) {}
1568 
1569   LIR_Opr tmp() const                            { return _tmp; }
1570   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1571   void print_instr(outputStream* out) const PRODUCT_RETURN;
1572 };
1573 
1574 // LIR_OpTypeCheck
1575 class LIR_OpTypeCheck: public LIR_Op {
1576  friend class LIR_OpVisitState;
1577 
1578  private:
1579   LIR_Opr       _object;
1580   LIR_Opr       _array;
1581   ciKlass*      _klass;
1582   LIR_Opr       _tmp1;
1583   LIR_Opr       _tmp2;
1584   LIR_Opr       _tmp3;
1585   bool          _fast_check;
1586   CodeEmitInfo* _info_for_patch;
1587   CodeEmitInfo* _info_for_exception;
1588   CodeStub*     _stub;
1589   ciMethod*     _profiled_method;
1590   int           _profiled_bci;
1591   bool          _should_profile;
1592 
1593 public:
1594   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1595                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1596                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1597   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1598                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1599 
1600   LIR_Opr object() const                         { return _object;         }
1601   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1602   LIR_Opr tmp1() const                           { return _tmp1;           }
1603   LIR_Opr tmp2() const                           { return _tmp2;           }
1604   LIR_Opr tmp3() const                           { return _tmp3;           }
1605   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1606   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1607   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1608   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1609   CodeStub* stub() const                         { return _stub;           }
1610 
1611   // MethodData* profiling
1612   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1613   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1614   void set_should_profile(bool b)                { _should_profile = b;       }
1615   ciMethod* profiled_method() const              { return _profiled_method;   }
1616   int       profiled_bci() const                 { return _profiled_bci;      }
1617   bool      should_profile() const               { return _should_profile;    }
1618 
1619   virtual void emit_code(LIR_Assembler* masm);
1620   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1621   void print_instr(outputStream* out) const PRODUCT_RETURN;
1622 };
1623 
1624 // LIR_Op2
1625 class LIR_Op2: public LIR_Op {
1626  friend class LIR_OpVisitState;
1627 
1628   int  _fpu_stack_size; // for sin/cos implementation on Intel
1629 
1630  protected:
1631   LIR_Opr   _opr1;
1632   LIR_Opr   _opr2;
1633   BasicType _type;
1634   LIR_Opr   _tmp1;
1635   LIR_Opr   _tmp2;
1636   LIR_Opr   _tmp3;
1637   LIR_Opr   _tmp4;
1638   LIR_Opr   _tmp5;
1639   LIR_Condition _condition;
1640 
1641   void verify() const;
1642 
1643  public:
1644   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1645     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1646     , _opr1(opr1)
1647     , _opr2(opr2)
1648     , _type(T_ILLEGAL)
1649     , _condition(condition)
1650     , _fpu_stack_size(0)
1651     , _tmp1(LIR_OprFact::illegalOpr)
1652     , _tmp2(LIR_OprFact::illegalOpr)
1653     , _tmp3(LIR_OprFact::illegalOpr)
1654     , _tmp4(LIR_OprFact::illegalOpr)
1655     , _tmp5(LIR_OprFact::illegalOpr) {
1656     assert(code == lir_cmp || code == lir_assert, "code check");
1657   }
1658 
1659   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1660     : LIR_Op(code, result, NULL)
1661     , _opr1(opr1)
1662     , _opr2(opr2)
1663     , _type(type)
1664     , _condition(condition)
1665     , _fpu_stack_size(0)
1666     , _tmp1(LIR_OprFact::illegalOpr)
1667     , _tmp2(LIR_OprFact::illegalOpr)
1668     , _tmp3(LIR_OprFact::illegalOpr)
1669     , _tmp4(LIR_OprFact::illegalOpr)
1670     , _tmp5(LIR_OprFact::illegalOpr) {
1671     assert(code == lir_cmove, "code check");
1672     assert(type != T_ILLEGAL, "cmove should have type");
1673   }
1674 
1675   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1676           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1677     : LIR_Op(code, result, info)
1678     , _opr1(opr1)
1679     , _opr2(opr2)
1680     , _type(type)
1681     , _condition(lir_cond_unknown)
1682     , _fpu_stack_size(0)
1683     , _tmp1(LIR_OprFact::illegalOpr)
1684     , _tmp2(LIR_OprFact::illegalOpr)
1685     , _tmp3(LIR_OprFact::illegalOpr)
1686     , _tmp4(LIR_OprFact::illegalOpr)
1687     , _tmp5(LIR_OprFact::illegalOpr) {
1688     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1689   }
1690 
1691   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1692           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1693     : LIR_Op(code, result, NULL)
1694     , _opr1(opr1)
1695     , _opr2(opr2)
1696     , _type(T_ILLEGAL)
1697     , _condition(lir_cond_unknown)
1698     , _fpu_stack_size(0)
1699     , _tmp1(tmp1)
1700     , _tmp2(tmp2)
1701     , _tmp3(tmp3)
1702     , _tmp4(tmp4)
1703     , _tmp5(tmp5) {
1704     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1705   }
1706 
1707   LIR_Opr in_opr1() const                        { return _opr1; }
1708   LIR_Opr in_opr2() const                        { return _opr2; }
1709   BasicType type()  const                        { return _type; }
1710   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1711   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1712   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1713   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1714   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1715   LIR_Condition condition() const  {
1716     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1717   }
1718   void set_condition(LIR_Condition condition) {
1719     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1720   }
1721 
1722   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1723   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1724 
1725   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1726   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1727 
1728   virtual void emit_code(LIR_Assembler* masm);
1729   virtual LIR_Op2* as_Op2() { return this; }
1730   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1731 };
1732 
1733 class LIR_OpAllocArray : public LIR_Op {
1734  friend class LIR_OpVisitState;
1735 
1736  private:
1737   LIR_Opr   _klass;
1738   LIR_Opr   _len;
1739   LIR_Opr   _tmp1;
1740   LIR_Opr   _tmp2;
1741   LIR_Opr   _tmp3;
1742   LIR_Opr   _tmp4;
1743   BasicType _type;
1744   CodeStub* _stub;
1745 
1746  public:
1747   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1748     : LIR_Op(lir_alloc_array, result, NULL)
1749     , _klass(klass)
1750     , _len(len)
1751     , _tmp1(t1)
1752     , _tmp2(t2)
1753     , _tmp3(t3)
1754     , _tmp4(t4)
1755     , _type(type)
1756     , _stub(stub) {}
1757 
1758   LIR_Opr   klass()   const                      { return _klass;       }
1759   LIR_Opr   len()     const                      { return _len;         }
1760   LIR_Opr   obj()     const                      { return result_opr(); }
1761   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1762   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1763   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1764   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1765   BasicType type()    const                      { return _type;        }
1766   CodeStub* stub()    const                      { return _stub;        }
1767 
1768   virtual void emit_code(LIR_Assembler* masm);
1769   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1770   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1771 };
1772 
1773 
1774 class LIR_Op3: public LIR_Op {
1775  friend class LIR_OpVisitState;
1776 
1777  private:
1778   LIR_Opr _opr1;
1779   LIR_Opr _opr2;
1780   LIR_Opr _opr3;
1781  public:
1782   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1783     : LIR_Op(code, result, info)
1784     , _opr1(opr1)
1785     , _opr2(opr2)
1786     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1787   LIR_Opr in_opr1() const                        { return _opr1; }
1788   LIR_Opr in_opr2() const                        { return _opr2; }
1789   LIR_Opr in_opr3() const                        { return _opr3; }
1790 
1791   virtual void emit_code(LIR_Assembler* masm);
1792   virtual LIR_Op3* as_Op3() { return this; }
1793   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1794 };
1795 
1796 
1797 //--------------------------------
1798 class LabelObj: public CompilationResourceObj {
1799  private:
1800   Label _label;
1801  public:
1802   LabelObj()                                     {}
1803   Label* label()                                 { return &_label; }
1804 };
1805 
1806 
1807 class LIR_OpLock: public LIR_Op {
1808  friend class LIR_OpVisitState;
1809 
1810  private:
1811   LIR_Opr _hdr;
1812   LIR_Opr _obj;
1813   LIR_Opr _lock;
1814   LIR_Opr _scratch;
1815   CodeStub* _stub;
1816  public:
1817   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1818     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1819     , _hdr(hdr)
1820     , _obj(obj)
1821     , _lock(lock)
1822     , _scratch(scratch)
1823     , _stub(stub)                      {}
1824 
1825   LIR_Opr hdr_opr() const                        { return _hdr; }
1826   LIR_Opr obj_opr() const                        { return _obj; }
1827   LIR_Opr lock_opr() const                       { return _lock; }
1828   LIR_Opr scratch_opr() const                    { return _scratch; }
1829   CodeStub* stub() const                         { return _stub; }
1830 
1831   virtual void emit_code(LIR_Assembler* masm);
1832   virtual LIR_OpLock* as_OpLock() { return this; }
1833   void print_instr(outputStream* out) const PRODUCT_RETURN;
1834 };
1835 
1836 
1837 class LIR_OpDelay: public LIR_Op {
1838  friend class LIR_OpVisitState;
1839 
1840  private:
1841   LIR_Op* _op;
1842 
1843  public:
1844   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1845     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1846     _op(op) {
1847     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1848   }
1849   virtual void emit_code(LIR_Assembler* masm);
1850   virtual LIR_OpDelay* as_OpDelay() { return this; }
1851   void print_instr(outputStream* out) const PRODUCT_RETURN;
1852   LIR_Op* delay_op() const { return _op; }
1853   CodeEmitInfo* call_info() const { return info(); }
1854 };
1855 
1856 #ifdef ASSERT
1857 // LIR_OpAssert
1858 class LIR_OpAssert : public LIR_Op2 {
1859  friend class LIR_OpVisitState;
1860 
1861  private:
1862   const char* _msg;
1863   bool        _halt;
1864 
1865  public:
1866   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1867     : LIR_Op2(lir_assert, condition, opr1, opr2)
1868     , _halt(halt)
1869     , _msg(msg) {
1870   }
1871 
1872   const char* msg() const                        { return _msg; }
1873   bool        halt() const                       { return _halt; }
1874 
1875   virtual void emit_code(LIR_Assembler* masm);
1876   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1877   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1878 };
1879 #endif
1880 
1881 // LIR_OpCompareAndSwap
1882 class LIR_OpCompareAndSwap : public LIR_Op {
1883  friend class LIR_OpVisitState;
1884 
1885  private:
1886   LIR_Opr _addr;
1887   LIR_Opr _cmp_value;
1888   LIR_Opr _new_value;
1889   LIR_Opr _tmp1;
1890   LIR_Opr _tmp2;
1891 
1892  public:
1893   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1894                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1895     : LIR_Op(code, result, NULL)  // no result, no info
1896     , _addr(addr)
1897     , _cmp_value(cmp_value)
1898     , _new_value(new_value)
1899     , _tmp1(t1)
1900     , _tmp2(t2)                                  { }
1901 
1902   LIR_Opr addr()        const                    { return _addr;  }
1903   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1904   LIR_Opr new_value()   const                    { return _new_value; }
1905   LIR_Opr tmp1()        const                    { return _tmp1;      }
1906   LIR_Opr tmp2()        const                    { return _tmp2;      }
1907 
1908   virtual void emit_code(LIR_Assembler* masm);
1909   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1910   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1911 };
1912 
1913 // LIR_OpProfileCall
1914 class LIR_OpProfileCall : public LIR_Op {
1915  friend class LIR_OpVisitState;
1916 
1917  private:
1918   ciMethod* _profiled_method;
1919   int       _profiled_bci;
1920   ciMethod* _profiled_callee;
1921   LIR_Opr   _mdo;
1922   LIR_Opr   _recv;
1923   LIR_Opr   _tmp1;
1924   ciKlass*  _known_holder;
1925 
1926  public:
1927   // Destroys recv
1928   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1929     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1930     , _profiled_method(profiled_method)
1931     , _profiled_bci(profiled_bci)
1932     , _profiled_callee(profiled_callee)
1933     , _mdo(mdo)
1934     , _recv(recv)
1935     , _tmp1(t1)
1936     , _known_holder(known_holder)                { }
1937 
1938   ciMethod* profiled_method() const              { return _profiled_method;  }
1939   int       profiled_bci()    const              { return _profiled_bci;     }
1940   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1941   LIR_Opr   mdo()             const              { return _mdo;              }
1942   LIR_Opr   recv()            const              { return _recv;             }
1943   LIR_Opr   tmp1()            const              { return _tmp1;             }
1944   ciKlass*  known_holder()    const              { return _known_holder;     }
1945 
1946   virtual void emit_code(LIR_Assembler* masm);
1947   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1948   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1949 };
1950 
1951 class LIR_InsertionBuffer;
1952 
1953 //--------------------------------LIR_List---------------------------------------------------
1954 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1955 // The LIR instructions are appended by the LIR_List class itself;
1956 //
1957 // Notes:
1958 // - all offsets are(should be) in bytes
1959 // - local positions are specified with an offset, with offset 0 being local 0
1960 
1961 class LIR_List: public CompilationResourceObj {
1962  private:
1963   LIR_OpList  _operations;
1964 
1965   Compilation*  _compilation;
1966 #ifndef PRODUCT
1967   BlockBegin*   _block;
1968 #endif
1969 #ifdef ASSERT
1970   const char *  _file;
1971   int           _line;
1972 #endif
1973 
1974   void append(LIR_Op* op) {
1975     if (op->source() == NULL)
1976       op->set_source(_compilation->current_instruction());
1977 #ifndef PRODUCT
1978     if (PrintIRWithLIR) {
1979       _compilation->maybe_print_current_instruction();
1980       op->print(); tty->cr();
1981     }
1982 #endif // PRODUCT
1983 
1984     _operations.append(op);
1985 
1986 #ifdef ASSERT
1987     op->verify();
1988     op->set_file_and_line(_file, _line);
1989     _file = NULL;
1990     _line = 0;
1991 #endif
1992   }
1993 
1994  public:
1995   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
1996 
1997 #ifdef ASSERT
1998   void set_file_and_line(const char * file, int line);
1999 #endif
2000 
2001   //---------- accessors ---------------
2002   LIR_OpList* instructions_list()                { return &_operations; }
2003   int         length() const                     { return _operations.length(); }
2004   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2005 
2006   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2007 
2008   // insert LIR_Ops in buffer to right places in LIR_List
2009   void append(LIR_InsertionBuffer* buffer);
2010 
2011   //---------- mutators ---------------
2012   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2013   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2014   void remove_at(int i)                          { _operations.remove_at(i); }
2015 
2016   //---------- printing -------------
2017   void print_instructions() PRODUCT_RETURN;
2018 
2019 
2020   //---------- instructions -------------
2021   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2022                         address dest, LIR_OprList* arguments,
2023                         CodeEmitInfo* info) {
2024     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2025   }
2026   void call_static(ciMethod* method, LIR_Opr result,
2027                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2028     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2029   }
2030   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2031                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2032     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2033   }
2034   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2035                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2036     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2037   }
2038   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2039                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2040     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2041   }
2042 
2043   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2044   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2045   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2046   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2047   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2048   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2049   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2050   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2051   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2052 
2053   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2054   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2055 
2056   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2057   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2058 
2059   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2060 
2061   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2062   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
2063 
2064   // result is a stack location for old backend and vreg for UseLinearScan
2065   // stack_loc_temp is an illegal register for old backend
2066   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2067   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2068   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2069   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2070   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2071   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2072   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2073   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2074     if (UseCompressedOops) {
2075       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2076     } else {
2077       move(src, dst, info);
2078     }
2079   }
2080   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2081     if (UseCompressedOops) {
2082       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2083     } else {
2084       move(src, dst, info);
2085     }
2086   }
2087   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2088 
2089   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2090   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2091 
2092   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2093   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2094 
2095   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2096 
2097   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2098 
2099 #ifdef PPC
2100   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
2101 #endif
2102   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2103 
2104   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2105   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2106   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2107 
2108   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2109   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2110 
2111   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
2112   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2113     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2114   }
2115   void unwind_exception(LIR_Opr exceptionOop) {
2116     append(new LIR_Op1(lir_unwind, exceptionOop));
2117   }
2118 
2119   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2120     append(new LIR_Op2(lir_compare_to,  left, right, dst));
2121   }
2122 
2123   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2124   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2125 
2126   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2127     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2128   }
2129   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2130     cmp(condition, left, LIR_OprFact::intConst(right), info);
2131   }
2132 
2133   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2134   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2135 
2136   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2137     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2138   }
2139 
2140   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2141                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2142   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2143                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2144   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2145                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2146 
2147   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2148   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2149   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
2150   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2151   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
2152   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
2153   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2154   void exp (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5)                { append(new LIR_Op2(lir_exp , from, tmp1, to, tmp2, tmp3, tmp4, tmp5)); }
2155   void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
2156 
2157   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2158   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2159   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2160   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2161   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2162   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2163   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2164 
2165   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2166   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2167 
2168   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2169 
2170   void prefetch(LIR_Address* addr, bool is_store);
2171 
2172   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2173   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2174   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2175   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2176   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2177 
2178   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2179   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2180   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2181   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2182 
2183   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2184   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2185 
2186   // jump is an unconditional branch
2187   void jump(BlockBegin* block) {
2188     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2189   }
2190   void jump(CodeStub* stub) {
2191     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2192   }
2193   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2194   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2195     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2196     append(new LIR_OpBranch(cond, type, block));
2197   }
2198   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2199     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2200     append(new LIR_OpBranch(cond, type, stub));
2201   }
2202   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2203     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2204     append(new LIR_OpBranch(cond, type, block, unordered));
2205   }
2206 
2207   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2208   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2209   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2210 
2211   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2212   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2213   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2214 
2215   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2216   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2217 
2218   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2219     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2220   }
2221 
2222   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2223                     LIR_OprList* arguments, CodeEmitInfo* info) {
2224     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2225   }
2226 
2227   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2228   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2229   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2230 
2231   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2232   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2233   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2234 
2235   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2236 
2237   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2238 
2239   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2240 
2241   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2242   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2243 
2244   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2245                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2246                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2247                   ciMethod* profiled_method, int profiled_bci);
2248   // MethodData* profiling
2249   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2250     append(new LIR_OpProfileCall(lir_profile_call, method, bci, callee, mdo, recv, t1, cha_klass));
2251   }
2252 
2253   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2254   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2255 #ifdef ASSERT
2256   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2257 #endif
2258 };
2259 
2260 void print_LIR(BlockList* blocks);
2261 
2262 class LIR_InsertionBuffer : public CompilationResourceObj {
2263  private:
2264   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2265 
2266   // list of insertion points. index and count are stored alternately:
2267   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2268   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2269   intStack    _index_and_count;
2270 
2271   // the LIR_Ops to be inserted
2272   LIR_OpList  _ops;
2273 
2274   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2275   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2276   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2277 
2278 #ifdef ASSERT
2279   void verify();
2280 #endif
2281  public:
2282   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2283 
2284   // must be called before using the insertion buffer
2285   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2286   bool initialized() const  { return _lir != NULL; }
2287   // called automatically when the buffer is appended to the LIR_List
2288   void finish()             { _lir = NULL; }
2289 
2290   // accessors
2291   LIR_List*  lir_list() const             { return _lir; }
2292   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2293   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2294   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2295 
2296   int number_of_ops() const               { return _ops.length(); }
2297   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2298 
2299   // append an instruction to the buffer
2300   void append(int index, LIR_Op* op);
2301 
2302   // instruction
2303   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2304 };
2305 
2306 
2307 //
2308 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2309 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2310 // information about the input, output and temporaries used by the
2311 // op to be recorded.  It also records whether the op has call semantics
2312 // and also records all the CodeEmitInfos used by this op.
2313 //
2314 
2315 
2316 class LIR_OpVisitState: public StackObj {
2317  public:
2318   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2319 
2320   enum {
2321     maxNumberOfOperands = 20,
2322     maxNumberOfInfos = 4
2323   };
2324 
2325  private:
2326   LIR_Op*          _op;
2327 
2328   // optimization: the operands and infos are not stored in a variable-length
2329   //               list, but in a fixed-size array to save time of size checks and resizing
2330   int              _oprs_len[numModes];
2331   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2332   int _info_len;
2333   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2334 
2335   bool             _has_call;
2336   bool             _has_slow_case;
2337 
2338 
2339   // only include register operands
2340   // addresses are decomposed to the base and index registers
2341   // constants and stack operands are ignored
2342   void append(LIR_Opr& opr, OprMode mode) {
2343     assert(opr->is_valid(), "should not call this otherwise");
2344     assert(mode >= 0 && mode < numModes, "bad mode");
2345 
2346     if (opr->is_register()) {
2347        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2348       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2349 
2350     } else if (opr->is_pointer()) {
2351       LIR_Address* address = opr->as_address_ptr();
2352       if (address != NULL) {
2353         // special handling for addresses: add base and index register of the address
2354         // both are always input operands or temp if we want to extend
2355         // their liveness!
2356         if (mode == outputMode) {
2357           mode = inputMode;
2358         }
2359         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2360         if (address->_base->is_valid()) {
2361           assert(address->_base->is_register(), "must be");
2362           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2363           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2364         }
2365         if (address->_index->is_valid()) {
2366           assert(address->_index->is_register(), "must be");
2367           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2368           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2369         }
2370 
2371       } else {
2372         assert(opr->is_constant(), "constant operands are not processed");
2373       }
2374     } else {
2375       assert(opr->is_stack(), "stack operands are not processed");
2376     }
2377   }
2378 
2379   void append(CodeEmitInfo* info) {
2380     assert(info != NULL, "should not call this otherwise");
2381     assert(_info_len < maxNumberOfInfos, "array overflow");
2382     _info_new[_info_len++] = info;
2383   }
2384 
2385  public:
2386   LIR_OpVisitState()         { reset(); }
2387 
2388   LIR_Op* op() const         { return _op; }
2389   void set_op(LIR_Op* op)    { reset(); _op = op; }
2390 
2391   bool has_call() const      { return _has_call; }
2392   bool has_slow_case() const { return _has_slow_case; }
2393 
2394   void reset() {
2395     _op = NULL;
2396     _has_call = false;
2397     _has_slow_case = false;
2398 
2399     _oprs_len[inputMode] = 0;
2400     _oprs_len[tempMode] = 0;
2401     _oprs_len[outputMode] = 0;
2402     _info_len = 0;
2403   }
2404 
2405 
2406   int opr_count(OprMode mode) const {
2407     assert(mode >= 0 && mode < numModes, "bad mode");
2408     return _oprs_len[mode];
2409   }
2410 
2411   LIR_Opr opr_at(OprMode mode, int index) const {
2412     assert(mode >= 0 && mode < numModes, "bad mode");
2413     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2414     return *_oprs_new[mode][index];
2415   }
2416 
2417   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2418     assert(mode >= 0 && mode < numModes, "bad mode");
2419     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2420     *_oprs_new[mode][index] = opr;
2421   }
2422 
2423   int info_count() const {
2424     return _info_len;
2425   }
2426 
2427   CodeEmitInfo* info_at(int index) const {
2428     assert(index < _info_len, "index out of bounds");
2429     return _info_new[index];
2430   }
2431 
2432   XHandlers* all_xhandler();
2433 
2434   // collects all register operands of the instruction
2435   void visit(LIR_Op* op);
2436 
2437 #ifdef ASSERT
2438   // check that an operation has no operands
2439   bool no_operands(LIR_Op* op);
2440 #endif
2441 
2442   // LIR_Op visitor functions use these to fill in the state
2443   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2444   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2445   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2446   void do_info(CodeEmitInfo* info)        { append(info); }
2447 
2448   void do_stub(CodeStub* stub);
2449   void do_call()                          { _has_call = true; }
2450   void do_slow_case()                     { _has_slow_case = true; }
2451   void do_slow_case(CodeEmitInfo* info) {
2452     _has_slow_case = true;
2453     append(info);
2454   }
2455 };
2456 
2457 
2458 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2459 
2460 #endif // SHARE_VM_C1_C1_LIR_HPP