1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLGENERATOR_HPP
  26 #define SHARE_VM_OPTO_CALLGENERATOR_HPP
  27 
  28 #include "compiler/compileBroker.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 #include "runtime/deoptimization.hpp"
  33 
  34 class Parse;
  35 
  36 //---------------------------CallGenerator-------------------------------------
  37 // The subclasses of this class handle generation of ideal nodes for
  38 // call sites and method entry points.
  39 
  40 class CallGenerator : public ResourceObj {
  41  public:
  42   enum {
  43     xxxunusedxxx
  44   };
  45 
  46  private:
  47   ciMethod*             _method;                // The method being called.
  48 
  49  protected:
  50   CallGenerator(ciMethod* method) : _method(method) {}
  51 
  52  public:
  53   // Accessors
  54   ciMethod*         method() const              { return _method; }
  55 
  56   // is_inline: At least some code implementing the method is copied here.
  57   virtual bool      is_inline() const           { return false; }
  58   // is_intrinsic: There's a method-specific way of generating the inline code.
  59   virtual bool      is_intrinsic() const        { return false; }
  60   // is_parse: Bytecodes implementing the specific method are copied here.
  61   virtual bool      is_parse() const            { return false; }
  62   // is_virtual: The call uses the receiver type to select or check the method.
  63   virtual bool      is_virtual() const          { return false; }
  64   // is_deferred: The decision whether to inline or not is deferred.
  65   virtual bool      is_deferred() const         { return false; }
  66   // is_predicted: Uses an explicit check against a predicted type.
  67   virtual bool      is_predicted() const        { return false; }
  68   // is_trap: Does not return to the caller.  (E.g., uncommon trap.)
  69   virtual bool      is_trap() const             { return false; }
  70   // does_virtual_dispatch: Should try inlining as normal method first.
  71   virtual bool      does_virtual_dispatch() const     { return false; }
  72 
  73   // is_late_inline: supports conversion of call into an inline
  74   virtual bool      is_late_inline() const      { return false; }
  75   // same but for method handle calls
  76   virtual bool      is_mh_late_inline() const   { return false; }
  77 
  78   // for method handle calls: have we tried inlinining the call already?
  79   virtual bool      already_attempted() const   { ShouldNotReachHere(); return false; }
  80 
  81   // Replace the call with an inline version of the code
  82   virtual void do_late_inline() { ShouldNotReachHere(); }
  83 
  84   virtual CallStaticJavaNode* call_node() const { ShouldNotReachHere(); return NULL; }
  85 
  86   // Note:  It is possible for a CG to be both inline and virtual.
  87   // (The hashCode intrinsic does a vtable check and an inlined fast path.)
  88 
  89   // Utilities:
  90   const TypeFunc*   tf() const;
  91 
  92   // The given jvms has state and arguments for a call to my method.
  93   // Edges after jvms->argoff() carry all (pre-popped) argument values.
  94   //
  95   // Update the map with state and return values (if any) and return it.
  96   // The return values (0, 1, or 2) must be pushed on the map's stack,
  97   // and the sp of the jvms incremented accordingly.
  98   //
  99   // The jvms is returned on success.  Alternatively, a copy of the
 100   // given jvms, suitably updated, may be returned, in which case the
 101   // caller should discard the original jvms.
 102   //
 103   // The non-Parm edges of the returned map will contain updated global state,
 104   // and one or two edges before jvms->sp() will carry any return values.
 105   // Other map edges may contain locals or monitors, and should not
 106   // be changed in meaning.
 107   //
 108   // If the call traps, the returned map must have a control edge of top.
 109   // If the call can throw, the returned map must report has_exceptions().
 110   //
 111   // If the result is NULL, it means that this CallGenerator was unable
 112   // to handle the given call, and another CallGenerator should be consulted.
 113   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser) = 0;
 114 
 115   // How to generate a call site that is inlined:
 116   static CallGenerator* for_inline(ciMethod* m, float expected_uses = -1);
 117   // How to generate code for an on-stack replacement handler.
 118   static CallGenerator* for_osr(ciMethod* m, int osr_bci);
 119 
 120   // How to generate vanilla out-of-line call sites:
 121   static CallGenerator* for_direct_call(ciMethod* m, bool separate_io_projs = false);   // static, special
 122   static CallGenerator* for_virtual_call(ciMethod* m, int vtable_index);  // virtual, interface
 123   static CallGenerator* for_dynamic_call(ciMethod* m);   // invokedynamic
 124 
 125   static CallGenerator* for_method_handle_call(  JVMState* jvms, ciMethod* caller, ciMethod* callee, bool delayed_forbidden);
 126   static CallGenerator* for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool& input_not_const);
 127 
 128   // How to generate a replace a direct call with an inline version
 129   static CallGenerator* for_late_inline(ciMethod* m, CallGenerator* inline_cg);
 130   static CallGenerator* for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const);
 131   static CallGenerator* for_string_late_inline(ciMethod* m, CallGenerator* inline_cg);
 132   static CallGenerator* for_boxing_late_inline(ciMethod* m, CallGenerator* inline_cg);
 133 
 134   // How to make a call but defer the decision whether to inline or not.
 135   static CallGenerator* for_warm_call(WarmCallInfo* ci,
 136                                       CallGenerator* if_cold,
 137                                       CallGenerator* if_hot);
 138 
 139   // How to make a call that optimistically assumes a receiver type:
 140   static CallGenerator* for_predicted_call(ciKlass* predicted_receiver,
 141                                            CallGenerator* if_missed,
 142                                            CallGenerator* if_hit,
 143                                            float hit_prob);
 144 
 145   // How to make a call that optimistically assumes a MethodHandle target:
 146   static CallGenerator* for_predicted_dynamic_call(ciMethodHandle* predicted_method_handle,
 147                                                    CallGenerator* if_missed,
 148                                                    CallGenerator* if_hit,
 149                                                    float hit_prob);
 150 
 151   // How to make a call that gives up and goes back to the interpreter:
 152   static CallGenerator* for_uncommon_trap(ciMethod* m,
 153                                           Deoptimization::DeoptReason reason,
 154                                           Deoptimization::DeoptAction action);
 155 
 156   // Registry for intrinsics:
 157   static CallGenerator* for_intrinsic(ciMethod* m);
 158   static void register_intrinsic(ciMethod* m, CallGenerator* cg);
 159   static CallGenerator* for_predicted_intrinsic(CallGenerator* intrinsic,
 160                                                 CallGenerator* cg);
 161   virtual Node* generate_predicate(JVMState* jvms) { return NULL; };
 162 
 163   virtual void print_inlining_late(const char* msg) { ShouldNotReachHere(); }
 164 
 165   static void print_inlining(Compile* C, ciMethod* callee, int inline_level, int bci, const char* msg) {
 166     if (C->print_inlining()) {
 167       C->print_inlining(callee, inline_level, bci, msg);
 168     }
 169   }
 170 };
 171 
 172 
 173 //------------------------InlineCallGenerator----------------------------------
 174 class InlineCallGenerator : public CallGenerator {
 175  protected:
 176   InlineCallGenerator(ciMethod* method) : CallGenerator(method) {}
 177 
 178  public:
 179   virtual bool      is_inline() const           { return true; }
 180 };
 181 
 182 
 183 //---------------------------WarmCallInfo--------------------------------------
 184 // A struct to collect information about a given call site.
 185 // Helps sort call sites into "hot", "medium", and "cold".
 186 // Participates in the queueing of "medium" call sites for possible inlining.
 187 class WarmCallInfo : public ResourceObj {
 188  private:
 189 
 190   CallNode*     _call;   // The CallNode which may be inlined.
 191   CallGenerator* _hot_cg;// CG for expanding the call node
 192 
 193   // These are the metrics we use to evaluate call sites:
 194 
 195   float         _count;  // How often do we expect to reach this site?
 196   float         _profit; // How much time do we expect to save by inlining?
 197   float         _work;   // How long do we expect the average call to take?
 198   float         _size;   // How big do we expect the inlined code to be?
 199 
 200   float         _heat;   // Combined score inducing total order on call sites.
 201   WarmCallInfo* _next;   // Next cooler call info in pending queue.
 202 
 203   // Count is the number of times this call site is expected to be executed.
 204   // Large count is favorable for inlining, because the extra compilation
 205   // work will be amortized more completely.
 206 
 207   // Profit is a rough measure of the amount of time we expect to save
 208   // per execution of this site if we inline it.  (1.0 == call overhead)
 209   // Large profit favors inlining.  Negative profit disables inlining.
 210 
 211   // Work is a rough measure of the amount of time a typical out-of-line
 212   // call from this site is expected to take.  (1.0 == call, no-op, return)
 213   // Small work is somewhat favorable for inlining, since methods with
 214   // short "hot" traces are more likely to inline smoothly.
 215 
 216   // Size is the number of graph nodes we expect this method to produce,
 217   // not counting the inlining of any further warm calls it may include.
 218   // Small size favors inlining, since small methods are more likely to
 219   // inline smoothly.  The size is estimated by examining the native code
 220   // if available.  The method bytecodes are also examined, assuming
 221   // empirically observed node counts for each kind of bytecode.
 222 
 223   // Heat is the combined "goodness" of a site's inlining.  If we were
 224   // omniscient, it would be the difference of two sums of future execution
 225   // times of code emitted for this site (amortized across multiple sites if
 226   // sharing applies).  The two sums are for versions of this call site with
 227   // and without inlining.
 228 
 229   // We approximate this mythical quantity by playing with averages,
 230   // rough estimates, and assumptions that history repeats itself.
 231   // The basic formula count * profit is heuristically adjusted
 232   // by looking at the expected compilation and execution times of
 233   // of the inlined call.
 234 
 235   // Note:  Some of these metrics may not be present in the final product,
 236   // but exist in development builds to experiment with inline policy tuning.
 237 
 238   // This heuristic framework does not model well the very significant
 239   // effects of multiple-level inlining.  It is possible to see no immediate
 240   // profit from inlining X->Y, but to get great profit from a subsequent
 241   // inlining X->Y->Z.
 242 
 243   // This framework does not take well into account the problem of N**2 code
 244   // size in a clique of mutually inlinable methods.
 245 
 246   WarmCallInfo*  next() const          { return _next; }
 247   void       set_next(WarmCallInfo* n) { _next = n; }
 248 
 249   static WarmCallInfo _always_hot;
 250   static WarmCallInfo _always_cold;
 251 
 252   // Constructor intitialization of always_hot and always_cold
 253   WarmCallInfo(float c, float p, float w, float s) {
 254     _call = NULL;
 255     _hot_cg = NULL;
 256     _next = NULL;
 257     _count = c;
 258     _profit = p;
 259     _work = w;
 260     _size = s;
 261     _heat = 0;
 262   }
 263 
 264  public:
 265   // Because WarmInfo objects live over the entire lifetime of the
 266   // Compile object, they are allocated into the comp_arena, which
 267   // does not get resource marked or reset during the compile process
 268   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 269   void operator delete( void * ) { } // fast deallocation
 270 
 271   static WarmCallInfo* always_hot();
 272   static WarmCallInfo* always_cold();
 273 
 274   WarmCallInfo() {
 275     _call = NULL;
 276     _hot_cg = NULL;
 277     _next = NULL;
 278     _count = _profit = _work = _size = _heat = 0;
 279   }
 280 
 281   CallNode* call() const { return _call; }
 282   float count()    const { return _count; }
 283   float size()     const { return _size; }
 284   float work()     const { return _work; }
 285   float profit()   const { return _profit; }
 286   float heat()     const { return _heat; }
 287 
 288   void set_count(float x)     { _count = x; }
 289   void set_size(float x)      { _size = x; }
 290   void set_work(float x)      { _work = x; }
 291   void set_profit(float x)    { _profit = x; }
 292   void set_heat(float x)      { _heat = x; }
 293 
 294   // Load initial heuristics from profiles, etc.
 295   // The heuristics can be tweaked further by the caller.
 296   void init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor);
 297 
 298   static float MAX_VALUE() { return +1.0e10; }
 299   static float MIN_VALUE() { return -1.0e10; }
 300 
 301   float compute_heat() const;
 302 
 303   void set_call(CallNode* call)      { _call = call; }
 304   void set_hot_cg(CallGenerator* cg) { _hot_cg = cg; }
 305 
 306   // Do not queue very hot or very cold calls.
 307   // Make very cold ones out of line immediately.
 308   // Inline very hot ones immediately.
 309   // These queries apply various tunable limits
 310   // to the above metrics in a systematic way.
 311   // Test for coldness before testing for hotness.
 312   bool is_cold() const;
 313   bool is_hot() const;
 314 
 315   // Force a warm call to be hot.  This worklists the call node for inlining.
 316   void make_hot();
 317 
 318   // Force a warm call to be cold.  This worklists the call node for out-of-lining.
 319   void make_cold();
 320 
 321   // A reproducible total ordering, in which heat is the major key.
 322   bool warmer_than(WarmCallInfo* that);
 323 
 324   // List management.  These methods are called with the list head,
 325   // and return the new list head, inserting or removing the receiver.
 326   WarmCallInfo* insert_into(WarmCallInfo* head);
 327   WarmCallInfo* remove_from(WarmCallInfo* head);
 328 
 329 #ifndef PRODUCT
 330   void print() const;
 331   void print_all() const;
 332   int count_all() const;
 333 #endif
 334 };
 335 
 336 #endif // SHARE_VM_OPTO_CALLGENERATOR_HPP