1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/exceptionHandlerTable.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/block.hpp"
  36 #include "opto/c2compiler.hpp"
  37 #include "opto/callGenerator.hpp"
  38 #include "opto/callnode.hpp"
  39 #include "opto/cfgnode.hpp"
  40 #include "opto/chaitin.hpp"
  41 #include "opto/compile.hpp"
  42 #include "opto/connode.hpp"
  43 #include "opto/divnode.hpp"
  44 #include "opto/escape.hpp"
  45 #include "opto/idealGraphPrinter.hpp"
  46 #include "opto/loopnode.hpp"
  47 #include "opto/machnode.hpp"
  48 #include "opto/macro.hpp"
  49 #include "opto/matcher.hpp"
  50 #include "opto/mathexactnode.hpp"
  51 #include "opto/memnode.hpp"
  52 #include "opto/mulnode.hpp"
  53 #include "opto/node.hpp"
  54 #include "opto/opcodes.hpp"
  55 #include "opto/output.hpp"
  56 #include "opto/parse.hpp"
  57 #include "opto/phaseX.hpp"
  58 #include "opto/rootnode.hpp"
  59 #include "opto/runtime.hpp"
  60 #include "opto/stringopts.hpp"
  61 #include "opto/type.hpp"
  62 #include "opto/vectornode.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/timer.hpp"
  67 #include "trace/tracing.hpp"
  68 #include "utilities/copy.hpp"
  69 #ifdef TARGET_ARCH_MODEL_x86_32
  70 # include "adfiles/ad_x86_32.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_x86_64
  73 # include "adfiles/ad_x86_64.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_MODEL_sparc
  76 # include "adfiles/ad_sparc.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_MODEL_arm
  82 # include "adfiles/ad_arm.hpp"
  83 #endif
  84 #ifdef TARGET_ARCH_MODEL_ppc
  85 # include "adfiles/ad_ppc.hpp"
  86 #endif
  87 
  88 
  89 // -------------------- Compile::mach_constant_base_node -----------------------
  90 // Constant table base node singleton.
  91 MachConstantBaseNode* Compile::mach_constant_base_node() {
  92   if (_mach_constant_base_node == NULL) {
  93     _mach_constant_base_node = new (C) MachConstantBaseNode();
  94     _mach_constant_base_node->add_req(C->root());
  95   }
  96   return _mach_constant_base_node;
  97 }
  98 
  99 
 100 /// Support for intrinsics.
 101 
 102 // Return the index at which m must be inserted (or already exists).
 103 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 104 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 105 #ifdef ASSERT
 106   for (int i = 1; i < _intrinsics->length(); i++) {
 107     CallGenerator* cg1 = _intrinsics->at(i-1);
 108     CallGenerator* cg2 = _intrinsics->at(i);
 109     assert(cg1->method() != cg2->method()
 110            ? cg1->method()     < cg2->method()
 111            : cg1->is_virtual() < cg2->is_virtual(),
 112            "compiler intrinsics list must stay sorted");
 113   }
 114 #endif
 115   // Binary search sorted list, in decreasing intervals [lo, hi].
 116   int lo = 0, hi = _intrinsics->length()-1;
 117   while (lo <= hi) {
 118     int mid = (uint)(hi + lo) / 2;
 119     ciMethod* mid_m = _intrinsics->at(mid)->method();
 120     if (m < mid_m) {
 121       hi = mid-1;
 122     } else if (m > mid_m) {
 123       lo = mid+1;
 124     } else {
 125       // look at minor sort key
 126       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 127       if (is_virtual < mid_virt) {
 128         hi = mid-1;
 129       } else if (is_virtual > mid_virt) {
 130         lo = mid+1;
 131       } else {
 132         return mid;  // exact match
 133       }
 134     }
 135   }
 136   return lo;  // inexact match
 137 }
 138 
 139 void Compile::register_intrinsic(CallGenerator* cg) {
 140   if (_intrinsics == NULL) {
 141     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 142   }
 143   // This code is stolen from ciObjectFactory::insert.
 144   // Really, GrowableArray should have methods for
 145   // insert_at, remove_at, and binary_search.
 146   int len = _intrinsics->length();
 147   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 148   if (index == len) {
 149     _intrinsics->append(cg);
 150   } else {
 151 #ifdef ASSERT
 152     CallGenerator* oldcg = _intrinsics->at(index);
 153     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 154 #endif
 155     _intrinsics->append(_intrinsics->at(len-1));
 156     int pos;
 157     for (pos = len-2; pos >= index; pos--) {
 158       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 159     }
 160     _intrinsics->at_put(index, cg);
 161   }
 162   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 163 }
 164 
 165 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 166   assert(m->is_loaded(), "don't try this on unloaded methods");
 167   if (_intrinsics != NULL) {
 168     int index = intrinsic_insertion_index(m, is_virtual);
 169     if (index < _intrinsics->length()
 170         && _intrinsics->at(index)->method() == m
 171         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 172       return _intrinsics->at(index);
 173     }
 174   }
 175   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 176   if (m->intrinsic_id() != vmIntrinsics::_none &&
 177       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 178     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 179     if (cg != NULL) {
 180       // Save it for next time:
 181       register_intrinsic(cg);
 182       return cg;
 183     } else {
 184       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 185     }
 186   }
 187   return NULL;
 188 }
 189 
 190 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 191 // in library_call.cpp.
 192 
 193 
 194 #ifndef PRODUCT
 195 // statistics gathering...
 196 
 197 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 198 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 199 
 200 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 201   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 202   int oflags = _intrinsic_hist_flags[id];
 203   assert(flags != 0, "what happened?");
 204   if (is_virtual) {
 205     flags |= _intrinsic_virtual;
 206   }
 207   bool changed = (flags != oflags);
 208   if ((flags & _intrinsic_worked) != 0) {
 209     juint count = (_intrinsic_hist_count[id] += 1);
 210     if (count == 1) {
 211       changed = true;           // first time
 212     }
 213     // increment the overall count also:
 214     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 215   }
 216   if (changed) {
 217     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 218       // Something changed about the intrinsic's virtuality.
 219       if ((flags & _intrinsic_virtual) != 0) {
 220         // This is the first use of this intrinsic as a virtual call.
 221         if (oflags != 0) {
 222           // We already saw it as a non-virtual, so note both cases.
 223           flags |= _intrinsic_both;
 224         }
 225       } else if ((oflags & _intrinsic_both) == 0) {
 226         // This is the first use of this intrinsic as a non-virtual
 227         flags |= _intrinsic_both;
 228       }
 229     }
 230     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 231   }
 232   // update the overall flags also:
 233   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 234   return changed;
 235 }
 236 
 237 static char* format_flags(int flags, char* buf) {
 238   buf[0] = 0;
 239   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 240   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 241   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 242   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 243   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 244   if (buf[0] == 0)  strcat(buf, ",");
 245   assert(buf[0] == ',', "must be");
 246   return &buf[1];
 247 }
 248 
 249 void Compile::print_intrinsic_statistics() {
 250   char flagsbuf[100];
 251   ttyLocker ttyl;
 252   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 253   tty->print_cr("Compiler intrinsic usage:");
 254   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 255   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 256   #define PRINT_STAT_LINE(name, c, f) \
 257     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 258   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 259     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 260     int   flags = _intrinsic_hist_flags[id];
 261     juint count = _intrinsic_hist_count[id];
 262     if ((flags | count) != 0) {
 263       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 264     }
 265   }
 266   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 267   if (xtty != NULL)  xtty->tail("statistics");
 268 }
 269 
 270 void Compile::print_statistics() {
 271   { ttyLocker ttyl;
 272     if (xtty != NULL)  xtty->head("statistics type='opto'");
 273     Parse::print_statistics();
 274     PhaseCCP::print_statistics();
 275     PhaseRegAlloc::print_statistics();
 276     Scheduling::print_statistics();
 277     PhasePeephole::print_statistics();
 278     PhaseIdealLoop::print_statistics();
 279     if (xtty != NULL)  xtty->tail("statistics");
 280   }
 281   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 282     // put this under its own <statistics> element.
 283     print_intrinsic_statistics();
 284   }
 285 }
 286 #endif //PRODUCT
 287 
 288 // Support for bundling info
 289 Bundle* Compile::node_bundling(const Node *n) {
 290   assert(valid_bundle_info(n), "oob");
 291   return &_node_bundling_base[n->_idx];
 292 }
 293 
 294 bool Compile::valid_bundle_info(const Node *n) {
 295   return (_node_bundling_limit > n->_idx);
 296 }
 297 
 298 
 299 void Compile::gvn_replace_by(Node* n, Node* nn) {
 300   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 301     Node* use = n->last_out(i);
 302     bool is_in_table = initial_gvn()->hash_delete(use);
 303     uint uses_found = 0;
 304     for (uint j = 0; j < use->len(); j++) {
 305       if (use->in(j) == n) {
 306         if (j < use->req())
 307           use->set_req(j, nn);
 308         else
 309           use->set_prec(j, nn);
 310         uses_found++;
 311       }
 312     }
 313     if (is_in_table) {
 314       // reinsert into table
 315       initial_gvn()->hash_find_insert(use);
 316     }
 317     record_for_igvn(use);
 318     i -= uses_found;    // we deleted 1 or more copies of this edge
 319   }
 320 }
 321 
 322 
 323 static inline bool not_a_node(const Node* n) {
 324   if (n == NULL)                   return true;
 325   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 326   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 327   return false;
 328 }
 329 
 330 // Identify all nodes that are reachable from below, useful.
 331 // Use breadth-first pass that records state in a Unique_Node_List,
 332 // recursive traversal is slower.
 333 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 334   int estimated_worklist_size = unique();
 335   useful.map( estimated_worklist_size, NULL );  // preallocate space
 336 
 337   // Initialize worklist
 338   if (root() != NULL)     { useful.push(root()); }
 339   // If 'top' is cached, declare it useful to preserve cached node
 340   if( cached_top_node() ) { useful.push(cached_top_node()); }
 341 
 342   // Push all useful nodes onto the list, breadthfirst
 343   for( uint next = 0; next < useful.size(); ++next ) {
 344     assert( next < unique(), "Unique useful nodes < total nodes");
 345     Node *n  = useful.at(next);
 346     uint max = n->len();
 347     for( uint i = 0; i < max; ++i ) {
 348       Node *m = n->in(i);
 349       if (not_a_node(m))  continue;
 350       useful.push(m);
 351     }
 352   }
 353 }
 354 
 355 // Update dead_node_list with any missing dead nodes using useful
 356 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 357 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 358   uint max_idx = unique();
 359   VectorSet& useful_node_set = useful.member_set();
 360 
 361   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 362     // If node with index node_idx is not in useful set,
 363     // mark it as dead in dead node list.
 364     if (! useful_node_set.test(node_idx) ) {
 365       record_dead_node(node_idx);
 366     }
 367   }
 368 }
 369 
 370 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 371   int shift = 0;
 372   for (int i = 0; i < inlines->length(); i++) {
 373     CallGenerator* cg = inlines->at(i);
 374     CallNode* call = cg->call_node();
 375     if (shift > 0) {
 376       inlines->at_put(i-shift, cg);
 377     }
 378     if (!useful.member(call)) {
 379       shift++;
 380     }
 381   }
 382   inlines->trunc_to(inlines->length()-shift);
 383 }
 384 
 385 // Disconnect all useless nodes by disconnecting those at the boundary.
 386 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 387   uint next = 0;
 388   while (next < useful.size()) {
 389     Node *n = useful.at(next++);
 390     // Use raw traversal of out edges since this code removes out edges
 391     int max = n->outcnt();
 392     for (int j = 0; j < max; ++j) {
 393       Node* child = n->raw_out(j);
 394       if (! useful.member(child)) {
 395         assert(!child->is_top() || child != top(),
 396                "If top is cached in Compile object it is in useful list");
 397         // Only need to remove this out-edge to the useless node
 398         n->raw_del_out(j);
 399         --j;
 400         --max;
 401       }
 402     }
 403     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 404       record_for_igvn(n->unique_out());
 405     }
 406   }
 407   // Remove useless macro and predicate opaq nodes
 408   for (int i = C->macro_count()-1; i >= 0; i--) {
 409     Node* n = C->macro_node(i);
 410     if (!useful.member(n)) {
 411       remove_macro_node(n);
 412     }
 413   }
 414   // Remove useless expensive node
 415   for (int i = C->expensive_count()-1; i >= 0; i--) {
 416     Node* n = C->expensive_node(i);
 417     if (!useful.member(n)) {
 418       remove_expensive_node(n);
 419     }
 420   }
 421   // clean up the late inline lists
 422   remove_useless_late_inlines(&_string_late_inlines, useful);
 423   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 424   remove_useless_late_inlines(&_late_inlines, useful);
 425   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 426 }
 427 
 428 //------------------------------frame_size_in_words-----------------------------
 429 // frame_slots in units of words
 430 int Compile::frame_size_in_words() const {
 431   // shift is 0 in LP32 and 1 in LP64
 432   const int shift = (LogBytesPerWord - LogBytesPerInt);
 433   int words = _frame_slots >> shift;
 434   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 435   return words;
 436 }
 437 
 438 // ============================================================================
 439 //------------------------------CompileWrapper---------------------------------
 440 class CompileWrapper : public StackObj {
 441   Compile *const _compile;
 442  public:
 443   CompileWrapper(Compile* compile);
 444 
 445   ~CompileWrapper();
 446 };
 447 
 448 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 449   // the Compile* pointer is stored in the current ciEnv:
 450   ciEnv* env = compile->env();
 451   assert(env == ciEnv::current(), "must already be a ciEnv active");
 452   assert(env->compiler_data() == NULL, "compile already active?");
 453   env->set_compiler_data(compile);
 454   assert(compile == Compile::current(), "sanity");
 455 
 456   compile->set_type_dict(NULL);
 457   compile->set_type_hwm(NULL);
 458   compile->set_type_last_size(0);
 459   compile->set_last_tf(NULL, NULL);
 460   compile->set_indexSet_arena(NULL);
 461   compile->set_indexSet_free_block_list(NULL);
 462   compile->init_type_arena();
 463   Type::Initialize(compile);
 464   _compile->set_scratch_buffer_blob(NULL);
 465   _compile->begin_method();
 466 }
 467 CompileWrapper::~CompileWrapper() {
 468   _compile->end_method();
 469   if (_compile->scratch_buffer_blob() != NULL)
 470     BufferBlob::free(_compile->scratch_buffer_blob());
 471   _compile->env()->set_compiler_data(NULL);
 472 }
 473 
 474 
 475 //----------------------------print_compile_messages---------------------------
 476 void Compile::print_compile_messages() {
 477 #ifndef PRODUCT
 478   // Check if recompiling
 479   if (_subsume_loads == false && PrintOpto) {
 480     // Recompiling without allowing machine instructions to subsume loads
 481     tty->print_cr("*********************************************************");
 482     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 483     tty->print_cr("*********************************************************");
 484   }
 485   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 486     // Recompiling without escape analysis
 487     tty->print_cr("*********************************************************");
 488     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 489     tty->print_cr("*********************************************************");
 490   }
 491   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 492     // Recompiling without boxing elimination
 493     tty->print_cr("*********************************************************");
 494     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 495     tty->print_cr("*********************************************************");
 496   }
 497   if (env()->break_at_compile()) {
 498     // Open the debugger when compiling this method.
 499     tty->print("### Breaking when compiling: ");
 500     method()->print_short_name();
 501     tty->cr();
 502     BREAKPOINT;
 503   }
 504 
 505   if( PrintOpto ) {
 506     if (is_osr_compilation()) {
 507       tty->print("[OSR]%3d", _compile_id);
 508     } else {
 509       tty->print("%3d", _compile_id);
 510     }
 511   }
 512 #endif
 513 }
 514 
 515 
 516 //-----------------------init_scratch_buffer_blob------------------------------
 517 // Construct a temporary BufferBlob and cache it for this compile.
 518 void Compile::init_scratch_buffer_blob(int const_size) {
 519   // If there is already a scratch buffer blob allocated and the
 520   // constant section is big enough, use it.  Otherwise free the
 521   // current and allocate a new one.
 522   BufferBlob* blob = scratch_buffer_blob();
 523   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 524     // Use the current blob.
 525   } else {
 526     if (blob != NULL) {
 527       BufferBlob::free(blob);
 528     }
 529 
 530     ResourceMark rm;
 531     _scratch_const_size = const_size;
 532     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 533     blob = BufferBlob::create("Compile::scratch_buffer", size);
 534     // Record the buffer blob for next time.
 535     set_scratch_buffer_blob(blob);
 536     // Have we run out of code space?
 537     if (scratch_buffer_blob() == NULL) {
 538       // Let CompilerBroker disable further compilations.
 539       record_failure("Not enough space for scratch buffer in CodeCache");
 540       return;
 541     }
 542   }
 543 
 544   // Initialize the relocation buffers
 545   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 546   set_scratch_locs_memory(locs_buf);
 547 }
 548 
 549 
 550 //-----------------------scratch_emit_size-------------------------------------
 551 // Helper function that computes size by emitting code
 552 uint Compile::scratch_emit_size(const Node* n) {
 553   // Start scratch_emit_size section.
 554   set_in_scratch_emit_size(true);
 555 
 556   // Emit into a trash buffer and count bytes emitted.
 557   // This is a pretty expensive way to compute a size,
 558   // but it works well enough if seldom used.
 559   // All common fixed-size instructions are given a size
 560   // method by the AD file.
 561   // Note that the scratch buffer blob and locs memory are
 562   // allocated at the beginning of the compile task, and
 563   // may be shared by several calls to scratch_emit_size.
 564   // The allocation of the scratch buffer blob is particularly
 565   // expensive, since it has to grab the code cache lock.
 566   BufferBlob* blob = this->scratch_buffer_blob();
 567   assert(blob != NULL, "Initialize BufferBlob at start");
 568   assert(blob->size() > MAX_inst_size, "sanity");
 569   relocInfo* locs_buf = scratch_locs_memory();
 570   address blob_begin = blob->content_begin();
 571   address blob_end   = (address)locs_buf;
 572   assert(blob->content_contains(blob_end), "sanity");
 573   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 574   buf.initialize_consts_size(_scratch_const_size);
 575   buf.initialize_stubs_size(MAX_stubs_size);
 576   assert(locs_buf != NULL, "sanity");
 577   int lsize = MAX_locs_size / 3;
 578   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 579   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 580   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 581 
 582   // Do the emission.
 583 
 584   Label fakeL; // Fake label for branch instructions.
 585   Label*   saveL = NULL;
 586   uint save_bnum = 0;
 587   bool is_branch = n->is_MachBranch();
 588   if (is_branch) {
 589     MacroAssembler masm(&buf);
 590     masm.bind(fakeL);
 591     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 592     n->as_MachBranch()->label_set(&fakeL, 0);
 593   }
 594   n->emit(buf, this->regalloc());
 595   if (is_branch) // Restore label.
 596     n->as_MachBranch()->label_set(saveL, save_bnum);
 597 
 598   // End scratch_emit_size section.
 599   set_in_scratch_emit_size(false);
 600 
 601   return buf.insts_size();
 602 }
 603 
 604 
 605 // ============================================================================
 606 //------------------------------Compile standard-------------------------------
 607 debug_only( int Compile::_debug_idx = 100000; )
 608 
 609 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 610 // the continuation bci for on stack replacement.
 611 
 612 
 613 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 614                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 615                 : Phase(Compiler),
 616                   _env(ci_env),
 617                   _log(ci_env->log()),
 618                   _compile_id(ci_env->compile_id()),
 619                   _save_argument_registers(false),
 620                   _stub_name(NULL),
 621                   _stub_function(NULL),
 622                   _stub_entry_point(NULL),
 623                   _method(target),
 624                   _entry_bci(osr_bci),
 625                   _initial_gvn(NULL),
 626                   _for_igvn(NULL),
 627                   _warm_calls(NULL),
 628                   _subsume_loads(subsume_loads),
 629                   _do_escape_analysis(do_escape_analysis),
 630                   _eliminate_boxing(eliminate_boxing),
 631                   _failure_reason(NULL),
 632                   _code_buffer("Compile::Fill_buffer"),
 633                   _orig_pc_slot(0),
 634                   _orig_pc_slot_offset_in_bytes(0),
 635                   _has_method_handle_invokes(false),
 636                   _mach_constant_base_node(NULL),
 637                   _node_bundling_limit(0),
 638                   _node_bundling_base(NULL),
 639                   _java_calls(0),
 640                   _inner_loops(0),
 641                   _scratch_const_size(-1),
 642                   _in_scratch_emit_size(false),
 643                   _dead_node_list(comp_arena()),
 644                   _dead_node_count(0),
 645 #ifndef PRODUCT
 646                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 647                   _printer(IdealGraphPrinter::printer()),
 648 #endif
 649                   _congraph(NULL),
 650                   _late_inlines(comp_arena(), 2, 0, NULL),
 651                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 652                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 653                   _late_inlines_pos(0),
 654                   _number_of_mh_late_inlines(0),
 655                   _inlining_progress(false),
 656                   _inlining_incrementally(false),
 657                   _print_inlining_list(NULL),
 658                   _print_inlining_idx(0),
 659                   _preserve_jvm_state(0) {
 660   C = this;
 661 
 662   CompileWrapper cw(this);
 663 #ifndef PRODUCT
 664   if (TimeCompiler2) {
 665     tty->print(" ");
 666     target->holder()->name()->print();
 667     tty->print(".");
 668     target->print_short_name();
 669     tty->print("  ");
 670   }
 671   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 672   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 673   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 674   if (!print_opto_assembly) {
 675     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 676     if (print_assembly && !Disassembler::can_decode()) {
 677       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 678       print_opto_assembly = true;
 679     }
 680   }
 681   set_print_assembly(print_opto_assembly);
 682   set_parsed_irreducible_loop(false);
 683 #endif
 684   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 685   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 686 
 687   if (ProfileTraps) {
 688     // Make sure the method being compiled gets its own MDO,
 689     // so we can at least track the decompile_count().
 690     method()->ensure_method_data();
 691   }
 692 
 693   Init(::AliasLevel);
 694 
 695 
 696   print_compile_messages();
 697 
 698   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 699     _ilt = InlineTree::build_inline_tree_root();
 700   else
 701     _ilt = NULL;
 702 
 703   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 704   assert(num_alias_types() >= AliasIdxRaw, "");
 705 
 706 #define MINIMUM_NODE_HASH  1023
 707   // Node list that Iterative GVN will start with
 708   Unique_Node_List for_igvn(comp_arena());
 709   set_for_igvn(&for_igvn);
 710 
 711   // GVN that will be run immediately on new nodes
 712   uint estimated_size = method()->code_size()*4+64;
 713   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 714   PhaseGVN gvn(node_arena(), estimated_size);
 715   set_initial_gvn(&gvn);
 716 
 717   if (print_inlining() || print_intrinsics()) {
 718     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 719   }
 720   { // Scope for timing the parser
 721     TracePhase t3("parse", &_t_parser, true);
 722 
 723     // Put top into the hash table ASAP.
 724     initial_gvn()->transform_no_reclaim(top());
 725 
 726     // Set up tf(), start(), and find a CallGenerator.
 727     CallGenerator* cg = NULL;
 728     if (is_osr_compilation()) {
 729       const TypeTuple *domain = StartOSRNode::osr_domain();
 730       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 731       init_tf(TypeFunc::make(domain, range));
 732       StartNode* s = new (this) StartOSRNode(root(), domain);
 733       initial_gvn()->set_type_bottom(s);
 734       init_start(s);
 735       cg = CallGenerator::for_osr(method(), entry_bci());
 736     } else {
 737       // Normal case.
 738       init_tf(TypeFunc::make(method()));
 739       StartNode* s = new (this) StartNode(root(), tf()->domain());
 740       initial_gvn()->set_type_bottom(s);
 741       init_start(s);
 742       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 743         // With java.lang.ref.reference.get() we must go through the
 744         // intrinsic when G1 is enabled - even when get() is the root
 745         // method of the compile - so that, if necessary, the value in
 746         // the referent field of the reference object gets recorded by
 747         // the pre-barrier code.
 748         // Specifically, if G1 is enabled, the value in the referent
 749         // field is recorded by the G1 SATB pre barrier. This will
 750         // result in the referent being marked live and the reference
 751         // object removed from the list of discovered references during
 752         // reference processing.
 753         cg = find_intrinsic(method(), false);
 754       }
 755       if (cg == NULL) {
 756         float past_uses = method()->interpreter_invocation_count();
 757         float expected_uses = past_uses;
 758         cg = CallGenerator::for_inline(method(), expected_uses);
 759       }
 760     }
 761     if (failing())  return;
 762     if (cg == NULL) {
 763       record_method_not_compilable_all_tiers("cannot parse method");
 764       return;
 765     }
 766     JVMState* jvms = build_start_state(start(), tf());
 767     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 768       record_method_not_compilable("method parse failed");
 769       return;
 770     }
 771     GraphKit kit(jvms);
 772 
 773     if (!kit.stopped()) {
 774       // Accept return values, and transfer control we know not where.
 775       // This is done by a special, unique ReturnNode bound to root.
 776       return_values(kit.jvms());
 777     }
 778 
 779     if (kit.has_exceptions()) {
 780       // Any exceptions that escape from this call must be rethrown
 781       // to whatever caller is dynamically above us on the stack.
 782       // This is done by a special, unique RethrowNode bound to root.
 783       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 784     }
 785 
 786     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 787 
 788     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 789       inline_string_calls(true);
 790     }
 791 
 792     if (failing())  return;
 793 
 794     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 795 
 796     // Remove clutter produced by parsing.
 797     if (!failing()) {
 798       ResourceMark rm;
 799       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 800     }
 801   }
 802 
 803   // Note:  Large methods are capped off in do_one_bytecode().
 804   if (failing())  return;
 805 
 806   // After parsing, node notes are no longer automagic.
 807   // They must be propagated by register_new_node_with_optimizer(),
 808   // clone(), or the like.
 809   set_default_node_notes(NULL);
 810 
 811   for (;;) {
 812     int successes = Inline_Warm();
 813     if (failing())  return;
 814     if (successes == 0)  break;
 815   }
 816 
 817   // Drain the list.
 818   Finish_Warm();
 819 #ifndef PRODUCT
 820   if (_printer) {
 821     _printer->print_inlining(this);
 822   }
 823 #endif
 824 
 825   if (failing())  return;
 826   NOT_PRODUCT( verify_graph_edges(); )
 827 
 828   // Now optimize
 829   Optimize();
 830   if (failing())  return;
 831   NOT_PRODUCT( verify_graph_edges(); )
 832 
 833 #ifndef PRODUCT
 834   if (PrintIdeal) {
 835     ttyLocker ttyl;  // keep the following output all in one block
 836     // This output goes directly to the tty, not the compiler log.
 837     // To enable tools to match it up with the compilation activity,
 838     // be sure to tag this tty output with the compile ID.
 839     if (xtty != NULL) {
 840       xtty->head("ideal compile_id='%d'%s", compile_id(),
 841                  is_osr_compilation()    ? " compile_kind='osr'" :
 842                  "");
 843     }
 844     root()->dump(9999);
 845     if (xtty != NULL) {
 846       xtty->tail("ideal");
 847     }
 848   }
 849 #endif
 850 
 851   // Now that we know the size of all the monitors we can add a fixed slot
 852   // for the original deopt pc.
 853 
 854   _orig_pc_slot =  fixed_slots();
 855   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 856   set_fixed_slots(next_slot);
 857 
 858   // Now generate code
 859   Code_Gen();
 860   if (failing())  return;
 861 
 862   // Check if we want to skip execution of all compiled code.
 863   {
 864 #ifndef PRODUCT
 865     if (OptoNoExecute) {
 866       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 867       return;
 868     }
 869     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 870 #endif
 871 
 872     if (is_osr_compilation()) {
 873       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 874       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 875     } else {
 876       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 877       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 878     }
 879 
 880     env()->register_method(_method, _entry_bci,
 881                            &_code_offsets,
 882                            _orig_pc_slot_offset_in_bytes,
 883                            code_buffer(),
 884                            frame_size_in_words(), _oop_map_set,
 885                            &_handler_table, &_inc_table,
 886                            compiler,
 887                            env()->comp_level(),
 888                            has_unsafe_access(),
 889                            SharedRuntime::is_wide_vector(max_vector_size())
 890                            );
 891 
 892     if (log() != NULL) // Print code cache state into compiler log
 893       log()->code_cache_state();
 894   }
 895 }
 896 
 897 //------------------------------Compile----------------------------------------
 898 // Compile a runtime stub
 899 Compile::Compile( ciEnv* ci_env,
 900                   TypeFunc_generator generator,
 901                   address stub_function,
 902                   const char *stub_name,
 903                   int is_fancy_jump,
 904                   bool pass_tls,
 905                   bool save_arg_registers,
 906                   bool return_pc )
 907   : Phase(Compiler),
 908     _env(ci_env),
 909     _log(ci_env->log()),
 910     _compile_id(0),
 911     _save_argument_registers(save_arg_registers),
 912     _method(NULL),
 913     _stub_name(stub_name),
 914     _stub_function(stub_function),
 915     _stub_entry_point(NULL),
 916     _entry_bci(InvocationEntryBci),
 917     _initial_gvn(NULL),
 918     _for_igvn(NULL),
 919     _warm_calls(NULL),
 920     _orig_pc_slot(0),
 921     _orig_pc_slot_offset_in_bytes(0),
 922     _subsume_loads(true),
 923     _do_escape_analysis(false),
 924     _eliminate_boxing(false),
 925     _failure_reason(NULL),
 926     _code_buffer("Compile::Fill_buffer"),
 927     _has_method_handle_invokes(false),
 928     _mach_constant_base_node(NULL),
 929     _node_bundling_limit(0),
 930     _node_bundling_base(NULL),
 931     _java_calls(0),
 932     _inner_loops(0),
 933 #ifndef PRODUCT
 934     _trace_opto_output(TraceOptoOutput),
 935     _printer(NULL),
 936 #endif
 937     _dead_node_list(comp_arena()),
 938     _dead_node_count(0),
 939     _congraph(NULL),
 940     _number_of_mh_late_inlines(0),
 941     _inlining_progress(false),
 942     _inlining_incrementally(false),
 943     _print_inlining_list(NULL),
 944     _print_inlining_idx(0),
 945     _preserve_jvm_state(0) {
 946   C = this;
 947 
 948 #ifndef PRODUCT
 949   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 950   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 951   set_print_assembly(PrintFrameConverterAssembly);
 952   set_parsed_irreducible_loop(false);
 953 #endif
 954   CompileWrapper cw(this);
 955   Init(/*AliasLevel=*/ 0);
 956   init_tf((*generator)());
 957 
 958   {
 959     // The following is a dummy for the sake of GraphKit::gen_stub
 960     Unique_Node_List for_igvn(comp_arena());
 961     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 962     PhaseGVN gvn(Thread::current()->resource_area(),255);
 963     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 964     gvn.transform_no_reclaim(top());
 965 
 966     GraphKit kit;
 967     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 968   }
 969 
 970   NOT_PRODUCT( verify_graph_edges(); )
 971   Code_Gen();
 972   if (failing())  return;
 973 
 974 
 975   // Entry point will be accessed using compile->stub_entry_point();
 976   if (code_buffer() == NULL) {
 977     Matcher::soft_match_failure();
 978   } else {
 979     if (PrintAssembly && (WizardMode || Verbose))
 980       tty->print_cr("### Stub::%s", stub_name);
 981 
 982     if (!failing()) {
 983       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 984 
 985       // Make the NMethod
 986       // For now we mark the frame as never safe for profile stackwalking
 987       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 988                                                       code_buffer(),
 989                                                       CodeOffsets::frame_never_safe,
 990                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 991                                                       frame_size_in_words(),
 992                                                       _oop_map_set,
 993                                                       save_arg_registers);
 994       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 995 
 996       _stub_entry_point = rs->entry_point();
 997     }
 998   }
 999 }
1000 
1001 //------------------------------Init-------------------------------------------
1002 // Prepare for a single compilation
1003 void Compile::Init(int aliaslevel) {
1004   _unique  = 0;
1005   _regalloc = NULL;
1006 
1007   _tf      = NULL;  // filled in later
1008   _top     = NULL;  // cached later
1009   _matcher = NULL;  // filled in later
1010   _cfg     = NULL;  // filled in later
1011 
1012   set_24_bit_selection_and_mode(Use24BitFP, false);
1013 
1014   _node_note_array = NULL;
1015   _default_node_notes = NULL;
1016 
1017   _immutable_memory = NULL; // filled in at first inquiry
1018 
1019   // Globally visible Nodes
1020   // First set TOP to NULL to give safe behavior during creation of RootNode
1021   set_cached_top_node(NULL);
1022   set_root(new (this) RootNode());
1023   // Now that you have a Root to point to, create the real TOP
1024   set_cached_top_node( new (this) ConNode(Type::TOP) );
1025   set_recent_alloc(NULL, NULL);
1026 
1027   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1028   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1029   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1030   env()->set_dependencies(new Dependencies(env()));
1031 
1032   _fixed_slots = 0;
1033   set_has_split_ifs(false);
1034   set_has_loops(has_method() && method()->has_loops()); // first approximation
1035   set_has_stringbuilder(false);
1036   set_has_boxed_value(false);
1037   _trap_can_recompile = false;  // no traps emitted yet
1038   _major_progress = true; // start out assuming good things will happen
1039   set_has_unsafe_access(false);
1040   set_max_vector_size(0);
1041   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1042   set_decompile_count(0);
1043 
1044   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1045   set_num_loop_opts(LoopOptsCount);
1046   set_do_inlining(Inline);
1047   set_max_inline_size(MaxInlineSize);
1048   set_freq_inline_size(FreqInlineSize);
1049   set_do_scheduling(OptoScheduling);
1050   set_do_count_invocations(false);
1051   set_do_method_data_update(false);
1052 
1053   if (debug_info()->recording_non_safepoints()) {
1054     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1055                         (comp_arena(), 8, 0, NULL));
1056     set_default_node_notes(Node_Notes::make(this));
1057   }
1058 
1059   // // -- Initialize types before each compile --
1060   // // Update cached type information
1061   // if( _method && _method->constants() )
1062   //   Type::update_loaded_types(_method, _method->constants());
1063 
1064   // Init alias_type map.
1065   if (!_do_escape_analysis && aliaslevel == 3)
1066     aliaslevel = 2;  // No unique types without escape analysis
1067   _AliasLevel = aliaslevel;
1068   const int grow_ats = 16;
1069   _max_alias_types = grow_ats;
1070   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1071   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1072   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1073   {
1074     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1075   }
1076   // Initialize the first few types.
1077   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1078   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1079   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1080   _num_alias_types = AliasIdxRaw+1;
1081   // Zero out the alias type cache.
1082   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1083   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1084   probe_alias_cache(NULL)->_index = AliasIdxTop;
1085 
1086   _intrinsics = NULL;
1087   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1088   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1089   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1090   register_library_intrinsics();
1091 }
1092 
1093 //---------------------------init_start----------------------------------------
1094 // Install the StartNode on this compile object.
1095 void Compile::init_start(StartNode* s) {
1096   if (failing())
1097     return; // already failing
1098   assert(s == start(), "");
1099 }
1100 
1101 StartNode* Compile::start() const {
1102   assert(!failing(), "");
1103   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1104     Node* start = root()->fast_out(i);
1105     if( start->is_Start() )
1106       return start->as_Start();
1107   }
1108   ShouldNotReachHere();
1109   return NULL;
1110 }
1111 
1112 //-------------------------------immutable_memory-------------------------------------
1113 // Access immutable memory
1114 Node* Compile::immutable_memory() {
1115   if (_immutable_memory != NULL) {
1116     return _immutable_memory;
1117   }
1118   StartNode* s = start();
1119   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1120     Node *p = s->fast_out(i);
1121     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1122       _immutable_memory = p;
1123       return _immutable_memory;
1124     }
1125   }
1126   ShouldNotReachHere();
1127   return NULL;
1128 }
1129 
1130 //----------------------set_cached_top_node------------------------------------
1131 // Install the cached top node, and make sure Node::is_top works correctly.
1132 void Compile::set_cached_top_node(Node* tn) {
1133   if (tn != NULL)  verify_top(tn);
1134   Node* old_top = _top;
1135   _top = tn;
1136   // Calling Node::setup_is_top allows the nodes the chance to adjust
1137   // their _out arrays.
1138   if (_top != NULL)     _top->setup_is_top();
1139   if (old_top != NULL)  old_top->setup_is_top();
1140   assert(_top == NULL || top()->is_top(), "");
1141 }
1142 
1143 #ifdef ASSERT
1144 uint Compile::count_live_nodes_by_graph_walk() {
1145   Unique_Node_List useful(comp_arena());
1146   // Get useful node list by walking the graph.
1147   identify_useful_nodes(useful);
1148   return useful.size();
1149 }
1150 
1151 void Compile::print_missing_nodes() {
1152 
1153   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1154   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1155     return;
1156   }
1157 
1158   // This is an expensive function. It is executed only when the user
1159   // specifies VerifyIdealNodeCount option or otherwise knows the
1160   // additional work that needs to be done to identify reachable nodes
1161   // by walking the flow graph and find the missing ones using
1162   // _dead_node_list.
1163 
1164   Unique_Node_List useful(comp_arena());
1165   // Get useful node list by walking the graph.
1166   identify_useful_nodes(useful);
1167 
1168   uint l_nodes = C->live_nodes();
1169   uint l_nodes_by_walk = useful.size();
1170 
1171   if (l_nodes != l_nodes_by_walk) {
1172     if (_log != NULL) {
1173       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1174       _log->stamp();
1175       _log->end_head();
1176     }
1177     VectorSet& useful_member_set = useful.member_set();
1178     int last_idx = l_nodes_by_walk;
1179     for (int i = 0; i < last_idx; i++) {
1180       if (useful_member_set.test(i)) {
1181         if (_dead_node_list.test(i)) {
1182           if (_log != NULL) {
1183             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1184           }
1185           if (PrintIdealNodeCount) {
1186             // Print the log message to tty
1187               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1188               useful.at(i)->dump();
1189           }
1190         }
1191       }
1192       else if (! _dead_node_list.test(i)) {
1193         if (_log != NULL) {
1194           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1195         }
1196         if (PrintIdealNodeCount) {
1197           // Print the log message to tty
1198           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1199         }
1200       }
1201     }
1202     if (_log != NULL) {
1203       _log->tail("mismatched_nodes");
1204     }
1205   }
1206 }
1207 #endif
1208 
1209 #ifndef PRODUCT
1210 void Compile::verify_top(Node* tn) const {
1211   if (tn != NULL) {
1212     assert(tn->is_Con(), "top node must be a constant");
1213     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1214     assert(tn->in(0) != NULL, "must have live top node");
1215   }
1216 }
1217 #endif
1218 
1219 
1220 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1221 
1222 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1223   guarantee(arr != NULL, "");
1224   int num_blocks = arr->length();
1225   if (grow_by < num_blocks)  grow_by = num_blocks;
1226   int num_notes = grow_by * _node_notes_block_size;
1227   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1228   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1229   while (num_notes > 0) {
1230     arr->append(notes);
1231     notes     += _node_notes_block_size;
1232     num_notes -= _node_notes_block_size;
1233   }
1234   assert(num_notes == 0, "exact multiple, please");
1235 }
1236 
1237 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1238   if (source == NULL || dest == NULL)  return false;
1239 
1240   if (dest->is_Con())
1241     return false;               // Do not push debug info onto constants.
1242 
1243 #ifdef ASSERT
1244   // Leave a bread crumb trail pointing to the original node:
1245   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1246     dest->set_debug_orig(source);
1247   }
1248 #endif
1249 
1250   if (node_note_array() == NULL)
1251     return false;               // Not collecting any notes now.
1252 
1253   // This is a copy onto a pre-existing node, which may already have notes.
1254   // If both nodes have notes, do not overwrite any pre-existing notes.
1255   Node_Notes* source_notes = node_notes_at(source->_idx);
1256   if (source_notes == NULL || source_notes->is_clear())  return false;
1257   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1258   if (dest_notes == NULL || dest_notes->is_clear()) {
1259     return set_node_notes_at(dest->_idx, source_notes);
1260   }
1261 
1262   Node_Notes merged_notes = (*source_notes);
1263   // The order of operations here ensures that dest notes will win...
1264   merged_notes.update_from(dest_notes);
1265   return set_node_notes_at(dest->_idx, &merged_notes);
1266 }
1267 
1268 
1269 //--------------------------allow_range_check_smearing-------------------------
1270 // Gating condition for coalescing similar range checks.
1271 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1272 // single covering check that is at least as strong as any of them.
1273 // If the optimization succeeds, the simplified (strengthened) range check
1274 // will always succeed.  If it fails, we will deopt, and then give up
1275 // on the optimization.
1276 bool Compile::allow_range_check_smearing() const {
1277   // If this method has already thrown a range-check,
1278   // assume it was because we already tried range smearing
1279   // and it failed.
1280   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1281   return !already_trapped;
1282 }
1283 
1284 
1285 //------------------------------flatten_alias_type-----------------------------
1286 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1287   int offset = tj->offset();
1288   TypePtr::PTR ptr = tj->ptr();
1289 
1290   // Known instance (scalarizable allocation) alias only with itself.
1291   bool is_known_inst = tj->isa_oopptr() != NULL &&
1292                        tj->is_oopptr()->is_known_instance();
1293 
1294   // Process weird unsafe references.
1295   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1296     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1297     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1298     tj = TypeOopPtr::BOTTOM;
1299     ptr = tj->ptr();
1300     offset = tj->offset();
1301   }
1302 
1303   // Array pointers need some flattening
1304   const TypeAryPtr *ta = tj->isa_aryptr();
1305   if (ta && ta->is_stable()) {
1306     // Erase stability property for alias analysis.
1307     tj = ta = ta->cast_to_stable(false);
1308   }
1309   if( ta && is_known_inst ) {
1310     if ( offset != Type::OffsetBot &&
1311          offset > arrayOopDesc::length_offset_in_bytes() ) {
1312       offset = Type::OffsetBot; // Flatten constant access into array body only
1313       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1314     }
1315   } else if( ta && _AliasLevel >= 2 ) {
1316     // For arrays indexed by constant indices, we flatten the alias
1317     // space to include all of the array body.  Only the header, klass
1318     // and array length can be accessed un-aliased.
1319     if( offset != Type::OffsetBot ) {
1320       if( ta->const_oop() ) { // MethodData* or Method*
1321         offset = Type::OffsetBot;   // Flatten constant access into array body
1322         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1323       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1324         // range is OK as-is.
1325         tj = ta = TypeAryPtr::RANGE;
1326       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1327         tj = TypeInstPtr::KLASS; // all klass loads look alike
1328         ta = TypeAryPtr::RANGE; // generic ignored junk
1329         ptr = TypePtr::BotPTR;
1330       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1331         tj = TypeInstPtr::MARK;
1332         ta = TypeAryPtr::RANGE; // generic ignored junk
1333         ptr = TypePtr::BotPTR;
1334       } else {                  // Random constant offset into array body
1335         offset = Type::OffsetBot;   // Flatten constant access into array body
1336         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1337       }
1338     }
1339     // Arrays of fixed size alias with arrays of unknown size.
1340     if (ta->size() != TypeInt::POS) {
1341       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1342       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1343     }
1344     // Arrays of known objects become arrays of unknown objects.
1345     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1346       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1347       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1348     }
1349     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1350       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1351       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1352     }
1353     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1354     // cannot be distinguished by bytecode alone.
1355     if (ta->elem() == TypeInt::BOOL) {
1356       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1357       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1358       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1359     }
1360     // During the 2nd round of IterGVN, NotNull castings are removed.
1361     // Make sure the Bottom and NotNull variants alias the same.
1362     // Also, make sure exact and non-exact variants alias the same.
1363     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1364       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1365     }
1366   }
1367 
1368   // Oop pointers need some flattening
1369   const TypeInstPtr *to = tj->isa_instptr();
1370   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1371     ciInstanceKlass *k = to->klass()->as_instance_klass();
1372     if( ptr == TypePtr::Constant ) {
1373       if (to->klass() != ciEnv::current()->Class_klass() ||
1374           offset < k->size_helper() * wordSize) {
1375         // No constant oop pointers (such as Strings); they alias with
1376         // unknown strings.
1377         assert(!is_known_inst, "not scalarizable allocation");
1378         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1379       }
1380     } else if( is_known_inst ) {
1381       tj = to; // Keep NotNull and klass_is_exact for instance type
1382     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1383       // During the 2nd round of IterGVN, NotNull castings are removed.
1384       // Make sure the Bottom and NotNull variants alias the same.
1385       // Also, make sure exact and non-exact variants alias the same.
1386       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1387     }
1388     // Canonicalize the holder of this field
1389     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1390       // First handle header references such as a LoadKlassNode, even if the
1391       // object's klass is unloaded at compile time (4965979).
1392       if (!is_known_inst) { // Do it only for non-instance types
1393         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1394       }
1395     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1396       // Static fields are in the space above the normal instance
1397       // fields in the java.lang.Class instance.
1398       if (to->klass() != ciEnv::current()->Class_klass()) {
1399         to = NULL;
1400         tj = TypeOopPtr::BOTTOM;
1401         offset = tj->offset();
1402       }
1403     } else {
1404       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1405       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1406         if( is_known_inst ) {
1407           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1408         } else {
1409           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1410         }
1411       }
1412     }
1413   }
1414 
1415   // Klass pointers to object array klasses need some flattening
1416   const TypeKlassPtr *tk = tj->isa_klassptr();
1417   if( tk ) {
1418     // If we are referencing a field within a Klass, we need
1419     // to assume the worst case of an Object.  Both exact and
1420     // inexact types must flatten to the same alias class so
1421     // use NotNull as the PTR.
1422     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1423 
1424       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1425                                    TypeKlassPtr::OBJECT->klass(),
1426                                    offset);
1427     }
1428 
1429     ciKlass* klass = tk->klass();
1430     if( klass->is_obj_array_klass() ) {
1431       ciKlass* k = TypeAryPtr::OOPS->klass();
1432       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1433         k = TypeInstPtr::BOTTOM->klass();
1434       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1435     }
1436 
1437     // Check for precise loads from the primary supertype array and force them
1438     // to the supertype cache alias index.  Check for generic array loads from
1439     // the primary supertype array and also force them to the supertype cache
1440     // alias index.  Since the same load can reach both, we need to merge
1441     // these 2 disparate memories into the same alias class.  Since the
1442     // primary supertype array is read-only, there's no chance of confusion
1443     // where we bypass an array load and an array store.
1444     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1445     if (offset == Type::OffsetBot ||
1446         (offset >= primary_supers_offset &&
1447          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1448         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1449       offset = in_bytes(Klass::secondary_super_cache_offset());
1450       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1451     }
1452   }
1453 
1454   // Flatten all Raw pointers together.
1455   if (tj->base() == Type::RawPtr)
1456     tj = TypeRawPtr::BOTTOM;
1457 
1458   if (tj->base() == Type::AnyPtr)
1459     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1460 
1461   // Flatten all to bottom for now
1462   switch( _AliasLevel ) {
1463   case 0:
1464     tj = TypePtr::BOTTOM;
1465     break;
1466   case 1:                       // Flatten to: oop, static, field or array
1467     switch (tj->base()) {
1468     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1469     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1470     case Type::AryPtr:   // do not distinguish arrays at all
1471     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1472     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1473     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1474     default: ShouldNotReachHere();
1475     }
1476     break;
1477   case 2:                       // No collapsing at level 2; keep all splits
1478   case 3:                       // No collapsing at level 3; keep all splits
1479     break;
1480   default:
1481     Unimplemented();
1482   }
1483 
1484   offset = tj->offset();
1485   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1486 
1487   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1488           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1489           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1490           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1491           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1492           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1493           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1494           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1495   assert( tj->ptr() != TypePtr::TopPTR &&
1496           tj->ptr() != TypePtr::AnyNull &&
1497           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1498 //    assert( tj->ptr() != TypePtr::Constant ||
1499 //            tj->base() == Type::RawPtr ||
1500 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1501 
1502   return tj;
1503 }
1504 
1505 void Compile::AliasType::Init(int i, const TypePtr* at) {
1506   _index = i;
1507   _adr_type = at;
1508   _field = NULL;
1509   _element = NULL;
1510   _is_rewritable = true; // default
1511   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1512   if (atoop != NULL && atoop->is_known_instance()) {
1513     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1514     _general_index = Compile::current()->get_alias_index(gt);
1515   } else {
1516     _general_index = 0;
1517   }
1518 }
1519 
1520 //---------------------------------print_on------------------------------------
1521 #ifndef PRODUCT
1522 void Compile::AliasType::print_on(outputStream* st) {
1523   if (index() < 10)
1524         st->print("@ <%d> ", index());
1525   else  st->print("@ <%d>",  index());
1526   st->print(is_rewritable() ? "   " : " RO");
1527   int offset = adr_type()->offset();
1528   if (offset == Type::OffsetBot)
1529         st->print(" +any");
1530   else  st->print(" +%-3d", offset);
1531   st->print(" in ");
1532   adr_type()->dump_on(st);
1533   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1534   if (field() != NULL && tjp) {
1535     if (tjp->klass()  != field()->holder() ||
1536         tjp->offset() != field()->offset_in_bytes()) {
1537       st->print(" != ");
1538       field()->print();
1539       st->print(" ***");
1540     }
1541   }
1542 }
1543 
1544 void print_alias_types() {
1545   Compile* C = Compile::current();
1546   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1547   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1548     C->alias_type(idx)->print_on(tty);
1549     tty->cr();
1550   }
1551 }
1552 #endif
1553 
1554 
1555 //----------------------------probe_alias_cache--------------------------------
1556 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1557   intptr_t key = (intptr_t) adr_type;
1558   key ^= key >> logAliasCacheSize;
1559   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1560 }
1561 
1562 
1563 //-----------------------------grow_alias_types--------------------------------
1564 void Compile::grow_alias_types() {
1565   const int old_ats  = _max_alias_types; // how many before?
1566   const int new_ats  = old_ats;          // how many more?
1567   const int grow_ats = old_ats+new_ats;  // how many now?
1568   _max_alias_types = grow_ats;
1569   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1570   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1571   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1572   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1573 }
1574 
1575 
1576 //--------------------------------find_alias_type------------------------------
1577 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1578   if (_AliasLevel == 0)
1579     return alias_type(AliasIdxBot);
1580 
1581   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1582   if (ace->_adr_type == adr_type) {
1583     return alias_type(ace->_index);
1584   }
1585 
1586   // Handle special cases.
1587   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1588   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1589 
1590   // Do it the slow way.
1591   const TypePtr* flat = flatten_alias_type(adr_type);
1592 
1593 #ifdef ASSERT
1594   assert(flat == flatten_alias_type(flat), "idempotent");
1595   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1596   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1597     const TypeOopPtr* foop = flat->is_oopptr();
1598     // Scalarizable allocations have exact klass always.
1599     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1600     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1601     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1602   }
1603   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1604 #endif
1605 
1606   int idx = AliasIdxTop;
1607   for (int i = 0; i < num_alias_types(); i++) {
1608     if (alias_type(i)->adr_type() == flat) {
1609       idx = i;
1610       break;
1611     }
1612   }
1613 
1614   if (idx == AliasIdxTop) {
1615     if (no_create)  return NULL;
1616     // Grow the array if necessary.
1617     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1618     // Add a new alias type.
1619     idx = _num_alias_types++;
1620     _alias_types[idx]->Init(idx, flat);
1621     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1622     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1623     if (flat->isa_instptr()) {
1624       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1625           && flat->is_instptr()->klass() == env()->Class_klass())
1626         alias_type(idx)->set_rewritable(false);
1627     }
1628     if (flat->isa_aryptr()) {
1629 #ifdef ASSERT
1630       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1631       // (T_BYTE has the weakest alignment and size restrictions...)
1632       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1633 #endif
1634       if (flat->offset() == TypePtr::OffsetBot) {
1635         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1636       }
1637     }
1638     if (flat->isa_klassptr()) {
1639       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1640         alias_type(idx)->set_rewritable(false);
1641       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1642         alias_type(idx)->set_rewritable(false);
1643       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1644         alias_type(idx)->set_rewritable(false);
1645       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1646         alias_type(idx)->set_rewritable(false);
1647     }
1648     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1649     // but the base pointer type is not distinctive enough to identify
1650     // references into JavaThread.)
1651 
1652     // Check for final fields.
1653     const TypeInstPtr* tinst = flat->isa_instptr();
1654     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1655       ciField* field;
1656       if (tinst->const_oop() != NULL &&
1657           tinst->klass() == ciEnv::current()->Class_klass() &&
1658           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1659         // static field
1660         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1661         field = k->get_field_by_offset(tinst->offset(), true);
1662       } else {
1663         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1664         field = k->get_field_by_offset(tinst->offset(), false);
1665       }
1666       assert(field == NULL ||
1667              original_field == NULL ||
1668              (field->holder() == original_field->holder() &&
1669               field->offset() == original_field->offset() &&
1670               field->is_static() == original_field->is_static()), "wrong field?");
1671       // Set field() and is_rewritable() attributes.
1672       if (field != NULL)  alias_type(idx)->set_field(field);
1673     }
1674   }
1675 
1676   // Fill the cache for next time.
1677   ace->_adr_type = adr_type;
1678   ace->_index    = idx;
1679   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1680 
1681   // Might as well try to fill the cache for the flattened version, too.
1682   AliasCacheEntry* face = probe_alias_cache(flat);
1683   if (face->_adr_type == NULL) {
1684     face->_adr_type = flat;
1685     face->_index    = idx;
1686     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1687   }
1688 
1689   return alias_type(idx);
1690 }
1691 
1692 
1693 Compile::AliasType* Compile::alias_type(ciField* field) {
1694   const TypeOopPtr* t;
1695   if (field->is_static())
1696     t = TypeInstPtr::make(field->holder()->java_mirror());
1697   else
1698     t = TypeOopPtr::make_from_klass_raw(field->holder());
1699   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1700   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1701   return atp;
1702 }
1703 
1704 
1705 //------------------------------have_alias_type--------------------------------
1706 bool Compile::have_alias_type(const TypePtr* adr_type) {
1707   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1708   if (ace->_adr_type == adr_type) {
1709     return true;
1710   }
1711 
1712   // Handle special cases.
1713   if (adr_type == NULL)             return true;
1714   if (adr_type == TypePtr::BOTTOM)  return true;
1715 
1716   return find_alias_type(adr_type, true, NULL) != NULL;
1717 }
1718 
1719 //-----------------------------must_alias--------------------------------------
1720 // True if all values of the given address type are in the given alias category.
1721 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1722   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1723   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1724   if (alias_idx == AliasIdxTop)         return false; // the empty category
1725   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1726 
1727   // the only remaining possible overlap is identity
1728   int adr_idx = get_alias_index(adr_type);
1729   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1730   assert(adr_idx == alias_idx ||
1731          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1732           && adr_type                       != TypeOopPtr::BOTTOM),
1733          "should not be testing for overlap with an unsafe pointer");
1734   return adr_idx == alias_idx;
1735 }
1736 
1737 //------------------------------can_alias--------------------------------------
1738 // True if any values of the given address type are in the given alias category.
1739 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1740   if (alias_idx == AliasIdxTop)         return false; // the empty category
1741   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1742   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1743   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1744 
1745   // the only remaining possible overlap is identity
1746   int adr_idx = get_alias_index(adr_type);
1747   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1748   return adr_idx == alias_idx;
1749 }
1750 
1751 
1752 
1753 //---------------------------pop_warm_call-------------------------------------
1754 WarmCallInfo* Compile::pop_warm_call() {
1755   WarmCallInfo* wci = _warm_calls;
1756   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1757   return wci;
1758 }
1759 
1760 //----------------------------Inline_Warm--------------------------------------
1761 int Compile::Inline_Warm() {
1762   // If there is room, try to inline some more warm call sites.
1763   // %%% Do a graph index compaction pass when we think we're out of space?
1764   if (!InlineWarmCalls)  return 0;
1765 
1766   int calls_made_hot = 0;
1767   int room_to_grow   = NodeCountInliningCutoff - unique();
1768   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1769   int amount_grown   = 0;
1770   WarmCallInfo* call;
1771   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1772     int est_size = (int)call->size();
1773     if (est_size > (room_to_grow - amount_grown)) {
1774       // This one won't fit anyway.  Get rid of it.
1775       call->make_cold();
1776       continue;
1777     }
1778     call->make_hot();
1779     calls_made_hot++;
1780     amount_grown   += est_size;
1781     amount_to_grow -= est_size;
1782   }
1783 
1784   if (calls_made_hot > 0)  set_major_progress();
1785   return calls_made_hot;
1786 }
1787 
1788 
1789 //----------------------------Finish_Warm--------------------------------------
1790 void Compile::Finish_Warm() {
1791   if (!InlineWarmCalls)  return;
1792   if (failing())  return;
1793   if (warm_calls() == NULL)  return;
1794 
1795   // Clean up loose ends, if we are out of space for inlining.
1796   WarmCallInfo* call;
1797   while ((call = pop_warm_call()) != NULL) {
1798     call->make_cold();
1799   }
1800 }
1801 
1802 //---------------------cleanup_loop_predicates-----------------------
1803 // Remove the opaque nodes that protect the predicates so that all unused
1804 // checks and uncommon_traps will be eliminated from the ideal graph
1805 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1806   if (predicate_count()==0) return;
1807   for (int i = predicate_count(); i > 0; i--) {
1808     Node * n = predicate_opaque1_node(i-1);
1809     assert(n->Opcode() == Op_Opaque1, "must be");
1810     igvn.replace_node(n, n->in(1));
1811   }
1812   assert(predicate_count()==0, "should be clean!");
1813 }
1814 
1815 // StringOpts and late inlining of string methods
1816 void Compile::inline_string_calls(bool parse_time) {
1817   {
1818     // remove useless nodes to make the usage analysis simpler
1819     ResourceMark rm;
1820     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1821   }
1822 
1823   {
1824     ResourceMark rm;
1825     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1826     PhaseStringOpts pso(initial_gvn(), for_igvn());
1827     print_method(PHASE_AFTER_STRINGOPTS, 3);
1828   }
1829 
1830   // now inline anything that we skipped the first time around
1831   if (!parse_time) {
1832     _late_inlines_pos = _late_inlines.length();
1833   }
1834 
1835   while (_string_late_inlines.length() > 0) {
1836     CallGenerator* cg = _string_late_inlines.pop();
1837     cg->do_late_inline();
1838     if (failing())  return;
1839   }
1840   _string_late_inlines.trunc_to(0);
1841 }
1842 
1843 // Late inlining of boxing methods
1844 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1845   if (_boxing_late_inlines.length() > 0) {
1846     assert(has_boxed_value(), "inconsistent");
1847 
1848     PhaseGVN* gvn = initial_gvn();
1849     set_inlining_incrementally(true);
1850 
1851     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1852     for_igvn()->clear();
1853     gvn->replace_with(&igvn);
1854 
1855     while (_boxing_late_inlines.length() > 0) {
1856       CallGenerator* cg = _boxing_late_inlines.pop();
1857       cg->do_late_inline();
1858       if (failing())  return;
1859     }
1860     _boxing_late_inlines.trunc_to(0);
1861 
1862     {
1863       ResourceMark rm;
1864       PhaseRemoveUseless pru(gvn, for_igvn());
1865     }
1866 
1867     igvn = PhaseIterGVN(gvn);
1868     igvn.optimize();
1869 
1870     set_inlining_progress(false);
1871     set_inlining_incrementally(false);
1872   }
1873 }
1874 
1875 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1876   assert(IncrementalInline, "incremental inlining should be on");
1877   PhaseGVN* gvn = initial_gvn();
1878 
1879   set_inlining_progress(false);
1880   for_igvn()->clear();
1881   gvn->replace_with(&igvn);
1882 
1883   int i = 0;
1884 
1885   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1886     CallGenerator* cg = _late_inlines.at(i);
1887     _late_inlines_pos = i+1;
1888     cg->do_late_inline();
1889     if (failing())  return;
1890   }
1891   int j = 0;
1892   for (; i < _late_inlines.length(); i++, j++) {
1893     _late_inlines.at_put(j, _late_inlines.at(i));
1894   }
1895   _late_inlines.trunc_to(j);
1896 
1897   {
1898     ResourceMark rm;
1899     PhaseRemoveUseless pru(gvn, for_igvn());
1900   }
1901 
1902   igvn = PhaseIterGVN(gvn);
1903 }
1904 
1905 // Perform incremental inlining until bound on number of live nodes is reached
1906 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1907   PhaseGVN* gvn = initial_gvn();
1908 
1909   set_inlining_incrementally(true);
1910   set_inlining_progress(true);
1911   uint low_live_nodes = 0;
1912 
1913   while(inlining_progress() && _late_inlines.length() > 0) {
1914 
1915     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1916       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1917         // PhaseIdealLoop is expensive so we only try it once we are
1918         // out of loop and we only try it again if the previous helped
1919         // got the number of nodes down significantly
1920         PhaseIdealLoop ideal_loop( igvn, false, true );
1921         if (failing())  return;
1922         low_live_nodes = live_nodes();
1923         _major_progress = true;
1924       }
1925 
1926       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1927         break;
1928       }
1929     }
1930 
1931     inline_incrementally_one(igvn);
1932 
1933     if (failing())  return;
1934 
1935     igvn.optimize();
1936 
1937     if (failing())  return;
1938   }
1939 
1940   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1941 
1942   if (_string_late_inlines.length() > 0) {
1943     assert(has_stringbuilder(), "inconsistent");
1944     for_igvn()->clear();
1945     initial_gvn()->replace_with(&igvn);
1946 
1947     inline_string_calls(false);
1948 
1949     if (failing())  return;
1950 
1951     {
1952       ResourceMark rm;
1953       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1954     }
1955 
1956     igvn = PhaseIterGVN(gvn);
1957 
1958     igvn.optimize();
1959   }
1960 
1961   set_inlining_incrementally(false);
1962 }
1963 
1964 
1965 //------------------------------Optimize---------------------------------------
1966 // Given a graph, optimize it.
1967 void Compile::Optimize() {
1968   TracePhase t1("optimizer", &_t_optimizer, true);
1969 
1970 #ifndef PRODUCT
1971   if (env()->break_at_compile()) {
1972     BREAKPOINT;
1973   }
1974 
1975 #endif
1976 
1977   ResourceMark rm;
1978   int          loop_opts_cnt;
1979 
1980   NOT_PRODUCT( verify_graph_edges(); )
1981 
1982   print_method(PHASE_AFTER_PARSING);
1983 
1984  {
1985   // Iterative Global Value Numbering, including ideal transforms
1986   // Initialize IterGVN with types and values from parse-time GVN
1987   PhaseIterGVN igvn(initial_gvn());
1988   {
1989     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1990     igvn.optimize();
1991   }
1992 
1993   print_method(PHASE_ITER_GVN1, 2);
1994 
1995   if (failing())  return;
1996 
1997   {
1998     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
1999     inline_incrementally(igvn);
2000   }
2001 
2002   print_method(PHASE_INCREMENTAL_INLINE, 2);
2003 
2004   if (failing())  return;
2005 
2006   if (eliminate_boxing()) {
2007     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2008     // Inline valueOf() methods now.
2009     inline_boxing_calls(igvn);
2010 
2011     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2012 
2013     if (failing())  return;
2014   }
2015 
2016   // No more new expensive nodes will be added to the list from here
2017   // so keep only the actual candidates for optimizations.
2018   cleanup_expensive_nodes(igvn);
2019 
2020   // Perform escape analysis
2021   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2022     if (has_loops()) {
2023       // Cleanup graph (remove dead nodes).
2024       TracePhase t2("idealLoop", &_t_idealLoop, true);
2025       PhaseIdealLoop ideal_loop( igvn, false, true );
2026       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2027       if (failing())  return;
2028     }
2029     ConnectionGraph::do_analysis(this, &igvn);
2030 
2031     if (failing())  return;
2032 
2033     // Optimize out fields loads from scalar replaceable allocations.
2034     igvn.optimize();
2035     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2036 
2037     if (failing())  return;
2038 
2039     if (congraph() != NULL && macro_count() > 0) {
2040       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2041       PhaseMacroExpand mexp(igvn);
2042       mexp.eliminate_macro_nodes();
2043       igvn.set_delay_transform(false);
2044 
2045       igvn.optimize();
2046       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2047 
2048       if (failing())  return;
2049     }
2050   }
2051 
2052   // Loop transforms on the ideal graph.  Range Check Elimination,
2053   // peeling, unrolling, etc.
2054 
2055   // Set loop opts counter
2056   loop_opts_cnt = num_loop_opts();
2057   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2058     {
2059       TracePhase t2("idealLoop", &_t_idealLoop, true);
2060       PhaseIdealLoop ideal_loop( igvn, true );
2061       loop_opts_cnt--;
2062       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2063       if (failing())  return;
2064     }
2065     // Loop opts pass if partial peeling occurred in previous pass
2066     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2067       TracePhase t3("idealLoop", &_t_idealLoop, true);
2068       PhaseIdealLoop ideal_loop( igvn, false );
2069       loop_opts_cnt--;
2070       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2071       if (failing())  return;
2072     }
2073     // Loop opts pass for loop-unrolling before CCP
2074     if(major_progress() && (loop_opts_cnt > 0)) {
2075       TracePhase t4("idealLoop", &_t_idealLoop, true);
2076       PhaseIdealLoop ideal_loop( igvn, false );
2077       loop_opts_cnt--;
2078       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2079     }
2080     if (!failing()) {
2081       // Verify that last round of loop opts produced a valid graph
2082       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2083       PhaseIdealLoop::verify(igvn);
2084     }
2085   }
2086   if (failing())  return;
2087 
2088   // Conditional Constant Propagation;
2089   PhaseCCP ccp( &igvn );
2090   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2091   {
2092     TracePhase t2("ccp", &_t_ccp, true);
2093     ccp.do_transform();
2094   }
2095   print_method(PHASE_CPP1, 2);
2096 
2097   assert( true, "Break here to ccp.dump_old2new_map()");
2098 
2099   // Iterative Global Value Numbering, including ideal transforms
2100   {
2101     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2102     igvn = ccp;
2103     igvn.optimize();
2104   }
2105 
2106   print_method(PHASE_ITER_GVN2, 2);
2107 
2108   if (failing())  return;
2109 
2110   // Loop transforms on the ideal graph.  Range Check Elimination,
2111   // peeling, unrolling, etc.
2112   if(loop_opts_cnt > 0) {
2113     debug_only( int cnt = 0; );
2114     while(major_progress() && (loop_opts_cnt > 0)) {
2115       TracePhase t2("idealLoop", &_t_idealLoop, true);
2116       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2117       PhaseIdealLoop ideal_loop( igvn, true);
2118       loop_opts_cnt--;
2119       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2120       if (failing())  return;
2121     }
2122   }
2123 
2124   {
2125     // Verify that all previous optimizations produced a valid graph
2126     // at least to this point, even if no loop optimizations were done.
2127     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2128     PhaseIdealLoop::verify(igvn);
2129   }
2130 
2131   {
2132     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2133     PhaseMacroExpand  mex(igvn);
2134     if (mex.expand_macro_nodes()) {
2135       assert(failing(), "must bail out w/ explicit message");
2136       return;
2137     }
2138   }
2139 
2140  } // (End scope of igvn; run destructor if necessary for asserts.)
2141 
2142   dump_inlining();
2143   // A method with only infinite loops has no edges entering loops from root
2144   {
2145     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2146     if (final_graph_reshaping()) {
2147       assert(failing(), "must bail out w/ explicit message");
2148       return;
2149     }
2150   }
2151 
2152   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2153 }
2154 
2155 
2156 //------------------------------Code_Gen---------------------------------------
2157 // Given a graph, generate code for it
2158 void Compile::Code_Gen() {
2159   if (failing()) {
2160     return;
2161   }
2162 
2163   // Perform instruction selection.  You might think we could reclaim Matcher
2164   // memory PDQ, but actually the Matcher is used in generating spill code.
2165   // Internals of the Matcher (including some VectorSets) must remain live
2166   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2167   // set a bit in reclaimed memory.
2168 
2169   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2170   // nodes.  Mapping is only valid at the root of each matched subtree.
2171   NOT_PRODUCT( verify_graph_edges(); )
2172 
2173   Matcher matcher;
2174   _matcher = &matcher;
2175   {
2176     TracePhase t2("matcher", &_t_matcher, true);
2177     matcher.match();
2178   }
2179   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2180   // nodes.  Mapping is only valid at the root of each matched subtree.
2181   NOT_PRODUCT( verify_graph_edges(); )
2182 
2183   // If you have too many nodes, or if matching has failed, bail out
2184   check_node_count(0, "out of nodes matching instructions");
2185   if (failing()) {
2186     return;
2187   }
2188 
2189   // Build a proper-looking CFG
2190   PhaseCFG cfg(node_arena(), root(), matcher);
2191   _cfg = &cfg;
2192   {
2193     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2194     bool success = cfg.do_global_code_motion();
2195     if (!success) {
2196       return;
2197     }
2198 
2199     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2200     NOT_PRODUCT( verify_graph_edges(); )
2201     debug_only( cfg.verify(); )
2202   }
2203 
2204   PhaseChaitin regalloc(unique(), cfg, matcher);
2205   _regalloc = &regalloc;
2206   {
2207     TracePhase t2("regalloc", &_t_registerAllocation, true);
2208     // Perform register allocation.  After Chaitin, use-def chains are
2209     // no longer accurate (at spill code) and so must be ignored.
2210     // Node->LRG->reg mappings are still accurate.
2211     _regalloc->Register_Allocate();
2212 
2213     // Bail out if the allocator builds too many nodes
2214     if (failing()) {
2215       return;
2216     }
2217   }
2218 
2219   // Prior to register allocation we kept empty basic blocks in case the
2220   // the allocator needed a place to spill.  After register allocation we
2221   // are not adding any new instructions.  If any basic block is empty, we
2222   // can now safely remove it.
2223   {
2224     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2225     cfg.remove_empty_blocks();
2226     if (do_freq_based_layout()) {
2227       PhaseBlockLayout layout(cfg);
2228     } else {
2229       cfg.set_loop_alignment();
2230     }
2231     cfg.fixup_flow();
2232   }
2233 
2234   // Apply peephole optimizations
2235   if( OptoPeephole ) {
2236     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2237     PhasePeephole peep( _regalloc, cfg);
2238     peep.do_transform();
2239   }
2240 
2241   // Convert Nodes to instruction bits in a buffer
2242   {
2243     // %%%% workspace merge brought two timers together for one job
2244     TracePhase t2a("output", &_t_output, true);
2245     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2246     Output();
2247   }
2248 
2249   print_method(PHASE_FINAL_CODE);
2250 
2251   // He's dead, Jim.
2252   _cfg     = (PhaseCFG*)0xdeadbeef;
2253   _regalloc = (PhaseChaitin*)0xdeadbeef;
2254 }
2255 
2256 
2257 //------------------------------dump_asm---------------------------------------
2258 // Dump formatted assembly
2259 #ifndef PRODUCT
2260 void Compile::dump_asm(int *pcs, uint pc_limit) {
2261   bool cut_short = false;
2262   tty->print_cr("#");
2263   tty->print("#  ");  _tf->dump();  tty->cr();
2264   tty->print_cr("#");
2265 
2266   // For all blocks
2267   int pc = 0x0;                 // Program counter
2268   char starts_bundle = ' ';
2269   _regalloc->dump_frame();
2270 
2271   Node *n = NULL;
2272   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2273     if (VMThread::should_terminate()) {
2274       cut_short = true;
2275       break;
2276     }
2277     Block* block = _cfg->get_block(i);
2278     if (block->is_connector() && !Verbose) {
2279       continue;
2280     }
2281     n = block->head();
2282     if (pcs && n->_idx < pc_limit) {
2283       tty->print("%3.3x   ", pcs[n->_idx]);
2284     } else {
2285       tty->print("      ");
2286     }
2287     block->dump_head(_cfg);
2288     if (block->is_connector()) {
2289       tty->print_cr("        # Empty connector block");
2290     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2291       tty->print_cr("        # Block is sole successor of call");
2292     }
2293 
2294     // For all instructions
2295     Node *delay = NULL;
2296     for (uint j = 0; j < block->number_of_nodes(); j++) {
2297       if (VMThread::should_terminate()) {
2298         cut_short = true;
2299         break;
2300       }
2301       n = block->get_node(j);
2302       if (valid_bundle_info(n)) {
2303         Bundle* bundle = node_bundling(n);
2304         if (bundle->used_in_unconditional_delay()) {
2305           delay = n;
2306           continue;
2307         }
2308         if (bundle->starts_bundle()) {
2309           starts_bundle = '+';
2310         }
2311       }
2312 
2313       if (WizardMode) {
2314         n->dump();
2315       }
2316 
2317       if( !n->is_Region() &&    // Dont print in the Assembly
2318           !n->is_Phi() &&       // a few noisely useless nodes
2319           !n->is_Proj() &&
2320           !n->is_MachTemp() &&
2321           !n->is_SafePointScalarObject() &&
2322           !n->is_Catch() &&     // Would be nice to print exception table targets
2323           !n->is_MergeMem() &&  // Not very interesting
2324           !n->is_top() &&       // Debug info table constants
2325           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2326           ) {
2327         if (pcs && n->_idx < pc_limit)
2328           tty->print("%3.3x", pcs[n->_idx]);
2329         else
2330           tty->print("   ");
2331         tty->print(" %c ", starts_bundle);
2332         starts_bundle = ' ';
2333         tty->print("\t");
2334         n->format(_regalloc, tty);
2335         tty->cr();
2336       }
2337 
2338       // If we have an instruction with a delay slot, and have seen a delay,
2339       // then back up and print it
2340       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2341         assert(delay != NULL, "no unconditional delay instruction");
2342         if (WizardMode) delay->dump();
2343 
2344         if (node_bundling(delay)->starts_bundle())
2345           starts_bundle = '+';
2346         if (pcs && n->_idx < pc_limit)
2347           tty->print("%3.3x", pcs[n->_idx]);
2348         else
2349           tty->print("   ");
2350         tty->print(" %c ", starts_bundle);
2351         starts_bundle = ' ';
2352         tty->print("\t");
2353         delay->format(_regalloc, tty);
2354         tty->print_cr("");
2355         delay = NULL;
2356       }
2357 
2358       // Dump the exception table as well
2359       if( n->is_Catch() && (Verbose || WizardMode) ) {
2360         // Print the exception table for this offset
2361         _handler_table.print_subtable_for(pc);
2362       }
2363     }
2364 
2365     if (pcs && n->_idx < pc_limit)
2366       tty->print_cr("%3.3x", pcs[n->_idx]);
2367     else
2368       tty->print_cr("");
2369 
2370     assert(cut_short || delay == NULL, "no unconditional delay branch");
2371 
2372   } // End of per-block dump
2373   tty->print_cr("");
2374 
2375   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2376 }
2377 #endif
2378 
2379 //------------------------------Final_Reshape_Counts---------------------------
2380 // This class defines counters to help identify when a method
2381 // may/must be executed using hardware with only 24-bit precision.
2382 struct Final_Reshape_Counts : public StackObj {
2383   int  _call_count;             // count non-inlined 'common' calls
2384   int  _float_count;            // count float ops requiring 24-bit precision
2385   int  _double_count;           // count double ops requiring more precision
2386   int  _java_call_count;        // count non-inlined 'java' calls
2387   int  _inner_loop_count;       // count loops which need alignment
2388   VectorSet _visited;           // Visitation flags
2389   Node_List _tests;             // Set of IfNodes & PCTableNodes
2390 
2391   Final_Reshape_Counts() :
2392     _call_count(0), _float_count(0), _double_count(0),
2393     _java_call_count(0), _inner_loop_count(0),
2394     _visited( Thread::current()->resource_area() ) { }
2395 
2396   void inc_call_count  () { _call_count  ++; }
2397   void inc_float_count () { _float_count ++; }
2398   void inc_double_count() { _double_count++; }
2399   void inc_java_call_count() { _java_call_count++; }
2400   void inc_inner_loop_count() { _inner_loop_count++; }
2401 
2402   int  get_call_count  () const { return _call_count  ; }
2403   int  get_float_count () const { return _float_count ; }
2404   int  get_double_count() const { return _double_count; }
2405   int  get_java_call_count() const { return _java_call_count; }
2406   int  get_inner_loop_count() const { return _inner_loop_count; }
2407 };
2408 
2409 #ifdef ASSERT
2410 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2411   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2412   // Make sure the offset goes inside the instance layout.
2413   return k->contains_field_offset(tp->offset());
2414   // Note that OffsetBot and OffsetTop are very negative.
2415 }
2416 #endif
2417 
2418 // Eliminate trivially redundant StoreCMs and accumulate their
2419 // precedence edges.
2420 void Compile::eliminate_redundant_card_marks(Node* n) {
2421   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2422   if (n->in(MemNode::Address)->outcnt() > 1) {
2423     // There are multiple users of the same address so it might be
2424     // possible to eliminate some of the StoreCMs
2425     Node* mem = n->in(MemNode::Memory);
2426     Node* adr = n->in(MemNode::Address);
2427     Node* val = n->in(MemNode::ValueIn);
2428     Node* prev = n;
2429     bool done = false;
2430     // Walk the chain of StoreCMs eliminating ones that match.  As
2431     // long as it's a chain of single users then the optimization is
2432     // safe.  Eliminating partially redundant StoreCMs would require
2433     // cloning copies down the other paths.
2434     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2435       if (adr == mem->in(MemNode::Address) &&
2436           val == mem->in(MemNode::ValueIn)) {
2437         // redundant StoreCM
2438         if (mem->req() > MemNode::OopStore) {
2439           // Hasn't been processed by this code yet.
2440           n->add_prec(mem->in(MemNode::OopStore));
2441         } else {
2442           // Already converted to precedence edge
2443           for (uint i = mem->req(); i < mem->len(); i++) {
2444             // Accumulate any precedence edges
2445             if (mem->in(i) != NULL) {
2446               n->add_prec(mem->in(i));
2447             }
2448           }
2449           // Everything above this point has been processed.
2450           done = true;
2451         }
2452         // Eliminate the previous StoreCM
2453         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2454         assert(mem->outcnt() == 0, "should be dead");
2455         mem->disconnect_inputs(NULL, this);
2456       } else {
2457         prev = mem;
2458       }
2459       mem = prev->in(MemNode::Memory);
2460     }
2461   }
2462 }
2463 
2464 //------------------------------final_graph_reshaping_impl----------------------
2465 // Implement items 1-5 from final_graph_reshaping below.
2466 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2467 
2468   if ( n->outcnt() == 0 ) return; // dead node
2469   uint nop = n->Opcode();
2470 
2471   // Check for 2-input instruction with "last use" on right input.
2472   // Swap to left input.  Implements item (2).
2473   if( n->req() == 3 &&          // two-input instruction
2474       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2475       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2476       n->in(2)->outcnt() == 1 &&// right use IS a last use
2477       !n->in(2)->is_Con() ) {   // right use is not a constant
2478     // Check for commutative opcode
2479     switch( nop ) {
2480     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2481     case Op_MaxI:  case Op_MinI:
2482     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2483     case Op_AndL:  case Op_XorL:  case Op_OrL:
2484     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2485       // Move "last use" input to left by swapping inputs
2486       n->swap_edges(1, 2);
2487       break;
2488     }
2489     default:
2490       break;
2491     }
2492   }
2493 
2494 #ifdef ASSERT
2495   if( n->is_Mem() ) {
2496     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2497     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2498             // oop will be recorded in oop map if load crosses safepoint
2499             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2500                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2501             "raw memory operations should have control edge");
2502   }
2503 #endif
2504   // Count FPU ops and common calls, implements item (3)
2505   switch( nop ) {
2506   // Count all float operations that may use FPU
2507   case Op_AddF:
2508   case Op_SubF:
2509   case Op_MulF:
2510   case Op_DivF:
2511   case Op_NegF:
2512   case Op_ModF:
2513   case Op_ConvI2F:
2514   case Op_ConF:
2515   case Op_CmpF:
2516   case Op_CmpF3:
2517   // case Op_ConvL2F: // longs are split into 32-bit halves
2518     frc.inc_float_count();
2519     break;
2520 
2521   case Op_ConvF2D:
2522   case Op_ConvD2F:
2523     frc.inc_float_count();
2524     frc.inc_double_count();
2525     break;
2526 
2527   // Count all double operations that may use FPU
2528   case Op_AddD:
2529   case Op_SubD:
2530   case Op_MulD:
2531   case Op_DivD:
2532   case Op_NegD:
2533   case Op_ModD:
2534   case Op_ConvI2D:
2535   case Op_ConvD2I:
2536   // case Op_ConvL2D: // handled by leaf call
2537   // case Op_ConvD2L: // handled by leaf call
2538   case Op_ConD:
2539   case Op_CmpD:
2540   case Op_CmpD3:
2541     frc.inc_double_count();
2542     break;
2543   case Op_Opaque1:              // Remove Opaque Nodes before matching
2544   case Op_Opaque2:              // Remove Opaque Nodes before matching
2545     n->subsume_by(n->in(1), this);
2546     break;
2547   case Op_CallStaticJava:
2548   case Op_CallJava:
2549   case Op_CallDynamicJava:
2550     frc.inc_java_call_count(); // Count java call site;
2551   case Op_CallRuntime:
2552   case Op_CallLeaf:
2553   case Op_CallLeafNoFP: {
2554     assert( n->is_Call(), "" );
2555     CallNode *call = n->as_Call();
2556     // Count call sites where the FP mode bit would have to be flipped.
2557     // Do not count uncommon runtime calls:
2558     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2559     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2560     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2561       frc.inc_call_count();   // Count the call site
2562     } else {                  // See if uncommon argument is shared
2563       Node *n = call->in(TypeFunc::Parms);
2564       int nop = n->Opcode();
2565       // Clone shared simple arguments to uncommon calls, item (1).
2566       if( n->outcnt() > 1 &&
2567           !n->is_Proj() &&
2568           nop != Op_CreateEx &&
2569           nop != Op_CheckCastPP &&
2570           nop != Op_DecodeN &&
2571           nop != Op_DecodeNKlass &&
2572           !n->is_Mem() ) {
2573         Node *x = n->clone();
2574         call->set_req( TypeFunc::Parms, x );
2575       }
2576     }
2577     break;
2578   }
2579 
2580   case Op_StoreD:
2581   case Op_LoadD:
2582   case Op_LoadD_unaligned:
2583     frc.inc_double_count();
2584     goto handle_mem;
2585   case Op_StoreF:
2586   case Op_LoadF:
2587     frc.inc_float_count();
2588     goto handle_mem;
2589 
2590   case Op_StoreCM:
2591     {
2592       // Convert OopStore dependence into precedence edge
2593       Node* prec = n->in(MemNode::OopStore);
2594       n->del_req(MemNode::OopStore);
2595       n->add_prec(prec);
2596       eliminate_redundant_card_marks(n);
2597     }
2598 
2599     // fall through
2600 
2601   case Op_StoreB:
2602   case Op_StoreC:
2603   case Op_StorePConditional:
2604   case Op_StoreI:
2605   case Op_StoreL:
2606   case Op_StoreIConditional:
2607   case Op_StoreLConditional:
2608   case Op_CompareAndSwapI:
2609   case Op_CompareAndSwapL:
2610   case Op_CompareAndSwapP:
2611   case Op_CompareAndSwapN:
2612   case Op_GetAndAddI:
2613   case Op_GetAndAddL:
2614   case Op_GetAndSetI:
2615   case Op_GetAndSetL:
2616   case Op_GetAndSetP:
2617   case Op_GetAndSetN:
2618   case Op_StoreP:
2619   case Op_StoreN:
2620   case Op_StoreNKlass:
2621   case Op_LoadB:
2622   case Op_LoadUB:
2623   case Op_LoadUS:
2624   case Op_LoadI:
2625   case Op_LoadKlass:
2626   case Op_LoadNKlass:
2627   case Op_LoadL:
2628   case Op_LoadL_unaligned:
2629   case Op_LoadPLocked:
2630   case Op_LoadP:
2631   case Op_LoadN:
2632   case Op_LoadRange:
2633   case Op_LoadS: {
2634   handle_mem:
2635 #ifdef ASSERT
2636     if( VerifyOptoOopOffsets ) {
2637       assert( n->is_Mem(), "" );
2638       MemNode *mem  = (MemNode*)n;
2639       // Check to see if address types have grounded out somehow.
2640       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2641       assert( !tp || oop_offset_is_sane(tp), "" );
2642     }
2643 #endif
2644     break;
2645   }
2646 
2647   case Op_AddP: {               // Assert sane base pointers
2648     Node *addp = n->in(AddPNode::Address);
2649     assert( !addp->is_AddP() ||
2650             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2651             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2652             "Base pointers must match" );
2653 #ifdef _LP64
2654     if ((UseCompressedOops || UseCompressedClassPointers) &&
2655         addp->Opcode() == Op_ConP &&
2656         addp == n->in(AddPNode::Base) &&
2657         n->in(AddPNode::Offset)->is_Con()) {
2658       // Use addressing with narrow klass to load with offset on x86.
2659       // On sparc loading 32-bits constant and decoding it have less
2660       // instructions (4) then load 64-bits constant (7).
2661       // Do this transformation here since IGVN will convert ConN back to ConP.
2662       const Type* t = addp->bottom_type();
2663       if (t->isa_oopptr() || t->isa_klassptr()) {
2664         Node* nn = NULL;
2665 
2666         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2667 
2668         // Look for existing ConN node of the same exact type.
2669         Node* r  = root();
2670         uint cnt = r->outcnt();
2671         for (uint i = 0; i < cnt; i++) {
2672           Node* m = r->raw_out(i);
2673           if (m!= NULL && m->Opcode() == op &&
2674               m->bottom_type()->make_ptr() == t) {
2675             nn = m;
2676             break;
2677           }
2678         }
2679         if (nn != NULL) {
2680           // Decode a narrow oop to match address
2681           // [R12 + narrow_oop_reg<<3 + offset]
2682           if (t->isa_oopptr()) {
2683             nn = new (this) DecodeNNode(nn, t);
2684           } else {
2685             nn = new (this) DecodeNKlassNode(nn, t);
2686           }
2687           n->set_req(AddPNode::Base, nn);
2688           n->set_req(AddPNode::Address, nn);
2689           if (addp->outcnt() == 0) {
2690             addp->disconnect_inputs(NULL, this);
2691           }
2692         }
2693       }
2694     }
2695 #endif
2696     break;
2697   }
2698 
2699 #ifdef _LP64
2700   case Op_CastPP:
2701     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2702       Node* in1 = n->in(1);
2703       const Type* t = n->bottom_type();
2704       Node* new_in1 = in1->clone();
2705       new_in1->as_DecodeN()->set_type(t);
2706 
2707       if (!Matcher::narrow_oop_use_complex_address()) {
2708         //
2709         // x86, ARM and friends can handle 2 adds in addressing mode
2710         // and Matcher can fold a DecodeN node into address by using
2711         // a narrow oop directly and do implicit NULL check in address:
2712         //
2713         // [R12 + narrow_oop_reg<<3 + offset]
2714         // NullCheck narrow_oop_reg
2715         //
2716         // On other platforms (Sparc) we have to keep new DecodeN node and
2717         // use it to do implicit NULL check in address:
2718         //
2719         // decode_not_null narrow_oop_reg, base_reg
2720         // [base_reg + offset]
2721         // NullCheck base_reg
2722         //
2723         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2724         // to keep the information to which NULL check the new DecodeN node
2725         // corresponds to use it as value in implicit_null_check().
2726         //
2727         new_in1->set_req(0, n->in(0));
2728       }
2729 
2730       n->subsume_by(new_in1, this);
2731       if (in1->outcnt() == 0) {
2732         in1->disconnect_inputs(NULL, this);
2733       }
2734     }
2735     break;
2736 
2737   case Op_CmpP:
2738     // Do this transformation here to preserve CmpPNode::sub() and
2739     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2740     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2741       Node* in1 = n->in(1);
2742       Node* in2 = n->in(2);
2743       if (!in1->is_DecodeNarrowPtr()) {
2744         in2 = in1;
2745         in1 = n->in(2);
2746       }
2747       assert(in1->is_DecodeNarrowPtr(), "sanity");
2748 
2749       Node* new_in2 = NULL;
2750       if (in2->is_DecodeNarrowPtr()) {
2751         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2752         new_in2 = in2->in(1);
2753       } else if (in2->Opcode() == Op_ConP) {
2754         const Type* t = in2->bottom_type();
2755         if (t == TypePtr::NULL_PTR) {
2756           assert(in1->is_DecodeN(), "compare klass to null?");
2757           // Don't convert CmpP null check into CmpN if compressed
2758           // oops implicit null check is not generated.
2759           // This will allow to generate normal oop implicit null check.
2760           if (Matcher::gen_narrow_oop_implicit_null_checks())
2761             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2762           //
2763           // This transformation together with CastPP transformation above
2764           // will generated code for implicit NULL checks for compressed oops.
2765           //
2766           // The original code after Optimize()
2767           //
2768           //    LoadN memory, narrow_oop_reg
2769           //    decode narrow_oop_reg, base_reg
2770           //    CmpP base_reg, NULL
2771           //    CastPP base_reg // NotNull
2772           //    Load [base_reg + offset], val_reg
2773           //
2774           // after these transformations will be
2775           //
2776           //    LoadN memory, narrow_oop_reg
2777           //    CmpN narrow_oop_reg, NULL
2778           //    decode_not_null narrow_oop_reg, base_reg
2779           //    Load [base_reg + offset], val_reg
2780           //
2781           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2782           // since narrow oops can be used in debug info now (see the code in
2783           // final_graph_reshaping_walk()).
2784           //
2785           // At the end the code will be matched to
2786           // on x86:
2787           //
2788           //    Load_narrow_oop memory, narrow_oop_reg
2789           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2790           //    NullCheck narrow_oop_reg
2791           //
2792           // and on sparc:
2793           //
2794           //    Load_narrow_oop memory, narrow_oop_reg
2795           //    decode_not_null narrow_oop_reg, base_reg
2796           //    Load [base_reg + offset], val_reg
2797           //    NullCheck base_reg
2798           //
2799         } else if (t->isa_oopptr()) {
2800           new_in2 = ConNode::make(this, t->make_narrowoop());
2801         } else if (t->isa_klassptr()) {
2802           new_in2 = ConNode::make(this, t->make_narrowklass());
2803         }
2804       }
2805       if (new_in2 != NULL) {
2806         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2807         n->subsume_by(cmpN, this);
2808         if (in1->outcnt() == 0) {
2809           in1->disconnect_inputs(NULL, this);
2810         }
2811         if (in2->outcnt() == 0) {
2812           in2->disconnect_inputs(NULL, this);
2813         }
2814       }
2815     }
2816     break;
2817 
2818   case Op_DecodeN:
2819   case Op_DecodeNKlass:
2820     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2821     // DecodeN could be pinned when it can't be fold into
2822     // an address expression, see the code for Op_CastPP above.
2823     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2824     break;
2825 
2826   case Op_EncodeP:
2827   case Op_EncodePKlass: {
2828     Node* in1 = n->in(1);
2829     if (in1->is_DecodeNarrowPtr()) {
2830       n->subsume_by(in1->in(1), this);
2831     } else if (in1->Opcode() == Op_ConP) {
2832       const Type* t = in1->bottom_type();
2833       if (t == TypePtr::NULL_PTR) {
2834         assert(t->isa_oopptr(), "null klass?");
2835         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2836       } else if (t->isa_oopptr()) {
2837         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2838       } else if (t->isa_klassptr()) {
2839         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2840       }
2841     }
2842     if (in1->outcnt() == 0) {
2843       in1->disconnect_inputs(NULL, this);
2844     }
2845     break;
2846   }
2847 
2848   case Op_Proj: {
2849     if (OptimizeStringConcat) {
2850       ProjNode* p = n->as_Proj();
2851       if (p->_is_io_use) {
2852         // Separate projections were used for the exception path which
2853         // are normally removed by a late inline.  If it wasn't inlined
2854         // then they will hang around and should just be replaced with
2855         // the original one.
2856         Node* proj = NULL;
2857         // Replace with just one
2858         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2859           Node *use = i.get();
2860           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2861             proj = use;
2862             break;
2863           }
2864         }
2865         assert(proj != NULL, "must be found");
2866         p->subsume_by(proj, this);
2867       }
2868     }
2869     break;
2870   }
2871 
2872   case Op_Phi:
2873     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2874       // The EncodeP optimization may create Phi with the same edges
2875       // for all paths. It is not handled well by Register Allocator.
2876       Node* unique_in = n->in(1);
2877       assert(unique_in != NULL, "");
2878       uint cnt = n->req();
2879       for (uint i = 2; i < cnt; i++) {
2880         Node* m = n->in(i);
2881         assert(m != NULL, "");
2882         if (unique_in != m)
2883           unique_in = NULL;
2884       }
2885       if (unique_in != NULL) {
2886         n->subsume_by(unique_in, this);
2887       }
2888     }
2889     break;
2890 
2891 #endif
2892 
2893   case Op_ModI:
2894     if (UseDivMod) {
2895       // Check if a%b and a/b both exist
2896       Node* d = n->find_similar(Op_DivI);
2897       if (d) {
2898         // Replace them with a fused divmod if supported
2899         if (Matcher::has_match_rule(Op_DivModI)) {
2900           DivModINode* divmod = DivModINode::make(this, n);
2901           d->subsume_by(divmod->div_proj(), this);
2902           n->subsume_by(divmod->mod_proj(), this);
2903         } else {
2904           // replace a%b with a-((a/b)*b)
2905           Node* mult = new (this) MulINode(d, d->in(2));
2906           Node* sub  = new (this) SubINode(d->in(1), mult);
2907           n->subsume_by(sub, this);
2908         }
2909       }
2910     }
2911     break;
2912 
2913   case Op_ModL:
2914     if (UseDivMod) {
2915       // Check if a%b and a/b both exist
2916       Node* d = n->find_similar(Op_DivL);
2917       if (d) {
2918         // Replace them with a fused divmod if supported
2919         if (Matcher::has_match_rule(Op_DivModL)) {
2920           DivModLNode* divmod = DivModLNode::make(this, n);
2921           d->subsume_by(divmod->div_proj(), this);
2922           n->subsume_by(divmod->mod_proj(), this);
2923         } else {
2924           // replace a%b with a-((a/b)*b)
2925           Node* mult = new (this) MulLNode(d, d->in(2));
2926           Node* sub  = new (this) SubLNode(d->in(1), mult);
2927           n->subsume_by(sub, this);
2928         }
2929       }
2930     }
2931     break;
2932 
2933   case Op_LoadVector:
2934   case Op_StoreVector:
2935     break;
2936 
2937   case Op_PackB:
2938   case Op_PackS:
2939   case Op_PackI:
2940   case Op_PackF:
2941   case Op_PackL:
2942   case Op_PackD:
2943     if (n->req()-1 > 2) {
2944       // Replace many operand PackNodes with a binary tree for matching
2945       PackNode* p = (PackNode*) n;
2946       Node* btp = p->binary_tree_pack(this, 1, n->req());
2947       n->subsume_by(btp, this);
2948     }
2949     break;
2950   case Op_Loop:
2951   case Op_CountedLoop:
2952     if (n->as_Loop()->is_inner_loop()) {
2953       frc.inc_inner_loop_count();
2954     }
2955     break;
2956   case Op_LShiftI:
2957   case Op_RShiftI:
2958   case Op_URShiftI:
2959   case Op_LShiftL:
2960   case Op_RShiftL:
2961   case Op_URShiftL:
2962     if (Matcher::need_masked_shift_count) {
2963       // The cpu's shift instructions don't restrict the count to the
2964       // lower 5/6 bits. We need to do the masking ourselves.
2965       Node* in2 = n->in(2);
2966       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2967       const TypeInt* t = in2->find_int_type();
2968       if (t != NULL && t->is_con()) {
2969         juint shift = t->get_con();
2970         if (shift > mask) { // Unsigned cmp
2971           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2972         }
2973       } else {
2974         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2975           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
2976           n->set_req(2, shift);
2977         }
2978       }
2979       if (in2->outcnt() == 0) { // Remove dead node
2980         in2->disconnect_inputs(NULL, this);
2981       }
2982     }
2983     break;
2984   case Op_MemBarStoreStore:
2985   case Op_MemBarRelease:
2986     // Break the link with AllocateNode: it is no longer useful and
2987     // confuses register allocation.
2988     if (n->req() > MemBarNode::Precedent) {
2989       n->set_req(MemBarNode::Precedent, top());
2990     }
2991     break;
2992     // Must set a control edge on all nodes that produce a FlagsProj
2993     // so they can't escape the block that consumes the flags.
2994     // Must also set the non throwing branch as the control
2995     // for all nodes that depends on the result. Unless the node
2996     // already have a control that isn't the control of the
2997     // flag producer
2998   case Op_FlagsProj:
2999     {
3000       MathExactNode* math = (MathExactNode*)  n->in(0);
3001       Node* ctrl = math->control_node();
3002       Node* non_throwing = math->non_throwing_branch();
3003       math->set_req(0, ctrl);
3004 
3005       Node* result = math->result_node();
3006       if (result != NULL) {
3007         for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
3008           Node* out = result->fast_out(j);
3009           if (out->in(0) == NULL) {
3010             out->set_req(0, non_throwing);
3011           } else if (out->in(0) == ctrl) {
3012             out->set_req(0, non_throwing);
3013           }
3014         }
3015       }
3016     }
3017     break;
3018   default:
3019     assert( !n->is_Call(), "" );
3020     assert( !n->is_Mem(), "" );
3021     break;
3022   }
3023 
3024   // Collect CFG split points
3025   if (n->is_MultiBranch())
3026     frc._tests.push(n);
3027 }
3028 
3029 //------------------------------final_graph_reshaping_walk---------------------
3030 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3031 // requires that the walk visits a node's inputs before visiting the node.
3032 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3033   ResourceArea *area = Thread::current()->resource_area();
3034   Unique_Node_List sfpt(area);
3035 
3036   frc._visited.set(root->_idx); // first, mark node as visited
3037   uint cnt = root->req();
3038   Node *n = root;
3039   uint  i = 0;
3040   while (true) {
3041     if (i < cnt) {
3042       // Place all non-visited non-null inputs onto stack
3043       Node* m = n->in(i);
3044       ++i;
3045       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3046         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
3047           sfpt.push(m);
3048         cnt = m->req();
3049         nstack.push(n, i); // put on stack parent and next input's index
3050         n = m;
3051         i = 0;
3052       }
3053     } else {
3054       // Now do post-visit work
3055       final_graph_reshaping_impl( n, frc );
3056       if (nstack.is_empty())
3057         break;             // finished
3058       n = nstack.node();   // Get node from stack
3059       cnt = n->req();
3060       i = nstack.index();
3061       nstack.pop();        // Shift to the next node on stack
3062     }
3063   }
3064 
3065   // Skip next transformation if compressed oops are not used.
3066   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3067       (!UseCompressedOops && !UseCompressedClassPointers))
3068     return;
3069 
3070   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3071   // It could be done for an uncommon traps or any safepoints/calls
3072   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3073   while (sfpt.size() > 0) {
3074     n = sfpt.pop();
3075     JVMState *jvms = n->as_SafePoint()->jvms();
3076     assert(jvms != NULL, "sanity");
3077     int start = jvms->debug_start();
3078     int end   = n->req();
3079     bool is_uncommon = (n->is_CallStaticJava() &&
3080                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3081     for (int j = start; j < end; j++) {
3082       Node* in = n->in(j);
3083       if (in->is_DecodeNarrowPtr()) {
3084         bool safe_to_skip = true;
3085         if (!is_uncommon ) {
3086           // Is it safe to skip?
3087           for (uint i = 0; i < in->outcnt(); i++) {
3088             Node* u = in->raw_out(i);
3089             if (!u->is_SafePoint() ||
3090                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3091               safe_to_skip = false;
3092             }
3093           }
3094         }
3095         if (safe_to_skip) {
3096           n->set_req(j, in->in(1));
3097         }
3098         if (in->outcnt() == 0) {
3099           in->disconnect_inputs(NULL, this);
3100         }
3101       }
3102     }
3103   }
3104 }
3105 
3106 //------------------------------final_graph_reshaping--------------------------
3107 // Final Graph Reshaping.
3108 //
3109 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3110 //     and not commoned up and forced early.  Must come after regular
3111 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3112 //     inputs to Loop Phis; these will be split by the allocator anyways.
3113 //     Remove Opaque nodes.
3114 // (2) Move last-uses by commutative operations to the left input to encourage
3115 //     Intel update-in-place two-address operations and better register usage
3116 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3117 //     calls canonicalizing them back.
3118 // (3) Count the number of double-precision FP ops, single-precision FP ops
3119 //     and call sites.  On Intel, we can get correct rounding either by
3120 //     forcing singles to memory (requires extra stores and loads after each
3121 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3122 //     clearing the mode bit around call sites).  The mode bit is only used
3123 //     if the relative frequency of single FP ops to calls is low enough.
3124 //     This is a key transform for SPEC mpeg_audio.
3125 // (4) Detect infinite loops; blobs of code reachable from above but not
3126 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3127 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3128 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3129 //     Detection is by looking for IfNodes where only 1 projection is
3130 //     reachable from below or CatchNodes missing some targets.
3131 // (5) Assert for insane oop offsets in debug mode.
3132 
3133 bool Compile::final_graph_reshaping() {
3134   // an infinite loop may have been eliminated by the optimizer,
3135   // in which case the graph will be empty.
3136   if (root()->req() == 1) {
3137     record_method_not_compilable("trivial infinite loop");
3138     return true;
3139   }
3140 
3141   // Expensive nodes have their control input set to prevent the GVN
3142   // from freely commoning them. There's no GVN beyond this point so
3143   // no need to keep the control input. We want the expensive nodes to
3144   // be freely moved to the least frequent code path by gcm.
3145   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3146   for (int i = 0; i < expensive_count(); i++) {
3147     _expensive_nodes->at(i)->set_req(0, NULL);
3148   }
3149 
3150   Final_Reshape_Counts frc;
3151 
3152   // Visit everybody reachable!
3153   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3154   Node_Stack nstack(unique() >> 1);
3155   final_graph_reshaping_walk(nstack, root(), frc);
3156 
3157   // Check for unreachable (from below) code (i.e., infinite loops).
3158   for( uint i = 0; i < frc._tests.size(); i++ ) {
3159     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3160     // Get number of CFG targets.
3161     // Note that PCTables include exception targets after calls.
3162     uint required_outcnt = n->required_outcnt();
3163     if (n->outcnt() != required_outcnt) {
3164       // Check for a few special cases.  Rethrow Nodes never take the
3165       // 'fall-thru' path, so expected kids is 1 less.
3166       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3167         if (n->in(0)->in(0)->is_Call()) {
3168           CallNode *call = n->in(0)->in(0)->as_Call();
3169           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3170             required_outcnt--;      // Rethrow always has 1 less kid
3171           } else if (call->req() > TypeFunc::Parms &&
3172                      call->is_CallDynamicJava()) {
3173             // Check for null receiver. In such case, the optimizer has
3174             // detected that the virtual call will always result in a null
3175             // pointer exception. The fall-through projection of this CatchNode
3176             // will not be populated.
3177             Node *arg0 = call->in(TypeFunc::Parms);
3178             if (arg0->is_Type() &&
3179                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3180               required_outcnt--;
3181             }
3182           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3183                      call->req() > TypeFunc::Parms+1 &&
3184                      call->is_CallStaticJava()) {
3185             // Check for negative array length. In such case, the optimizer has
3186             // detected that the allocation attempt will always result in an
3187             // exception. There is no fall-through projection of this CatchNode .
3188             Node *arg1 = call->in(TypeFunc::Parms+1);
3189             if (arg1->is_Type() &&
3190                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3191               required_outcnt--;
3192             }
3193           }
3194         }
3195       }
3196       // Recheck with a better notion of 'required_outcnt'
3197       if (n->outcnt() != required_outcnt) {
3198         record_method_not_compilable("malformed control flow");
3199         return true;            // Not all targets reachable!
3200       }
3201     }
3202     // Check that I actually visited all kids.  Unreached kids
3203     // must be infinite loops.
3204     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3205       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3206         record_method_not_compilable("infinite loop");
3207         return true;            // Found unvisited kid; must be unreach
3208       }
3209   }
3210 
3211   // If original bytecodes contained a mixture of floats and doubles
3212   // check if the optimizer has made it homogenous, item (3).
3213   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3214       frc.get_float_count() > 32 &&
3215       frc.get_double_count() == 0 &&
3216       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3217     set_24_bit_selection_and_mode( false,  true );
3218   }
3219 
3220   set_java_calls(frc.get_java_call_count());
3221   set_inner_loops(frc.get_inner_loop_count());
3222 
3223   // No infinite loops, no reason to bail out.
3224   return false;
3225 }
3226 
3227 //-----------------------------too_many_traps----------------------------------
3228 // Report if there are too many traps at the current method and bci.
3229 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3230 bool Compile::too_many_traps(ciMethod* method,
3231                              int bci,
3232                              Deoptimization::DeoptReason reason) {
3233   ciMethodData* md = method->method_data();
3234   if (md->is_empty()) {
3235     // Assume the trap has not occurred, or that it occurred only
3236     // because of a transient condition during start-up in the interpreter.
3237     return false;
3238   }
3239   if (md->has_trap_at(bci, reason) != 0) {
3240     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3241     // Also, if there are multiple reasons, or if there is no per-BCI record,
3242     // assume the worst.
3243     if (log())
3244       log()->elem("observe trap='%s' count='%d'",
3245                   Deoptimization::trap_reason_name(reason),
3246                   md->trap_count(reason));
3247     return true;
3248   } else {
3249     // Ignore method/bci and see if there have been too many globally.
3250     return too_many_traps(reason, md);
3251   }
3252 }
3253 
3254 // Less-accurate variant which does not require a method and bci.
3255 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3256                              ciMethodData* logmd) {
3257  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
3258     // Too many traps globally.
3259     // Note that we use cumulative trap_count, not just md->trap_count.
3260     if (log()) {
3261       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3262       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3263                   Deoptimization::trap_reason_name(reason),
3264                   mcount, trap_count(reason));
3265     }
3266     return true;
3267   } else {
3268     // The coast is clear.
3269     return false;
3270   }
3271 }
3272 
3273 //--------------------------too_many_recompiles--------------------------------
3274 // Report if there are too many recompiles at the current method and bci.
3275 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3276 // Is not eager to return true, since this will cause the compiler to use
3277 // Action_none for a trap point, to avoid too many recompilations.
3278 bool Compile::too_many_recompiles(ciMethod* method,
3279                                   int bci,
3280                                   Deoptimization::DeoptReason reason) {
3281   ciMethodData* md = method->method_data();
3282   if (md->is_empty()) {
3283     // Assume the trap has not occurred, or that it occurred only
3284     // because of a transient condition during start-up in the interpreter.
3285     return false;
3286   }
3287   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3288   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3289   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3290   Deoptimization::DeoptReason per_bc_reason
3291     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3292   if ((per_bc_reason == Deoptimization::Reason_none
3293        || md->has_trap_at(bci, reason) != 0)
3294       // The trap frequency measure we care about is the recompile count:
3295       && md->trap_recompiled_at(bci)
3296       && md->overflow_recompile_count() >= bc_cutoff) {
3297     // Do not emit a trap here if it has already caused recompilations.
3298     // Also, if there are multiple reasons, or if there is no per-BCI record,
3299     // assume the worst.
3300     if (log())
3301       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3302                   Deoptimization::trap_reason_name(reason),
3303                   md->trap_count(reason),
3304                   md->overflow_recompile_count());
3305     return true;
3306   } else if (trap_count(reason) != 0
3307              && decompile_count() >= m_cutoff) {
3308     // Too many recompiles globally, and we have seen this sort of trap.
3309     // Use cumulative decompile_count, not just md->decompile_count.
3310     if (log())
3311       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3312                   Deoptimization::trap_reason_name(reason),
3313                   md->trap_count(reason), trap_count(reason),
3314                   md->decompile_count(), decompile_count());
3315     return true;
3316   } else {
3317     // The coast is clear.
3318     return false;
3319   }
3320 }
3321 
3322 
3323 #ifndef PRODUCT
3324 //------------------------------verify_graph_edges---------------------------
3325 // Walk the Graph and verify that there is a one-to-one correspondence
3326 // between Use-Def edges and Def-Use edges in the graph.
3327 void Compile::verify_graph_edges(bool no_dead_code) {
3328   if (VerifyGraphEdges) {
3329     ResourceArea *area = Thread::current()->resource_area();
3330     Unique_Node_List visited(area);
3331     // Call recursive graph walk to check edges
3332     _root->verify_edges(visited);
3333     if (no_dead_code) {
3334       // Now make sure that no visited node is used by an unvisited node.
3335       bool dead_nodes = 0;
3336       Unique_Node_List checked(area);
3337       while (visited.size() > 0) {
3338         Node* n = visited.pop();
3339         checked.push(n);
3340         for (uint i = 0; i < n->outcnt(); i++) {
3341           Node* use = n->raw_out(i);
3342           if (checked.member(use))  continue;  // already checked
3343           if (visited.member(use))  continue;  // already in the graph
3344           if (use->is_Con())        continue;  // a dead ConNode is OK
3345           // At this point, we have found a dead node which is DU-reachable.
3346           if (dead_nodes++ == 0)
3347             tty->print_cr("*** Dead nodes reachable via DU edges:");
3348           use->dump(2);
3349           tty->print_cr("---");
3350           checked.push(use);  // No repeats; pretend it is now checked.
3351         }
3352       }
3353       assert(dead_nodes == 0, "using nodes must be reachable from root");
3354     }
3355   }
3356 }
3357 #endif
3358 
3359 // The Compile object keeps track of failure reasons separately from the ciEnv.
3360 // This is required because there is not quite a 1-1 relation between the
3361 // ciEnv and its compilation task and the Compile object.  Note that one
3362 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3363 // to backtrack and retry without subsuming loads.  Other than this backtracking
3364 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3365 // by the logic in C2Compiler.
3366 void Compile::record_failure(const char* reason) {
3367   if (log() != NULL) {
3368     log()->elem("failure reason='%s' phase='compile'", reason);
3369   }
3370   if (_failure_reason == NULL) {
3371     // Record the first failure reason.
3372     _failure_reason = reason;
3373   }
3374 
3375   EventCompilerFailure event;
3376   if (event.should_commit()) {
3377     event.set_compileID(Compile::compile_id());
3378     event.set_failure(reason);
3379     event.commit();
3380   }
3381 
3382   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3383     C->print_method(PHASE_FAILURE);
3384   }
3385   _root = NULL;  // flush the graph, too
3386 }
3387 
3388 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3389   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3390     _phase_name(name), _dolog(dolog)
3391 {
3392   if (dolog) {
3393     C = Compile::current();
3394     _log = C->log();
3395   } else {
3396     C = NULL;
3397     _log = NULL;
3398   }
3399   if (_log != NULL) {
3400     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3401     _log->stamp();
3402     _log->end_head();
3403   }
3404 }
3405 
3406 Compile::TracePhase::~TracePhase() {
3407 
3408   C = Compile::current();
3409   if (_dolog) {
3410     _log = C->log();
3411   } else {
3412     _log = NULL;
3413   }
3414 
3415 #ifdef ASSERT
3416   if (PrintIdealNodeCount) {
3417     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3418                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3419   }
3420 
3421   if (VerifyIdealNodeCount) {
3422     Compile::current()->print_missing_nodes();
3423   }
3424 #endif
3425 
3426   if (_log != NULL) {
3427     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3428   }
3429 }
3430 
3431 //=============================================================================
3432 // Two Constant's are equal when the type and the value are equal.
3433 bool Compile::Constant::operator==(const Constant& other) {
3434   if (type()          != other.type()         )  return false;
3435   if (can_be_reused() != other.can_be_reused())  return false;
3436   // For floating point values we compare the bit pattern.
3437   switch (type()) {
3438   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3439   case T_LONG:
3440   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3441   case T_OBJECT:
3442   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3443   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3444   case T_METADATA: return (_v._metadata == other._v._metadata);
3445   default: ShouldNotReachHere();
3446   }
3447   return false;
3448 }
3449 
3450 static int type_to_size_in_bytes(BasicType t) {
3451   switch (t) {
3452   case T_LONG:    return sizeof(jlong  );
3453   case T_FLOAT:   return sizeof(jfloat );
3454   case T_DOUBLE:  return sizeof(jdouble);
3455   case T_METADATA: return sizeof(Metadata*);
3456     // We use T_VOID as marker for jump-table entries (labels) which
3457     // need an internal word relocation.
3458   case T_VOID:
3459   case T_ADDRESS:
3460   case T_OBJECT:  return sizeof(jobject);
3461   }
3462 
3463   ShouldNotReachHere();
3464   return -1;
3465 }
3466 
3467 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3468   // sort descending
3469   if (a->freq() > b->freq())  return -1;
3470   if (a->freq() < b->freq())  return  1;
3471   return 0;
3472 }
3473 
3474 void Compile::ConstantTable::calculate_offsets_and_size() {
3475   // First, sort the array by frequencies.
3476   _constants.sort(qsort_comparator);
3477 
3478 #ifdef ASSERT
3479   // Make sure all jump-table entries were sorted to the end of the
3480   // array (they have a negative frequency).
3481   bool found_void = false;
3482   for (int i = 0; i < _constants.length(); i++) {
3483     Constant con = _constants.at(i);
3484     if (con.type() == T_VOID)
3485       found_void = true;  // jump-tables
3486     else
3487       assert(!found_void, "wrong sorting");
3488   }
3489 #endif
3490 
3491   int offset = 0;
3492   for (int i = 0; i < _constants.length(); i++) {
3493     Constant* con = _constants.adr_at(i);
3494 
3495     // Align offset for type.
3496     int typesize = type_to_size_in_bytes(con->type());
3497     offset = align_size_up(offset, typesize);
3498     con->set_offset(offset);   // set constant's offset
3499 
3500     if (con->type() == T_VOID) {
3501       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3502       offset = offset + typesize * n->outcnt();  // expand jump-table
3503     } else {
3504       offset = offset + typesize;
3505     }
3506   }
3507 
3508   // Align size up to the next section start (which is insts; see
3509   // CodeBuffer::align_at_start).
3510   assert(_size == -1, "already set?");
3511   _size = align_size_up(offset, CodeEntryAlignment);
3512 }
3513 
3514 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3515   MacroAssembler _masm(&cb);
3516   for (int i = 0; i < _constants.length(); i++) {
3517     Constant con = _constants.at(i);
3518     address constant_addr;
3519     switch (con.type()) {
3520     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3521     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3522     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3523     case T_OBJECT: {
3524       jobject obj = con.get_jobject();
3525       int oop_index = _masm.oop_recorder()->find_index(obj);
3526       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3527       break;
3528     }
3529     case T_ADDRESS: {
3530       address addr = (address) con.get_jobject();
3531       constant_addr = _masm.address_constant(addr);
3532       break;
3533     }
3534     // We use T_VOID as marker for jump-table entries (labels) which
3535     // need an internal word relocation.
3536     case T_VOID: {
3537       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3538       // Fill the jump-table with a dummy word.  The real value is
3539       // filled in later in fill_jump_table.
3540       address dummy = (address) n;
3541       constant_addr = _masm.address_constant(dummy);
3542       // Expand jump-table
3543       for (uint i = 1; i < n->outcnt(); i++) {
3544         address temp_addr = _masm.address_constant(dummy + i);
3545         assert(temp_addr, "consts section too small");
3546       }
3547       break;
3548     }
3549     case T_METADATA: {
3550       Metadata* obj = con.get_metadata();
3551       int metadata_index = _masm.oop_recorder()->find_index(obj);
3552       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3553       break;
3554     }
3555     default: ShouldNotReachHere();
3556     }
3557     assert(constant_addr, "consts section too small");
3558     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3559   }
3560 }
3561 
3562 int Compile::ConstantTable::find_offset(Constant& con) const {
3563   int idx = _constants.find(con);
3564   assert(idx != -1, "constant must be in constant table");
3565   int offset = _constants.at(idx).offset();
3566   assert(offset != -1, "constant table not emitted yet?");
3567   return offset;
3568 }
3569 
3570 void Compile::ConstantTable::add(Constant& con) {
3571   if (con.can_be_reused()) {
3572     int idx = _constants.find(con);
3573     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3574       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3575       return;
3576     }
3577   }
3578   (void) _constants.append(con);
3579 }
3580 
3581 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3582   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3583   Constant con(type, value, b->_freq);
3584   add(con);
3585   return con;
3586 }
3587 
3588 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3589   Constant con(metadata);
3590   add(con);
3591   return con;
3592 }
3593 
3594 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3595   jvalue value;
3596   BasicType type = oper->type()->basic_type();
3597   switch (type) {
3598   case T_LONG:    value.j = oper->constantL(); break;
3599   case T_FLOAT:   value.f = oper->constantF(); break;
3600   case T_DOUBLE:  value.d = oper->constantD(); break;
3601   case T_OBJECT:
3602   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3603   case T_METADATA: return add((Metadata*)oper->constant()); break;
3604   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3605   }
3606   return add(n, type, value);
3607 }
3608 
3609 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3610   jvalue value;
3611   // We can use the node pointer here to identify the right jump-table
3612   // as this method is called from Compile::Fill_buffer right before
3613   // the MachNodes are emitted and the jump-table is filled (means the
3614   // MachNode pointers do not change anymore).
3615   value.l = (jobject) n;
3616   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3617   add(con);
3618   return con;
3619 }
3620 
3621 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3622   // If called from Compile::scratch_emit_size do nothing.
3623   if (Compile::current()->in_scratch_emit_size())  return;
3624 
3625   assert(labels.is_nonempty(), "must be");
3626   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3627 
3628   // Since MachConstantNode::constant_offset() also contains
3629   // table_base_offset() we need to subtract the table_base_offset()
3630   // to get the plain offset into the constant table.
3631   int offset = n->constant_offset() - table_base_offset();
3632 
3633   MacroAssembler _masm(&cb);
3634   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3635 
3636   for (uint i = 0; i < n->outcnt(); i++) {
3637     address* constant_addr = &jump_table_base[i];
3638     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3639     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3640     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3641   }
3642 }
3643 
3644 void Compile::dump_inlining() {
3645   if (print_inlining() || print_intrinsics()) {
3646     // Print inlining message for candidates that we couldn't inline
3647     // for lack of space or non constant receiver
3648     for (int i = 0; i < _late_inlines.length(); i++) {
3649       CallGenerator* cg = _late_inlines.at(i);
3650       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3651     }
3652     Unique_Node_List useful;
3653     useful.push(root());
3654     for (uint next = 0; next < useful.size(); ++next) {
3655       Node* n  = useful.at(next);
3656       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3657         CallNode* call = n->as_Call();
3658         CallGenerator* cg = call->generator();
3659         cg->print_inlining_late("receiver not constant");
3660       }
3661       uint max = n->len();
3662       for ( uint i = 0; i < max; ++i ) {
3663         Node *m = n->in(i);
3664         if ( m == NULL ) continue;
3665         useful.push(m);
3666       }
3667     }
3668     for (int i = 0; i < _print_inlining_list->length(); i++) {
3669       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3670     }
3671   }
3672 }
3673 
3674 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3675   if (n1->Opcode() < n2->Opcode())      return -1;
3676   else if (n1->Opcode() > n2->Opcode()) return 1;
3677 
3678   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3679   for (uint i = 1; i < n1->req(); i++) {
3680     if (n1->in(i) < n2->in(i))      return -1;
3681     else if (n1->in(i) > n2->in(i)) return 1;
3682   }
3683 
3684   return 0;
3685 }
3686 
3687 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3688   Node* n1 = *n1p;
3689   Node* n2 = *n2p;
3690 
3691   return cmp_expensive_nodes(n1, n2);
3692 }
3693 
3694 void Compile::sort_expensive_nodes() {
3695   if (!expensive_nodes_sorted()) {
3696     _expensive_nodes->sort(cmp_expensive_nodes);
3697   }
3698 }
3699 
3700 bool Compile::expensive_nodes_sorted() const {
3701   for (int i = 1; i < _expensive_nodes->length(); i++) {
3702     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3703       return false;
3704     }
3705   }
3706   return true;
3707 }
3708 
3709 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3710   if (_expensive_nodes->length() == 0) {
3711     return false;
3712   }
3713 
3714   assert(OptimizeExpensiveOps, "optimization off?");
3715 
3716   // Take this opportunity to remove dead nodes from the list
3717   int j = 0;
3718   for (int i = 0; i < _expensive_nodes->length(); i++) {
3719     Node* n = _expensive_nodes->at(i);
3720     if (!n->is_unreachable(igvn)) {
3721       assert(n->is_expensive(), "should be expensive");
3722       _expensive_nodes->at_put(j, n);
3723       j++;
3724     }
3725   }
3726   _expensive_nodes->trunc_to(j);
3727 
3728   // Then sort the list so that similar nodes are next to each other
3729   // and check for at least two nodes of identical kind with same data
3730   // inputs.
3731   sort_expensive_nodes();
3732 
3733   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3734     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3735       return true;
3736     }
3737   }
3738 
3739   return false;
3740 }
3741 
3742 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3743   if (_expensive_nodes->length() == 0) {
3744     return;
3745   }
3746 
3747   assert(OptimizeExpensiveOps, "optimization off?");
3748 
3749   // Sort to bring similar nodes next to each other and clear the
3750   // control input of nodes for which there's only a single copy.
3751   sort_expensive_nodes();
3752 
3753   int j = 0;
3754   int identical = 0;
3755   int i = 0;
3756   for (; i < _expensive_nodes->length()-1; i++) {
3757     assert(j <= i, "can't write beyond current index");
3758     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3759       identical++;
3760       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3761       continue;
3762     }
3763     if (identical > 0) {
3764       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3765       identical = 0;
3766     } else {
3767       Node* n = _expensive_nodes->at(i);
3768       igvn.hash_delete(n);
3769       n->set_req(0, NULL);
3770       igvn.hash_insert(n);
3771     }
3772   }
3773   if (identical > 0) {
3774     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3775   } else if (_expensive_nodes->length() >= 1) {
3776     Node* n = _expensive_nodes->at(i);
3777     igvn.hash_delete(n);
3778     n->set_req(0, NULL);
3779     igvn.hash_insert(n);
3780   }
3781   _expensive_nodes->trunc_to(j);
3782 }
3783 
3784 void Compile::add_expensive_node(Node * n) {
3785   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3786   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3787   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3788   if (OptimizeExpensiveOps) {
3789     _expensive_nodes->append(n);
3790   } else {
3791     // Clear control input and let IGVN optimize expensive nodes if
3792     // OptimizeExpensiveOps is off.
3793     n->set_req(0, NULL);
3794   }
3795 }
3796 
3797 // Auxiliary method to support randomized stressing/fuzzing.
3798 //
3799 // This method can be called the arbitrary number of times, with current count
3800 // as the argument. The logic allows selecting a single candidate from the
3801 // running list of candidates as follows:
3802 //    int count = 0;
3803 //    Cand* selected = null;
3804 //    while(cand = cand->next()) {
3805 //      if (randomized_select(++count)) {
3806 //        selected = cand;
3807 //      }
3808 //    }
3809 //
3810 // Including count equalizes the chances any candidate is "selected".
3811 // This is useful when we don't have the complete list of candidates to choose
3812 // from uniformly. In this case, we need to adjust the randomicity of the
3813 // selection, or else we will end up biasing the selection towards the latter
3814 // candidates.
3815 //
3816 // Quick back-envelope calculation shows that for the list of n candidates
3817 // the equal probability for the candidate to persist as "best" can be
3818 // achieved by replacing it with "next" k-th candidate with the probability
3819 // of 1/k. It can be easily shown that by the end of the run, the
3820 // probability for any candidate is converged to 1/n, thus giving the
3821 // uniform distribution among all the candidates.
3822 //
3823 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3824 #define RANDOMIZED_DOMAIN_POW 29
3825 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3826 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3827 bool Compile::randomized_select(int count) {
3828   assert(count > 0, "only positive");
3829   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3830 }