1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mathexactnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "prims/nativeLookup.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "trace/traceMacros.hpp"
  43 
  44 class LibraryIntrinsic : public InlineCallGenerator {
  45   // Extend the set of intrinsics known to the runtime:
  46  public:
  47  private:
  48   bool             _is_virtual;
  49   bool             _is_predicted;
  50   bool             _does_virtual_dispatch;
  51   vmIntrinsics::ID _intrinsic_id;
  52 
  53  public:
  54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  55     : InlineCallGenerator(m),
  56       _is_virtual(is_virtual),
  57       _is_predicted(is_predicted),
  58       _does_virtual_dispatch(does_virtual_dispatch),
  59       _intrinsic_id(id)
  60   {
  61   }
  62   virtual bool is_intrinsic() const { return true; }
  63   virtual bool is_virtual()   const { return _is_virtual; }
  64   virtual bool is_predicted()   const { return _is_predicted; }
  65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  67   virtual Node* generate_predicate(JVMState* jvms);
  68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  69 };
  70 
  71 
  72 // Local helper class for LibraryIntrinsic:
  73 class LibraryCallKit : public GraphKit {
  74  private:
  75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  76   Node*             _result;        // the result node, if any
  77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  78 
  79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  80 
  81  public:
  82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  83     : GraphKit(jvms),
  84       _intrinsic(intrinsic),
  85       _result(NULL)
  86   {
  87     // Check if this is a root compile.  In that case we don't have a caller.
  88     if (!jvms->has_method()) {
  89       _reexecute_sp = sp();
  90     } else {
  91       // Find out how many arguments the interpreter needs when deoptimizing
  92       // and save the stack pointer value so it can used by uncommon_trap.
  93       // We find the argument count by looking at the declared signature.
  94       bool ignored_will_link;
  95       ciSignature* declared_signature = NULL;
  96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  99     }
 100   }
 101 
 102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 103 
 104   ciMethod*         caller()    const    { return jvms()->method(); }
 105   int               bci()       const    { return jvms()->bci(); }
 106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 108   ciMethod*         callee()    const    { return _intrinsic->method(); }
 109 
 110   bool try_to_inline();
 111   Node* try_to_predicate();
 112 
 113   void push_result() {
 114     // Push the result onto the stack.
 115     if (!stopped() && result() != NULL) {
 116       BasicType bt = result()->bottom_type()->basic_type();
 117       push_node(bt, result());
 118     }
 119   }
 120 
 121  private:
 122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 124   }
 125 
 126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 127   void  set_result(RegionNode* region, PhiNode* value);
 128   Node*     result() { return _result; }
 129 
 130   virtual int reexecute_sp() { return _reexecute_sp; }
 131 
 132   // Helper functions to inline natives
 133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 134   Node* generate_slow_guard(Node* test, RegionNode* region);
 135   Node* generate_fair_guard(Node* test, RegionNode* region);
 136   Node* generate_negative_guard(Node* index, RegionNode* region,
 137                                 // resulting CastII of index:
 138                                 Node* *pos_index = NULL);
 139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 140                                    // resulting CastII of index:
 141                                    Node* *pos_index = NULL);
 142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 143                              Node* array_length,
 144                              RegionNode* region);
 145   Node* generate_current_thread(Node* &tls_output);
 146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 148   Node* load_mirror_from_klass(Node* klass);
 149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 150                                       RegionNode* region, int null_path,
 151                                       int offset);
 152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 153                                RegionNode* region, int null_path) {
 154     int offset = java_lang_Class::klass_offset_in_bytes();
 155     return load_klass_from_mirror_common(mirror, never_see_null,
 156                                          region, null_path,
 157                                          offset);
 158   }
 159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                      RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::array_klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* generate_access_flags_guard(Node* kls,
 167                                     int modifier_mask, int modifier_bits,
 168                                     RegionNode* region);
 169   Node* generate_interface_guard(Node* kls, RegionNode* region);
 170   Node* generate_array_guard(Node* kls, RegionNode* region) {
 171     return generate_array_guard_common(kls, region, false, false);
 172   }
 173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 174     return generate_array_guard_common(kls, region, false, true);
 175   }
 176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, true, false);
 178   }
 179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, true, true);
 181   }
 182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 183                                     bool obj_array, bool not_array);
 184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 186                                      bool is_virtual = false, bool is_static = false);
 187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 188     return generate_method_call(method_id, false, true);
 189   }
 190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 191     return generate_method_call(method_id, true, false);
 192   }
 193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 194 
 195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 197   bool inline_string_compareTo();
 198   bool inline_string_indexOf();
 199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 200   bool inline_string_equals();
 201   Node* round_double_node(Node* n);
 202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 203   bool inline_math_native(vmIntrinsics::ID id);
 204   bool inline_trig(vmIntrinsics::ID id);
 205   bool inline_math(vmIntrinsics::ID id);
 206   bool inline_math_mathExact(Node* math);
 207   bool inline_math_addExact();
 208   bool inline_exp();
 209   bool inline_pow();
 210   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 211   bool inline_min_max(vmIntrinsics::ID id);
 212   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 213   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 214   int classify_unsafe_addr(Node* &base, Node* &offset);
 215   Node* make_unsafe_address(Node* base, Node* offset);
 216   // Helper for inline_unsafe_access.
 217   // Generates the guards that check whether the result of
 218   // Unsafe.getObject should be recorded in an SATB log buffer.
 219   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 220   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 221   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 222   static bool klass_needs_init_guard(Node* kls);
 223   bool inline_unsafe_allocate();
 224   bool inline_unsafe_copyMemory();
 225   bool inline_native_currentThread();
 226 #ifdef TRACE_HAVE_INTRINSICS
 227   bool inline_native_classID();
 228   bool inline_native_threadID();
 229 #endif
 230   bool inline_native_time_funcs(address method, const char* funcName);
 231   bool inline_native_isInterrupted();
 232   bool inline_native_Class_query(vmIntrinsics::ID id);
 233   bool inline_native_subtype_check();
 234 
 235   bool inline_native_newArray();
 236   bool inline_native_getLength();
 237   bool inline_array_copyOf(bool is_copyOfRange);
 238   bool inline_array_equals();
 239   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 240   bool inline_native_clone(bool is_virtual);
 241   bool inline_native_Reflection_getCallerClass();
 242   // Helper function for inlining native object hash method
 243   bool inline_native_hashcode(bool is_virtual, bool is_static);
 244   bool inline_native_getClass();
 245 
 246   // Helper functions for inlining arraycopy
 247   bool inline_arraycopy();
 248   void generate_arraycopy(const TypePtr* adr_type,
 249                           BasicType basic_elem_type,
 250                           Node* src,  Node* src_offset,
 251                           Node* dest, Node* dest_offset,
 252                           Node* copy_length,
 253                           bool disjoint_bases = false,
 254                           bool length_never_negative = false,
 255                           RegionNode* slow_region = NULL);
 256   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 257                                                 RegionNode* slow_region);
 258   void generate_clear_array(const TypePtr* adr_type,
 259                             Node* dest,
 260                             BasicType basic_elem_type,
 261                             Node* slice_off,
 262                             Node* slice_len,
 263                             Node* slice_end);
 264   bool generate_block_arraycopy(const TypePtr* adr_type,
 265                                 BasicType basic_elem_type,
 266                                 AllocateNode* alloc,
 267                                 Node* src,  Node* src_offset,
 268                                 Node* dest, Node* dest_offset,
 269                                 Node* dest_size, bool dest_uninitialized);
 270   void generate_slow_arraycopy(const TypePtr* adr_type,
 271                                Node* src,  Node* src_offset,
 272                                Node* dest, Node* dest_offset,
 273                                Node* copy_length, bool dest_uninitialized);
 274   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 275                                      Node* dest_elem_klass,
 276                                      Node* src,  Node* src_offset,
 277                                      Node* dest, Node* dest_offset,
 278                                      Node* copy_length, bool dest_uninitialized);
 279   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 280                                    Node* src,  Node* src_offset,
 281                                    Node* dest, Node* dest_offset,
 282                                    Node* copy_length, bool dest_uninitialized);
 283   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 284                                     BasicType basic_elem_type,
 285                                     bool disjoint_bases,
 286                                     Node* src,  Node* src_offset,
 287                                     Node* dest, Node* dest_offset,
 288                                     Node* copy_length, bool dest_uninitialized);
 289   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 290   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 291   bool inline_unsafe_ordered_store(BasicType type);
 292   bool inline_unsafe_fence(vmIntrinsics::ID id);
 293   bool inline_fp_conversions(vmIntrinsics::ID id);
 294   bool inline_number_methods(vmIntrinsics::ID id);
 295   bool inline_reference_get();
 296   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 297   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 298   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 299   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 300   bool inline_encodeISOArray();
 301   bool inline_updateCRC32();
 302   bool inline_updateBytesCRC32();
 303   bool inline_updateByteBufferCRC32();
 304 };
 305 
 306 
 307 //---------------------------make_vm_intrinsic----------------------------
 308 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 309   vmIntrinsics::ID id = m->intrinsic_id();
 310   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 311 
 312   if (DisableIntrinsic[0] != '\0'
 313       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 314     // disabled by a user request on the command line:
 315     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 316     return NULL;
 317   }
 318 
 319   if (!m->is_loaded()) {
 320     // do not attempt to inline unloaded methods
 321     return NULL;
 322   }
 323 
 324   // Only a few intrinsics implement a virtual dispatch.
 325   // They are expensive calls which are also frequently overridden.
 326   if (is_virtual) {
 327     switch (id) {
 328     case vmIntrinsics::_hashCode:
 329     case vmIntrinsics::_clone:
 330       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 331       break;
 332     default:
 333       return NULL;
 334     }
 335   }
 336 
 337   // -XX:-InlineNatives disables nearly all intrinsics:
 338   if (!InlineNatives) {
 339     switch (id) {
 340     case vmIntrinsics::_indexOf:
 341     case vmIntrinsics::_compareTo:
 342     case vmIntrinsics::_equals:
 343     case vmIntrinsics::_equalsC:
 344     case vmIntrinsics::_getAndAddInt:
 345     case vmIntrinsics::_getAndAddLong:
 346     case vmIntrinsics::_getAndSetInt:
 347     case vmIntrinsics::_getAndSetLong:
 348     case vmIntrinsics::_getAndSetObject:
 349     case vmIntrinsics::_loadFence:
 350     case vmIntrinsics::_storeFence:
 351     case vmIntrinsics::_fullFence:
 352       break;  // InlineNatives does not control String.compareTo
 353     case vmIntrinsics::_Reference_get:
 354       break;  // InlineNatives does not control Reference.get
 355     default:
 356       return NULL;
 357     }
 358   }
 359 
 360   bool is_predicted = false;
 361   bool does_virtual_dispatch = false;
 362 
 363   switch (id) {
 364   case vmIntrinsics::_compareTo:
 365     if (!SpecialStringCompareTo)  return NULL;
 366     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 367     break;
 368   case vmIntrinsics::_indexOf:
 369     if (!SpecialStringIndexOf)  return NULL;
 370     break;
 371   case vmIntrinsics::_equals:
 372     if (!SpecialStringEquals)  return NULL;
 373     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 374     break;
 375   case vmIntrinsics::_equalsC:
 376     if (!SpecialArraysEquals)  return NULL;
 377     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 378     break;
 379   case vmIntrinsics::_arraycopy:
 380     if (!InlineArrayCopy)  return NULL;
 381     break;
 382   case vmIntrinsics::_copyMemory:
 383     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 384     if (!InlineArrayCopy)  return NULL;
 385     break;
 386   case vmIntrinsics::_hashCode:
 387     if (!InlineObjectHash)  return NULL;
 388     does_virtual_dispatch = true;
 389     break;
 390   case vmIntrinsics::_clone:
 391     does_virtual_dispatch = true;
 392   case vmIntrinsics::_copyOf:
 393   case vmIntrinsics::_copyOfRange:
 394     if (!InlineObjectCopy)  return NULL;
 395     // These also use the arraycopy intrinsic mechanism:
 396     if (!InlineArrayCopy)  return NULL;
 397     break;
 398   case vmIntrinsics::_encodeISOArray:
 399     if (!SpecialEncodeISOArray)  return NULL;
 400     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 401     break;
 402   case vmIntrinsics::_checkIndex:
 403     // We do not intrinsify this.  The optimizer does fine with it.
 404     return NULL;
 405 
 406   case vmIntrinsics::_getCallerClass:
 407     if (!UseNewReflection)  return NULL;
 408     if (!InlineReflectionGetCallerClass)  return NULL;
 409     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 410     break;
 411 
 412   case vmIntrinsics::_bitCount_i:
 413     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 414     break;
 415 
 416   case vmIntrinsics::_bitCount_l:
 417     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 418     break;
 419 
 420   case vmIntrinsics::_numberOfLeadingZeros_i:
 421     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 422     break;
 423 
 424   case vmIntrinsics::_numberOfLeadingZeros_l:
 425     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_numberOfTrailingZeros_i:
 429     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 430     break;
 431 
 432   case vmIntrinsics::_numberOfTrailingZeros_l:
 433     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_reverseBytes_c:
 437     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 438     break;
 439   case vmIntrinsics::_reverseBytes_s:
 440     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 441     break;
 442   case vmIntrinsics::_reverseBytes_i:
 443     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 444     break;
 445   case vmIntrinsics::_reverseBytes_l:
 446     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 447     break;
 448 
 449   case vmIntrinsics::_Reference_get:
 450     // Use the intrinsic version of Reference.get() so that the value in
 451     // the referent field can be registered by the G1 pre-barrier code.
 452     // Also add memory barrier to prevent commoning reads from this field
 453     // across safepoint since GC can change it value.
 454     break;
 455 
 456   case vmIntrinsics::_compareAndSwapObject:
 457 #ifdef _LP64
 458     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 459 #endif
 460     break;
 461 
 462   case vmIntrinsics::_compareAndSwapLong:
 463     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 464     break;
 465 
 466   case vmIntrinsics::_getAndAddInt:
 467     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 468     break;
 469 
 470   case vmIntrinsics::_getAndAddLong:
 471     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 472     break;
 473 
 474   case vmIntrinsics::_getAndSetInt:
 475     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 476     break;
 477 
 478   case vmIntrinsics::_getAndSetLong:
 479     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_getAndSetObject:
 483 #ifdef _LP64
 484     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 485     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 486     break;
 487 #else
 488     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 489     break;
 490 #endif
 491 
 492   case vmIntrinsics::_aescrypt_encryptBlock:
 493   case vmIntrinsics::_aescrypt_decryptBlock:
 494     if (!UseAESIntrinsics) return NULL;
 495     break;
 496 
 497   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 498   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 499     if (!UseAESIntrinsics) return NULL;
 500     // these two require the predicated logic
 501     is_predicted = true;
 502     break;
 503 
 504   case vmIntrinsics::_updateCRC32:
 505   case vmIntrinsics::_updateBytesCRC32:
 506   case vmIntrinsics::_updateByteBufferCRC32:
 507     if (!UseCRC32Intrinsics) return NULL;
 508     break;
 509 
 510   case vmIntrinsics::_addExact:
 511     if (!Matcher::match_rule_supported(Op_AddExactI)) {
 512       return NULL;
 513     }
 514     if (!UseMathExactIntrinsics) {
 515       return NULL;
 516     }
 517     break;
 518 
 519  default:
 520     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 521     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 522     break;
 523   }
 524 
 525   // -XX:-InlineClassNatives disables natives from the Class class.
 526   // The flag applies to all reflective calls, notably Array.newArray
 527   // (visible to Java programmers as Array.newInstance).
 528   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 529       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 530     if (!InlineClassNatives)  return NULL;
 531   }
 532 
 533   // -XX:-InlineThreadNatives disables natives from the Thread class.
 534   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 535     if (!InlineThreadNatives)  return NULL;
 536   }
 537 
 538   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 539   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 540       m->holder()->name() == ciSymbol::java_lang_Float() ||
 541       m->holder()->name() == ciSymbol::java_lang_Double()) {
 542     if (!InlineMathNatives)  return NULL;
 543   }
 544 
 545   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 546   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 547     if (!InlineUnsafeOps)  return NULL;
 548   }
 549 
 550   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 551 }
 552 
 553 //----------------------register_library_intrinsics-----------------------
 554 // Initialize this file's data structures, for each Compile instance.
 555 void Compile::register_library_intrinsics() {
 556   // Nothing to do here.
 557 }
 558 
 559 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 560   LibraryCallKit kit(jvms, this);
 561   Compile* C = kit.C;
 562   int nodes = C->unique();
 563 #ifndef PRODUCT
 564   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 565     char buf[1000];
 566     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 567     tty->print_cr("Intrinsic %s", str);
 568   }
 569 #endif
 570   ciMethod* callee = kit.callee();
 571   const int bci    = kit.bci();
 572 
 573   // Try to inline the intrinsic.
 574   if (kit.try_to_inline()) {
 575     if (C->print_intrinsics() || C->print_inlining()) {
 576       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 577     }
 578     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 579     if (C->log()) {
 580       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 581                      vmIntrinsics::name_at(intrinsic_id()),
 582                      (is_virtual() ? " virtual='1'" : ""),
 583                      C->unique() - nodes);
 584     }
 585     // Push the result from the inlined method onto the stack.
 586     kit.push_result();
 587     return kit.transfer_exceptions_into_jvms();
 588   }
 589 
 590   // The intrinsic bailed out
 591   if (C->print_intrinsics() || C->print_inlining()) {
 592     if (jvms->has_method()) {
 593       // Not a root compile.
 594       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 595       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 596     } else {
 597       // Root compile
 598       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 599                vmIntrinsics::name_at(intrinsic_id()),
 600                (is_virtual() ? " (virtual)" : ""), bci);
 601     }
 602   }
 603   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 604   return NULL;
 605 }
 606 
 607 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 608   LibraryCallKit kit(jvms, this);
 609   Compile* C = kit.C;
 610   int nodes = C->unique();
 611 #ifndef PRODUCT
 612   assert(is_predicted(), "sanity");
 613   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 614     char buf[1000];
 615     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 616     tty->print_cr("Predicate for intrinsic %s", str);
 617   }
 618 #endif
 619   ciMethod* callee = kit.callee();
 620   const int bci    = kit.bci();
 621 
 622   Node* slow_ctl = kit.try_to_predicate();
 623   if (!kit.failing()) {
 624     if (C->print_intrinsics() || C->print_inlining()) {
 625       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 626     }
 627     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 628     if (C->log()) {
 629       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 630                      vmIntrinsics::name_at(intrinsic_id()),
 631                      (is_virtual() ? " virtual='1'" : ""),
 632                      C->unique() - nodes);
 633     }
 634     return slow_ctl; // Could be NULL if the check folds.
 635   }
 636 
 637   // The intrinsic bailed out
 638   if (C->print_intrinsics() || C->print_inlining()) {
 639     if (jvms->has_method()) {
 640       // Not a root compile.
 641       const char* msg = "failed to generate predicate for intrinsic";
 642       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 643     } else {
 644       // Root compile
 645       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 646                                         vmIntrinsics::name_at(intrinsic_id()),
 647                                         (is_virtual() ? " (virtual)" : ""), bci);
 648     }
 649   }
 650   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 651   return NULL;
 652 }
 653 
 654 bool LibraryCallKit::try_to_inline() {
 655   // Handle symbolic names for otherwise undistinguished boolean switches:
 656   const bool is_store       = true;
 657   const bool is_native_ptr  = true;
 658   const bool is_static      = true;
 659   const bool is_volatile    = true;
 660 
 661   if (!jvms()->has_method()) {
 662     // Root JVMState has a null method.
 663     assert(map()->memory()->Opcode() == Op_Parm, "");
 664     // Insert the memory aliasing node
 665     set_all_memory(reset_memory());
 666   }
 667   assert(merged_memory(), "");
 668 
 669 
 670   switch (intrinsic_id()) {
 671   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 672   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 673   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 674 
 675   case vmIntrinsics::_dsin:
 676   case vmIntrinsics::_dcos:
 677   case vmIntrinsics::_dtan:
 678   case vmIntrinsics::_dabs:
 679   case vmIntrinsics::_datan2:
 680   case vmIntrinsics::_dsqrt:
 681   case vmIntrinsics::_dexp:
 682   case vmIntrinsics::_dlog:
 683   case vmIntrinsics::_dlog10:
 684   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 685 
 686   case vmIntrinsics::_min:
 687   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 688 
 689   case vmIntrinsics::_addExact:                 return inline_math_addExact();
 690 
 691   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 692 
 693   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 694   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 695   case vmIntrinsics::_equals:                   return inline_string_equals();
 696 
 697   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 698   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 699   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 700   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 701   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 702   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 703   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 704   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 705   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 706 
 707   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 708   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 709   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 710   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 711   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 712   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 713   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 714   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 715   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 716 
 717   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 718   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 719   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 720   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 721   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 722   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 723   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 724   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 725 
 726   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 727   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 728   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 729   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 730   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 731   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 732   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 733   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 734 
 735   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 736   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 737   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 738   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 739   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 740   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 741   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 742   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 743   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 744 
 745   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 746   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 747   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 748   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 749   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 750   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 751   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 752   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 753   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 754 
 755   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 756   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 757   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 758   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 759 
 760   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 761   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 762   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 763 
 764   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 765   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 766   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 767 
 768   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 769   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 770   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 771   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 772   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 773 
 774   case vmIntrinsics::_loadFence:
 775   case vmIntrinsics::_storeFence:
 776   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 777 
 778   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 779   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 780 
 781 #ifdef TRACE_HAVE_INTRINSICS
 782   case vmIntrinsics::_classID:                  return inline_native_classID();
 783   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 784   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 785 #endif
 786   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 787   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 788   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 789   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 790   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 791   case vmIntrinsics::_getLength:                return inline_native_getLength();
 792   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 793   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 794   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 795   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 796 
 797   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 798 
 799   case vmIntrinsics::_isInstance:
 800   case vmIntrinsics::_getModifiers:
 801   case vmIntrinsics::_isInterface:
 802   case vmIntrinsics::_isArray:
 803   case vmIntrinsics::_isPrimitive:
 804   case vmIntrinsics::_getSuperclass:
 805   case vmIntrinsics::_getComponentType:
 806   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 807 
 808   case vmIntrinsics::_floatToRawIntBits:
 809   case vmIntrinsics::_floatToIntBits:
 810   case vmIntrinsics::_intBitsToFloat:
 811   case vmIntrinsics::_doubleToRawLongBits:
 812   case vmIntrinsics::_doubleToLongBits:
 813   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 814 
 815   case vmIntrinsics::_numberOfLeadingZeros_i:
 816   case vmIntrinsics::_numberOfLeadingZeros_l:
 817   case vmIntrinsics::_numberOfTrailingZeros_i:
 818   case vmIntrinsics::_numberOfTrailingZeros_l:
 819   case vmIntrinsics::_bitCount_i:
 820   case vmIntrinsics::_bitCount_l:
 821   case vmIntrinsics::_reverseBytes_i:
 822   case vmIntrinsics::_reverseBytes_l:
 823   case vmIntrinsics::_reverseBytes_s:
 824   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 825 
 826   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 827 
 828   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 829 
 830   case vmIntrinsics::_aescrypt_encryptBlock:
 831   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 832 
 833   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 834   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 835     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 836 
 837   case vmIntrinsics::_encodeISOArray:
 838     return inline_encodeISOArray();
 839 
 840   case vmIntrinsics::_updateCRC32:
 841     return inline_updateCRC32();
 842   case vmIntrinsics::_updateBytesCRC32:
 843     return inline_updateBytesCRC32();
 844   case vmIntrinsics::_updateByteBufferCRC32:
 845     return inline_updateByteBufferCRC32();
 846 
 847   default:
 848     // If you get here, it may be that someone has added a new intrinsic
 849     // to the list in vmSymbols.hpp without implementing it here.
 850 #ifndef PRODUCT
 851     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 852       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 853                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 854     }
 855 #endif
 856     return false;
 857   }
 858 }
 859 
 860 Node* LibraryCallKit::try_to_predicate() {
 861   if (!jvms()->has_method()) {
 862     // Root JVMState has a null method.
 863     assert(map()->memory()->Opcode() == Op_Parm, "");
 864     // Insert the memory aliasing node
 865     set_all_memory(reset_memory());
 866   }
 867   assert(merged_memory(), "");
 868 
 869   switch (intrinsic_id()) {
 870   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 871     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 872   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 873     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 874 
 875   default:
 876     // If you get here, it may be that someone has added a new intrinsic
 877     // to the list in vmSymbols.hpp without implementing it here.
 878 #ifndef PRODUCT
 879     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 880       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 881                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 882     }
 883 #endif
 884     Node* slow_ctl = control();
 885     set_control(top()); // No fast path instrinsic
 886     return slow_ctl;
 887   }
 888 }
 889 
 890 //------------------------------set_result-------------------------------
 891 // Helper function for finishing intrinsics.
 892 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 893   record_for_igvn(region);
 894   set_control(_gvn.transform(region));
 895   set_result( _gvn.transform(value));
 896   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 897 }
 898 
 899 //------------------------------generate_guard---------------------------
 900 // Helper function for generating guarded fast-slow graph structures.
 901 // The given 'test', if true, guards a slow path.  If the test fails
 902 // then a fast path can be taken.  (We generally hope it fails.)
 903 // In all cases, GraphKit::control() is updated to the fast path.
 904 // The returned value represents the control for the slow path.
 905 // The return value is never 'top'; it is either a valid control
 906 // or NULL if it is obvious that the slow path can never be taken.
 907 // Also, if region and the slow control are not NULL, the slow edge
 908 // is appended to the region.
 909 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 910   if (stopped()) {
 911     // Already short circuited.
 912     return NULL;
 913   }
 914 
 915   // Build an if node and its projections.
 916   // If test is true we take the slow path, which we assume is uncommon.
 917   if (_gvn.type(test) == TypeInt::ZERO) {
 918     // The slow branch is never taken.  No need to build this guard.
 919     return NULL;
 920   }
 921 
 922   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 923 
 924   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 925   if (if_slow == top()) {
 926     // The slow branch is never taken.  No need to build this guard.
 927     return NULL;
 928   }
 929 
 930   if (region != NULL)
 931     region->add_req(if_slow);
 932 
 933   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 934   set_control(if_fast);
 935 
 936   return if_slow;
 937 }
 938 
 939 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 940   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 941 }
 942 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 943   return generate_guard(test, region, PROB_FAIR);
 944 }
 945 
 946 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 947                                                      Node* *pos_index) {
 948   if (stopped())
 949     return NULL;                // already stopped
 950   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 951     return NULL;                // index is already adequately typed
 952   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 953   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 954   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 955   if (is_neg != NULL && pos_index != NULL) {
 956     // Emulate effect of Parse::adjust_map_after_if.
 957     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 958     ccast->set_req(0, control());
 959     (*pos_index) = _gvn.transform(ccast);
 960   }
 961   return is_neg;
 962 }
 963 
 964 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 965                                                         Node* *pos_index) {
 966   if (stopped())
 967     return NULL;                // already stopped
 968   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 969     return NULL;                // index is already adequately typed
 970   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 971   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 972   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
 973   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 974   if (is_notp != NULL && pos_index != NULL) {
 975     // Emulate effect of Parse::adjust_map_after_if.
 976     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 977     ccast->set_req(0, control());
 978     (*pos_index) = _gvn.transform(ccast);
 979   }
 980   return is_notp;
 981 }
 982 
 983 // Make sure that 'position' is a valid limit index, in [0..length].
 984 // There are two equivalent plans for checking this:
 985 //   A. (offset + copyLength)  unsigned<=  arrayLength
 986 //   B. offset  <=  (arrayLength - copyLength)
 987 // We require that all of the values above, except for the sum and
 988 // difference, are already known to be non-negative.
 989 // Plan A is robust in the face of overflow, if offset and copyLength
 990 // are both hugely positive.
 991 //
 992 // Plan B is less direct and intuitive, but it does not overflow at
 993 // all, since the difference of two non-negatives is always
 994 // representable.  Whenever Java methods must perform the equivalent
 995 // check they generally use Plan B instead of Plan A.
 996 // For the moment we use Plan A.
 997 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 998                                                   Node* subseq_length,
 999                                                   Node* array_length,
1000                                                   RegionNode* region) {
1001   if (stopped())
1002     return NULL;                // already stopped
1003   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1004   if (zero_offset && subseq_length->eqv_uncast(array_length))
1005     return NULL;                // common case of whole-array copy
1006   Node* last = subseq_length;
1007   if (!zero_offset)             // last += offset
1008     last = _gvn.transform(new (C) AddINode(last, offset));
1009   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1010   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1011   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1012   return is_over;
1013 }
1014 
1015 
1016 //--------------------------generate_current_thread--------------------
1017 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1018   ciKlass*    thread_klass = env()->Thread_klass();
1019   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1020   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1021   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1022   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
1023   tls_output = thread;
1024   return threadObj;
1025 }
1026 
1027 
1028 //------------------------------make_string_method_node------------------------
1029 // Helper method for String intrinsic functions. This version is called
1030 // with str1 and str2 pointing to String object nodes.
1031 //
1032 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1033   Node* no_ctrl = NULL;
1034 
1035   // Get start addr of string
1036   Node* str1_value   = load_String_value(no_ctrl, str1);
1037   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1038   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1039 
1040   // Get length of string 1
1041   Node* str1_len  = load_String_length(no_ctrl, str1);
1042 
1043   Node* str2_value   = load_String_value(no_ctrl, str2);
1044   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1045   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1046 
1047   Node* str2_len = NULL;
1048   Node* result = NULL;
1049 
1050   switch (opcode) {
1051   case Op_StrIndexOf:
1052     // Get length of string 2
1053     str2_len = load_String_length(no_ctrl, str2);
1054 
1055     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1056                                  str1_start, str1_len, str2_start, str2_len);
1057     break;
1058   case Op_StrComp:
1059     // Get length of string 2
1060     str2_len = load_String_length(no_ctrl, str2);
1061 
1062     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1063                                  str1_start, str1_len, str2_start, str2_len);
1064     break;
1065   case Op_StrEquals:
1066     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1067                                str1_start, str2_start, str1_len);
1068     break;
1069   default:
1070     ShouldNotReachHere();
1071     return NULL;
1072   }
1073 
1074   // All these intrinsics have checks.
1075   C->set_has_split_ifs(true); // Has chance for split-if optimization
1076 
1077   return _gvn.transform(result);
1078 }
1079 
1080 // Helper method for String intrinsic functions. This version is called
1081 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1082 // to Int nodes containing the lenghts of str1 and str2.
1083 //
1084 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1085   Node* result = NULL;
1086   switch (opcode) {
1087   case Op_StrIndexOf:
1088     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1089                                  str1_start, cnt1, str2_start, cnt2);
1090     break;
1091   case Op_StrComp:
1092     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1093                                  str1_start, cnt1, str2_start, cnt2);
1094     break;
1095   case Op_StrEquals:
1096     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1097                                  str1_start, str2_start, cnt1);
1098     break;
1099   default:
1100     ShouldNotReachHere();
1101     return NULL;
1102   }
1103 
1104   // All these intrinsics have checks.
1105   C->set_has_split_ifs(true); // Has chance for split-if optimization
1106 
1107   return _gvn.transform(result);
1108 }
1109 
1110 //------------------------------inline_string_compareTo------------------------
1111 // public int java.lang.String.compareTo(String anotherString);
1112 bool LibraryCallKit::inline_string_compareTo() {
1113   Node* receiver = null_check(argument(0));
1114   Node* arg      = null_check(argument(1));
1115   if (stopped()) {
1116     return true;
1117   }
1118   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1119   return true;
1120 }
1121 
1122 //------------------------------inline_string_equals------------------------
1123 bool LibraryCallKit::inline_string_equals() {
1124   Node* receiver = null_check_receiver();
1125   // NOTE: Do not null check argument for String.equals() because spec
1126   // allows to specify NULL as argument.
1127   Node* argument = this->argument(1);
1128   if (stopped()) {
1129     return true;
1130   }
1131 
1132   // paths (plus control) merge
1133   RegionNode* region = new (C) RegionNode(5);
1134   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1135 
1136   // does source == target string?
1137   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1138   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1139 
1140   Node* if_eq = generate_slow_guard(bol, NULL);
1141   if (if_eq != NULL) {
1142     // receiver == argument
1143     phi->init_req(2, intcon(1));
1144     region->init_req(2, if_eq);
1145   }
1146 
1147   // get String klass for instanceOf
1148   ciInstanceKlass* klass = env()->String_klass();
1149 
1150   if (!stopped()) {
1151     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1152     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1153     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1154 
1155     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1156     //instanceOf == true, fallthrough
1157 
1158     if (inst_false != NULL) {
1159       phi->init_req(3, intcon(0));
1160       region->init_req(3, inst_false);
1161     }
1162   }
1163 
1164   if (!stopped()) {
1165     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1166 
1167     // Properly cast the argument to String
1168     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1169     // This path is taken only when argument's type is String:NotNull.
1170     argument = cast_not_null(argument, false);
1171 
1172     Node* no_ctrl = NULL;
1173 
1174     // Get start addr of receiver
1175     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1176     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1177     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1178 
1179     // Get length of receiver
1180     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1181 
1182     // Get start addr of argument
1183     Node* argument_val    = load_String_value(no_ctrl, argument);
1184     Node* argument_offset = load_String_offset(no_ctrl, argument);
1185     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1186 
1187     // Get length of argument
1188     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1189 
1190     // Check for receiver count != argument count
1191     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1192     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1193     Node* if_ne = generate_slow_guard(bol, NULL);
1194     if (if_ne != NULL) {
1195       phi->init_req(4, intcon(0));
1196       region->init_req(4, if_ne);
1197     }
1198 
1199     // Check for count == 0 is done by assembler code for StrEquals.
1200 
1201     if (!stopped()) {
1202       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1203       phi->init_req(1, equals);
1204       region->init_req(1, control());
1205     }
1206   }
1207 
1208   // post merge
1209   set_control(_gvn.transform(region));
1210   record_for_igvn(region);
1211 
1212   set_result(_gvn.transform(phi));
1213   return true;
1214 }
1215 
1216 //------------------------------inline_array_equals----------------------------
1217 bool LibraryCallKit::inline_array_equals() {
1218   Node* arg1 = argument(0);
1219   Node* arg2 = argument(1);
1220   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1221   return true;
1222 }
1223 
1224 // Java version of String.indexOf(constant string)
1225 // class StringDecl {
1226 //   StringDecl(char[] ca) {
1227 //     offset = 0;
1228 //     count = ca.length;
1229 //     value = ca;
1230 //   }
1231 //   int offset;
1232 //   int count;
1233 //   char[] value;
1234 // }
1235 //
1236 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1237 //                             int targetOffset, int cache_i, int md2) {
1238 //   int cache = cache_i;
1239 //   int sourceOffset = string_object.offset;
1240 //   int sourceCount = string_object.count;
1241 //   int targetCount = target_object.length;
1242 //
1243 //   int targetCountLess1 = targetCount - 1;
1244 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1245 //
1246 //   char[] source = string_object.value;
1247 //   char[] target = target_object;
1248 //   int lastChar = target[targetCountLess1];
1249 //
1250 //  outer_loop:
1251 //   for (int i = sourceOffset; i < sourceEnd; ) {
1252 //     int src = source[i + targetCountLess1];
1253 //     if (src == lastChar) {
1254 //       // With random strings and a 4-character alphabet,
1255 //       // reverse matching at this point sets up 0.8% fewer
1256 //       // frames, but (paradoxically) makes 0.3% more probes.
1257 //       // Since those probes are nearer the lastChar probe,
1258 //       // there is may be a net D$ win with reverse matching.
1259 //       // But, reversing loop inhibits unroll of inner loop
1260 //       // for unknown reason.  So, does running outer loop from
1261 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1262 //       for (int j = 0; j < targetCountLess1; j++) {
1263 //         if (target[targetOffset + j] != source[i+j]) {
1264 //           if ((cache & (1 << source[i+j])) == 0) {
1265 //             if (md2 < j+1) {
1266 //               i += j+1;
1267 //               continue outer_loop;
1268 //             }
1269 //           }
1270 //           i += md2;
1271 //           continue outer_loop;
1272 //         }
1273 //       }
1274 //       return i - sourceOffset;
1275 //     }
1276 //     if ((cache & (1 << src)) == 0) {
1277 //       i += targetCountLess1;
1278 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1279 //     i++;
1280 //   }
1281 //   return -1;
1282 // }
1283 
1284 //------------------------------string_indexOf------------------------
1285 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1286                                      jint cache_i, jint md2_i) {
1287 
1288   Node* no_ctrl  = NULL;
1289   float likely   = PROB_LIKELY(0.9);
1290   float unlikely = PROB_UNLIKELY(0.9);
1291 
1292   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1293 
1294   Node* source        = load_String_value(no_ctrl, string_object);
1295   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1296   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1297 
1298   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1299   jint target_length = target_array->length();
1300   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1301   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1302 
1303   // String.value field is known to be @Stable.
1304   if (UseImplicitStableValues) {
1305     target = cast_array_to_stable(target, target_type);
1306   }
1307 
1308   IdealKit kit(this, false, true);
1309 #define __ kit.
1310   Node* zero             = __ ConI(0);
1311   Node* one              = __ ConI(1);
1312   Node* cache            = __ ConI(cache_i);
1313   Node* md2              = __ ConI(md2_i);
1314   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1315   Node* targetCount      = __ ConI(target_length);
1316   Node* targetCountLess1 = __ ConI(target_length - 1);
1317   Node* targetOffset     = __ ConI(targetOffset_i);
1318   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1319 
1320   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1321   Node* outer_loop = __ make_label(2 /* goto */);
1322   Node* return_    = __ make_label(1);
1323 
1324   __ set(rtn,__ ConI(-1));
1325   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1326        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1327        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1328        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1329        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1330          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1331               Node* tpj = __ AddI(targetOffset, __ value(j));
1332               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1333               Node* ipj  = __ AddI(__ value(i), __ value(j));
1334               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1335               __ if_then(targ, BoolTest::ne, src2); {
1336                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1337                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1338                     __ increment(i, __ AddI(__ value(j), one));
1339                     __ goto_(outer_loop);
1340                   } __ end_if(); __ dead(j);
1341                 }__ end_if(); __ dead(j);
1342                 __ increment(i, md2);
1343                 __ goto_(outer_loop);
1344               }__ end_if();
1345               __ increment(j, one);
1346          }__ end_loop(); __ dead(j);
1347          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1348          __ goto_(return_);
1349        }__ end_if();
1350        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1351          __ increment(i, targetCountLess1);
1352        }__ end_if();
1353        __ increment(i, one);
1354        __ bind(outer_loop);
1355   }__ end_loop(); __ dead(i);
1356   __ bind(return_);
1357 
1358   // Final sync IdealKit and GraphKit.
1359   final_sync(kit);
1360   Node* result = __ value(rtn);
1361 #undef __
1362   C->set_has_loops(true);
1363   return result;
1364 }
1365 
1366 //------------------------------inline_string_indexOf------------------------
1367 bool LibraryCallKit::inline_string_indexOf() {
1368   Node* receiver = argument(0);
1369   Node* arg      = argument(1);
1370 
1371   Node* result;
1372   // Disable the use of pcmpestri until it can be guaranteed that
1373   // the load doesn't cross into the uncommited space.
1374   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1375       UseSSE42Intrinsics) {
1376     // Generate SSE4.2 version of indexOf
1377     // We currently only have match rules that use SSE4.2
1378 
1379     receiver = null_check(receiver);
1380     arg      = null_check(arg);
1381     if (stopped()) {
1382       return true;
1383     }
1384 
1385     ciInstanceKlass* str_klass = env()->String_klass();
1386     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1387 
1388     // Make the merge point
1389     RegionNode* result_rgn = new (C) RegionNode(4);
1390     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1391     Node* no_ctrl  = NULL;
1392 
1393     // Get start addr of source string
1394     Node* source = load_String_value(no_ctrl, receiver);
1395     Node* source_offset = load_String_offset(no_ctrl, receiver);
1396     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1397 
1398     // Get length of source string
1399     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1400 
1401     // Get start addr of substring
1402     Node* substr = load_String_value(no_ctrl, arg);
1403     Node* substr_offset = load_String_offset(no_ctrl, arg);
1404     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1405 
1406     // Get length of source string
1407     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1408 
1409     // Check for substr count > string count
1410     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1411     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1412     Node* if_gt = generate_slow_guard(bol, NULL);
1413     if (if_gt != NULL) {
1414       result_phi->init_req(2, intcon(-1));
1415       result_rgn->init_req(2, if_gt);
1416     }
1417 
1418     if (!stopped()) {
1419       // Check for substr count == 0
1420       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1421       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1422       Node* if_zero = generate_slow_guard(bol, NULL);
1423       if (if_zero != NULL) {
1424         result_phi->init_req(3, intcon(0));
1425         result_rgn->init_req(3, if_zero);
1426       }
1427     }
1428 
1429     if (!stopped()) {
1430       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1431       result_phi->init_req(1, result);
1432       result_rgn->init_req(1, control());
1433     }
1434     set_control(_gvn.transform(result_rgn));
1435     record_for_igvn(result_rgn);
1436     result = _gvn.transform(result_phi);
1437 
1438   } else { // Use LibraryCallKit::string_indexOf
1439     // don't intrinsify if argument isn't a constant string.
1440     if (!arg->is_Con()) {
1441      return false;
1442     }
1443     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1444     if (str_type == NULL) {
1445       return false;
1446     }
1447     ciInstanceKlass* klass = env()->String_klass();
1448     ciObject* str_const = str_type->const_oop();
1449     if (str_const == NULL || str_const->klass() != klass) {
1450       return false;
1451     }
1452     ciInstance* str = str_const->as_instance();
1453     assert(str != NULL, "must be instance");
1454 
1455     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1456     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1457 
1458     int o;
1459     int c;
1460     if (java_lang_String::has_offset_field()) {
1461       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1462       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1463     } else {
1464       o = 0;
1465       c = pat->length();
1466     }
1467 
1468     // constant strings have no offset and count == length which
1469     // simplifies the resulting code somewhat so lets optimize for that.
1470     if (o != 0 || c != pat->length()) {
1471      return false;
1472     }
1473 
1474     receiver = null_check(receiver, T_OBJECT);
1475     // NOTE: No null check on the argument is needed since it's a constant String oop.
1476     if (stopped()) {
1477       return true;
1478     }
1479 
1480     // The null string as a pattern always returns 0 (match at beginning of string)
1481     if (c == 0) {
1482       set_result(intcon(0));
1483       return true;
1484     }
1485 
1486     // Generate default indexOf
1487     jchar lastChar = pat->char_at(o + (c - 1));
1488     int cache = 0;
1489     int i;
1490     for (i = 0; i < c - 1; i++) {
1491       assert(i < pat->length(), "out of range");
1492       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1493     }
1494 
1495     int md2 = c;
1496     for (i = 0; i < c - 1; i++) {
1497       assert(i < pat->length(), "out of range");
1498       if (pat->char_at(o + i) == lastChar) {
1499         md2 = (c - 1) - i;
1500       }
1501     }
1502 
1503     result = string_indexOf(receiver, pat, o, cache, md2);
1504   }
1505   set_result(result);
1506   return true;
1507 }
1508 
1509 //--------------------------round_double_node--------------------------------
1510 // Round a double node if necessary.
1511 Node* LibraryCallKit::round_double_node(Node* n) {
1512   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1513     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1514   return n;
1515 }
1516 
1517 //------------------------------inline_math-----------------------------------
1518 // public static double Math.abs(double)
1519 // public static double Math.sqrt(double)
1520 // public static double Math.log(double)
1521 // public static double Math.log10(double)
1522 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1523   Node* arg = round_double_node(argument(0));
1524   Node* n;
1525   switch (id) {
1526   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1527   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1528   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1529   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1530   default:  fatal_unexpected_iid(id);  break;
1531   }
1532   set_result(_gvn.transform(n));
1533   return true;
1534 }
1535 
1536 //------------------------------inline_trig----------------------------------
1537 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1538 // argument reduction which will turn into a fast/slow diamond.
1539 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1540   Node* arg = round_double_node(argument(0));
1541   Node* n = NULL;
1542 
1543   switch (id) {
1544   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1545   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1546   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1547   default:  fatal_unexpected_iid(id);  break;
1548   }
1549   n = _gvn.transform(n);
1550 
1551   // Rounding required?  Check for argument reduction!
1552   if (Matcher::strict_fp_requires_explicit_rounding) {
1553     static const double     pi_4 =  0.7853981633974483;
1554     static const double neg_pi_4 = -0.7853981633974483;
1555     // pi/2 in 80-bit extended precision
1556     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1557     // -pi/2 in 80-bit extended precision
1558     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1559     // Cutoff value for using this argument reduction technique
1560     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1561     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1562 
1563     // Pseudocode for sin:
1564     // if (x <= Math.PI / 4.0) {
1565     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1566     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1567     // } else {
1568     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1569     // }
1570     // return StrictMath.sin(x);
1571 
1572     // Pseudocode for cos:
1573     // if (x <= Math.PI / 4.0) {
1574     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1575     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1576     // } else {
1577     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1578     // }
1579     // return StrictMath.cos(x);
1580 
1581     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1582     // requires a special machine instruction to load it.  Instead we'll try
1583     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1584     // probably do the math inside the SIN encoding.
1585 
1586     // Make the merge point
1587     RegionNode* r = new (C) RegionNode(3);
1588     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1589 
1590     // Flatten arg so we need only 1 test
1591     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1592     // Node for PI/4 constant
1593     Node *pi4 = makecon(TypeD::make(pi_4));
1594     // Check PI/4 : abs(arg)
1595     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1596     // Check: If PI/4 < abs(arg) then go slow
1597     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1598     // Branch either way
1599     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1600     set_control(opt_iff(r,iff));
1601 
1602     // Set fast path result
1603     phi->init_req(2, n);
1604 
1605     // Slow path - non-blocking leaf call
1606     Node* call = NULL;
1607     switch (id) {
1608     case vmIntrinsics::_dsin:
1609       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1610                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1611                                "Sin", NULL, arg, top());
1612       break;
1613     case vmIntrinsics::_dcos:
1614       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1615                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1616                                "Cos", NULL, arg, top());
1617       break;
1618     case vmIntrinsics::_dtan:
1619       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1620                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1621                                "Tan", NULL, arg, top());
1622       break;
1623     }
1624     assert(control()->in(0) == call, "");
1625     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1626     r->init_req(1, control());
1627     phi->init_req(1, slow_result);
1628 
1629     // Post-merge
1630     set_control(_gvn.transform(r));
1631     record_for_igvn(r);
1632     n = _gvn.transform(phi);
1633 
1634     C->set_has_split_ifs(true); // Has chance for split-if optimization
1635   }
1636   set_result(n);
1637   return true;
1638 }
1639 
1640 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1641   //-------------------
1642   //result=(result.isNaN())? funcAddr():result;
1643   // Check: If isNaN() by checking result!=result? then either trap
1644   // or go to runtime
1645   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1646   // Build the boolean node
1647   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1648 
1649   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1650     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1651       // The pow or exp intrinsic returned a NaN, which requires a call
1652       // to the runtime.  Recompile with the runtime call.
1653       uncommon_trap(Deoptimization::Reason_intrinsic,
1654                     Deoptimization::Action_make_not_entrant);
1655     }
1656     set_result(result);
1657   } else {
1658     // If this inlining ever returned NaN in the past, we compile a call
1659     // to the runtime to properly handle corner cases
1660 
1661     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1662     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1663     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1664 
1665     if (!if_slow->is_top()) {
1666       RegionNode* result_region = new (C) RegionNode(3);
1667       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1668 
1669       result_region->init_req(1, if_fast);
1670       result_val->init_req(1, result);
1671 
1672       set_control(if_slow);
1673 
1674       const TypePtr* no_memory_effects = NULL;
1675       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1676                                    no_memory_effects,
1677                                    x, top(), y, y ? top() : NULL);
1678       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1679 #ifdef ASSERT
1680       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1681       assert(value_top == top(), "second value must be top");
1682 #endif
1683 
1684       result_region->init_req(2, control());
1685       result_val->init_req(2, value);
1686       set_result(result_region, result_val);
1687     } else {
1688       set_result(result);
1689     }
1690   }
1691 }
1692 
1693 //------------------------------inline_exp-------------------------------------
1694 // Inline exp instructions, if possible.  The Intel hardware only misses
1695 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1696 bool LibraryCallKit::inline_exp() {
1697   Node* arg = round_double_node(argument(0));
1698   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1699 
1700   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1701 
1702   C->set_has_split_ifs(true); // Has chance for split-if optimization
1703   return true;
1704 }
1705 
1706 //------------------------------inline_pow-------------------------------------
1707 // Inline power instructions, if possible.
1708 bool LibraryCallKit::inline_pow() {
1709   // Pseudocode for pow
1710   // if (x <= 0.0) {
1711   //   long longy = (long)y;
1712   //   if ((double)longy == y) { // if y is long
1713   //     if (y + 1 == y) longy = 0; // huge number: even
1714   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1715   //   } else {
1716   //     result = NaN;
1717   //   }
1718   // } else {
1719   //   result = DPow(x,y);
1720   // }
1721   // if (result != result)?  {
1722   //   result = uncommon_trap() or runtime_call();
1723   // }
1724   // return result;
1725 
1726   Node* x = round_double_node(argument(0));
1727   Node* y = round_double_node(argument(2));
1728 
1729   Node* result = NULL;
1730 
1731   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1732     // Short form: skip the fancy tests and just check for NaN result.
1733     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1734   } else {
1735     // If this inlining ever returned NaN in the past, include all
1736     // checks + call to the runtime.
1737 
1738     // Set the merge point for If node with condition of (x <= 0.0)
1739     // There are four possible paths to region node and phi node
1740     RegionNode *r = new (C) RegionNode(4);
1741     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1742 
1743     // Build the first if node: if (x <= 0.0)
1744     // Node for 0 constant
1745     Node *zeronode = makecon(TypeD::ZERO);
1746     // Check x:0
1747     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1748     // Check: If (x<=0) then go complex path
1749     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1750     // Branch either way
1751     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1752     // Fast path taken; set region slot 3
1753     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1754     r->init_req(3,fast_taken); // Capture fast-control
1755 
1756     // Fast path not-taken, i.e. slow path
1757     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1758 
1759     // Set fast path result
1760     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1761     phi->init_req(3, fast_result);
1762 
1763     // Complex path
1764     // Build the second if node (if y is long)
1765     // Node for (long)y
1766     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1767     // Node for (double)((long) y)
1768     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1769     // Check (double)((long) y) : y
1770     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1771     // Check if (y isn't long) then go to slow path
1772 
1773     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1774     // Branch either way
1775     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1776     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1777 
1778     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1779 
1780     // Calculate DPow(abs(x), y)*(1 & (long)y)
1781     // Node for constant 1
1782     Node *conone = longcon(1);
1783     // 1& (long)y
1784     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1785 
1786     // A huge number is always even. Detect a huge number by checking
1787     // if y + 1 == y and set integer to be tested for parity to 0.
1788     // Required for corner case:
1789     // (long)9.223372036854776E18 = max_jlong
1790     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1791     // max_jlong is odd but 9.223372036854776E18 is even
1792     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1793     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1794     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1795     Node* correctedsign = NULL;
1796     if (ConditionalMoveLimit != 0) {
1797       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1798     } else {
1799       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1800       RegionNode *r = new (C) RegionNode(3);
1801       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1802       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1803       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1804       phi->init_req(1, signnode);
1805       phi->init_req(2, longcon(0));
1806       correctedsign = _gvn.transform(phi);
1807       ylong_path = _gvn.transform(r);
1808       record_for_igvn(r);
1809     }
1810 
1811     // zero node
1812     Node *conzero = longcon(0);
1813     // Check (1&(long)y)==0?
1814     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1815     // Check if (1&(long)y)!=0?, if so the result is negative
1816     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1817     // abs(x)
1818     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1819     // abs(x)^y
1820     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1821     // -abs(x)^y
1822     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1823     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1824     Node *signresult = NULL;
1825     if (ConditionalMoveLimit != 0) {
1826       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1827     } else {
1828       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1829       RegionNode *r = new (C) RegionNode(3);
1830       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1831       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1832       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1833       phi->init_req(1, absxpowy);
1834       phi->init_req(2, negabsxpowy);
1835       signresult = _gvn.transform(phi);
1836       ylong_path = _gvn.transform(r);
1837       record_for_igvn(r);
1838     }
1839     // Set complex path fast result
1840     r->init_req(2, ylong_path);
1841     phi->init_req(2, signresult);
1842 
1843     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1844     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1845     r->init_req(1,slow_path);
1846     phi->init_req(1,slow_result);
1847 
1848     // Post merge
1849     set_control(_gvn.transform(r));
1850     record_for_igvn(r);
1851     result = _gvn.transform(phi);
1852   }
1853 
1854   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1855 
1856   C->set_has_split_ifs(true); // Has chance for split-if optimization
1857   return true;
1858 }
1859 
1860 //------------------------------runtime_math-----------------------------
1861 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1862   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1863          "must be (DD)D or (D)D type");
1864 
1865   // Inputs
1866   Node* a = round_double_node(argument(0));
1867   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1868 
1869   const TypePtr* no_memory_effects = NULL;
1870   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1871                                  no_memory_effects,
1872                                  a, top(), b, b ? top() : NULL);
1873   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1874 #ifdef ASSERT
1875   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1876   assert(value_top == top(), "second value must be top");
1877 #endif
1878 
1879   set_result(value);
1880   return true;
1881 }
1882 
1883 //------------------------------inline_math_native-----------------------------
1884 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1885 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1886   switch (id) {
1887     // These intrinsics are not properly supported on all hardware
1888   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1889     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1890   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1891     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1892   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1893     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1894 
1895   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1896     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1897   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1898     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1899 
1900     // These intrinsics are supported on all hardware
1901   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1902   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1903 
1904   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1905     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1906   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1907     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1908 #undef FN_PTR
1909 
1910    // These intrinsics are not yet correctly implemented
1911   case vmIntrinsics::_datan2:
1912     return false;
1913 
1914   default:
1915     fatal_unexpected_iid(id);
1916     return false;
1917   }
1918 }
1919 
1920 static bool is_simple_name(Node* n) {
1921   return (n->req() == 1         // constant
1922           || (n->is_Type() && n->as_Type()->type()->singleton())
1923           || n->is_Proj()       // parameter or return value
1924           || n->is_Phi()        // local of some sort
1925           );
1926 }
1927 
1928 //----------------------------inline_min_max-----------------------------------
1929 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1930   set_result(generate_min_max(id, argument(0), argument(1)));
1931   return true;
1932 }
1933 
1934 bool LibraryCallKit::inline_math_mathExact(Node* math) {
1935   Node* result = _gvn.transform( new(C) ProjNode(math, MathExactNode::result_proj_node));
1936   Node* flags = _gvn.transform( new(C) FlagsProjNode(math, MathExactNode::flags_proj_node));
1937 
1938   Node* bol = _gvn.transform( new (C) BoolNode(flags, BoolTest::overflow) );
1939   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1940   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
1941   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
1942 
1943   {
1944     PreserveJVMState pjvms(this);
1945     PreserveReexecuteState preexecs(this);
1946     jvms()->set_should_reexecute(true);
1947 
1948     set_control(slow_path);
1949     set_i_o(i_o());
1950 
1951     uncommon_trap(Deoptimization::Reason_intrinsic,
1952                   Deoptimization::Action_none);
1953   }
1954 
1955   set_control(fast_path);
1956   set_result(result);
1957   return true;
1958 }
1959 
1960 bool LibraryCallKit::inline_math_addExact() {
1961   Node* arg1 = argument(0);
1962   Node* arg2 = argument(1);
1963 
1964   Node* add = _gvn.transform( new(C) AddExactINode(NULL, arg1, arg2) );
1965   if (add->Opcode() == Op_AddExactI) {
1966     return inline_math_mathExact(add);
1967   } else {
1968     set_result(add);
1969   }
1970   return true;
1971 }
1972 
1973 Node*
1974 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1975   // These are the candidate return value:
1976   Node* xvalue = x0;
1977   Node* yvalue = y0;
1978 
1979   if (xvalue == yvalue) {
1980     return xvalue;
1981   }
1982 
1983   bool want_max = (id == vmIntrinsics::_max);
1984 
1985   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1986   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1987   if (txvalue == NULL || tyvalue == NULL)  return top();
1988   // This is not really necessary, but it is consistent with a
1989   // hypothetical MaxINode::Value method:
1990   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1991 
1992   // %%% This folding logic should (ideally) be in a different place.
1993   // Some should be inside IfNode, and there to be a more reliable
1994   // transformation of ?: style patterns into cmoves.  We also want
1995   // more powerful optimizations around cmove and min/max.
1996 
1997   // Try to find a dominating comparison of these guys.
1998   // It can simplify the index computation for Arrays.copyOf
1999   // and similar uses of System.arraycopy.
2000   // First, compute the normalized version of CmpI(x, y).
2001   int   cmp_op = Op_CmpI;
2002   Node* xkey = xvalue;
2003   Node* ykey = yvalue;
2004   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2005   if (ideal_cmpxy->is_Cmp()) {
2006     // E.g., if we have CmpI(length - offset, count),
2007     // it might idealize to CmpI(length, count + offset)
2008     cmp_op = ideal_cmpxy->Opcode();
2009     xkey = ideal_cmpxy->in(1);
2010     ykey = ideal_cmpxy->in(2);
2011   }
2012 
2013   // Start by locating any relevant comparisons.
2014   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2015   Node* cmpxy = NULL;
2016   Node* cmpyx = NULL;
2017   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2018     Node* cmp = start_from->fast_out(k);
2019     if (cmp->outcnt() > 0 &&            // must have prior uses
2020         cmp->in(0) == NULL &&           // must be context-independent
2021         cmp->Opcode() == cmp_op) {      // right kind of compare
2022       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2023       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2024     }
2025   }
2026 
2027   const int NCMPS = 2;
2028   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2029   int cmpn;
2030   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2031     if (cmps[cmpn] != NULL)  break;     // find a result
2032   }
2033   if (cmpn < NCMPS) {
2034     // Look for a dominating test that tells us the min and max.
2035     int depth = 0;                // Limit search depth for speed
2036     Node* dom = control();
2037     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2038       if (++depth >= 100)  break;
2039       Node* ifproj = dom;
2040       if (!ifproj->is_Proj())  continue;
2041       Node* iff = ifproj->in(0);
2042       if (!iff->is_If())  continue;
2043       Node* bol = iff->in(1);
2044       if (!bol->is_Bool())  continue;
2045       Node* cmp = bol->in(1);
2046       if (cmp == NULL)  continue;
2047       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2048         if (cmps[cmpn] == cmp)  break;
2049       if (cmpn == NCMPS)  continue;
2050       BoolTest::mask btest = bol->as_Bool()->_test._test;
2051       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2052       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2053       // At this point, we know that 'x btest y' is true.
2054       switch (btest) {
2055       case BoolTest::eq:
2056         // They are proven equal, so we can collapse the min/max.
2057         // Either value is the answer.  Choose the simpler.
2058         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2059           return yvalue;
2060         return xvalue;
2061       case BoolTest::lt:          // x < y
2062       case BoolTest::le:          // x <= y
2063         return (want_max ? yvalue : xvalue);
2064       case BoolTest::gt:          // x > y
2065       case BoolTest::ge:          // x >= y
2066         return (want_max ? xvalue : yvalue);
2067       }
2068     }
2069   }
2070 
2071   // We failed to find a dominating test.
2072   // Let's pick a test that might GVN with prior tests.
2073   Node*          best_bol   = NULL;
2074   BoolTest::mask best_btest = BoolTest::illegal;
2075   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2076     Node* cmp = cmps[cmpn];
2077     if (cmp == NULL)  continue;
2078     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2079       Node* bol = cmp->fast_out(j);
2080       if (!bol->is_Bool())  continue;
2081       BoolTest::mask btest = bol->as_Bool()->_test._test;
2082       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2083       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2084       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2085         best_bol   = bol->as_Bool();
2086         best_btest = btest;
2087       }
2088     }
2089   }
2090 
2091   Node* answer_if_true  = NULL;
2092   Node* answer_if_false = NULL;
2093   switch (best_btest) {
2094   default:
2095     if (cmpxy == NULL)
2096       cmpxy = ideal_cmpxy;
2097     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2098     // and fall through:
2099   case BoolTest::lt:          // x < y
2100   case BoolTest::le:          // x <= y
2101     answer_if_true  = (want_max ? yvalue : xvalue);
2102     answer_if_false = (want_max ? xvalue : yvalue);
2103     break;
2104   case BoolTest::gt:          // x > y
2105   case BoolTest::ge:          // x >= y
2106     answer_if_true  = (want_max ? xvalue : yvalue);
2107     answer_if_false = (want_max ? yvalue : xvalue);
2108     break;
2109   }
2110 
2111   jint hi, lo;
2112   if (want_max) {
2113     // We can sharpen the minimum.
2114     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2115     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2116   } else {
2117     // We can sharpen the maximum.
2118     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2119     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2120   }
2121 
2122   // Use a flow-free graph structure, to avoid creating excess control edges
2123   // which could hinder other optimizations.
2124   // Since Math.min/max is often used with arraycopy, we want
2125   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2126   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2127                                answer_if_false, answer_if_true,
2128                                TypeInt::make(lo, hi, widen));
2129 
2130   return _gvn.transform(cmov);
2131 
2132   /*
2133   // This is not as desirable as it may seem, since Min and Max
2134   // nodes do not have a full set of optimizations.
2135   // And they would interfere, anyway, with 'if' optimizations
2136   // and with CMoveI canonical forms.
2137   switch (id) {
2138   case vmIntrinsics::_min:
2139     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2140   case vmIntrinsics::_max:
2141     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2142   default:
2143     ShouldNotReachHere();
2144   }
2145   */
2146 }
2147 
2148 inline int
2149 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2150   const TypePtr* base_type = TypePtr::NULL_PTR;
2151   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2152   if (base_type == NULL) {
2153     // Unknown type.
2154     return Type::AnyPtr;
2155   } else if (base_type == TypePtr::NULL_PTR) {
2156     // Since this is a NULL+long form, we have to switch to a rawptr.
2157     base   = _gvn.transform(new (C) CastX2PNode(offset));
2158     offset = MakeConX(0);
2159     return Type::RawPtr;
2160   } else if (base_type->base() == Type::RawPtr) {
2161     return Type::RawPtr;
2162   } else if (base_type->isa_oopptr()) {
2163     // Base is never null => always a heap address.
2164     if (base_type->ptr() == TypePtr::NotNull) {
2165       return Type::OopPtr;
2166     }
2167     // Offset is small => always a heap address.
2168     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2169     if (offset_type != NULL &&
2170         base_type->offset() == 0 &&     // (should always be?)
2171         offset_type->_lo >= 0 &&
2172         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2173       return Type::OopPtr;
2174     }
2175     // Otherwise, it might either be oop+off or NULL+addr.
2176     return Type::AnyPtr;
2177   } else {
2178     // No information:
2179     return Type::AnyPtr;
2180   }
2181 }
2182 
2183 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2184   int kind = classify_unsafe_addr(base, offset);
2185   if (kind == Type::RawPtr) {
2186     return basic_plus_adr(top(), base, offset);
2187   } else {
2188     return basic_plus_adr(base, offset);
2189   }
2190 }
2191 
2192 //--------------------------inline_number_methods-----------------------------
2193 // inline int     Integer.numberOfLeadingZeros(int)
2194 // inline int        Long.numberOfLeadingZeros(long)
2195 //
2196 // inline int     Integer.numberOfTrailingZeros(int)
2197 // inline int        Long.numberOfTrailingZeros(long)
2198 //
2199 // inline int     Integer.bitCount(int)
2200 // inline int        Long.bitCount(long)
2201 //
2202 // inline char  Character.reverseBytes(char)
2203 // inline short     Short.reverseBytes(short)
2204 // inline int     Integer.reverseBytes(int)
2205 // inline long       Long.reverseBytes(long)
2206 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2207   Node* arg = argument(0);
2208   Node* n;
2209   switch (id) {
2210   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2211   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2212   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2213   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2214   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2215   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2216   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2217   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2218   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2219   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2220   default:  fatal_unexpected_iid(id);  break;
2221   }
2222   set_result(_gvn.transform(n));
2223   return true;
2224 }
2225 
2226 //----------------------------inline_unsafe_access----------------------------
2227 
2228 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2229 
2230 // Helper that guards and inserts a pre-barrier.
2231 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2232                                         Node* pre_val, bool need_mem_bar) {
2233   // We could be accessing the referent field of a reference object. If so, when G1
2234   // is enabled, we need to log the value in the referent field in an SATB buffer.
2235   // This routine performs some compile time filters and generates suitable
2236   // runtime filters that guard the pre-barrier code.
2237   // Also add memory barrier for non volatile load from the referent field
2238   // to prevent commoning of loads across safepoint.
2239   if (!UseG1GC && !need_mem_bar)
2240     return;
2241 
2242   // Some compile time checks.
2243 
2244   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2245   const TypeX* otype = offset->find_intptr_t_type();
2246   if (otype != NULL && otype->is_con() &&
2247       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2248     // Constant offset but not the reference_offset so just return
2249     return;
2250   }
2251 
2252   // We only need to generate the runtime guards for instances.
2253   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2254   if (btype != NULL) {
2255     if (btype->isa_aryptr()) {
2256       // Array type so nothing to do
2257       return;
2258     }
2259 
2260     const TypeInstPtr* itype = btype->isa_instptr();
2261     if (itype != NULL) {
2262       // Can the klass of base_oop be statically determined to be
2263       // _not_ a sub-class of Reference and _not_ Object?
2264       ciKlass* klass = itype->klass();
2265       if ( klass->is_loaded() &&
2266           !klass->is_subtype_of(env()->Reference_klass()) &&
2267           !env()->Object_klass()->is_subtype_of(klass)) {
2268         return;
2269       }
2270     }
2271   }
2272 
2273   // The compile time filters did not reject base_oop/offset so
2274   // we need to generate the following runtime filters
2275   //
2276   // if (offset == java_lang_ref_Reference::_reference_offset) {
2277   //   if (instance_of(base, java.lang.ref.Reference)) {
2278   //     pre_barrier(_, pre_val, ...);
2279   //   }
2280   // }
2281 
2282   float likely   = PROB_LIKELY(  0.999);
2283   float unlikely = PROB_UNLIKELY(0.999);
2284 
2285   IdealKit ideal(this);
2286 #define __ ideal.
2287 
2288   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2289 
2290   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2291       // Update graphKit memory and control from IdealKit.
2292       sync_kit(ideal);
2293 
2294       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2295       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2296 
2297       // Update IdealKit memory and control from graphKit.
2298       __ sync_kit(this);
2299 
2300       Node* one = __ ConI(1);
2301       // is_instof == 0 if base_oop == NULL
2302       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2303 
2304         // Update graphKit from IdeakKit.
2305         sync_kit(ideal);
2306 
2307         // Use the pre-barrier to record the value in the referent field
2308         pre_barrier(false /* do_load */,
2309                     __ ctrl(),
2310                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2311                     pre_val /* pre_val */,
2312                     T_OBJECT);
2313         if (need_mem_bar) {
2314           // Add memory barrier to prevent commoning reads from this field
2315           // across safepoint since GC can change its value.
2316           insert_mem_bar(Op_MemBarCPUOrder);
2317         }
2318         // Update IdealKit from graphKit.
2319         __ sync_kit(this);
2320 
2321       } __ end_if(); // _ref_type != ref_none
2322   } __ end_if(); // offset == referent_offset
2323 
2324   // Final sync IdealKit and GraphKit.
2325   final_sync(ideal);
2326 #undef __
2327 }
2328 
2329 
2330 // Interpret Unsafe.fieldOffset cookies correctly:
2331 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2332 
2333 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2334   // Attempt to infer a sharper value type from the offset and base type.
2335   ciKlass* sharpened_klass = NULL;
2336 
2337   // See if it is an instance field, with an object type.
2338   if (alias_type->field() != NULL) {
2339     assert(!is_native_ptr, "native pointer op cannot use a java address");
2340     if (alias_type->field()->type()->is_klass()) {
2341       sharpened_klass = alias_type->field()->type()->as_klass();
2342     }
2343   }
2344 
2345   // See if it is a narrow oop array.
2346   if (adr_type->isa_aryptr()) {
2347     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2348       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2349       if (elem_type != NULL) {
2350         sharpened_klass = elem_type->klass();
2351       }
2352     }
2353   }
2354 
2355   // The sharpened class might be unloaded if there is no class loader
2356   // contraint in place.
2357   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2358     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2359 
2360 #ifndef PRODUCT
2361     if (C->print_intrinsics() || C->print_inlining()) {
2362       tty->print("  from base type: ");  adr_type->dump();
2363       tty->print("  sharpened value: ");  tjp->dump();
2364     }
2365 #endif
2366     // Sharpen the value type.
2367     return tjp;
2368   }
2369   return NULL;
2370 }
2371 
2372 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2373   if (callee()->is_static())  return false;  // caller must have the capability!
2374 
2375 #ifndef PRODUCT
2376   {
2377     ResourceMark rm;
2378     // Check the signatures.
2379     ciSignature* sig = callee()->signature();
2380 #ifdef ASSERT
2381     if (!is_store) {
2382       // Object getObject(Object base, int/long offset), etc.
2383       BasicType rtype = sig->return_type()->basic_type();
2384       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2385           rtype = T_ADDRESS;  // it is really a C void*
2386       assert(rtype == type, "getter must return the expected value");
2387       if (!is_native_ptr) {
2388         assert(sig->count() == 2, "oop getter has 2 arguments");
2389         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2390         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2391       } else {
2392         assert(sig->count() == 1, "native getter has 1 argument");
2393         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2394       }
2395     } else {
2396       // void putObject(Object base, int/long offset, Object x), etc.
2397       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2398       if (!is_native_ptr) {
2399         assert(sig->count() == 3, "oop putter has 3 arguments");
2400         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2401         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2402       } else {
2403         assert(sig->count() == 2, "native putter has 2 arguments");
2404         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2405       }
2406       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2407       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2408         vtype = T_ADDRESS;  // it is really a C void*
2409       assert(vtype == type, "putter must accept the expected value");
2410     }
2411 #endif // ASSERT
2412  }
2413 #endif //PRODUCT
2414 
2415   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2416 
2417   Node* receiver = argument(0);  // type: oop
2418 
2419   // Build address expression.  See the code in inline_unsafe_prefetch.
2420   Node* adr;
2421   Node* heap_base_oop = top();
2422   Node* offset = top();
2423   Node* val;
2424 
2425   if (!is_native_ptr) {
2426     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2427     Node* base = argument(1);  // type: oop
2428     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2429     offset = argument(2);  // type: long
2430     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2431     // to be plain byte offsets, which are also the same as those accepted
2432     // by oopDesc::field_base.
2433     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2434            "fieldOffset must be byte-scaled");
2435     // 32-bit machines ignore the high half!
2436     offset = ConvL2X(offset);
2437     adr = make_unsafe_address(base, offset);
2438     heap_base_oop = base;
2439     val = is_store ? argument(4) : NULL;
2440   } else {
2441     Node* ptr = argument(1);  // type: long
2442     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2443     adr = make_unsafe_address(NULL, ptr);
2444     val = is_store ? argument(3) : NULL;
2445   }
2446 
2447   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2448 
2449   // First guess at the value type.
2450   const Type *value_type = Type::get_const_basic_type(type);
2451 
2452   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2453   // there was not enough information to nail it down.
2454   Compile::AliasType* alias_type = C->alias_type(adr_type);
2455   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2456 
2457   // We will need memory barriers unless we can determine a unique
2458   // alias category for this reference.  (Note:  If for some reason
2459   // the barriers get omitted and the unsafe reference begins to "pollute"
2460   // the alias analysis of the rest of the graph, either Compile::can_alias
2461   // or Compile::must_alias will throw a diagnostic assert.)
2462   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2463 
2464   // If we are reading the value of the referent field of a Reference
2465   // object (either by using Unsafe directly or through reflection)
2466   // then, if G1 is enabled, we need to record the referent in an
2467   // SATB log buffer using the pre-barrier mechanism.
2468   // Also we need to add memory barrier to prevent commoning reads
2469   // from this field across safepoint since GC can change its value.
2470   bool need_read_barrier = !is_native_ptr && !is_store &&
2471                            offset != top() && heap_base_oop != top();
2472 
2473   if (!is_store && type == T_OBJECT) {
2474     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2475     if (tjp != NULL) {
2476       value_type = tjp;
2477     }
2478   }
2479 
2480   receiver = null_check(receiver);
2481   if (stopped()) {
2482     return true;
2483   }
2484   // Heap pointers get a null-check from the interpreter,
2485   // as a courtesy.  However, this is not guaranteed by Unsafe,
2486   // and it is not possible to fully distinguish unintended nulls
2487   // from intended ones in this API.
2488 
2489   if (is_volatile) {
2490     // We need to emit leading and trailing CPU membars (see below) in
2491     // addition to memory membars when is_volatile. This is a little
2492     // too strong, but avoids the need to insert per-alias-type
2493     // volatile membars (for stores; compare Parse::do_put_xxx), which
2494     // we cannot do effectively here because we probably only have a
2495     // rough approximation of type.
2496     need_mem_bar = true;
2497     // For Stores, place a memory ordering barrier now.
2498     if (is_store)
2499       insert_mem_bar(Op_MemBarRelease);
2500   }
2501 
2502   // Memory barrier to prevent normal and 'unsafe' accesses from
2503   // bypassing each other.  Happens after null checks, so the
2504   // exception paths do not take memory state from the memory barrier,
2505   // so there's no problems making a strong assert about mixing users
2506   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2507   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2508   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2509 
2510   if (!is_store) {
2511     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2512     // load value
2513     switch (type) {
2514     case T_BOOLEAN:
2515     case T_CHAR:
2516     case T_BYTE:
2517     case T_SHORT:
2518     case T_INT:
2519     case T_LONG:
2520     case T_FLOAT:
2521     case T_DOUBLE:
2522       break;
2523     case T_OBJECT:
2524       if (need_read_barrier) {
2525         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2526       }
2527       break;
2528     case T_ADDRESS:
2529       // Cast to an int type.
2530       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2531       p = ConvX2L(p);
2532       break;
2533     default:
2534       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2535       break;
2536     }
2537     // The load node has the control of the preceding MemBarCPUOrder.  All
2538     // following nodes will have the control of the MemBarCPUOrder inserted at
2539     // the end of this method.  So, pushing the load onto the stack at a later
2540     // point is fine.
2541     set_result(p);
2542   } else {
2543     // place effect of store into memory
2544     switch (type) {
2545     case T_DOUBLE:
2546       val = dstore_rounding(val);
2547       break;
2548     case T_ADDRESS:
2549       // Repackage the long as a pointer.
2550       val = ConvL2X(val);
2551       val = _gvn.transform(new (C) CastX2PNode(val));
2552       break;
2553     }
2554 
2555     if (type != T_OBJECT ) {
2556       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2557     } else {
2558       // Possibly an oop being stored to Java heap or native memory
2559       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2560         // oop to Java heap.
2561         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2562       } else {
2563         // We can't tell at compile time if we are storing in the Java heap or outside
2564         // of it. So we need to emit code to conditionally do the proper type of
2565         // store.
2566 
2567         IdealKit ideal(this);
2568 #define __ ideal.
2569         // QQQ who knows what probability is here??
2570         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2571           // Sync IdealKit and graphKit.
2572           sync_kit(ideal);
2573           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2574           // Update IdealKit memory.
2575           __ sync_kit(this);
2576         } __ else_(); {
2577           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2578         } __ end_if();
2579         // Final sync IdealKit and GraphKit.
2580         final_sync(ideal);
2581 #undef __
2582       }
2583     }
2584   }
2585 
2586   if (is_volatile) {
2587     if (!is_store)
2588       insert_mem_bar(Op_MemBarAcquire);
2589     else
2590       insert_mem_bar(Op_MemBarVolatile);
2591   }
2592 
2593   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2594 
2595   return true;
2596 }
2597 
2598 //----------------------------inline_unsafe_prefetch----------------------------
2599 
2600 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2601 #ifndef PRODUCT
2602   {
2603     ResourceMark rm;
2604     // Check the signatures.
2605     ciSignature* sig = callee()->signature();
2606 #ifdef ASSERT
2607     // Object getObject(Object base, int/long offset), etc.
2608     BasicType rtype = sig->return_type()->basic_type();
2609     if (!is_native_ptr) {
2610       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2611       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2612       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2613     } else {
2614       assert(sig->count() == 1, "native prefetch has 1 argument");
2615       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2616     }
2617 #endif // ASSERT
2618   }
2619 #endif // !PRODUCT
2620 
2621   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2622 
2623   const int idx = is_static ? 0 : 1;
2624   if (!is_static) {
2625     null_check_receiver();
2626     if (stopped()) {
2627       return true;
2628     }
2629   }
2630 
2631   // Build address expression.  See the code in inline_unsafe_access.
2632   Node *adr;
2633   if (!is_native_ptr) {
2634     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2635     Node* base   = argument(idx + 0);  // type: oop
2636     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2637     Node* offset = argument(idx + 1);  // type: long
2638     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2639     // to be plain byte offsets, which are also the same as those accepted
2640     // by oopDesc::field_base.
2641     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2642            "fieldOffset must be byte-scaled");
2643     // 32-bit machines ignore the high half!
2644     offset = ConvL2X(offset);
2645     adr = make_unsafe_address(base, offset);
2646   } else {
2647     Node* ptr = argument(idx + 0);  // type: long
2648     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2649     adr = make_unsafe_address(NULL, ptr);
2650   }
2651 
2652   // Generate the read or write prefetch
2653   Node *prefetch;
2654   if (is_store) {
2655     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2656   } else {
2657     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2658   }
2659   prefetch->init_req(0, control());
2660   set_i_o(_gvn.transform(prefetch));
2661 
2662   return true;
2663 }
2664 
2665 //----------------------------inline_unsafe_load_store----------------------------
2666 // This method serves a couple of different customers (depending on LoadStoreKind):
2667 //
2668 // LS_cmpxchg:
2669 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2670 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2671 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2672 //
2673 // LS_xadd:
2674 //   public int  getAndAddInt( Object o, long offset, int  delta)
2675 //   public long getAndAddLong(Object o, long offset, long delta)
2676 //
2677 // LS_xchg:
2678 //   int    getAndSet(Object o, long offset, int    newValue)
2679 //   long   getAndSet(Object o, long offset, long   newValue)
2680 //   Object getAndSet(Object o, long offset, Object newValue)
2681 //
2682 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2683   // This basic scheme here is the same as inline_unsafe_access, but
2684   // differs in enough details that combining them would make the code
2685   // overly confusing.  (This is a true fact! I originally combined
2686   // them, but even I was confused by it!) As much code/comments as
2687   // possible are retained from inline_unsafe_access though to make
2688   // the correspondences clearer. - dl
2689 
2690   if (callee()->is_static())  return false;  // caller must have the capability!
2691 
2692 #ifndef PRODUCT
2693   BasicType rtype;
2694   {
2695     ResourceMark rm;
2696     // Check the signatures.
2697     ciSignature* sig = callee()->signature();
2698     rtype = sig->return_type()->basic_type();
2699     if (kind == LS_xadd || kind == LS_xchg) {
2700       // Check the signatures.
2701 #ifdef ASSERT
2702       assert(rtype == type, "get and set must return the expected type");
2703       assert(sig->count() == 3, "get and set has 3 arguments");
2704       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2705       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2706       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2707 #endif // ASSERT
2708     } else if (kind == LS_cmpxchg) {
2709       // Check the signatures.
2710 #ifdef ASSERT
2711       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2712       assert(sig->count() == 4, "CAS has 4 arguments");
2713       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2714       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2715 #endif // ASSERT
2716     } else {
2717       ShouldNotReachHere();
2718     }
2719   }
2720 #endif //PRODUCT
2721 
2722   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2723 
2724   // Get arguments:
2725   Node* receiver = NULL;
2726   Node* base     = NULL;
2727   Node* offset   = NULL;
2728   Node* oldval   = NULL;
2729   Node* newval   = NULL;
2730   if (kind == LS_cmpxchg) {
2731     const bool two_slot_type = type2size[type] == 2;
2732     receiver = argument(0);  // type: oop
2733     base     = argument(1);  // type: oop
2734     offset   = argument(2);  // type: long
2735     oldval   = argument(4);  // type: oop, int, or long
2736     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2737   } else if (kind == LS_xadd || kind == LS_xchg){
2738     receiver = argument(0);  // type: oop
2739     base     = argument(1);  // type: oop
2740     offset   = argument(2);  // type: long
2741     oldval   = NULL;
2742     newval   = argument(4);  // type: oop, int, or long
2743   }
2744 
2745   // Null check receiver.
2746   receiver = null_check(receiver);
2747   if (stopped()) {
2748     return true;
2749   }
2750 
2751   // Build field offset expression.
2752   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2753   // to be plain byte offsets, which are also the same as those accepted
2754   // by oopDesc::field_base.
2755   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2756   // 32-bit machines ignore the high half of long offsets
2757   offset = ConvL2X(offset);
2758   Node* adr = make_unsafe_address(base, offset);
2759   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2760 
2761   // For CAS, unlike inline_unsafe_access, there seems no point in
2762   // trying to refine types. Just use the coarse types here.
2763   const Type *value_type = Type::get_const_basic_type(type);
2764   Compile::AliasType* alias_type = C->alias_type(adr_type);
2765   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2766 
2767   if (kind == LS_xchg && type == T_OBJECT) {
2768     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2769     if (tjp != NULL) {
2770       value_type = tjp;
2771     }
2772   }
2773 
2774   int alias_idx = C->get_alias_index(adr_type);
2775 
2776   // Memory-model-wise, a LoadStore acts like a little synchronized
2777   // block, so needs barriers on each side.  These don't translate
2778   // into actual barriers on most machines, but we still need rest of
2779   // compiler to respect ordering.
2780 
2781   insert_mem_bar(Op_MemBarRelease);
2782   insert_mem_bar(Op_MemBarCPUOrder);
2783 
2784   // 4984716: MemBars must be inserted before this
2785   //          memory node in order to avoid a false
2786   //          dependency which will confuse the scheduler.
2787   Node *mem = memory(alias_idx);
2788 
2789   // For now, we handle only those cases that actually exist: ints,
2790   // longs, and Object. Adding others should be straightforward.
2791   Node* load_store;
2792   switch(type) {
2793   case T_INT:
2794     if (kind == LS_xadd) {
2795       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2796     } else if (kind == LS_xchg) {
2797       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2798     } else if (kind == LS_cmpxchg) {
2799       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2800     } else {
2801       ShouldNotReachHere();
2802     }
2803     break;
2804   case T_LONG:
2805     if (kind == LS_xadd) {
2806       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2807     } else if (kind == LS_xchg) {
2808       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2809     } else if (kind == LS_cmpxchg) {
2810       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2811     } else {
2812       ShouldNotReachHere();
2813     }
2814     break;
2815   case T_OBJECT:
2816     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2817     // could be delayed during Parse (for example, in adjust_map_after_if()).
2818     // Execute transformation here to avoid barrier generation in such case.
2819     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2820       newval = _gvn.makecon(TypePtr::NULL_PTR);
2821 
2822     // Reference stores need a store barrier.
2823     if (kind == LS_xchg) {
2824       // If pre-barrier must execute before the oop store, old value will require do_load here.
2825       if (!can_move_pre_barrier()) {
2826         pre_barrier(true /* do_load*/,
2827                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2828                     NULL /* pre_val*/,
2829                     T_OBJECT);
2830       } // Else move pre_barrier to use load_store value, see below.
2831     } else if (kind == LS_cmpxchg) {
2832       // Same as for newval above:
2833       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2834         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2835       }
2836       // The only known value which might get overwritten is oldval.
2837       pre_barrier(false /* do_load */,
2838                   control(), NULL, NULL, max_juint, NULL, NULL,
2839                   oldval /* pre_val */,
2840                   T_OBJECT);
2841     } else {
2842       ShouldNotReachHere();
2843     }
2844 
2845 #ifdef _LP64
2846     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2847       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2848       if (kind == LS_xchg) {
2849         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2850                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2851       } else {
2852         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2853         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2854         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2855                                                                    newval_enc, oldval_enc));
2856       }
2857     } else
2858 #endif
2859     {
2860       if (kind == LS_xchg) {
2861         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2862       } else {
2863         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2864         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2865       }
2866     }
2867     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2868     break;
2869   default:
2870     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2871     break;
2872   }
2873 
2874   // SCMemProjNodes represent the memory state of a LoadStore. Their
2875   // main role is to prevent LoadStore nodes from being optimized away
2876   // when their results aren't used.
2877   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2878   set_memory(proj, alias_idx);
2879 
2880   if (type == T_OBJECT && kind == LS_xchg) {
2881 #ifdef _LP64
2882     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2883       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2884     }
2885 #endif
2886     if (can_move_pre_barrier()) {
2887       // Don't need to load pre_val. The old value is returned by load_store.
2888       // The pre_barrier can execute after the xchg as long as no safepoint
2889       // gets inserted between them.
2890       pre_barrier(false /* do_load */,
2891                   control(), NULL, NULL, max_juint, NULL, NULL,
2892                   load_store /* pre_val */,
2893                   T_OBJECT);
2894     }
2895   }
2896 
2897   // Add the trailing membar surrounding the access
2898   insert_mem_bar(Op_MemBarCPUOrder);
2899   insert_mem_bar(Op_MemBarAcquire);
2900 
2901   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2902   set_result(load_store);
2903   return true;
2904 }
2905 
2906 //----------------------------inline_unsafe_ordered_store----------------------
2907 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2908 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2909 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2910 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2911   // This is another variant of inline_unsafe_access, differing in
2912   // that it always issues store-store ("release") barrier and ensures
2913   // store-atomicity (which only matters for "long").
2914 
2915   if (callee()->is_static())  return false;  // caller must have the capability!
2916 
2917 #ifndef PRODUCT
2918   {
2919     ResourceMark rm;
2920     // Check the signatures.
2921     ciSignature* sig = callee()->signature();
2922 #ifdef ASSERT
2923     BasicType rtype = sig->return_type()->basic_type();
2924     assert(rtype == T_VOID, "must return void");
2925     assert(sig->count() == 3, "has 3 arguments");
2926     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2927     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2928 #endif // ASSERT
2929   }
2930 #endif //PRODUCT
2931 
2932   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2933 
2934   // Get arguments:
2935   Node* receiver = argument(0);  // type: oop
2936   Node* base     = argument(1);  // type: oop
2937   Node* offset   = argument(2);  // type: long
2938   Node* val      = argument(4);  // type: oop, int, or long
2939 
2940   // Null check receiver.
2941   receiver = null_check(receiver);
2942   if (stopped()) {
2943     return true;
2944   }
2945 
2946   // Build field offset expression.
2947   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2948   // 32-bit machines ignore the high half of long offsets
2949   offset = ConvL2X(offset);
2950   Node* adr = make_unsafe_address(base, offset);
2951   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2952   const Type *value_type = Type::get_const_basic_type(type);
2953   Compile::AliasType* alias_type = C->alias_type(adr_type);
2954 
2955   insert_mem_bar(Op_MemBarRelease);
2956   insert_mem_bar(Op_MemBarCPUOrder);
2957   // Ensure that the store is atomic for longs:
2958   const bool require_atomic_access = true;
2959   Node* store;
2960   if (type == T_OBJECT) // reference stores need a store barrier.
2961     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2962   else {
2963     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2964   }
2965   insert_mem_bar(Op_MemBarCPUOrder);
2966   return true;
2967 }
2968 
2969 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2970   // Regardless of form, don't allow previous ld/st to move down,
2971   // then issue acquire, release, or volatile mem_bar.
2972   insert_mem_bar(Op_MemBarCPUOrder);
2973   switch(id) {
2974     case vmIntrinsics::_loadFence:
2975       insert_mem_bar(Op_MemBarAcquire);
2976       return true;
2977     case vmIntrinsics::_storeFence:
2978       insert_mem_bar(Op_MemBarRelease);
2979       return true;
2980     case vmIntrinsics::_fullFence:
2981       insert_mem_bar(Op_MemBarVolatile);
2982       return true;
2983     default:
2984       fatal_unexpected_iid(id);
2985       return false;
2986   }
2987 }
2988 
2989 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2990   if (!kls->is_Con()) {
2991     return true;
2992   }
2993   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2994   if (klsptr == NULL) {
2995     return true;
2996   }
2997   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2998   // don't need a guard for a klass that is already initialized
2999   return !ik->is_initialized();
3000 }
3001 
3002 //----------------------------inline_unsafe_allocate---------------------------
3003 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3004 bool LibraryCallKit::inline_unsafe_allocate() {
3005   if (callee()->is_static())  return false;  // caller must have the capability!
3006 
3007   null_check_receiver();  // null-check, then ignore
3008   Node* cls = null_check(argument(1));
3009   if (stopped())  return true;
3010 
3011   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3012   kls = null_check(kls);
3013   if (stopped())  return true;  // argument was like int.class
3014 
3015   Node* test = NULL;
3016   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3017     // Note:  The argument might still be an illegal value like
3018     // Serializable.class or Object[].class.   The runtime will handle it.
3019     // But we must make an explicit check for initialization.
3020     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3021     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3022     // can generate code to load it as unsigned byte.
3023     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
3024     Node* bits = intcon(InstanceKlass::fully_initialized);
3025     test = _gvn.transform(new (C) SubINode(inst, bits));
3026     // The 'test' is non-zero if we need to take a slow path.
3027   }
3028 
3029   Node* obj = new_instance(kls, test);
3030   set_result(obj);
3031   return true;
3032 }
3033 
3034 #ifdef TRACE_HAVE_INTRINSICS
3035 /*
3036  * oop -> myklass
3037  * myklass->trace_id |= USED
3038  * return myklass->trace_id & ~0x3
3039  */
3040 bool LibraryCallKit::inline_native_classID() {
3041   null_check_receiver();  // null-check, then ignore
3042   Node* cls = null_check(argument(1), T_OBJECT);
3043   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3044   kls = null_check(kls, T_OBJECT);
3045   ByteSize offset = TRACE_ID_OFFSET;
3046   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3047   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
3048   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3049   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3050   Node* clsused = longcon(0x01l); // set the class bit
3051   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3052 
3053   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3054   store_to_memory(control(), insp, orl, T_LONG, adr_type);
3055   set_result(andl);
3056   return true;
3057 }
3058 
3059 bool LibraryCallKit::inline_native_threadID() {
3060   Node* tls_ptr = NULL;
3061   Node* cur_thr = generate_current_thread(tls_ptr);
3062   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3063   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3064   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3065 
3066   Node* threadid = NULL;
3067   size_t thread_id_size = OSThread::thread_id_size();
3068   if (thread_id_size == (size_t) BytesPerLong) {
3069     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
3070   } else if (thread_id_size == (size_t) BytesPerInt) {
3071     threadid = make_load(control(), p, TypeInt::INT, T_INT);
3072   } else {
3073     ShouldNotReachHere();
3074   }
3075   set_result(threadid);
3076   return true;
3077 }
3078 #endif
3079 
3080 //------------------------inline_native_time_funcs--------------
3081 // inline code for System.currentTimeMillis() and System.nanoTime()
3082 // these have the same type and signature
3083 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3084   const TypeFunc* tf = OptoRuntime::void_long_Type();
3085   const TypePtr* no_memory_effects = NULL;
3086   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3087   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3088 #ifdef ASSERT
3089   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3090   assert(value_top == top(), "second value must be top");
3091 #endif
3092   set_result(value);
3093   return true;
3094 }
3095 
3096 //------------------------inline_native_currentThread------------------
3097 bool LibraryCallKit::inline_native_currentThread() {
3098   Node* junk = NULL;
3099   set_result(generate_current_thread(junk));
3100   return true;
3101 }
3102 
3103 //------------------------inline_native_isInterrupted------------------
3104 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3105 bool LibraryCallKit::inline_native_isInterrupted() {
3106   // Add a fast path to t.isInterrupted(clear_int):
3107   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3108   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3109   // So, in the common case that the interrupt bit is false,
3110   // we avoid making a call into the VM.  Even if the interrupt bit
3111   // is true, if the clear_int argument is false, we avoid the VM call.
3112   // However, if the receiver is not currentThread, we must call the VM,
3113   // because there must be some locking done around the operation.
3114 
3115   // We only go to the fast case code if we pass two guards.
3116   // Paths which do not pass are accumulated in the slow_region.
3117 
3118   enum {
3119     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3120     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3121     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3122     PATH_LIMIT
3123   };
3124 
3125   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3126   // out of the function.
3127   insert_mem_bar(Op_MemBarCPUOrder);
3128 
3129   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3130   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3131 
3132   RegionNode* slow_region = new (C) RegionNode(1);
3133   record_for_igvn(slow_region);
3134 
3135   // (a) Receiving thread must be the current thread.
3136   Node* rec_thr = argument(0);
3137   Node* tls_ptr = NULL;
3138   Node* cur_thr = generate_current_thread(tls_ptr);
3139   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3140   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3141 
3142   generate_slow_guard(bol_thr, slow_region);
3143 
3144   // (b) Interrupt bit on TLS must be false.
3145   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3146   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3147   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3148 
3149   // Set the control input on the field _interrupted read to prevent it floating up.
3150   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3151   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3152   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3153 
3154   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3155 
3156   // First fast path:  if (!TLS._interrupted) return false;
3157   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3158   result_rgn->init_req(no_int_result_path, false_bit);
3159   result_val->init_req(no_int_result_path, intcon(0));
3160 
3161   // drop through to next case
3162   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3163 
3164   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3165   Node* clr_arg = argument(1);
3166   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3167   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3168   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3169 
3170   // Second fast path:  ... else if (!clear_int) return true;
3171   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3172   result_rgn->init_req(no_clear_result_path, false_arg);
3173   result_val->init_req(no_clear_result_path, intcon(1));
3174 
3175   // drop through to next case
3176   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3177 
3178   // (d) Otherwise, go to the slow path.
3179   slow_region->add_req(control());
3180   set_control( _gvn.transform(slow_region));
3181 
3182   if (stopped()) {
3183     // There is no slow path.
3184     result_rgn->init_req(slow_result_path, top());
3185     result_val->init_req(slow_result_path, top());
3186   } else {
3187     // non-virtual because it is a private non-static
3188     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3189 
3190     Node* slow_val = set_results_for_java_call(slow_call);
3191     // this->control() comes from set_results_for_java_call
3192 
3193     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3194     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3195 
3196     // These two phis are pre-filled with copies of of the fast IO and Memory
3197     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3198     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3199 
3200     result_rgn->init_req(slow_result_path, control());
3201     result_io ->init_req(slow_result_path, i_o());
3202     result_mem->init_req(slow_result_path, reset_memory());
3203     result_val->init_req(slow_result_path, slow_val);
3204 
3205     set_all_memory(_gvn.transform(result_mem));
3206     set_i_o(       _gvn.transform(result_io));
3207   }
3208 
3209   C->set_has_split_ifs(true); // Has chance for split-if optimization
3210   set_result(result_rgn, result_val);
3211   return true;
3212 }
3213 
3214 //---------------------------load_mirror_from_klass----------------------------
3215 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3216 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3217   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3218   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3219 }
3220 
3221 //-----------------------load_klass_from_mirror_common-------------------------
3222 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3223 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3224 // and branch to the given path on the region.
3225 // If never_see_null, take an uncommon trap on null, so we can optimistically
3226 // compile for the non-null case.
3227 // If the region is NULL, force never_see_null = true.
3228 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3229                                                     bool never_see_null,
3230                                                     RegionNode* region,
3231                                                     int null_path,
3232                                                     int offset) {
3233   if (region == NULL)  never_see_null = true;
3234   Node* p = basic_plus_adr(mirror, offset);
3235   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3236   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3237   Node* null_ctl = top();
3238   kls = null_check_oop(kls, &null_ctl, never_see_null);
3239   if (region != NULL) {
3240     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3241     region->init_req(null_path, null_ctl);
3242   } else {
3243     assert(null_ctl == top(), "no loose ends");
3244   }
3245   return kls;
3246 }
3247 
3248 //--------------------(inline_native_Class_query helpers)---------------------
3249 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3250 // Fall through if (mods & mask) == bits, take the guard otherwise.
3251 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3252   // Branch around if the given klass has the given modifier bit set.
3253   // Like generate_guard, adds a new path onto the region.
3254   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3255   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3256   Node* mask = intcon(modifier_mask);
3257   Node* bits = intcon(modifier_bits);
3258   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3259   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3260   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3261   return generate_fair_guard(bol, region);
3262 }
3263 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3264   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3265 }
3266 
3267 //-------------------------inline_native_Class_query-------------------
3268 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3269   const Type* return_type = TypeInt::BOOL;
3270   Node* prim_return_value = top();  // what happens if it's a primitive class?
3271   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3272   bool expect_prim = false;     // most of these guys expect to work on refs
3273 
3274   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3275 
3276   Node* mirror = argument(0);
3277   Node* obj    = top();
3278 
3279   switch (id) {
3280   case vmIntrinsics::_isInstance:
3281     // nothing is an instance of a primitive type
3282     prim_return_value = intcon(0);
3283     obj = argument(1);
3284     break;
3285   case vmIntrinsics::_getModifiers:
3286     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3287     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3288     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3289     break;
3290   case vmIntrinsics::_isInterface:
3291     prim_return_value = intcon(0);
3292     break;
3293   case vmIntrinsics::_isArray:
3294     prim_return_value = intcon(0);
3295     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3296     break;
3297   case vmIntrinsics::_isPrimitive:
3298     prim_return_value = intcon(1);
3299     expect_prim = true;  // obviously
3300     break;
3301   case vmIntrinsics::_getSuperclass:
3302     prim_return_value = null();
3303     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3304     break;
3305   case vmIntrinsics::_getComponentType:
3306     prim_return_value = null();
3307     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3308     break;
3309   case vmIntrinsics::_getClassAccessFlags:
3310     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3311     return_type = TypeInt::INT;  // not bool!  6297094
3312     break;
3313   default:
3314     fatal_unexpected_iid(id);
3315     break;
3316   }
3317 
3318   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3319   if (mirror_con == NULL)  return false;  // cannot happen?
3320 
3321 #ifndef PRODUCT
3322   if (C->print_intrinsics() || C->print_inlining()) {
3323     ciType* k = mirror_con->java_mirror_type();
3324     if (k) {
3325       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3326       k->print_name();
3327       tty->cr();
3328     }
3329   }
3330 #endif
3331 
3332   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3333   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3334   record_for_igvn(region);
3335   PhiNode* phi = new (C) PhiNode(region, return_type);
3336 
3337   // The mirror will never be null of Reflection.getClassAccessFlags, however
3338   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3339   // if it is. See bug 4774291.
3340 
3341   // For Reflection.getClassAccessFlags(), the null check occurs in
3342   // the wrong place; see inline_unsafe_access(), above, for a similar
3343   // situation.
3344   mirror = null_check(mirror);
3345   // If mirror or obj is dead, only null-path is taken.
3346   if (stopped())  return true;
3347 
3348   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3349 
3350   // Now load the mirror's klass metaobject, and null-check it.
3351   // Side-effects region with the control path if the klass is null.
3352   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3353   // If kls is null, we have a primitive mirror.
3354   phi->init_req(_prim_path, prim_return_value);
3355   if (stopped()) { set_result(region, phi); return true; }
3356   bool safe_for_replace = (region->in(_prim_path) == top());
3357 
3358   Node* p;  // handy temp
3359   Node* null_ctl;
3360 
3361   // Now that we have the non-null klass, we can perform the real query.
3362   // For constant classes, the query will constant-fold in LoadNode::Value.
3363   Node* query_value = top();
3364   switch (id) {
3365   case vmIntrinsics::_isInstance:
3366     // nothing is an instance of a primitive type
3367     query_value = gen_instanceof(obj, kls, safe_for_replace);
3368     break;
3369 
3370   case vmIntrinsics::_getModifiers:
3371     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3372     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3373     break;
3374 
3375   case vmIntrinsics::_isInterface:
3376     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3377     if (generate_interface_guard(kls, region) != NULL)
3378       // A guard was added.  If the guard is taken, it was an interface.
3379       phi->add_req(intcon(1));
3380     // If we fall through, it's a plain class.
3381     query_value = intcon(0);
3382     break;
3383 
3384   case vmIntrinsics::_isArray:
3385     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3386     if (generate_array_guard(kls, region) != NULL)
3387       // A guard was added.  If the guard is taken, it was an array.
3388       phi->add_req(intcon(1));
3389     // If we fall through, it's a plain class.
3390     query_value = intcon(0);
3391     break;
3392 
3393   case vmIntrinsics::_isPrimitive:
3394     query_value = intcon(0); // "normal" path produces false
3395     break;
3396 
3397   case vmIntrinsics::_getSuperclass:
3398     // The rules here are somewhat unfortunate, but we can still do better
3399     // with random logic than with a JNI call.
3400     // Interfaces store null or Object as _super, but must report null.
3401     // Arrays store an intermediate super as _super, but must report Object.
3402     // Other types can report the actual _super.
3403     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3404     if (generate_interface_guard(kls, region) != NULL)
3405       // A guard was added.  If the guard is taken, it was an interface.
3406       phi->add_req(null());
3407     if (generate_array_guard(kls, region) != NULL)
3408       // A guard was added.  If the guard is taken, it was an array.
3409       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3410     // If we fall through, it's a plain class.  Get its _super.
3411     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3412     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3413     null_ctl = top();
3414     kls = null_check_oop(kls, &null_ctl);
3415     if (null_ctl != top()) {
3416       // If the guard is taken, Object.superClass is null (both klass and mirror).
3417       region->add_req(null_ctl);
3418       phi   ->add_req(null());
3419     }
3420     if (!stopped()) {
3421       query_value = load_mirror_from_klass(kls);
3422     }
3423     break;
3424 
3425   case vmIntrinsics::_getComponentType:
3426     if (generate_array_guard(kls, region) != NULL) {
3427       // Be sure to pin the oop load to the guard edge just created:
3428       Node* is_array_ctrl = region->in(region->req()-1);
3429       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3430       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3431       phi->add_req(cmo);
3432     }
3433     query_value = null();  // non-array case is null
3434     break;
3435 
3436   case vmIntrinsics::_getClassAccessFlags:
3437     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3438     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3439     break;
3440 
3441   default:
3442     fatal_unexpected_iid(id);
3443     break;
3444   }
3445 
3446   // Fall-through is the normal case of a query to a real class.
3447   phi->init_req(1, query_value);
3448   region->init_req(1, control());
3449 
3450   C->set_has_split_ifs(true); // Has chance for split-if optimization
3451   set_result(region, phi);
3452   return true;
3453 }
3454 
3455 //--------------------------inline_native_subtype_check------------------------
3456 // This intrinsic takes the JNI calls out of the heart of
3457 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3458 bool LibraryCallKit::inline_native_subtype_check() {
3459   // Pull both arguments off the stack.
3460   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3461   args[0] = argument(0);
3462   args[1] = argument(1);
3463   Node* klasses[2];             // corresponding Klasses: superk, subk
3464   klasses[0] = klasses[1] = top();
3465 
3466   enum {
3467     // A full decision tree on {superc is prim, subc is prim}:
3468     _prim_0_path = 1,           // {P,N} => false
3469                                 // {P,P} & superc!=subc => false
3470     _prim_same_path,            // {P,P} & superc==subc => true
3471     _prim_1_path,               // {N,P} => false
3472     _ref_subtype_path,          // {N,N} & subtype check wins => true
3473     _both_ref_path,             // {N,N} & subtype check loses => false
3474     PATH_LIMIT
3475   };
3476 
3477   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3478   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3479   record_for_igvn(region);
3480 
3481   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3482   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3483   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3484 
3485   // First null-check both mirrors and load each mirror's klass metaobject.
3486   int which_arg;
3487   for (which_arg = 0; which_arg <= 1; which_arg++) {
3488     Node* arg = args[which_arg];
3489     arg = null_check(arg);
3490     if (stopped())  break;
3491     args[which_arg] = arg;
3492 
3493     Node* p = basic_plus_adr(arg, class_klass_offset);
3494     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3495     klasses[which_arg] = _gvn.transform(kls);
3496   }
3497 
3498   // Having loaded both klasses, test each for null.
3499   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3500   for (which_arg = 0; which_arg <= 1; which_arg++) {
3501     Node* kls = klasses[which_arg];
3502     Node* null_ctl = top();
3503     kls = null_check_oop(kls, &null_ctl, never_see_null);
3504     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3505     region->init_req(prim_path, null_ctl);
3506     if (stopped())  break;
3507     klasses[which_arg] = kls;
3508   }
3509 
3510   if (!stopped()) {
3511     // now we have two reference types, in klasses[0..1]
3512     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3513     Node* superk = klasses[0];  // the receiver
3514     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3515     // now we have a successful reference subtype check
3516     region->set_req(_ref_subtype_path, control());
3517   }
3518 
3519   // If both operands are primitive (both klasses null), then
3520   // we must return true when they are identical primitives.
3521   // It is convenient to test this after the first null klass check.
3522   set_control(region->in(_prim_0_path)); // go back to first null check
3523   if (!stopped()) {
3524     // Since superc is primitive, make a guard for the superc==subc case.
3525     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3526     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3527     generate_guard(bol_eq, region, PROB_FAIR);
3528     if (region->req() == PATH_LIMIT+1) {
3529       // A guard was added.  If the added guard is taken, superc==subc.
3530       region->swap_edges(PATH_LIMIT, _prim_same_path);
3531       region->del_req(PATH_LIMIT);
3532     }
3533     region->set_req(_prim_0_path, control()); // Not equal after all.
3534   }
3535 
3536   // these are the only paths that produce 'true':
3537   phi->set_req(_prim_same_path,   intcon(1));
3538   phi->set_req(_ref_subtype_path, intcon(1));
3539 
3540   // pull together the cases:
3541   assert(region->req() == PATH_LIMIT, "sane region");
3542   for (uint i = 1; i < region->req(); i++) {
3543     Node* ctl = region->in(i);
3544     if (ctl == NULL || ctl == top()) {
3545       region->set_req(i, top());
3546       phi   ->set_req(i, top());
3547     } else if (phi->in(i) == NULL) {
3548       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3549     }
3550   }
3551 
3552   set_control(_gvn.transform(region));
3553   set_result(_gvn.transform(phi));
3554   return true;
3555 }
3556 
3557 //---------------------generate_array_guard_common------------------------
3558 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3559                                                   bool obj_array, bool not_array) {
3560   // If obj_array/non_array==false/false:
3561   // Branch around if the given klass is in fact an array (either obj or prim).
3562   // If obj_array/non_array==false/true:
3563   // Branch around if the given klass is not an array klass of any kind.
3564   // If obj_array/non_array==true/true:
3565   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3566   // If obj_array/non_array==true/false:
3567   // Branch around if the kls is an oop array (Object[] or subtype)
3568   //
3569   // Like generate_guard, adds a new path onto the region.
3570   jint  layout_con = 0;
3571   Node* layout_val = get_layout_helper(kls, layout_con);
3572   if (layout_val == NULL) {
3573     bool query = (obj_array
3574                   ? Klass::layout_helper_is_objArray(layout_con)
3575                   : Klass::layout_helper_is_array(layout_con));
3576     if (query == not_array) {
3577       return NULL;                       // never a branch
3578     } else {                             // always a branch
3579       Node* always_branch = control();
3580       if (region != NULL)
3581         region->add_req(always_branch);
3582       set_control(top());
3583       return always_branch;
3584     }
3585   }
3586   // Now test the correct condition.
3587   jint  nval = (obj_array
3588                 ? ((jint)Klass::_lh_array_tag_type_value
3589                    <<    Klass::_lh_array_tag_shift)
3590                 : Klass::_lh_neutral_value);
3591   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3592   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3593   // invert the test if we are looking for a non-array
3594   if (not_array)  btest = BoolTest(btest).negate();
3595   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3596   return generate_fair_guard(bol, region);
3597 }
3598 
3599 
3600 //-----------------------inline_native_newArray--------------------------
3601 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3602 bool LibraryCallKit::inline_native_newArray() {
3603   Node* mirror    = argument(0);
3604   Node* count_val = argument(1);
3605 
3606   mirror = null_check(mirror);
3607   // If mirror or obj is dead, only null-path is taken.
3608   if (stopped())  return true;
3609 
3610   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3611   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3612   PhiNode*    result_val = new(C) PhiNode(result_reg,
3613                                           TypeInstPtr::NOTNULL);
3614   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3615   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3616                                           TypePtr::BOTTOM);
3617 
3618   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3619   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3620                                                   result_reg, _slow_path);
3621   Node* normal_ctl   = control();
3622   Node* no_array_ctl = result_reg->in(_slow_path);
3623 
3624   // Generate code for the slow case.  We make a call to newArray().
3625   set_control(no_array_ctl);
3626   if (!stopped()) {
3627     // Either the input type is void.class, or else the
3628     // array klass has not yet been cached.  Either the
3629     // ensuing call will throw an exception, or else it
3630     // will cache the array klass for next time.
3631     PreserveJVMState pjvms(this);
3632     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3633     Node* slow_result = set_results_for_java_call(slow_call);
3634     // this->control() comes from set_results_for_java_call
3635     result_reg->set_req(_slow_path, control());
3636     result_val->set_req(_slow_path, slow_result);
3637     result_io ->set_req(_slow_path, i_o());
3638     result_mem->set_req(_slow_path, reset_memory());
3639   }
3640 
3641   set_control(normal_ctl);
3642   if (!stopped()) {
3643     // Normal case:  The array type has been cached in the java.lang.Class.
3644     // The following call works fine even if the array type is polymorphic.
3645     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3646     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3647     result_reg->init_req(_normal_path, control());
3648     result_val->init_req(_normal_path, obj);
3649     result_io ->init_req(_normal_path, i_o());
3650     result_mem->init_req(_normal_path, reset_memory());
3651   }
3652 
3653   // Return the combined state.
3654   set_i_o(        _gvn.transform(result_io)  );
3655   set_all_memory( _gvn.transform(result_mem));
3656 
3657   C->set_has_split_ifs(true); // Has chance for split-if optimization
3658   set_result(result_reg, result_val);
3659   return true;
3660 }
3661 
3662 //----------------------inline_native_getLength--------------------------
3663 // public static native int java.lang.reflect.Array.getLength(Object array);
3664 bool LibraryCallKit::inline_native_getLength() {
3665   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3666 
3667   Node* array = null_check(argument(0));
3668   // If array is dead, only null-path is taken.
3669   if (stopped())  return true;
3670 
3671   // Deoptimize if it is a non-array.
3672   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3673 
3674   if (non_array != NULL) {
3675     PreserveJVMState pjvms(this);
3676     set_control(non_array);
3677     uncommon_trap(Deoptimization::Reason_intrinsic,
3678                   Deoptimization::Action_maybe_recompile);
3679   }
3680 
3681   // If control is dead, only non-array-path is taken.
3682   if (stopped())  return true;
3683 
3684   // The works fine even if the array type is polymorphic.
3685   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3686   Node* result = load_array_length(array);
3687 
3688   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3689   set_result(result);
3690   return true;
3691 }
3692 
3693 //------------------------inline_array_copyOf----------------------------
3694 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3695 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3696 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3697   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3698 
3699   // Get the arguments.
3700   Node* original          = argument(0);
3701   Node* start             = is_copyOfRange? argument(1): intcon(0);
3702   Node* end               = is_copyOfRange? argument(2): argument(1);
3703   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3704 
3705   Node* newcopy;
3706 
3707   // Set the original stack and the reexecute bit for the interpreter to reexecute
3708   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3709   { PreserveReexecuteState preexecs(this);
3710     jvms()->set_should_reexecute(true);
3711 
3712     array_type_mirror = null_check(array_type_mirror);
3713     original          = null_check(original);
3714 
3715     // Check if a null path was taken unconditionally.
3716     if (stopped())  return true;
3717 
3718     Node* orig_length = load_array_length(original);
3719 
3720     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3721     klass_node = null_check(klass_node);
3722 
3723     RegionNode* bailout = new (C) RegionNode(1);
3724     record_for_igvn(bailout);
3725 
3726     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3727     // Bail out if that is so.
3728     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3729     if (not_objArray != NULL) {
3730       // Improve the klass node's type from the new optimistic assumption:
3731       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3732       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3733       Node* cast = new (C) CastPPNode(klass_node, akls);
3734       cast->init_req(0, control());
3735       klass_node = _gvn.transform(cast);
3736     }
3737 
3738     // Bail out if either start or end is negative.
3739     generate_negative_guard(start, bailout, &start);
3740     generate_negative_guard(end,   bailout, &end);
3741 
3742     Node* length = end;
3743     if (_gvn.type(start) != TypeInt::ZERO) {
3744       length = _gvn.transform(new (C) SubINode(end, start));
3745     }
3746 
3747     // Bail out if length is negative.
3748     // Without this the new_array would throw
3749     // NegativeArraySizeException but IllegalArgumentException is what
3750     // should be thrown
3751     generate_negative_guard(length, bailout, &length);
3752 
3753     if (bailout->req() > 1) {
3754       PreserveJVMState pjvms(this);
3755       set_control(_gvn.transform(bailout));
3756       uncommon_trap(Deoptimization::Reason_intrinsic,
3757                     Deoptimization::Action_maybe_recompile);
3758     }
3759 
3760     if (!stopped()) {
3761       // How many elements will we copy from the original?
3762       // The answer is MinI(orig_length - start, length).
3763       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3764       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3765 
3766       newcopy = new_array(klass_node, length, 0);  // no argments to push
3767 
3768       // Generate a direct call to the right arraycopy function(s).
3769       // We know the copy is disjoint but we might not know if the
3770       // oop stores need checking.
3771       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3772       // This will fail a store-check if x contains any non-nulls.
3773       bool disjoint_bases = true;
3774       // if start > orig_length then the length of the copy may be
3775       // negative.
3776       bool length_never_negative = !is_copyOfRange;
3777       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3778                          original, start, newcopy, intcon(0), moved,
3779                          disjoint_bases, length_never_negative);
3780     }
3781   } // original reexecute is set back here
3782 
3783   C->set_has_split_ifs(true); // Has chance for split-if optimization
3784   if (!stopped()) {
3785     set_result(newcopy);
3786   }
3787   return true;
3788 }
3789 
3790 
3791 //----------------------generate_virtual_guard---------------------------
3792 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3793 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3794                                              RegionNode* slow_region) {
3795   ciMethod* method = callee();
3796   int vtable_index = method->vtable_index();
3797   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3798          err_msg_res("bad index %d", vtable_index));
3799   // Get the Method* out of the appropriate vtable entry.
3800   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3801                      vtable_index*vtableEntry::size()) * wordSize +
3802                      vtableEntry::method_offset_in_bytes();
3803   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3804   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3805 
3806   // Compare the target method with the expected method (e.g., Object.hashCode).
3807   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3808 
3809   Node* native_call = makecon(native_call_addr);
3810   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3811   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3812 
3813   return generate_slow_guard(test_native, slow_region);
3814 }
3815 
3816 //-----------------------generate_method_call----------------------------
3817 // Use generate_method_call to make a slow-call to the real
3818 // method if the fast path fails.  An alternative would be to
3819 // use a stub like OptoRuntime::slow_arraycopy_Java.
3820 // This only works for expanding the current library call,
3821 // not another intrinsic.  (E.g., don't use this for making an
3822 // arraycopy call inside of the copyOf intrinsic.)
3823 CallJavaNode*
3824 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3825   // When compiling the intrinsic method itself, do not use this technique.
3826   guarantee(callee() != C->method(), "cannot make slow-call to self");
3827 
3828   ciMethod* method = callee();
3829   // ensure the JVMS we have will be correct for this call
3830   guarantee(method_id == method->intrinsic_id(), "must match");
3831 
3832   const TypeFunc* tf = TypeFunc::make(method);
3833   CallJavaNode* slow_call;
3834   if (is_static) {
3835     assert(!is_virtual, "");
3836     slow_call = new(C) CallStaticJavaNode(C, tf,
3837                            SharedRuntime::get_resolve_static_call_stub(),
3838                            method, bci());
3839   } else if (is_virtual) {
3840     null_check_receiver();
3841     int vtable_index = Method::invalid_vtable_index;
3842     if (UseInlineCaches) {
3843       // Suppress the vtable call
3844     } else {
3845       // hashCode and clone are not a miranda methods,
3846       // so the vtable index is fixed.
3847       // No need to use the linkResolver to get it.
3848        vtable_index = method->vtable_index();
3849        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3850               err_msg_res("bad index %d", vtable_index));
3851     }
3852     slow_call = new(C) CallDynamicJavaNode(tf,
3853                           SharedRuntime::get_resolve_virtual_call_stub(),
3854                           method, vtable_index, bci());
3855   } else {  // neither virtual nor static:  opt_virtual
3856     null_check_receiver();
3857     slow_call = new(C) CallStaticJavaNode(C, tf,
3858                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3859                                 method, bci());
3860     slow_call->set_optimized_virtual(true);
3861   }
3862   set_arguments_for_java_call(slow_call);
3863   set_edges_for_java_call(slow_call);
3864   return slow_call;
3865 }
3866 
3867 
3868 //------------------------------inline_native_hashcode--------------------
3869 // Build special case code for calls to hashCode on an object.
3870 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3871   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3872   assert(!(is_virtual && is_static), "either virtual, special, or static");
3873 
3874   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3875 
3876   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3877   PhiNode*    result_val = new(C) PhiNode(result_reg,
3878                                           TypeInt::INT);
3879   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3880   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3881                                           TypePtr::BOTTOM);
3882   Node* obj = NULL;
3883   if (!is_static) {
3884     // Check for hashing null object
3885     obj = null_check_receiver();
3886     if (stopped())  return true;        // unconditionally null
3887     result_reg->init_req(_null_path, top());
3888     result_val->init_req(_null_path, top());
3889   } else {
3890     // Do a null check, and return zero if null.
3891     // System.identityHashCode(null) == 0
3892     obj = argument(0);
3893     Node* null_ctl = top();
3894     obj = null_check_oop(obj, &null_ctl);
3895     result_reg->init_req(_null_path, null_ctl);
3896     result_val->init_req(_null_path, _gvn.intcon(0));
3897   }
3898 
3899   // Unconditionally null?  Then return right away.
3900   if (stopped()) {
3901     set_control( result_reg->in(_null_path));
3902     if (!stopped())
3903       set_result(result_val->in(_null_path));
3904     return true;
3905   }
3906 
3907   // After null check, get the object's klass.
3908   Node* obj_klass = load_object_klass(obj);
3909 
3910   // This call may be virtual (invokevirtual) or bound (invokespecial).
3911   // For each case we generate slightly different code.
3912 
3913   // We only go to the fast case code if we pass a number of guards.  The
3914   // paths which do not pass are accumulated in the slow_region.
3915   RegionNode* slow_region = new (C) RegionNode(1);
3916   record_for_igvn(slow_region);
3917 
3918   // If this is a virtual call, we generate a funny guard.  We pull out
3919   // the vtable entry corresponding to hashCode() from the target object.
3920   // If the target method which we are calling happens to be the native
3921   // Object hashCode() method, we pass the guard.  We do not need this
3922   // guard for non-virtual calls -- the caller is known to be the native
3923   // Object hashCode().
3924   if (is_virtual) {
3925     generate_virtual_guard(obj_klass, slow_region);
3926   }
3927 
3928   // Get the header out of the object, use LoadMarkNode when available
3929   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3930   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3931 
3932   // Test the header to see if it is unlocked.
3933   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3934   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
3935   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3936   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
3937   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
3938 
3939   generate_slow_guard(test_unlocked, slow_region);
3940 
3941   // Get the hash value and check to see that it has been properly assigned.
3942   // We depend on hash_mask being at most 32 bits and avoid the use of
3943   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3944   // vm: see markOop.hpp.
3945   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3946   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3947   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
3948   // This hack lets the hash bits live anywhere in the mark object now, as long
3949   // as the shift drops the relevant bits into the low 32 bits.  Note that
3950   // Java spec says that HashCode is an int so there's no point in capturing
3951   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3952   hshifted_header      = ConvX2I(hshifted_header);
3953   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
3954 
3955   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3956   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
3957   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
3958 
3959   generate_slow_guard(test_assigned, slow_region);
3960 
3961   Node* init_mem = reset_memory();
3962   // fill in the rest of the null path:
3963   result_io ->init_req(_null_path, i_o());
3964   result_mem->init_req(_null_path, init_mem);
3965 
3966   result_val->init_req(_fast_path, hash_val);
3967   result_reg->init_req(_fast_path, control());
3968   result_io ->init_req(_fast_path, i_o());
3969   result_mem->init_req(_fast_path, init_mem);
3970 
3971   // Generate code for the slow case.  We make a call to hashCode().
3972   set_control(_gvn.transform(slow_region));
3973   if (!stopped()) {
3974     // No need for PreserveJVMState, because we're using up the present state.
3975     set_all_memory(init_mem);
3976     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3977     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3978     Node* slow_result = set_results_for_java_call(slow_call);
3979     // this->control() comes from set_results_for_java_call
3980     result_reg->init_req(_slow_path, control());
3981     result_val->init_req(_slow_path, slow_result);
3982     result_io  ->set_req(_slow_path, i_o());
3983     result_mem ->set_req(_slow_path, reset_memory());
3984   }
3985 
3986   // Return the combined state.
3987   set_i_o(        _gvn.transform(result_io)  );
3988   set_all_memory( _gvn.transform(result_mem));
3989 
3990   set_result(result_reg, result_val);
3991   return true;
3992 }
3993 
3994 //---------------------------inline_native_getClass----------------------------
3995 // public final native Class<?> java.lang.Object.getClass();
3996 //
3997 // Build special case code for calls to getClass on an object.
3998 bool LibraryCallKit::inline_native_getClass() {
3999   Node* obj = null_check_receiver();
4000   if (stopped())  return true;
4001   set_result(load_mirror_from_klass(load_object_klass(obj)));
4002   return true;
4003 }
4004 
4005 //-----------------inline_native_Reflection_getCallerClass---------------------
4006 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4007 //
4008 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4009 //
4010 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4011 // in that it must skip particular security frames and checks for
4012 // caller sensitive methods.
4013 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4014 #ifndef PRODUCT
4015   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4016     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4017   }
4018 #endif
4019 
4020   if (!jvms()->has_method()) {
4021 #ifndef PRODUCT
4022     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4023       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4024     }
4025 #endif
4026     return false;
4027   }
4028 
4029   // Walk back up the JVM state to find the caller at the required
4030   // depth.
4031   JVMState* caller_jvms = jvms();
4032 
4033   // Cf. JVM_GetCallerClass
4034   // NOTE: Start the loop at depth 1 because the current JVM state does
4035   // not include the Reflection.getCallerClass() frame.
4036   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4037     ciMethod* m = caller_jvms->method();
4038     switch (n) {
4039     case 0:
4040       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4041       break;
4042     case 1:
4043       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4044       if (!m->caller_sensitive()) {
4045 #ifndef PRODUCT
4046         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4047           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4048         }
4049 #endif
4050         return false;  // bail-out; let JVM_GetCallerClass do the work
4051       }
4052       break;
4053     default:
4054       if (!m->is_ignored_by_security_stack_walk()) {
4055         // We have reached the desired frame; return the holder class.
4056         // Acquire method holder as java.lang.Class and push as constant.
4057         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4058         ciInstance* caller_mirror = caller_klass->java_mirror();
4059         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4060 
4061 #ifndef PRODUCT
4062         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4063           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4064           tty->print_cr("  JVM state at this point:");
4065           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4066             ciMethod* m = jvms()->of_depth(i)->method();
4067             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4068           }
4069         }
4070 #endif
4071         return true;
4072       }
4073       break;
4074     }
4075   }
4076 
4077 #ifndef PRODUCT
4078   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4079     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4080     tty->print_cr("  JVM state at this point:");
4081     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4082       ciMethod* m = jvms()->of_depth(i)->method();
4083       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4084     }
4085   }
4086 #endif
4087 
4088   return false;  // bail-out; let JVM_GetCallerClass do the work
4089 }
4090 
4091 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4092   Node* arg = argument(0);
4093   Node* result;
4094 
4095   switch (id) {
4096   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4097   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4098   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4099   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4100 
4101   case vmIntrinsics::_doubleToLongBits: {
4102     // two paths (plus control) merge in a wood
4103     RegionNode *r = new (C) RegionNode(3);
4104     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4105 
4106     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4107     // Build the boolean node
4108     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4109 
4110     // Branch either way.
4111     // NaN case is less traveled, which makes all the difference.
4112     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4113     Node *opt_isnan = _gvn.transform(ifisnan);
4114     assert( opt_isnan->is_If(), "Expect an IfNode");
4115     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4116     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4117 
4118     set_control(iftrue);
4119 
4120     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4121     Node *slow_result = longcon(nan_bits); // return NaN
4122     phi->init_req(1, _gvn.transform( slow_result ));
4123     r->init_req(1, iftrue);
4124 
4125     // Else fall through
4126     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4127     set_control(iffalse);
4128 
4129     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4130     r->init_req(2, iffalse);
4131 
4132     // Post merge
4133     set_control(_gvn.transform(r));
4134     record_for_igvn(r);
4135 
4136     C->set_has_split_ifs(true); // Has chance for split-if optimization
4137     result = phi;
4138     assert(result->bottom_type()->isa_long(), "must be");
4139     break;
4140   }
4141 
4142   case vmIntrinsics::_floatToIntBits: {
4143     // two paths (plus control) merge in a wood
4144     RegionNode *r = new (C) RegionNode(3);
4145     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4146 
4147     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4148     // Build the boolean node
4149     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4150 
4151     // Branch either way.
4152     // NaN case is less traveled, which makes all the difference.
4153     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4154     Node *opt_isnan = _gvn.transform(ifisnan);
4155     assert( opt_isnan->is_If(), "Expect an IfNode");
4156     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4157     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4158 
4159     set_control(iftrue);
4160 
4161     static const jint nan_bits = 0x7fc00000;
4162     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4163     phi->init_req(1, _gvn.transform( slow_result ));
4164     r->init_req(1, iftrue);
4165 
4166     // Else fall through
4167     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4168     set_control(iffalse);
4169 
4170     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4171     r->init_req(2, iffalse);
4172 
4173     // Post merge
4174     set_control(_gvn.transform(r));
4175     record_for_igvn(r);
4176 
4177     C->set_has_split_ifs(true); // Has chance for split-if optimization
4178     result = phi;
4179     assert(result->bottom_type()->isa_int(), "must be");
4180     break;
4181   }
4182 
4183   default:
4184     fatal_unexpected_iid(id);
4185     break;
4186   }
4187   set_result(_gvn.transform(result));
4188   return true;
4189 }
4190 
4191 #ifdef _LP64
4192 #define XTOP ,top() /*additional argument*/
4193 #else  //_LP64
4194 #define XTOP        /*no additional argument*/
4195 #endif //_LP64
4196 
4197 //----------------------inline_unsafe_copyMemory-------------------------
4198 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4199 bool LibraryCallKit::inline_unsafe_copyMemory() {
4200   if (callee()->is_static())  return false;  // caller must have the capability!
4201   null_check_receiver();  // null-check receiver
4202   if (stopped())  return true;
4203 
4204   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4205 
4206   Node* src_ptr =         argument(1);   // type: oop
4207   Node* src_off = ConvL2X(argument(2));  // type: long
4208   Node* dst_ptr =         argument(4);   // type: oop
4209   Node* dst_off = ConvL2X(argument(5));  // type: long
4210   Node* size    = ConvL2X(argument(7));  // type: long
4211 
4212   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4213          "fieldOffset must be byte-scaled");
4214 
4215   Node* src = make_unsafe_address(src_ptr, src_off);
4216   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4217 
4218   // Conservatively insert a memory barrier on all memory slices.
4219   // Do not let writes of the copy source or destination float below the copy.
4220   insert_mem_bar(Op_MemBarCPUOrder);
4221 
4222   // Call it.  Note that the length argument is not scaled.
4223   make_runtime_call(RC_LEAF|RC_NO_FP,
4224                     OptoRuntime::fast_arraycopy_Type(),
4225                     StubRoutines::unsafe_arraycopy(),
4226                     "unsafe_arraycopy",
4227                     TypeRawPtr::BOTTOM,
4228                     src, dst, size XTOP);
4229 
4230   // Do not let reads of the copy destination float above the copy.
4231   insert_mem_bar(Op_MemBarCPUOrder);
4232 
4233   return true;
4234 }
4235 
4236 //------------------------clone_coping-----------------------------------
4237 // Helper function for inline_native_clone.
4238 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4239   assert(obj_size != NULL, "");
4240   Node* raw_obj = alloc_obj->in(1);
4241   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4242 
4243   AllocateNode* alloc = NULL;
4244   if (ReduceBulkZeroing) {
4245     // We will be completely responsible for initializing this object -
4246     // mark Initialize node as complete.
4247     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4248     // The object was just allocated - there should be no any stores!
4249     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4250     // Mark as complete_with_arraycopy so that on AllocateNode
4251     // expansion, we know this AllocateNode is initialized by an array
4252     // copy and a StoreStore barrier exists after the array copy.
4253     alloc->initialization()->set_complete_with_arraycopy();
4254   }
4255 
4256   // Copy the fastest available way.
4257   // TODO: generate fields copies for small objects instead.
4258   Node* src  = obj;
4259   Node* dest = alloc_obj;
4260   Node* size = _gvn.transform(obj_size);
4261 
4262   // Exclude the header but include array length to copy by 8 bytes words.
4263   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4264   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4265                             instanceOopDesc::base_offset_in_bytes();
4266   // base_off:
4267   // 8  - 32-bit VM
4268   // 12 - 64-bit VM, compressed klass
4269   // 16 - 64-bit VM, normal klass
4270   if (base_off % BytesPerLong != 0) {
4271     assert(UseCompressedClassPointers, "");
4272     if (is_array) {
4273       // Exclude length to copy by 8 bytes words.
4274       base_off += sizeof(int);
4275     } else {
4276       // Include klass to copy by 8 bytes words.
4277       base_off = instanceOopDesc::klass_offset_in_bytes();
4278     }
4279     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4280   }
4281   src  = basic_plus_adr(src,  base_off);
4282   dest = basic_plus_adr(dest, base_off);
4283 
4284   // Compute the length also, if needed:
4285   Node* countx = size;
4286   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4287   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4288 
4289   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4290   bool disjoint_bases = true;
4291   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4292                                src, NULL, dest, NULL, countx,
4293                                /*dest_uninitialized*/true);
4294 
4295   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4296   if (card_mark) {
4297     assert(!is_array, "");
4298     // Put in store barrier for any and all oops we are sticking
4299     // into this object.  (We could avoid this if we could prove
4300     // that the object type contains no oop fields at all.)
4301     Node* no_particular_value = NULL;
4302     Node* no_particular_field = NULL;
4303     int raw_adr_idx = Compile::AliasIdxRaw;
4304     post_barrier(control(),
4305                  memory(raw_adr_type),
4306                  alloc_obj,
4307                  no_particular_field,
4308                  raw_adr_idx,
4309                  no_particular_value,
4310                  T_OBJECT,
4311                  false);
4312   }
4313 
4314   // Do not let reads from the cloned object float above the arraycopy.
4315   if (alloc != NULL) {
4316     // Do not let stores that initialize this object be reordered with
4317     // a subsequent store that would make this object accessible by
4318     // other threads.
4319     // Record what AllocateNode this StoreStore protects so that
4320     // escape analysis can go from the MemBarStoreStoreNode to the
4321     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4322     // based on the escape status of the AllocateNode.
4323     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4324   } else {
4325     insert_mem_bar(Op_MemBarCPUOrder);
4326   }
4327 }
4328 
4329 //------------------------inline_native_clone----------------------------
4330 // protected native Object java.lang.Object.clone();
4331 //
4332 // Here are the simple edge cases:
4333 //  null receiver => normal trap
4334 //  virtual and clone was overridden => slow path to out-of-line clone
4335 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4336 //
4337 // The general case has two steps, allocation and copying.
4338 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4339 //
4340 // Copying also has two cases, oop arrays and everything else.
4341 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4342 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4343 //
4344 // These steps fold up nicely if and when the cloned object's klass
4345 // can be sharply typed as an object array, a type array, or an instance.
4346 //
4347 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4348   PhiNode* result_val;
4349 
4350   // Set the reexecute bit for the interpreter to reexecute
4351   // the bytecode that invokes Object.clone if deoptimization happens.
4352   { PreserveReexecuteState preexecs(this);
4353     jvms()->set_should_reexecute(true);
4354 
4355     Node* obj = null_check_receiver();
4356     if (stopped())  return true;
4357 
4358     Node* obj_klass = load_object_klass(obj);
4359     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4360     const TypeOopPtr*   toop   = ((tklass != NULL)
4361                                 ? tklass->as_instance_type()
4362                                 : TypeInstPtr::NOTNULL);
4363 
4364     // Conservatively insert a memory barrier on all memory slices.
4365     // Do not let writes into the original float below the clone.
4366     insert_mem_bar(Op_MemBarCPUOrder);
4367 
4368     // paths into result_reg:
4369     enum {
4370       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4371       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4372       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4373       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4374       PATH_LIMIT
4375     };
4376     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4377     result_val             = new(C) PhiNode(result_reg,
4378                                             TypeInstPtr::NOTNULL);
4379     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4380     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4381                                             TypePtr::BOTTOM);
4382     record_for_igvn(result_reg);
4383 
4384     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4385     int raw_adr_idx = Compile::AliasIdxRaw;
4386 
4387     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4388     if (array_ctl != NULL) {
4389       // It's an array.
4390       PreserveJVMState pjvms(this);
4391       set_control(array_ctl);
4392       Node* obj_length = load_array_length(obj);
4393       Node* obj_size  = NULL;
4394       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4395 
4396       if (!use_ReduceInitialCardMarks()) {
4397         // If it is an oop array, it requires very special treatment,
4398         // because card marking is required on each card of the array.
4399         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4400         if (is_obja != NULL) {
4401           PreserveJVMState pjvms2(this);
4402           set_control(is_obja);
4403           // Generate a direct call to the right arraycopy function(s).
4404           bool disjoint_bases = true;
4405           bool length_never_negative = true;
4406           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4407                              obj, intcon(0), alloc_obj, intcon(0),
4408                              obj_length,
4409                              disjoint_bases, length_never_negative);
4410           result_reg->init_req(_objArray_path, control());
4411           result_val->init_req(_objArray_path, alloc_obj);
4412           result_i_o ->set_req(_objArray_path, i_o());
4413           result_mem ->set_req(_objArray_path, reset_memory());
4414         }
4415       }
4416       // Otherwise, there are no card marks to worry about.
4417       // (We can dispense with card marks if we know the allocation
4418       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4419       //  causes the non-eden paths to take compensating steps to
4420       //  simulate a fresh allocation, so that no further
4421       //  card marks are required in compiled code to initialize
4422       //  the object.)
4423 
4424       if (!stopped()) {
4425         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4426 
4427         // Present the results of the copy.
4428         result_reg->init_req(_array_path, control());
4429         result_val->init_req(_array_path, alloc_obj);
4430         result_i_o ->set_req(_array_path, i_o());
4431         result_mem ->set_req(_array_path, reset_memory());
4432       }
4433     }
4434 
4435     // We only go to the instance fast case code if we pass a number of guards.
4436     // The paths which do not pass are accumulated in the slow_region.
4437     RegionNode* slow_region = new (C) RegionNode(1);
4438     record_for_igvn(slow_region);
4439     if (!stopped()) {
4440       // It's an instance (we did array above).  Make the slow-path tests.
4441       // If this is a virtual call, we generate a funny guard.  We grab
4442       // the vtable entry corresponding to clone() from the target object.
4443       // If the target method which we are calling happens to be the
4444       // Object clone() method, we pass the guard.  We do not need this
4445       // guard for non-virtual calls; the caller is known to be the native
4446       // Object clone().
4447       if (is_virtual) {
4448         generate_virtual_guard(obj_klass, slow_region);
4449       }
4450 
4451       // The object must be cloneable and must not have a finalizer.
4452       // Both of these conditions may be checked in a single test.
4453       // We could optimize the cloneable test further, but we don't care.
4454       generate_access_flags_guard(obj_klass,
4455                                   // Test both conditions:
4456                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4457                                   // Must be cloneable but not finalizer:
4458                                   JVM_ACC_IS_CLONEABLE,
4459                                   slow_region);
4460     }
4461 
4462     if (!stopped()) {
4463       // It's an instance, and it passed the slow-path tests.
4464       PreserveJVMState pjvms(this);
4465       Node* obj_size  = NULL;
4466       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4467 
4468       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4469 
4470       // Present the results of the slow call.
4471       result_reg->init_req(_instance_path, control());
4472       result_val->init_req(_instance_path, alloc_obj);
4473       result_i_o ->set_req(_instance_path, i_o());
4474       result_mem ->set_req(_instance_path, reset_memory());
4475     }
4476 
4477     // Generate code for the slow case.  We make a call to clone().
4478     set_control(_gvn.transform(slow_region));
4479     if (!stopped()) {
4480       PreserveJVMState pjvms(this);
4481       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4482       Node* slow_result = set_results_for_java_call(slow_call);
4483       // this->control() comes from set_results_for_java_call
4484       result_reg->init_req(_slow_path, control());
4485       result_val->init_req(_slow_path, slow_result);
4486       result_i_o ->set_req(_slow_path, i_o());
4487       result_mem ->set_req(_slow_path, reset_memory());
4488     }
4489 
4490     // Return the combined state.
4491     set_control(    _gvn.transform(result_reg));
4492     set_i_o(        _gvn.transform(result_i_o));
4493     set_all_memory( _gvn.transform(result_mem));
4494   } // original reexecute is set back here
4495 
4496   set_result(_gvn.transform(result_val));
4497   return true;
4498 }
4499 
4500 //------------------------------basictype2arraycopy----------------------------
4501 address LibraryCallKit::basictype2arraycopy(BasicType t,
4502                                             Node* src_offset,
4503                                             Node* dest_offset,
4504                                             bool disjoint_bases,
4505                                             const char* &name,
4506                                             bool dest_uninitialized) {
4507   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4508   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4509 
4510   bool aligned = false;
4511   bool disjoint = disjoint_bases;
4512 
4513   // if the offsets are the same, we can treat the memory regions as
4514   // disjoint, because either the memory regions are in different arrays,
4515   // or they are identical (which we can treat as disjoint.)  We can also
4516   // treat a copy with a destination index  less that the source index
4517   // as disjoint since a low->high copy will work correctly in this case.
4518   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4519       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4520     // both indices are constants
4521     int s_offs = src_offset_inttype->get_con();
4522     int d_offs = dest_offset_inttype->get_con();
4523     int element_size = type2aelembytes(t);
4524     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4525               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4526     if (s_offs >= d_offs)  disjoint = true;
4527   } else if (src_offset == dest_offset && src_offset != NULL) {
4528     // This can occur if the offsets are identical non-constants.
4529     disjoint = true;
4530   }
4531 
4532   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4533 }
4534 
4535 
4536 //------------------------------inline_arraycopy-----------------------
4537 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4538 //                                                      Object dest, int destPos,
4539 //                                                      int length);
4540 bool LibraryCallKit::inline_arraycopy() {
4541   // Get the arguments.
4542   Node* src         = argument(0);  // type: oop
4543   Node* src_offset  = argument(1);  // type: int
4544   Node* dest        = argument(2);  // type: oop
4545   Node* dest_offset = argument(3);  // type: int
4546   Node* length      = argument(4);  // type: int
4547 
4548   // Compile time checks.  If any of these checks cannot be verified at compile time,
4549   // we do not make a fast path for this call.  Instead, we let the call remain as it
4550   // is.  The checks we choose to mandate at compile time are:
4551   //
4552   // (1) src and dest are arrays.
4553   const Type* src_type  = src->Value(&_gvn);
4554   const Type* dest_type = dest->Value(&_gvn);
4555   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4556   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4557 
4558   // Do we have the type of src?
4559   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4560   // Do we have the type of dest?
4561   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4562   // Is the type for src from speculation?
4563   bool src_spec = false;
4564   // Is the type for dest from speculation?
4565   bool dest_spec = false;
4566 
4567   if (!has_src || !has_dest) {
4568     // We don't have sufficient type information, let's see if
4569     // speculative types can help. We need to have types for both src
4570     // and dest so that it pays off.
4571 
4572     // Do we already have or could we have type information for src
4573     bool could_have_src = has_src;
4574     // Do we already have or could we have type information for dest
4575     bool could_have_dest = has_dest;
4576     
4577     ciKlass* src_k = NULL;
4578     if (!has_src) {
4579       src_k = src_type->is_oopptr()->speculative_type();
4580       if (src_k != NULL && src_k->is_array_klass()) {
4581         could_have_src = true;
4582       }
4583     }
4584     
4585     ciKlass* dest_k = NULL;
4586     if (!has_dest) {
4587       dest_k = dest_type->speculative_type();
4588       if (dest_k != NULL && dest_k->is_array_klass()) {
4589         could_have_dest = true;
4590       }
4591     }
4592 
4593     if (could_have_src && could_have_dest) {
4594       // This is going to pay off so emit the required guards
4595       if (!has_src) {
4596         src = maybe_cast_profiled_obj(src, src_k);
4597         src_type  = _gvn.type(src);
4598         top_src  = src_type->isa_aryptr();
4599         has_src = (top_src != NULL && top_src->klass() != NULL);
4600         src_spec = true;
4601       }
4602       if (!has_dest) {
4603         dest = maybe_cast_profiled_obj(dest, dest_k);
4604         dest_type  = _gvn.type(dest);
4605         top_dest  = dest_type->isa_aryptr();
4606         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4607         dest_spec = true;
4608       }
4609     }
4610   }
4611   
4612   if (!has_src || !has_dest) {
4613     // Conservatively insert a memory barrier on all memory slices.
4614     // Do not let writes into the source float below the arraycopy.
4615     insert_mem_bar(Op_MemBarCPUOrder);
4616 
4617     // Call StubRoutines::generic_arraycopy stub.
4618     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4619                        src, src_offset, dest, dest_offset, length);
4620 
4621     // Do not let reads from the destination float above the arraycopy.
4622     // Since we cannot type the arrays, we don't know which slices
4623     // might be affected.  We could restrict this barrier only to those
4624     // memory slices which pertain to array elements--but don't bother.
4625     if (!InsertMemBarAfterArraycopy)
4626       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4627       insert_mem_bar(Op_MemBarCPUOrder);
4628     return true;
4629   }
4630 
4631   // (2) src and dest arrays must have elements of the same BasicType
4632   // Figure out the size and type of the elements we will be copying.
4633   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4634   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4635   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4636   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4637 
4638   if (src_elem != dest_elem || dest_elem == T_VOID) {
4639     // The component types are not the same or are not recognized.  Punt.
4640     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4641     generate_slow_arraycopy(TypePtr::BOTTOM,
4642                             src, src_offset, dest, dest_offset, length,
4643                             /*dest_uninitialized*/false);
4644     return true;
4645   }
4646 
4647   if (src_elem == T_OBJECT) {
4648     // If both arrays are object arrays then having the exact types
4649     // for both will remove the need for a subtype check at runtime
4650     // before the call and may make it possible to pick a faster copy
4651     // routine (without a subtype check on every element)
4652     // Do we have the exact type of src?
4653     bool could_have_src = src_spec;
4654     // Do we have the exact type of dest?
4655     bool could_have_dest = dest_spec;
4656     ciKlass* src_k = top_src->klass(), *dest_k = top_dest->klass();
4657     if (!src_spec) {
4658       src_k = src_type->speculative_type();
4659       if (src_k != NULL && src_k->is_array_klass()) {
4660           could_have_src = true;
4661       }
4662     }
4663     if (!dest_spec) {
4664       dest_k = dest_type->speculative_type();
4665       if (dest_k != NULL && dest_k->is_array_klass()) {
4666         could_have_dest = true;
4667       }
4668     }
4669     if (could_have_src && could_have_dest) {
4670       // If we can have both exact types, emit the missing guards
4671       if (could_have_src && !src_spec) {
4672         src = maybe_cast_profiled_obj(src, src_k);
4673       }
4674       if (could_have_dest && !dest_spec) {
4675         dest = maybe_cast_profiled_obj(dest, dest_k);
4676       }
4677     }
4678   }
4679 
4680   //---------------------------------------------------------------------------
4681   // We will make a fast path for this call to arraycopy.
4682 
4683   // We have the following tests left to perform:
4684   //
4685   // (3) src and dest must not be null.
4686   // (4) src_offset must not be negative.
4687   // (5) dest_offset must not be negative.
4688   // (6) length must not be negative.
4689   // (7) src_offset + length must not exceed length of src.
4690   // (8) dest_offset + length must not exceed length of dest.
4691   // (9) each element of an oop array must be assignable
4692 
4693   RegionNode* slow_region = new (C) RegionNode(1);
4694   record_for_igvn(slow_region);
4695 
4696   // (3) operands must not be null
4697   // We currently perform our null checks with the null_check routine.
4698   // This means that the null exceptions will be reported in the caller
4699   // rather than (correctly) reported inside of the native arraycopy call.
4700   // This should be corrected, given time.  We do our null check with the
4701   // stack pointer restored.
4702   src  = null_check(src,  T_ARRAY);
4703   dest = null_check(dest, T_ARRAY);
4704 
4705   // (4) src_offset must not be negative.
4706   generate_negative_guard(src_offset, slow_region);
4707 
4708   // (5) dest_offset must not be negative.
4709   generate_negative_guard(dest_offset, slow_region);
4710 
4711   // (6) length must not be negative (moved to generate_arraycopy()).
4712   // generate_negative_guard(length, slow_region);
4713 
4714   // (7) src_offset + length must not exceed length of src.
4715   generate_limit_guard(src_offset, length,
4716                        load_array_length(src),
4717                        slow_region);
4718 
4719   // (8) dest_offset + length must not exceed length of dest.
4720   generate_limit_guard(dest_offset, length,
4721                        load_array_length(dest),
4722                        slow_region);
4723 
4724   // (9) each element of an oop array must be assignable
4725   // The generate_arraycopy subroutine checks this.
4726 
4727   // This is where the memory effects are placed:
4728   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4729   generate_arraycopy(adr_type, dest_elem,
4730                      src, src_offset, dest, dest_offset, length,
4731                      false, false, slow_region);
4732 
4733   return true;
4734 }
4735 
4736 //-----------------------------generate_arraycopy----------------------
4737 // Generate an optimized call to arraycopy.
4738 // Caller must guard against non-arrays.
4739 // Caller must determine a common array basic-type for both arrays.
4740 // Caller must validate offsets against array bounds.
4741 // The slow_region has already collected guard failure paths
4742 // (such as out of bounds length or non-conformable array types).
4743 // The generated code has this shape, in general:
4744 //
4745 //     if (length == 0)  return   // via zero_path
4746 //     slowval = -1
4747 //     if (types unknown) {
4748 //       slowval = call generic copy loop
4749 //       if (slowval == 0)  return  // via checked_path
4750 //     } else if (indexes in bounds) {
4751 //       if ((is object array) && !(array type check)) {
4752 //         slowval = call checked copy loop
4753 //         if (slowval == 0)  return  // via checked_path
4754 //       } else {
4755 //         call bulk copy loop
4756 //         return  // via fast_path
4757 //       }
4758 //     }
4759 //     // adjust params for remaining work:
4760 //     if (slowval != -1) {
4761 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4762 //     }
4763 //   slow_region:
4764 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4765 //     return  // via slow_call_path
4766 //
4767 // This routine is used from several intrinsics:  System.arraycopy,
4768 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4769 //
4770 void
4771 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4772                                    BasicType basic_elem_type,
4773                                    Node* src,  Node* src_offset,
4774                                    Node* dest, Node* dest_offset,
4775                                    Node* copy_length,
4776                                    bool disjoint_bases,
4777                                    bool length_never_negative,
4778                                    RegionNode* slow_region) {
4779 
4780   if (slow_region == NULL) {
4781     slow_region = new(C) RegionNode(1);
4782     record_for_igvn(slow_region);
4783   }
4784 
4785   Node* original_dest      = dest;
4786   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4787   bool  dest_uninitialized = false;
4788 
4789   // See if this is the initialization of a newly-allocated array.
4790   // If so, we will take responsibility here for initializing it to zero.
4791   // (Note:  Because tightly_coupled_allocation performs checks on the
4792   // out-edges of the dest, we need to avoid making derived pointers
4793   // from it until we have checked its uses.)
4794   if (ReduceBulkZeroing
4795       && !ZeroTLAB              // pointless if already zeroed
4796       && basic_elem_type != T_CONFLICT // avoid corner case
4797       && !src->eqv_uncast(dest)
4798       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4799           != NULL)
4800       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4801       && alloc->maybe_set_complete(&_gvn)) {
4802     // "You break it, you buy it."
4803     InitializeNode* init = alloc->initialization();
4804     assert(init->is_complete(), "we just did this");
4805     init->set_complete_with_arraycopy();
4806     assert(dest->is_CheckCastPP(), "sanity");
4807     assert(dest->in(0)->in(0) == init, "dest pinned");
4808     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4809     // From this point on, every exit path is responsible for
4810     // initializing any non-copied parts of the object to zero.
4811     // Also, if this flag is set we make sure that arraycopy interacts properly
4812     // with G1, eliding pre-barriers. See CR 6627983.
4813     dest_uninitialized = true;
4814   } else {
4815     // No zeroing elimination here.
4816     alloc             = NULL;
4817     //original_dest   = dest;
4818     //dest_uninitialized = false;
4819   }
4820 
4821   // Results are placed here:
4822   enum { fast_path        = 1,  // normal void-returning assembly stub
4823          checked_path     = 2,  // special assembly stub with cleanup
4824          slow_call_path   = 3,  // something went wrong; call the VM
4825          zero_path        = 4,  // bypass when length of copy is zero
4826          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4827          PATH_LIMIT       = 6
4828   };
4829   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4830   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4831   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4832   record_for_igvn(result_region);
4833   _gvn.set_type_bottom(result_i_o);
4834   _gvn.set_type_bottom(result_memory);
4835   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4836 
4837   // The slow_control path:
4838   Node* slow_control;
4839   Node* slow_i_o = i_o();
4840   Node* slow_mem = memory(adr_type);
4841   debug_only(slow_control = (Node*) badAddress);
4842 
4843   // Checked control path:
4844   Node* checked_control = top();
4845   Node* checked_mem     = NULL;
4846   Node* checked_i_o     = NULL;
4847   Node* checked_value   = NULL;
4848 
4849   if (basic_elem_type == T_CONFLICT) {
4850     assert(!dest_uninitialized, "");
4851     Node* cv = generate_generic_arraycopy(adr_type,
4852                                           src, src_offset, dest, dest_offset,
4853                                           copy_length, dest_uninitialized);
4854     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4855     checked_control = control();
4856     checked_i_o     = i_o();
4857     checked_mem     = memory(adr_type);
4858     checked_value   = cv;
4859     set_control(top());         // no fast path
4860   }
4861 
4862   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4863   if (not_pos != NULL) {
4864     PreserveJVMState pjvms(this);
4865     set_control(not_pos);
4866 
4867     // (6) length must not be negative.
4868     if (!length_never_negative) {
4869       generate_negative_guard(copy_length, slow_region);
4870     }
4871 
4872     // copy_length is 0.
4873     if (!stopped() && dest_uninitialized) {
4874       Node* dest_length = alloc->in(AllocateNode::ALength);
4875       if (copy_length->eqv_uncast(dest_length)
4876           || _gvn.find_int_con(dest_length, 1) <= 0) {
4877         // There is no zeroing to do. No need for a secondary raw memory barrier.
4878       } else {
4879         // Clear the whole thing since there are no source elements to copy.
4880         generate_clear_array(adr_type, dest, basic_elem_type,
4881                              intcon(0), NULL,
4882                              alloc->in(AllocateNode::AllocSize));
4883         // Use a secondary InitializeNode as raw memory barrier.
4884         // Currently it is needed only on this path since other
4885         // paths have stub or runtime calls as raw memory barriers.
4886         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4887                                                        Compile::AliasIdxRaw,
4888                                                        top())->as_Initialize();
4889         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4890       }
4891     }
4892 
4893     // Present the results of the fast call.
4894     result_region->init_req(zero_path, control());
4895     result_i_o   ->init_req(zero_path, i_o());
4896     result_memory->init_req(zero_path, memory(adr_type));
4897   }
4898 
4899   if (!stopped() && dest_uninitialized) {
4900     // We have to initialize the *uncopied* part of the array to zero.
4901     // The copy destination is the slice dest[off..off+len].  The other slices
4902     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4903     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4904     Node* dest_length = alloc->in(AllocateNode::ALength);
4905     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
4906                                                           copy_length));
4907 
4908     // If there is a head section that needs zeroing, do it now.
4909     if (find_int_con(dest_offset, -1) != 0) {
4910       generate_clear_array(adr_type, dest, basic_elem_type,
4911                            intcon(0), dest_offset,
4912                            NULL);
4913     }
4914 
4915     // Next, perform a dynamic check on the tail length.
4916     // It is often zero, and we can win big if we prove this.
4917     // There are two wins:  Avoid generating the ClearArray
4918     // with its attendant messy index arithmetic, and upgrade
4919     // the copy to a more hardware-friendly word size of 64 bits.
4920     Node* tail_ctl = NULL;
4921     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4922       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
4923       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
4924       tail_ctl = generate_slow_guard(bol_lt, NULL);
4925       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4926     }
4927 
4928     // At this point, let's assume there is no tail.
4929     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4930       // There is no tail.  Try an upgrade to a 64-bit copy.
4931       bool didit = false;
4932       { PreserveJVMState pjvms(this);
4933         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4934                                          src, src_offset, dest, dest_offset,
4935                                          dest_size, dest_uninitialized);
4936         if (didit) {
4937           // Present the results of the block-copying fast call.
4938           result_region->init_req(bcopy_path, control());
4939           result_i_o   ->init_req(bcopy_path, i_o());
4940           result_memory->init_req(bcopy_path, memory(adr_type));
4941         }
4942       }
4943       if (didit)
4944         set_control(top());     // no regular fast path
4945     }
4946 
4947     // Clear the tail, if any.
4948     if (tail_ctl != NULL) {
4949       Node* notail_ctl = stopped() ? NULL : control();
4950       set_control(tail_ctl);
4951       if (notail_ctl == NULL) {
4952         generate_clear_array(adr_type, dest, basic_elem_type,
4953                              dest_tail, NULL,
4954                              dest_size);
4955       } else {
4956         // Make a local merge.
4957         Node* done_ctl = new(C) RegionNode(3);
4958         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4959         done_ctl->init_req(1, notail_ctl);
4960         done_mem->init_req(1, memory(adr_type));
4961         generate_clear_array(adr_type, dest, basic_elem_type,
4962                              dest_tail, NULL,
4963                              dest_size);
4964         done_ctl->init_req(2, control());
4965         done_mem->init_req(2, memory(adr_type));
4966         set_control( _gvn.transform(done_ctl));
4967         set_memory(  _gvn.transform(done_mem), adr_type );
4968       }
4969     }
4970   }
4971 
4972   BasicType copy_type = basic_elem_type;
4973   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4974   if (!stopped() && copy_type == T_OBJECT) {
4975     // If src and dest have compatible element types, we can copy bits.
4976     // Types S[] and D[] are compatible if D is a supertype of S.
4977     //
4978     // If they are not, we will use checked_oop_disjoint_arraycopy,
4979     // which performs a fast optimistic per-oop check, and backs off
4980     // further to JVM_ArrayCopy on the first per-oop check that fails.
4981     // (Actually, we don't move raw bits only; the GC requires card marks.)
4982 
4983     // Get the Klass* for both src and dest
4984     Node* src_klass  = load_object_klass(src);
4985     Node* dest_klass = load_object_klass(dest);
4986 
4987     // Generate the subtype check.
4988     // This might fold up statically, or then again it might not.
4989     //
4990     // Non-static example:  Copying List<String>.elements to a new String[].
4991     // The backing store for a List<String> is always an Object[],
4992     // but its elements are always type String, if the generic types
4993     // are correct at the source level.
4994     //
4995     // Test S[] against D[], not S against D, because (probably)
4996     // the secondary supertype cache is less busy for S[] than S.
4997     // This usually only matters when D is an interface.
4998     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4999     // Plug failing path into checked_oop_disjoint_arraycopy
5000     if (not_subtype_ctrl != top()) {
5001       PreserveJVMState pjvms(this);
5002       set_control(not_subtype_ctrl);
5003       // (At this point we can assume disjoint_bases, since types differ.)
5004       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5005       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5006       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5007       Node* dest_elem_klass = _gvn.transform(n1);
5008       Node* cv = generate_checkcast_arraycopy(adr_type,
5009                                               dest_elem_klass,
5010                                               src, src_offset, dest, dest_offset,
5011                                               ConvI2X(copy_length), dest_uninitialized);
5012       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5013       checked_control = control();
5014       checked_i_o     = i_o();
5015       checked_mem     = memory(adr_type);
5016       checked_value   = cv;
5017     }
5018     // At this point we know we do not need type checks on oop stores.
5019 
5020     // Let's see if we need card marks:
5021     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5022       // If we do not need card marks, copy using the jint or jlong stub.
5023       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5024       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5025              "sizes agree");
5026     }
5027   }
5028 
5029   if (!stopped()) {
5030     // Generate the fast path, if possible.
5031     PreserveJVMState pjvms(this);
5032     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5033                                  src, src_offset, dest, dest_offset,
5034                                  ConvI2X(copy_length), dest_uninitialized);
5035 
5036     // Present the results of the fast call.
5037     result_region->init_req(fast_path, control());
5038     result_i_o   ->init_req(fast_path, i_o());
5039     result_memory->init_req(fast_path, memory(adr_type));
5040   }
5041 
5042   // Here are all the slow paths up to this point, in one bundle:
5043   slow_control = top();
5044   if (slow_region != NULL)
5045     slow_control = _gvn.transform(slow_region);
5046   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5047 
5048   set_control(checked_control);
5049   if (!stopped()) {
5050     // Clean up after the checked call.
5051     // The returned value is either 0 or -1^K,
5052     // where K = number of partially transferred array elements.
5053     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5054     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5055     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5056 
5057     // If it is 0, we are done, so transfer to the end.
5058     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5059     result_region->init_req(checked_path, checks_done);
5060     result_i_o   ->init_req(checked_path, checked_i_o);
5061     result_memory->init_req(checked_path, checked_mem);
5062 
5063     // If it is not zero, merge into the slow call.
5064     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5065     RegionNode* slow_reg2 = new(C) RegionNode(3);
5066     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5067     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5068     record_for_igvn(slow_reg2);
5069     slow_reg2  ->init_req(1, slow_control);
5070     slow_i_o2  ->init_req(1, slow_i_o);
5071     slow_mem2  ->init_req(1, slow_mem);
5072     slow_reg2  ->init_req(2, control());
5073     slow_i_o2  ->init_req(2, checked_i_o);
5074     slow_mem2  ->init_req(2, checked_mem);
5075 
5076     slow_control = _gvn.transform(slow_reg2);
5077     slow_i_o     = _gvn.transform(slow_i_o2);
5078     slow_mem     = _gvn.transform(slow_mem2);
5079 
5080     if (alloc != NULL) {
5081       // We'll restart from the very beginning, after zeroing the whole thing.
5082       // This can cause double writes, but that's OK since dest is brand new.
5083       // So we ignore the low 31 bits of the value returned from the stub.
5084     } else {
5085       // We must continue the copy exactly where it failed, or else
5086       // another thread might see the wrong number of writes to dest.
5087       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5088       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5089       slow_offset->init_req(1, intcon(0));
5090       slow_offset->init_req(2, checked_offset);
5091       slow_offset  = _gvn.transform(slow_offset);
5092 
5093       // Adjust the arguments by the conditionally incoming offset.
5094       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5095       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5096       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5097 
5098       // Tweak the node variables to adjust the code produced below:
5099       src_offset  = src_off_plus;
5100       dest_offset = dest_off_plus;
5101       copy_length = length_minus;
5102     }
5103   }
5104 
5105   set_control(slow_control);
5106   if (!stopped()) {
5107     // Generate the slow path, if needed.
5108     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5109 
5110     set_memory(slow_mem, adr_type);
5111     set_i_o(slow_i_o);
5112 
5113     if (dest_uninitialized) {
5114       generate_clear_array(adr_type, dest, basic_elem_type,
5115                            intcon(0), NULL,
5116                            alloc->in(AllocateNode::AllocSize));
5117     }
5118 
5119     generate_slow_arraycopy(adr_type,
5120                             src, src_offset, dest, dest_offset,
5121                             copy_length, /*dest_uninitialized*/false);
5122 
5123     result_region->init_req(slow_call_path, control());
5124     result_i_o   ->init_req(slow_call_path, i_o());
5125     result_memory->init_req(slow_call_path, memory(adr_type));
5126   }
5127 
5128   // Remove unused edges.
5129   for (uint i = 1; i < result_region->req(); i++) {
5130     if (result_region->in(i) == NULL)
5131       result_region->init_req(i, top());
5132   }
5133 
5134   // Finished; return the combined state.
5135   set_control( _gvn.transform(result_region));
5136   set_i_o(     _gvn.transform(result_i_o)    );
5137   set_memory(  _gvn.transform(result_memory), adr_type );
5138 
5139   // The memory edges above are precise in order to model effects around
5140   // array copies accurately to allow value numbering of field loads around
5141   // arraycopy.  Such field loads, both before and after, are common in Java
5142   // collections and similar classes involving header/array data structures.
5143   //
5144   // But with low number of register or when some registers are used or killed
5145   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5146   // The next memory barrier is added to avoid it. If the arraycopy can be
5147   // optimized away (which it can, sometimes) then we can manually remove
5148   // the membar also.
5149   //
5150   // Do not let reads from the cloned object float above the arraycopy.
5151   if (alloc != NULL) {
5152     // Do not let stores that initialize this object be reordered with
5153     // a subsequent store that would make this object accessible by
5154     // other threads.
5155     // Record what AllocateNode this StoreStore protects so that
5156     // escape analysis can go from the MemBarStoreStoreNode to the
5157     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5158     // based on the escape status of the AllocateNode.
5159     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5160   } else if (InsertMemBarAfterArraycopy)
5161     insert_mem_bar(Op_MemBarCPUOrder);
5162 }
5163 
5164 
5165 // Helper function which determines if an arraycopy immediately follows
5166 // an allocation, with no intervening tests or other escapes for the object.
5167 AllocateArrayNode*
5168 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5169                                            RegionNode* slow_region) {
5170   if (stopped())             return NULL;  // no fast path
5171   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5172 
5173   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5174   if (alloc == NULL)  return NULL;
5175 
5176   Node* rawmem = memory(Compile::AliasIdxRaw);
5177   // Is the allocation's memory state untouched?
5178   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5179     // Bail out if there have been raw-memory effects since the allocation.
5180     // (Example:  There might have been a call or safepoint.)
5181     return NULL;
5182   }
5183   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5184   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5185     return NULL;
5186   }
5187 
5188   // There must be no unexpected observers of this allocation.
5189   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5190     Node* obs = ptr->fast_out(i);
5191     if (obs != this->map()) {
5192       return NULL;
5193     }
5194   }
5195 
5196   // This arraycopy must unconditionally follow the allocation of the ptr.
5197   Node* alloc_ctl = ptr->in(0);
5198   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5199 
5200   Node* ctl = control();
5201   while (ctl != alloc_ctl) {
5202     // There may be guards which feed into the slow_region.
5203     // Any other control flow means that we might not get a chance
5204     // to finish initializing the allocated object.
5205     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5206       IfNode* iff = ctl->in(0)->as_If();
5207       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5208       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5209       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5210         ctl = iff->in(0);       // This test feeds the known slow_region.
5211         continue;
5212       }
5213       // One more try:  Various low-level checks bottom out in
5214       // uncommon traps.  If the debug-info of the trap omits
5215       // any reference to the allocation, as we've already
5216       // observed, then there can be no objection to the trap.
5217       bool found_trap = false;
5218       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5219         Node* obs = not_ctl->fast_out(j);
5220         if (obs->in(0) == not_ctl && obs->is_Call() &&
5221             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5222           found_trap = true; break;
5223         }
5224       }
5225       if (found_trap) {
5226         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5227         continue;
5228       }
5229     }
5230     return NULL;
5231   }
5232 
5233   // If we get this far, we have an allocation which immediately
5234   // precedes the arraycopy, and we can take over zeroing the new object.
5235   // The arraycopy will finish the initialization, and provide
5236   // a new control state to which we will anchor the destination pointer.
5237 
5238   return alloc;
5239 }
5240 
5241 // Helper for initialization of arrays, creating a ClearArray.
5242 // It writes zero bits in [start..end), within the body of an array object.
5243 // The memory effects are all chained onto the 'adr_type' alias category.
5244 //
5245 // Since the object is otherwise uninitialized, we are free
5246 // to put a little "slop" around the edges of the cleared area,
5247 // as long as it does not go back into the array's header,
5248 // or beyond the array end within the heap.
5249 //
5250 // The lower edge can be rounded down to the nearest jint and the
5251 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5252 //
5253 // Arguments:
5254 //   adr_type           memory slice where writes are generated
5255 //   dest               oop of the destination array
5256 //   basic_elem_type    element type of the destination
5257 //   slice_idx          array index of first element to store
5258 //   slice_len          number of elements to store (or NULL)
5259 //   dest_size          total size in bytes of the array object
5260 //
5261 // Exactly one of slice_len or dest_size must be non-NULL.
5262 // If dest_size is non-NULL, zeroing extends to the end of the object.
5263 // If slice_len is non-NULL, the slice_idx value must be a constant.
5264 void
5265 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5266                                      Node* dest,
5267                                      BasicType basic_elem_type,
5268                                      Node* slice_idx,
5269                                      Node* slice_len,
5270                                      Node* dest_size) {
5271   // one or the other but not both of slice_len and dest_size:
5272   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5273   if (slice_len == NULL)  slice_len = top();
5274   if (dest_size == NULL)  dest_size = top();
5275 
5276   // operate on this memory slice:
5277   Node* mem = memory(adr_type); // memory slice to operate on
5278 
5279   // scaling and rounding of indexes:
5280   int scale = exact_log2(type2aelembytes(basic_elem_type));
5281   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5282   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5283   int bump_bit  = (-1 << scale) & BytesPerInt;
5284 
5285   // determine constant starts and ends
5286   const intptr_t BIG_NEG = -128;
5287   assert(BIG_NEG + 2*abase < 0, "neg enough");
5288   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5289   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5290   if (slice_len_con == 0) {
5291     return;                     // nothing to do here
5292   }
5293   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5294   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5295   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5296     assert(end_con < 0, "not two cons");
5297     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5298                        BytesPerLong);
5299   }
5300 
5301   if (start_con >= 0 && end_con >= 0) {
5302     // Constant start and end.  Simple.
5303     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5304                                        start_con, end_con, &_gvn);
5305   } else if (start_con >= 0 && dest_size != top()) {
5306     // Constant start, pre-rounded end after the tail of the array.
5307     Node* end = dest_size;
5308     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5309                                        start_con, end, &_gvn);
5310   } else if (start_con >= 0 && slice_len != top()) {
5311     // Constant start, non-constant end.  End needs rounding up.
5312     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5313     intptr_t end_base  = abase + (slice_idx_con << scale);
5314     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5315     Node*    end       = ConvI2X(slice_len);
5316     if (scale != 0)
5317       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5318     end_base += end_round;
5319     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5320     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5321     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5322                                        start_con, end, &_gvn);
5323   } else if (start_con < 0 && dest_size != top()) {
5324     // Non-constant start, pre-rounded end after the tail of the array.
5325     // This is almost certainly a "round-to-end" operation.
5326     Node* start = slice_idx;
5327     start = ConvI2X(start);
5328     if (scale != 0)
5329       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5330     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5331     if ((bump_bit | clear_low) != 0) {
5332       int to_clear = (bump_bit | clear_low);
5333       // Align up mod 8, then store a jint zero unconditionally
5334       // just before the mod-8 boundary.
5335       if (((abase + bump_bit) & ~to_clear) - bump_bit
5336           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5337         bump_bit = 0;
5338         assert((abase & to_clear) == 0, "array base must be long-aligned");
5339       } else {
5340         // Bump 'start' up to (or past) the next jint boundary:
5341         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5342         assert((abase & clear_low) == 0, "array base must be int-aligned");
5343       }
5344       // Round bumped 'start' down to jlong boundary in body of array.
5345       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5346       if (bump_bit != 0) {
5347         // Store a zero to the immediately preceding jint:
5348         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5349         Node* p1 = basic_plus_adr(dest, x1);
5350         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5351         mem = _gvn.transform(mem);
5352       }
5353     }
5354     Node* end = dest_size; // pre-rounded
5355     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5356                                        start, end, &_gvn);
5357   } else {
5358     // Non-constant start, unrounded non-constant end.
5359     // (Nobody zeroes a random midsection of an array using this routine.)
5360     ShouldNotReachHere();       // fix caller
5361   }
5362 
5363   // Done.
5364   set_memory(mem, adr_type);
5365 }
5366 
5367 
5368 bool
5369 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5370                                          BasicType basic_elem_type,
5371                                          AllocateNode* alloc,
5372                                          Node* src,  Node* src_offset,
5373                                          Node* dest, Node* dest_offset,
5374                                          Node* dest_size, bool dest_uninitialized) {
5375   // See if there is an advantage from block transfer.
5376   int scale = exact_log2(type2aelembytes(basic_elem_type));
5377   if (scale >= LogBytesPerLong)
5378     return false;               // it is already a block transfer
5379 
5380   // Look at the alignment of the starting offsets.
5381   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5382 
5383   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5384   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5385   if (src_off_con < 0 || dest_off_con < 0)
5386     // At present, we can only understand constants.
5387     return false;
5388 
5389   intptr_t src_off  = abase + (src_off_con  << scale);
5390   intptr_t dest_off = abase + (dest_off_con << scale);
5391 
5392   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5393     // Non-aligned; too bad.
5394     // One more chance:  Pick off an initial 32-bit word.
5395     // This is a common case, since abase can be odd mod 8.
5396     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5397         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5398       Node* sptr = basic_plus_adr(src,  src_off);
5399       Node* dptr = basic_plus_adr(dest, dest_off);
5400       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5401       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5402       src_off += BytesPerInt;
5403       dest_off += BytesPerInt;
5404     } else {
5405       return false;
5406     }
5407   }
5408   assert(src_off % BytesPerLong == 0, "");
5409   assert(dest_off % BytesPerLong == 0, "");
5410 
5411   // Do this copy by giant steps.
5412   Node* sptr  = basic_plus_adr(src,  src_off);
5413   Node* dptr  = basic_plus_adr(dest, dest_off);
5414   Node* countx = dest_size;
5415   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5416   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5417 
5418   bool disjoint_bases = true;   // since alloc != NULL
5419   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5420                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5421 
5422   return true;
5423 }
5424 
5425 
5426 // Helper function; generates code for the slow case.
5427 // We make a call to a runtime method which emulates the native method,
5428 // but without the native wrapper overhead.
5429 void
5430 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5431                                         Node* src,  Node* src_offset,
5432                                         Node* dest, Node* dest_offset,
5433                                         Node* copy_length, bool dest_uninitialized) {
5434   assert(!dest_uninitialized, "Invariant");
5435   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5436                                  OptoRuntime::slow_arraycopy_Type(),
5437                                  OptoRuntime::slow_arraycopy_Java(),
5438                                  "slow_arraycopy", adr_type,
5439                                  src, src_offset, dest, dest_offset,
5440                                  copy_length);
5441 
5442   // Handle exceptions thrown by this fellow:
5443   make_slow_call_ex(call, env()->Throwable_klass(), false);
5444 }
5445 
5446 // Helper function; generates code for cases requiring runtime checks.
5447 Node*
5448 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5449                                              Node* dest_elem_klass,
5450                                              Node* src,  Node* src_offset,
5451                                              Node* dest, Node* dest_offset,
5452                                              Node* copy_length, bool dest_uninitialized) {
5453   if (stopped())  return NULL;
5454 
5455   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5456   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5457     return NULL;
5458   }
5459 
5460   // Pick out the parameters required to perform a store-check
5461   // for the target array.  This is an optimistic check.  It will
5462   // look in each non-null element's class, at the desired klass's
5463   // super_check_offset, for the desired klass.
5464   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5465   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5466   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5467   Node* check_offset = ConvI2X(_gvn.transform(n3));
5468   Node* check_value  = dest_elem_klass;
5469 
5470   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5471   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5472 
5473   // (We know the arrays are never conjoint, because their types differ.)
5474   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5475                                  OptoRuntime::checkcast_arraycopy_Type(),
5476                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5477                                  // five arguments, of which two are
5478                                  // intptr_t (jlong in LP64)
5479                                  src_start, dest_start,
5480                                  copy_length XTOP,
5481                                  check_offset XTOP,
5482                                  check_value);
5483 
5484   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5485 }
5486 
5487 
5488 // Helper function; generates code for cases requiring runtime checks.
5489 Node*
5490 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5491                                            Node* src,  Node* src_offset,
5492                                            Node* dest, Node* dest_offset,
5493                                            Node* copy_length, bool dest_uninitialized) {
5494   assert(!dest_uninitialized, "Invariant");
5495   if (stopped())  return NULL;
5496   address copyfunc_addr = StubRoutines::generic_arraycopy();
5497   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5498     return NULL;
5499   }
5500 
5501   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5502                     OptoRuntime::generic_arraycopy_Type(),
5503                     copyfunc_addr, "generic_arraycopy", adr_type,
5504                     src, src_offset, dest, dest_offset, copy_length);
5505 
5506   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5507 }
5508 
5509 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5510 void
5511 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5512                                              BasicType basic_elem_type,
5513                                              bool disjoint_bases,
5514                                              Node* src,  Node* src_offset,
5515                                              Node* dest, Node* dest_offset,
5516                                              Node* copy_length, bool dest_uninitialized) {
5517   if (stopped())  return;               // nothing to do
5518 
5519   Node* src_start  = src;
5520   Node* dest_start = dest;
5521   if (src_offset != NULL || dest_offset != NULL) {
5522     assert(src_offset != NULL && dest_offset != NULL, "");
5523     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5524     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5525   }
5526 
5527   // Figure out which arraycopy runtime method to call.
5528   const char* copyfunc_name = "arraycopy";
5529   address     copyfunc_addr =
5530       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5531                           disjoint_bases, copyfunc_name, dest_uninitialized);
5532 
5533   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5534   make_runtime_call(RC_LEAF|RC_NO_FP,
5535                     OptoRuntime::fast_arraycopy_Type(),
5536                     copyfunc_addr, copyfunc_name, adr_type,
5537                     src_start, dest_start, copy_length XTOP);
5538 }
5539 
5540 //-------------inline_encodeISOArray-----------------------------------
5541 // encode char[] to byte[] in ISO_8859_1
5542 bool LibraryCallKit::inline_encodeISOArray() {
5543   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5544   // no receiver since it is static method
5545   Node *src         = argument(0);
5546   Node *src_offset  = argument(1);
5547   Node *dst         = argument(2);
5548   Node *dst_offset  = argument(3);
5549   Node *length      = argument(4);
5550 
5551   const Type* src_type = src->Value(&_gvn);
5552   const Type* dst_type = dst->Value(&_gvn);
5553   const TypeAryPtr* top_src = src_type->isa_aryptr();
5554   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5555   if (top_src  == NULL || top_src->klass()  == NULL ||
5556       top_dest == NULL || top_dest->klass() == NULL) {
5557     // failed array check
5558     return false;
5559   }
5560 
5561   // Figure out the size and type of the elements we will be copying.
5562   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5563   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5564   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5565     return false;
5566   }
5567   Node* src_start = array_element_address(src, src_offset, src_elem);
5568   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5569   // 'src_start' points to src array + scaled offset
5570   // 'dst_start' points to dst array + scaled offset
5571 
5572   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5573   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5574   enc = _gvn.transform(enc);
5575   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5576   set_memory(res_mem, mtype);
5577   set_result(enc);
5578   return true;
5579 }
5580 
5581 /**
5582  * Calculate CRC32 for byte.
5583  * int java.util.zip.CRC32.update(int crc, int b)
5584  */
5585 bool LibraryCallKit::inline_updateCRC32() {
5586   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5587   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5588   // no receiver since it is static method
5589   Node* crc  = argument(0); // type: int
5590   Node* b    = argument(1); // type: int
5591 
5592   /*
5593    *    int c = ~ crc;
5594    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5595    *    b = b ^ (c >>> 8);
5596    *    crc = ~b;
5597    */
5598 
5599   Node* M1 = intcon(-1);
5600   crc = _gvn.transform(new (C) XorINode(crc, M1));
5601   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5602   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5603 
5604   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5605   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5606   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5607   result = make_load(control(), adr, TypeInt::INT, T_INT);
5608 
5609   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5610   result = _gvn.transform(new (C) XorINode(crc, result));
5611   result = _gvn.transform(new (C) XorINode(result, M1));
5612   set_result(result);
5613   return true;
5614 }
5615 
5616 /**
5617  * Calculate CRC32 for byte[] array.
5618  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5619  */
5620 bool LibraryCallKit::inline_updateBytesCRC32() {
5621   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5622   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5623   // no receiver since it is static method
5624   Node* crc     = argument(0); // type: int
5625   Node* src     = argument(1); // type: oop
5626   Node* offset  = argument(2); // type: int
5627   Node* length  = argument(3); // type: int
5628 
5629   const Type* src_type = src->Value(&_gvn);
5630   const TypeAryPtr* top_src = src_type->isa_aryptr();
5631   if (top_src  == NULL || top_src->klass()  == NULL) {
5632     // failed array check
5633     return false;
5634   }
5635 
5636   // Figure out the size and type of the elements we will be copying.
5637   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5638   if (src_elem != T_BYTE) {
5639     return false;
5640   }
5641 
5642   // 'src_start' points to src array + scaled offset
5643   Node* src_start = array_element_address(src, offset, src_elem);
5644 
5645   // We assume that range check is done by caller.
5646   // TODO: generate range check (offset+length < src.length) in debug VM.
5647 
5648   // Call the stub.
5649   address stubAddr = StubRoutines::updateBytesCRC32();
5650   const char *stubName = "updateBytesCRC32";
5651 
5652   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5653                                  stubAddr, stubName, TypePtr::BOTTOM,
5654                                  crc, src_start, length);
5655   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5656   set_result(result);
5657   return true;
5658 }
5659 
5660 /**
5661  * Calculate CRC32 for ByteBuffer.
5662  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5663  */
5664 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5665   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5666   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5667   // no receiver since it is static method
5668   Node* crc     = argument(0); // type: int
5669   Node* src     = argument(1); // type: long
5670   Node* offset  = argument(3); // type: int
5671   Node* length  = argument(4); // type: int
5672 
5673   src = ConvL2X(src);  // adjust Java long to machine word
5674   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5675   offset = ConvI2X(offset);
5676 
5677   // 'src_start' points to src array + scaled offset
5678   Node* src_start = basic_plus_adr(top(), base, offset);
5679 
5680   // Call the stub.
5681   address stubAddr = StubRoutines::updateBytesCRC32();
5682   const char *stubName = "updateBytesCRC32";
5683 
5684   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5685                                  stubAddr, stubName, TypePtr::BOTTOM,
5686                                  crc, src_start, length);
5687   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5688   set_result(result);
5689   return true;
5690 }
5691 
5692 //----------------------------inline_reference_get----------------------------
5693 // public T java.lang.ref.Reference.get();
5694 bool LibraryCallKit::inline_reference_get() {
5695   const int referent_offset = java_lang_ref_Reference::referent_offset;
5696   guarantee(referent_offset > 0, "should have already been set");
5697 
5698   // Get the argument:
5699   Node* reference_obj = null_check_receiver();
5700   if (stopped()) return true;
5701 
5702   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5703 
5704   ciInstanceKlass* klass = env()->Object_klass();
5705   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5706 
5707   Node* no_ctrl = NULL;
5708   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5709 
5710   // Use the pre-barrier to record the value in the referent field
5711   pre_barrier(false /* do_load */,
5712               control(),
5713               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5714               result /* pre_val */,
5715               T_OBJECT);
5716 
5717   // Add memory barrier to prevent commoning reads from this field
5718   // across safepoint since GC can change its value.
5719   insert_mem_bar(Op_MemBarCPUOrder);
5720 
5721   set_result(result);
5722   return true;
5723 }
5724 
5725 
5726 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5727                                               bool is_exact=true, bool is_static=false) {
5728 
5729   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5730   assert(tinst != NULL, "obj is null");
5731   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5732   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5733 
5734   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5735                                                                           ciSymbol::make(fieldTypeString),
5736                                                                           is_static);
5737   if (field == NULL) return (Node *) NULL;
5738   assert (field != NULL, "undefined field");
5739 
5740   // Next code  copied from Parse::do_get_xxx():
5741 
5742   // Compute address and memory type.
5743   int offset  = field->offset_in_bytes();
5744   bool is_vol = field->is_volatile();
5745   ciType* field_klass = field->type();
5746   assert(field_klass->is_loaded(), "should be loaded");
5747   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5748   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5749   BasicType bt = field->layout_type();
5750 
5751   // Build the resultant type of the load
5752   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5753 
5754   // Build the load.
5755   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5756   return loadedField;
5757 }
5758 
5759 
5760 //------------------------------inline_aescrypt_Block-----------------------
5761 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5762   address stubAddr;
5763   const char *stubName;
5764   assert(UseAES, "need AES instruction support");
5765 
5766   switch(id) {
5767   case vmIntrinsics::_aescrypt_encryptBlock:
5768     stubAddr = StubRoutines::aescrypt_encryptBlock();
5769     stubName = "aescrypt_encryptBlock";
5770     break;
5771   case vmIntrinsics::_aescrypt_decryptBlock:
5772     stubAddr = StubRoutines::aescrypt_decryptBlock();
5773     stubName = "aescrypt_decryptBlock";
5774     break;
5775   }
5776   if (stubAddr == NULL) return false;
5777 
5778   Node* aescrypt_object = argument(0);
5779   Node* src             = argument(1);
5780   Node* src_offset      = argument(2);
5781   Node* dest            = argument(3);
5782   Node* dest_offset     = argument(4);
5783 
5784   // (1) src and dest are arrays.
5785   const Type* src_type = src->Value(&_gvn);
5786   const Type* dest_type = dest->Value(&_gvn);
5787   const TypeAryPtr* top_src = src_type->isa_aryptr();
5788   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5789   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5790 
5791   // for the quick and dirty code we will skip all the checks.
5792   // we are just trying to get the call to be generated.
5793   Node* src_start  = src;
5794   Node* dest_start = dest;
5795   if (src_offset != NULL || dest_offset != NULL) {
5796     assert(src_offset != NULL && dest_offset != NULL, "");
5797     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5798     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5799   }
5800 
5801   // now need to get the start of its expanded key array
5802   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5803   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5804   if (k_start == NULL) return false;
5805 
5806   // Call the stub.
5807   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5808                     stubAddr, stubName, TypePtr::BOTTOM,
5809                     src_start, dest_start, k_start);
5810 
5811   return true;
5812 }
5813 
5814 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5815 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5816   address stubAddr;
5817   const char *stubName;
5818 
5819   assert(UseAES, "need AES instruction support");
5820 
5821   switch(id) {
5822   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5823     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5824     stubName = "cipherBlockChaining_encryptAESCrypt";
5825     break;
5826   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5827     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5828     stubName = "cipherBlockChaining_decryptAESCrypt";
5829     break;
5830   }
5831   if (stubAddr == NULL) return false;
5832 
5833   Node* cipherBlockChaining_object = argument(0);
5834   Node* src                        = argument(1);
5835   Node* src_offset                 = argument(2);
5836   Node* len                        = argument(3);
5837   Node* dest                       = argument(4);
5838   Node* dest_offset                = argument(5);
5839 
5840   // (1) src and dest are arrays.
5841   const Type* src_type = src->Value(&_gvn);
5842   const Type* dest_type = dest->Value(&_gvn);
5843   const TypeAryPtr* top_src = src_type->isa_aryptr();
5844   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5845   assert (top_src  != NULL && top_src->klass()  != NULL
5846           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5847 
5848   // checks are the responsibility of the caller
5849   Node* src_start  = src;
5850   Node* dest_start = dest;
5851   if (src_offset != NULL || dest_offset != NULL) {
5852     assert(src_offset != NULL && dest_offset != NULL, "");
5853     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5854     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5855   }
5856 
5857   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5858   // (because of the predicated logic executed earlier).
5859   // so we cast it here safely.
5860   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5861 
5862   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5863   if (embeddedCipherObj == NULL) return false;
5864 
5865   // cast it to what we know it will be at runtime
5866   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5867   assert(tinst != NULL, "CBC obj is null");
5868   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5869   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5870   if (!klass_AESCrypt->is_loaded()) return false;
5871 
5872   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5873   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5874   const TypeOopPtr* xtype = aklass->as_instance_type();
5875   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5876   aescrypt_object = _gvn.transform(aescrypt_object);
5877 
5878   // we need to get the start of the aescrypt_object's expanded key array
5879   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5880   if (k_start == NULL) return false;
5881 
5882   // similarly, get the start address of the r vector
5883   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5884   if (objRvec == NULL) return false;
5885   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5886 
5887   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5888   make_runtime_call(RC_LEAF|RC_NO_FP,
5889                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5890                     stubAddr, stubName, TypePtr::BOTTOM,
5891                     src_start, dest_start, k_start, r_start, len);
5892 
5893   // return is void so no result needs to be pushed
5894 
5895   return true;
5896 }
5897 
5898 //------------------------------get_key_start_from_aescrypt_object-----------------------
5899 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5900   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5901   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5902   if (objAESCryptKey == NULL) return (Node *) NULL;
5903 
5904   // now have the array, need to get the start address of the K array
5905   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5906   return k_start;
5907 }
5908 
5909 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5910 // Return node representing slow path of predicate check.
5911 // the pseudo code we want to emulate with this predicate is:
5912 // for encryption:
5913 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5914 // for decryption:
5915 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5916 //    note cipher==plain is more conservative than the original java code but that's OK
5917 //
5918 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5919   // First, check receiver for NULL since it is virtual method.
5920   Node* objCBC = argument(0);
5921   objCBC = null_check(objCBC);
5922 
5923   if (stopped()) return NULL; // Always NULL
5924 
5925   // Load embeddedCipher field of CipherBlockChaining object.
5926   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5927 
5928   // get AESCrypt klass for instanceOf check
5929   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5930   // will have same classloader as CipherBlockChaining object
5931   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5932   assert(tinst != NULL, "CBCobj is null");
5933   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5934 
5935   // we want to do an instanceof comparison against the AESCrypt class
5936   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5937   if (!klass_AESCrypt->is_loaded()) {
5938     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5939     Node* ctrl = control();
5940     set_control(top()); // no regular fast path
5941     return ctrl;
5942   }
5943   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5944 
5945   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5946   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5947   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5948 
5949   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5950 
5951   // for encryption, we are done
5952   if (!decrypting)
5953     return instof_false;  // even if it is NULL
5954 
5955   // for decryption, we need to add a further check to avoid
5956   // taking the intrinsic path when cipher and plain are the same
5957   // see the original java code for why.
5958   RegionNode* region = new(C) RegionNode(3);
5959   region->init_req(1, instof_false);
5960   Node* src = argument(1);
5961   Node* dest = argument(4);
5962   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5963   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5964   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5965   region->init_req(2, src_dest_conjoint);
5966 
5967   record_for_igvn(region);
5968   return _gvn.transform(region);
5969 }