1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifndef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  69 #else
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74 #endif // IA32 || AMD64
  75   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  76   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  77   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  78   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  79   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  80   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  81   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  82   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  83   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  84   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  85   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  86   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  87   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  88   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  89   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  90   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  91   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  92   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
  93 };
  94 
  95 // Map ideal registers (machine types) to ideal types
  96 const Type *Type::mreg2type[_last_machine_leaf];
  97 
  98 // Map basic types to canonical Type* pointers.
  99 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 100 
 101 // Map basic types to constant-zero Types.
 102 const Type* Type::            _zero_type[T_CONFLICT+1];
 103 
 104 // Map basic types to array-body alias types.
 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 106 
 107 //=============================================================================
 108 // Convenience common pre-built types.
 109 const Type *Type::ABIO;         // State-of-machine only
 110 const Type *Type::BOTTOM;       // All values
 111 const Type *Type::CONTROL;      // Control only
 112 const Type *Type::DOUBLE;       // All doubles
 113 const Type *Type::FLOAT;        // All floats
 114 const Type *Type::HALF;         // Placeholder half of doublewide type
 115 const Type *Type::MEMORY;       // Abstract store only
 116 const Type *Type::RETURN_ADDRESS;
 117 const Type *Type::TOP;          // No values in set
 118 
 119 //------------------------------get_const_type---------------------------
 120 const Type* Type::get_const_type(ciType* type) {
 121   if (type == NULL) {
 122     return NULL;
 123   } else if (type->is_primitive_type()) {
 124     return get_const_basic_type(type->basic_type());
 125   } else {
 126     return TypeOopPtr::make_from_klass(type->as_klass());
 127   }
 128 }
 129 
 130 //---------------------------array_element_basic_type---------------------------------
 131 // Mapping to the array element's basic type.
 132 BasicType Type::array_element_basic_type() const {
 133   BasicType bt = basic_type();
 134   if (bt == T_INT) {
 135     if (this == TypeInt::INT)   return T_INT;
 136     if (this == TypeInt::CHAR)  return T_CHAR;
 137     if (this == TypeInt::BYTE)  return T_BYTE;
 138     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 139     if (this == TypeInt::SHORT) return T_SHORT;
 140     return T_VOID;
 141   }
 142   return bt;
 143 }
 144 
 145 //---------------------------get_typeflow_type---------------------------------
 146 // Import a type produced by ciTypeFlow.
 147 const Type* Type::get_typeflow_type(ciType* type) {
 148   switch (type->basic_type()) {
 149 
 150   case ciTypeFlow::StateVector::T_BOTTOM:
 151     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 152     return Type::BOTTOM;
 153 
 154   case ciTypeFlow::StateVector::T_TOP:
 155     assert(type == ciTypeFlow::StateVector::top_type(), "");
 156     return Type::TOP;
 157 
 158   case ciTypeFlow::StateVector::T_NULL:
 159     assert(type == ciTypeFlow::StateVector::null_type(), "");
 160     return TypePtr::NULL_PTR;
 161 
 162   case ciTypeFlow::StateVector::T_LONG2:
 163     // The ciTypeFlow pass pushes a long, then the half.
 164     // We do the same.
 165     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 166     return TypeInt::TOP;
 167 
 168   case ciTypeFlow::StateVector::T_DOUBLE2:
 169     // The ciTypeFlow pass pushes double, then the half.
 170     // Our convention is the same.
 171     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 172     return Type::TOP;
 173 
 174   case T_ADDRESS:
 175     assert(type->is_return_address(), "");
 176     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 177 
 178   default:
 179     // make sure we did not mix up the cases:
 180     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 181     assert(type != ciTypeFlow::StateVector::top_type(), "");
 182     assert(type != ciTypeFlow::StateVector::null_type(), "");
 183     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 184     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 185     assert(!type->is_return_address(), "");
 186 
 187     return Type::get_const_type(type);
 188   }
 189 }
 190 
 191 
 192 //-----------------------make_from_constant------------------------------------
 193 const Type* Type::make_from_constant(ciConstant constant,
 194                                      bool require_constant, bool is_autobox_cache) {
 195   switch (constant.basic_type()) {
 196   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 197   case T_CHAR:     return TypeInt::make(constant.as_char());
 198   case T_BYTE:     return TypeInt::make(constant.as_byte());
 199   case T_SHORT:    return TypeInt::make(constant.as_short());
 200   case T_INT:      return TypeInt::make(constant.as_int());
 201   case T_LONG:     return TypeLong::make(constant.as_long());
 202   case T_FLOAT:    return TypeF::make(constant.as_float());
 203   case T_DOUBLE:   return TypeD::make(constant.as_double());
 204   case T_ARRAY:
 205   case T_OBJECT:
 206     {
 207       // cases:
 208       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 209       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 210       // An oop is not scavengable if it is in the perm gen.
 211       ciObject* oop_constant = constant.as_object();
 212       if (oop_constant->is_null_object()) {
 213         return Type::get_zero_type(T_OBJECT);
 214       } else if (require_constant || oop_constant->should_be_constant()) {
 215         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 216       }
 217     }
 218   }
 219   // Fall through to failure
 220   return NULL;
 221 }
 222 
 223 
 224 //------------------------------make-------------------------------------------
 225 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 226 // and look for an existing copy in the type dictionary.
 227 const Type *Type::make( enum TYPES t ) {
 228   return (new Type(t))->hashcons();
 229 }
 230 
 231 //------------------------------cmp--------------------------------------------
 232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 233   if( t1->_base != t2->_base )
 234     return 1;                   // Missed badly
 235   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 236   return !t1->eq(t2);           // Return ZERO if equal
 237 }
 238 
 239 //------------------------------hash-------------------------------------------
 240 int Type::uhash( const Type *const t ) {
 241   return t->hash();
 242 }
 243 
 244 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 245 
 246 //--------------------------Initialize_shared----------------------------------
 247 void Type::Initialize_shared(Compile* current) {
 248   // This method does not need to be locked because the first system
 249   // compilations (stub compilations) occur serially.  If they are
 250   // changed to proceed in parallel, then this section will need
 251   // locking.
 252 
 253   Arena* save = current->type_arena();
 254   Arena* shared_type_arena = new (mtCompiler)Arena();
 255 
 256   current->set_type_arena(shared_type_arena);
 257   _shared_type_dict =
 258     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 259                                   shared_type_arena, 128 );
 260   current->set_type_dict(_shared_type_dict);
 261 
 262   // Make shared pre-built types.
 263   CONTROL = make(Control);      // Control only
 264   TOP     = make(Top);          // No values in set
 265   MEMORY  = make(Memory);       // Abstract store only
 266   ABIO    = make(Abio);         // State-of-machine only
 267   RETURN_ADDRESS=make(Return_Address);
 268   FLOAT   = make(FloatBot);     // All floats
 269   DOUBLE  = make(DoubleBot);    // All doubles
 270   BOTTOM  = make(Bottom);       // Everything
 271   HALF    = make(Half);         // Placeholder half of doublewide type
 272 
 273   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 274   TypeF::ONE  = TypeF::make(1.0); // Float 1
 275 
 276   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 277   TypeD::ONE  = TypeD::make(1.0); // Double 1
 278 
 279   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 280   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 281   TypeInt::ONE     = TypeInt::make( 1);  //  1
 282   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 283   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 284   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 285   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 286   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 287   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 288   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 289   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 290   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 291   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 292   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 293   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 294   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 295   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 296   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 297   // CmpL is overloaded both as the bytecode computation returning
 298   // a trinary (-1,0,+1) integer result AND as an efficient long
 299   // compare returning optimizer ideal-type flags.
 300   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 301   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 302   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 303   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 304   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 305 
 306   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 307   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 308   TypeLong::ONE     = TypeLong::make( 1);        //  1
 309   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 310   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 311   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 312   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 313 
 314   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 315   fboth[0] = Type::CONTROL;
 316   fboth[1] = Type::CONTROL;
 317   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 318 
 319   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 320   ffalse[0] = Type::CONTROL;
 321   ffalse[1] = Type::TOP;
 322   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 323 
 324   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 325   fneither[0] = Type::TOP;
 326   fneither[1] = Type::TOP;
 327   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 328 
 329   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 330   ftrue[0] = Type::TOP;
 331   ftrue[1] = Type::CONTROL;
 332   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 333 
 334   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 335   floop[0] = Type::CONTROL;
 336   floop[1] = TypeInt::INT;
 337   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 338 
 339   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 340   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 341   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 342 
 343   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 344   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 345 
 346   const Type **fmembar = TypeTuple::fields(0);
 347   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 348 
 349   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 350   fsc[0] = TypeInt::CC;
 351   fsc[1] = Type::MEMORY;
 352   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 353 
 354   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 355   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 356   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 357   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 358                                            false, 0, oopDesc::mark_offset_in_bytes());
 359   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 360                                            false, 0, oopDesc::klass_offset_in_bytes());
 361   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 362 
 363   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 364 
 365   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 366   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 367 
 368   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 369 
 370   mreg2type[Op_Node] = Type::BOTTOM;
 371   mreg2type[Op_Set ] = 0;
 372   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 373   mreg2type[Op_RegI] = TypeInt::INT;
 374   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 375   mreg2type[Op_RegF] = Type::FLOAT;
 376   mreg2type[Op_RegD] = Type::DOUBLE;
 377   mreg2type[Op_RegL] = TypeLong::LONG;
 378   mreg2type[Op_RegFlags] = TypeInt::CC;
 379 
 380   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 381 
 382   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 383 
 384 #ifdef _LP64
 385   if (UseCompressedOops) {
 386     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 387     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 388   } else
 389 #endif
 390   {
 391     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 392     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 393   }
 394   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 395   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 396   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 397   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 398   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 399   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 400   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 401 
 402   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 403   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 404   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 405   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 406   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 407   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 408   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 409   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 410   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 411   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 412   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 413   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 414 
 415   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 416   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 417 
 418   const Type **fi2c = TypeTuple::fields(2);
 419   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 420   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 421   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 422 
 423   const Type **intpair = TypeTuple::fields(2);
 424   intpair[0] = TypeInt::INT;
 425   intpair[1] = TypeInt::INT;
 426   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 427 
 428   const Type **longpair = TypeTuple::fields(2);
 429   longpair[0] = TypeLong::LONG;
 430   longpair[1] = TypeLong::LONG;
 431   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 432 
 433   const Type **intccpair = TypeTuple::fields(2);
 434   intccpair[0] = TypeInt::INT;
 435   intccpair[1] = TypeInt::CC;
 436   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 437 
 438   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 439   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 440   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 441   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 442   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 443   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 444   _const_basic_type[T_INT]         = TypeInt::INT;
 445   _const_basic_type[T_LONG]        = TypeLong::LONG;
 446   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 447   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 448   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 449   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 450   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 451   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 452   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 453 
 454   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 455   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 456   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 457   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 458   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 459   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 460   _zero_type[T_INT]         = TypeInt::ZERO;
 461   _zero_type[T_LONG]        = TypeLong::ZERO;
 462   _zero_type[T_FLOAT]       = TypeF::ZERO;
 463   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 464   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 465   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 466   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 467   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 468 
 469   // get_zero_type() should not happen for T_CONFLICT
 470   _zero_type[T_CONFLICT]= NULL;
 471 
 472   // Vector predefined types, it needs initialized _const_basic_type[].
 473   if (Matcher::vector_size_supported(T_BYTE,4)) {
 474     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 475   }
 476   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 477     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 478   }
 479   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 480     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 481   }
 482   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 483     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 484   }
 485   mreg2type[Op_VecS] = TypeVect::VECTS;
 486   mreg2type[Op_VecD] = TypeVect::VECTD;
 487   mreg2type[Op_VecX] = TypeVect::VECTX;
 488   mreg2type[Op_VecY] = TypeVect::VECTY;
 489 
 490   // Restore working type arena.
 491   current->set_type_arena(save);
 492   current->set_type_dict(NULL);
 493 }
 494 
 495 //------------------------------Initialize-------------------------------------
 496 void Type::Initialize(Compile* current) {
 497   assert(current->type_arena() != NULL, "must have created type arena");
 498 
 499   if (_shared_type_dict == NULL) {
 500     Initialize_shared(current);
 501   }
 502 
 503   Arena* type_arena = current->type_arena();
 504 
 505   // Create the hash-cons'ing dictionary with top-level storage allocation
 506   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 507   current->set_type_dict(tdic);
 508 
 509   // Transfer the shared types.
 510   DictI i(_shared_type_dict);
 511   for( ; i.test(); ++i ) {
 512     Type* t = (Type*)i._value;
 513     tdic->Insert(t,t);  // New Type, insert into Type table
 514   }
 515 }
 516 
 517 //------------------------------hashcons---------------------------------------
 518 // Do the hash-cons trick.  If the Type already exists in the type table,
 519 // delete the current Type and return the existing Type.  Otherwise stick the
 520 // current Type in the Type table.
 521 const Type *Type::hashcons(void) {
 522   debug_only(base());           // Check the assertion in Type::base().
 523   // Look up the Type in the Type dictionary
 524   Dict *tdic = type_dict();
 525   Type* old = (Type*)(tdic->Insert(this, this, false));
 526   if( old ) {                   // Pre-existing Type?
 527     if( old != this )           // Yes, this guy is not the pre-existing?
 528       delete this;              // Yes, Nuke this guy
 529     assert( old->_dual, "" );
 530     return old;                 // Return pre-existing
 531   }
 532 
 533   // Every type has a dual (to make my lattice symmetric).
 534   // Since we just discovered a new Type, compute its dual right now.
 535   assert( !_dual, "" );         // No dual yet
 536   _dual = xdual();              // Compute the dual
 537   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 538     _dual = this;
 539     return this;
 540   }
 541   assert( !_dual->_dual, "" );  // No reverse dual yet
 542   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 543   // New Type, insert into Type table
 544   tdic->Insert((void*)_dual,(void*)_dual);
 545   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 546 #ifdef ASSERT
 547   Type *dual_dual = (Type*)_dual->xdual();
 548   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 549   delete dual_dual;
 550 #endif
 551   return this;                  // Return new Type
 552 }
 553 
 554 //------------------------------eq---------------------------------------------
 555 // Structural equality check for Type representations
 556 bool Type::eq( const Type * ) const {
 557   return true;                  // Nothing else can go wrong
 558 }
 559 
 560 //------------------------------hash-------------------------------------------
 561 // Type-specific hashing function.
 562 int Type::hash(void) const {
 563   return _base;
 564 }
 565 
 566 //------------------------------is_finite--------------------------------------
 567 // Has a finite value
 568 bool Type::is_finite() const {
 569   return false;
 570 }
 571 
 572 //------------------------------is_nan-----------------------------------------
 573 // Is not a number (NaN)
 574 bool Type::is_nan()    const {
 575   return false;
 576 }
 577 
 578 //----------------------interface_vs_oop---------------------------------------
 579 #ifdef ASSERT
 580 bool Type::interface_vs_oop(const Type *t) const {
 581   bool result = false;
 582 
 583   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 584   const TypePtr*    t_ptr =    t->make_ptr();
 585   if( this_ptr == NULL || t_ptr == NULL )
 586     return result;
 587 
 588   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 589   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 590   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 591     bool this_interface = this_inst->klass()->is_interface();
 592     bool    t_interface =    t_inst->klass()->is_interface();
 593     result = this_interface ^ t_interface;
 594   }
 595 
 596   return result;
 597 }
 598 #endif
 599 
 600 //------------------------------meet-------------------------------------------
 601 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 602 // commutative and the lattice is symmetric.
 603 const Type *Type::meet( const Type *t ) const {
 604   if (isa_narrowoop() && t->isa_narrowoop()) {
 605     const Type* result = make_ptr()->meet(t->make_ptr());
 606     return result->make_narrowoop();
 607   }
 608   if (isa_narrowklass() && t->isa_narrowklass()) {
 609     const Type* result = make_ptr()->meet(t->make_ptr());
 610     return result->make_narrowklass();
 611   }
 612 
 613   const Type *mt = xmeet(t);
 614   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 615   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 616 #ifdef ASSERT
 617   assert( mt == t->xmeet(this), "meet not commutative" );
 618   const Type* dual_join = mt->_dual;
 619   const Type *t2t    = dual_join->xmeet(t->_dual);
 620   const Type *t2this = dual_join->xmeet(   _dual);
 621 
 622   // Interface meet Oop is Not Symmetric:
 623   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 624   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 625 
 626   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
 627     tty->print_cr("=== Meet Not Symmetric ===");
 628     tty->print("t   =                   ");         t->dump(); tty->cr();
 629     tty->print("this=                   ");            dump(); tty->cr();
 630     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
 631 
 632     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
 633     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
 634     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
 635 
 636     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
 637     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
 638 
 639     fatal("meet not symmetric" );
 640   }
 641 #endif
 642   return mt;
 643 }
 644 
 645 //------------------------------xmeet------------------------------------------
 646 // Compute the MEET of two types.  It returns a new Type object.
 647 const Type *Type::xmeet( const Type *t ) const {
 648   // Perform a fast test for common case; meeting the same types together.
 649   if( this == t ) return this;  // Meeting same type-rep?
 650 
 651   // Meeting TOP with anything?
 652   if( _base == Top ) return t;
 653 
 654   // Meeting BOTTOM with anything?
 655   if( _base == Bottom ) return BOTTOM;
 656 
 657   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 658   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 659   switch (t->base()) {  // Switch on original type
 660 
 661   // Cut in half the number of cases I must handle.  Only need cases for when
 662   // the given enum "t->type" is less than or equal to the local enum "type".
 663   case FloatCon:
 664   case DoubleCon:
 665   case Int:
 666   case Long:
 667     return t->xmeet(this);
 668 
 669   case OopPtr:
 670     return t->xmeet(this);
 671 
 672   case InstPtr:
 673     return t->xmeet(this);
 674 
 675   case MetadataPtr:
 676   case KlassPtr:
 677     return t->xmeet(this);
 678 
 679   case AryPtr:
 680     return t->xmeet(this);
 681 
 682   case NarrowOop:
 683     return t->xmeet(this);
 684 
 685   case NarrowKlass:
 686     return t->xmeet(this);
 687 
 688   case Bad:                     // Type check
 689   default:                      // Bogus type not in lattice
 690     typerr(t);
 691     return Type::BOTTOM;
 692 
 693   case Bottom:                  // Ye Olde Default
 694     return t;
 695 
 696   case FloatTop:
 697     if( _base == FloatTop ) return this;
 698   case FloatBot:                // Float
 699     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 700     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 701     typerr(t);
 702     return Type::BOTTOM;
 703 
 704   case DoubleTop:
 705     if( _base == DoubleTop ) return this;
 706   case DoubleBot:               // Double
 707     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 708     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 709     typerr(t);
 710     return Type::BOTTOM;
 711 
 712   // These next few cases must match exactly or it is a compile-time error.
 713   case Control:                 // Control of code
 714   case Abio:                    // State of world outside of program
 715   case Memory:
 716     if( _base == t->_base )  return this;
 717     typerr(t);
 718     return Type::BOTTOM;
 719 
 720   case Top:                     // Top of the lattice
 721     return this;
 722   }
 723 
 724   // The type is unchanged
 725   return this;
 726 }
 727 
 728 //-----------------------------filter------------------------------------------
 729 const Type *Type::filter( const Type *kills ) const {
 730   const Type* ft = join(kills);
 731   if (ft->empty())
 732     return Type::TOP;           // Canonical empty value
 733   return ft;
 734 }
 735 
 736 //------------------------------xdual------------------------------------------
 737 // Compute dual right now.
 738 const Type::TYPES Type::dual_type[Type::lastype] = {
 739   Bad,          // Bad
 740   Control,      // Control
 741   Bottom,       // Top
 742   Bad,          // Int - handled in v-call
 743   Bad,          // Long - handled in v-call
 744   Half,         // Half
 745   Bad,          // NarrowOop - handled in v-call
 746   Bad,          // NarrowKlass - handled in v-call
 747 
 748   Bad,          // Tuple - handled in v-call
 749   Bad,          // Array - handled in v-call
 750   Bad,          // VectorS - handled in v-call
 751   Bad,          // VectorD - handled in v-call
 752   Bad,          // VectorX - handled in v-call
 753   Bad,          // VectorY - handled in v-call
 754 
 755   Bad,          // AnyPtr - handled in v-call
 756   Bad,          // RawPtr - handled in v-call
 757   Bad,          // OopPtr - handled in v-call
 758   Bad,          // InstPtr - handled in v-call
 759   Bad,          // AryPtr - handled in v-call
 760 
 761   Bad,          //  MetadataPtr - handled in v-call
 762   Bad,          // KlassPtr - handled in v-call
 763 
 764   Bad,          // Function - handled in v-call
 765   Abio,         // Abio
 766   Return_Address,// Return_Address
 767   Memory,       // Memory
 768   FloatBot,     // FloatTop
 769   FloatCon,     // FloatCon
 770   FloatTop,     // FloatBot
 771   DoubleBot,    // DoubleTop
 772   DoubleCon,    // DoubleCon
 773   DoubleTop,    // DoubleBot
 774   Top           // Bottom
 775 };
 776 
 777 const Type *Type::xdual() const {
 778   // Note: the base() accessor asserts the sanity of _base.
 779   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 780   return new Type(_type_info[_base].dual_type);
 781 }
 782 
 783 //------------------------------has_memory-------------------------------------
 784 bool Type::has_memory() const {
 785   Type::TYPES tx = base();
 786   if (tx == Memory) return true;
 787   if (tx == Tuple) {
 788     const TypeTuple *t = is_tuple();
 789     for (uint i=0; i < t->cnt(); i++) {
 790       tx = t->field_at(i)->base();
 791       if (tx == Memory)  return true;
 792     }
 793   }
 794   return false;
 795 }
 796 
 797 #ifndef PRODUCT
 798 //------------------------------dump2------------------------------------------
 799 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 800   st->print(_type_info[_base].msg);
 801 }
 802 
 803 //------------------------------dump-------------------------------------------
 804 void Type::dump_on(outputStream *st) const {
 805   ResourceMark rm;
 806   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 807   dump2(d,1, st);
 808   if (is_ptr_to_narrowoop()) {
 809     st->print(" [narrow]");
 810   } else if (is_ptr_to_narrowklass()) {
 811     st->print(" [narrowklass]");
 812   }
 813 }
 814 #endif
 815 
 816 //------------------------------singleton--------------------------------------
 817 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 818 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 819 bool Type::singleton(void) const {
 820   return _base == Top || _base == Half;
 821 }
 822 
 823 //------------------------------empty------------------------------------------
 824 // TRUE if Type is a type with no values, FALSE otherwise.
 825 bool Type::empty(void) const {
 826   switch (_base) {
 827   case DoubleTop:
 828   case FloatTop:
 829   case Top:
 830     return true;
 831 
 832   case Half:
 833   case Abio:
 834   case Return_Address:
 835   case Memory:
 836   case Bottom:
 837   case FloatBot:
 838   case DoubleBot:
 839     return false;  // never a singleton, therefore never empty
 840   }
 841 
 842   ShouldNotReachHere();
 843   return false;
 844 }
 845 
 846 //------------------------------dump_stats-------------------------------------
 847 // Dump collected statistics to stderr
 848 #ifndef PRODUCT
 849 void Type::dump_stats() {
 850   tty->print("Types made: %d\n", type_dict()->Size());
 851 }
 852 #endif
 853 
 854 //------------------------------typerr-----------------------------------------
 855 void Type::typerr( const Type *t ) const {
 856 #ifndef PRODUCT
 857   tty->print("\nError mixing types: ");
 858   dump();
 859   tty->print(" and ");
 860   t->dump();
 861   tty->print("\n");
 862 #endif
 863   ShouldNotReachHere();
 864 }
 865 
 866 
 867 //=============================================================================
 868 // Convenience common pre-built types.
 869 const TypeF *TypeF::ZERO;       // Floating point zero
 870 const TypeF *TypeF::ONE;        // Floating point one
 871 
 872 //------------------------------make-------------------------------------------
 873 // Create a float constant
 874 const TypeF *TypeF::make(float f) {
 875   return (TypeF*)(new TypeF(f))->hashcons();
 876 }
 877 
 878 //------------------------------meet-------------------------------------------
 879 // Compute the MEET of two types.  It returns a new Type object.
 880 const Type *TypeF::xmeet( const Type *t ) const {
 881   // Perform a fast test for common case; meeting the same types together.
 882   if( this == t ) return this;  // Meeting same type-rep?
 883 
 884   // Current "this->_base" is FloatCon
 885   switch (t->base()) {          // Switch on original type
 886   case AnyPtr:                  // Mixing with oops happens when javac
 887   case RawPtr:                  // reuses local variables
 888   case OopPtr:
 889   case InstPtr:
 890   case AryPtr:
 891   case MetadataPtr:
 892   case KlassPtr:
 893   case NarrowOop:
 894   case NarrowKlass:
 895   case Int:
 896   case Long:
 897   case DoubleTop:
 898   case DoubleCon:
 899   case DoubleBot:
 900   case Bottom:                  // Ye Olde Default
 901     return Type::BOTTOM;
 902 
 903   case FloatBot:
 904     return t;
 905 
 906   default:                      // All else is a mistake
 907     typerr(t);
 908 
 909   case FloatCon:                // Float-constant vs Float-constant?
 910     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 911                                 // must compare bitwise as positive zero, negative zero and NaN have
 912                                 // all the same representation in C++
 913       return FLOAT;             // Return generic float
 914                                 // Equal constants
 915   case Top:
 916   case FloatTop:
 917     break;                      // Return the float constant
 918   }
 919   return this;                  // Return the float constant
 920 }
 921 
 922 //------------------------------xdual------------------------------------------
 923 // Dual: symmetric
 924 const Type *TypeF::xdual() const {
 925   return this;
 926 }
 927 
 928 //------------------------------eq---------------------------------------------
 929 // Structural equality check for Type representations
 930 bool TypeF::eq( const Type *t ) const {
 931   if( g_isnan(_f) ||
 932       g_isnan(t->getf()) ) {
 933     // One or both are NANs.  If both are NANs return true, else false.
 934     return (g_isnan(_f) && g_isnan(t->getf()));
 935   }
 936   if (_f == t->getf()) {
 937     // (NaN is impossible at this point, since it is not equal even to itself)
 938     if (_f == 0.0) {
 939       // difference between positive and negative zero
 940       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 941     }
 942     return true;
 943   }
 944   return false;
 945 }
 946 
 947 //------------------------------hash-------------------------------------------
 948 // Type-specific hashing function.
 949 int TypeF::hash(void) const {
 950   return *(int*)(&_f);
 951 }
 952 
 953 //------------------------------is_finite--------------------------------------
 954 // Has a finite value
 955 bool TypeF::is_finite() const {
 956   return g_isfinite(getf()) != 0;
 957 }
 958 
 959 //------------------------------is_nan-----------------------------------------
 960 // Is not a number (NaN)
 961 bool TypeF::is_nan()    const {
 962   return g_isnan(getf()) != 0;
 963 }
 964 
 965 //------------------------------dump2------------------------------------------
 966 // Dump float constant Type
 967 #ifndef PRODUCT
 968 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
 969   Type::dump2(d,depth, st);
 970   st->print("%f", _f);
 971 }
 972 #endif
 973 
 974 //------------------------------singleton--------------------------------------
 975 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 976 // constants (Ldi nodes).  Singletons are integer, float or double constants
 977 // or a single symbol.
 978 bool TypeF::singleton(void) const {
 979   return true;                  // Always a singleton
 980 }
 981 
 982 bool TypeF::empty(void) const {
 983   return false;                 // always exactly a singleton
 984 }
 985 
 986 //=============================================================================
 987 // Convenience common pre-built types.
 988 const TypeD *TypeD::ZERO;       // Floating point zero
 989 const TypeD *TypeD::ONE;        // Floating point one
 990 
 991 //------------------------------make-------------------------------------------
 992 const TypeD *TypeD::make(double d) {
 993   return (TypeD*)(new TypeD(d))->hashcons();
 994 }
 995 
 996 //------------------------------meet-------------------------------------------
 997 // Compute the MEET of two types.  It returns a new Type object.
 998 const Type *TypeD::xmeet( const Type *t ) const {
 999   // Perform a fast test for common case; meeting the same types together.
1000   if( this == t ) return this;  // Meeting same type-rep?
1001 
1002   // Current "this->_base" is DoubleCon
1003   switch (t->base()) {          // Switch on original type
1004   case AnyPtr:                  // Mixing with oops happens when javac
1005   case RawPtr:                  // reuses local variables
1006   case OopPtr:
1007   case InstPtr:
1008   case AryPtr:
1009   case MetadataPtr:
1010   case KlassPtr:
1011   case NarrowOop:
1012   case NarrowKlass:
1013   case Int:
1014   case Long:
1015   case FloatTop:
1016   case FloatCon:
1017   case FloatBot:
1018   case Bottom:                  // Ye Olde Default
1019     return Type::BOTTOM;
1020 
1021   case DoubleBot:
1022     return t;
1023 
1024   default:                      // All else is a mistake
1025     typerr(t);
1026 
1027   case DoubleCon:               // Double-constant vs Double-constant?
1028     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1029       return DOUBLE;            // Return generic double
1030   case Top:
1031   case DoubleTop:
1032     break;
1033   }
1034   return this;                  // Return the double constant
1035 }
1036 
1037 //------------------------------xdual------------------------------------------
1038 // Dual: symmetric
1039 const Type *TypeD::xdual() const {
1040   return this;
1041 }
1042 
1043 //------------------------------eq---------------------------------------------
1044 // Structural equality check for Type representations
1045 bool TypeD::eq( const Type *t ) const {
1046   if( g_isnan(_d) ||
1047       g_isnan(t->getd()) ) {
1048     // One or both are NANs.  If both are NANs return true, else false.
1049     return (g_isnan(_d) && g_isnan(t->getd()));
1050   }
1051   if (_d == t->getd()) {
1052     // (NaN is impossible at this point, since it is not equal even to itself)
1053     if (_d == 0.0) {
1054       // difference between positive and negative zero
1055       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1056     }
1057     return true;
1058   }
1059   return false;
1060 }
1061 
1062 //------------------------------hash-------------------------------------------
1063 // Type-specific hashing function.
1064 int TypeD::hash(void) const {
1065   return *(int*)(&_d);
1066 }
1067 
1068 //------------------------------is_finite--------------------------------------
1069 // Has a finite value
1070 bool TypeD::is_finite() const {
1071   return g_isfinite(getd()) != 0;
1072 }
1073 
1074 //------------------------------is_nan-----------------------------------------
1075 // Is not a number (NaN)
1076 bool TypeD::is_nan()    const {
1077   return g_isnan(getd()) != 0;
1078 }
1079 
1080 //------------------------------dump2------------------------------------------
1081 // Dump double constant Type
1082 #ifndef PRODUCT
1083 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1084   Type::dump2(d,depth,st);
1085   st->print("%f", _d);
1086 }
1087 #endif
1088 
1089 //------------------------------singleton--------------------------------------
1090 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1091 // constants (Ldi nodes).  Singletons are integer, float or double constants
1092 // or a single symbol.
1093 bool TypeD::singleton(void) const {
1094   return true;                  // Always a singleton
1095 }
1096 
1097 bool TypeD::empty(void) const {
1098   return false;                 // always exactly a singleton
1099 }
1100 
1101 //=============================================================================
1102 // Convience common pre-built types.
1103 const TypeInt *TypeInt::MINUS_1;// -1
1104 const TypeInt *TypeInt::ZERO;   // 0
1105 const TypeInt *TypeInt::ONE;    // 1
1106 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1107 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1108 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1109 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1110 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1111 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1112 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1113 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1114 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1115 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1116 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1117 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1118 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1119 const TypeInt *TypeInt::INT;    // 32-bit integers
1120 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1121 
1122 //------------------------------TypeInt----------------------------------------
1123 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1124 }
1125 
1126 //------------------------------make-------------------------------------------
1127 const TypeInt *TypeInt::make( jint lo ) {
1128   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1129 }
1130 
1131 static int normalize_int_widen( jint lo, jint hi, int w ) {
1132   // Certain normalizations keep us sane when comparing types.
1133   // The 'SMALLINT' covers constants and also CC and its relatives.
1134   if (lo <= hi) {
1135     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1136     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1137   } else {
1138     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1139     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1140   }
1141   return w;
1142 }
1143 
1144 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1145   w = normalize_int_widen(lo, hi, w);
1146   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1147 }
1148 
1149 //------------------------------meet-------------------------------------------
1150 // Compute the MEET of two types.  It returns a new Type representation object
1151 // with reference count equal to the number of Types pointing at it.
1152 // Caller should wrap a Types around it.
1153 const Type *TypeInt::xmeet( const Type *t ) const {
1154   // Perform a fast test for common case; meeting the same types together.
1155   if( this == t ) return this;  // Meeting same type?
1156 
1157   // Currently "this->_base" is a TypeInt
1158   switch (t->base()) {          // Switch on original type
1159   case AnyPtr:                  // Mixing with oops happens when javac
1160   case RawPtr:                  // reuses local variables
1161   case OopPtr:
1162   case InstPtr:
1163   case AryPtr:
1164   case MetadataPtr:
1165   case KlassPtr:
1166   case NarrowOop:
1167   case NarrowKlass:
1168   case Long:
1169   case FloatTop:
1170   case FloatCon:
1171   case FloatBot:
1172   case DoubleTop:
1173   case DoubleCon:
1174   case DoubleBot:
1175   case Bottom:                  // Ye Olde Default
1176     return Type::BOTTOM;
1177   default:                      // All else is a mistake
1178     typerr(t);
1179   case Top:                     // No change
1180     return this;
1181   case Int:                     // Int vs Int?
1182     break;
1183   }
1184 
1185   // Expand covered set
1186   const TypeInt *r = t->is_int();
1187   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1188 }
1189 
1190 //------------------------------xdual------------------------------------------
1191 // Dual: reverse hi & lo; flip widen
1192 const Type *TypeInt::xdual() const {
1193   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1194   return new TypeInt(_hi,_lo,w);
1195 }
1196 
1197 //------------------------------widen------------------------------------------
1198 // Only happens for optimistic top-down optimizations.
1199 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1200   // Coming from TOP or such; no widening
1201   if( old->base() != Int ) return this;
1202   const TypeInt *ot = old->is_int();
1203 
1204   // If new guy is equal to old guy, no widening
1205   if( _lo == ot->_lo && _hi == ot->_hi )
1206     return old;
1207 
1208   // If new guy contains old, then we widened
1209   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1210     // New contains old
1211     // If new guy is already wider than old, no widening
1212     if( _widen > ot->_widen ) return this;
1213     // If old guy was a constant, do not bother
1214     if (ot->_lo == ot->_hi)  return this;
1215     // Now widen new guy.
1216     // Check for widening too far
1217     if (_widen == WidenMax) {
1218       int max = max_jint;
1219       int min = min_jint;
1220       if (limit->isa_int()) {
1221         max = limit->is_int()->_hi;
1222         min = limit->is_int()->_lo;
1223       }
1224       if (min < _lo && _hi < max) {
1225         // If neither endpoint is extremal yet, push out the endpoint
1226         // which is closer to its respective limit.
1227         if (_lo >= 0 ||                 // easy common case
1228             (juint)(_lo - min) >= (juint)(max - _hi)) {
1229           // Try to widen to an unsigned range type of 31 bits:
1230           return make(_lo, max, WidenMax);
1231         } else {
1232           return make(min, _hi, WidenMax);
1233         }
1234       }
1235       return TypeInt::INT;
1236     }
1237     // Returned widened new guy
1238     return make(_lo,_hi,_widen+1);
1239   }
1240 
1241   // If old guy contains new, then we probably widened too far & dropped to
1242   // bottom.  Return the wider fellow.
1243   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1244     return old;
1245 
1246   //fatal("Integer value range is not subset");
1247   //return this;
1248   return TypeInt::INT;
1249 }
1250 
1251 //------------------------------narrow---------------------------------------
1252 // Only happens for pessimistic optimizations.
1253 const Type *TypeInt::narrow( const Type *old ) const {
1254   if (_lo >= _hi)  return this;   // already narrow enough
1255   if (old == NULL)  return this;
1256   const TypeInt* ot = old->isa_int();
1257   if (ot == NULL)  return this;
1258   jint olo = ot->_lo;
1259   jint ohi = ot->_hi;
1260 
1261   // If new guy is equal to old guy, no narrowing
1262   if (_lo == olo && _hi == ohi)  return old;
1263 
1264   // If old guy was maximum range, allow the narrowing
1265   if (olo == min_jint && ohi == max_jint)  return this;
1266 
1267   if (_lo < olo || _hi > ohi)
1268     return this;                // doesn't narrow; pretty wierd
1269 
1270   // The new type narrows the old type, so look for a "death march".
1271   // See comments on PhaseTransform::saturate.
1272   juint nrange = _hi - _lo;
1273   juint orange = ohi - olo;
1274   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1275     // Use the new type only if the range shrinks a lot.
1276     // We do not want the optimizer computing 2^31 point by point.
1277     return old;
1278   }
1279 
1280   return this;
1281 }
1282 
1283 //-----------------------------filter------------------------------------------
1284 const Type *TypeInt::filter( const Type *kills ) const {
1285   const TypeInt* ft = join(kills)->isa_int();
1286   if (ft == NULL || ft->empty())
1287     return Type::TOP;           // Canonical empty value
1288   if (ft->_widen < this->_widen) {
1289     // Do not allow the value of kill->_widen to affect the outcome.
1290     // The widen bits must be allowed to run freely through the graph.
1291     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1292   }
1293   return ft;
1294 }
1295 
1296 //------------------------------eq---------------------------------------------
1297 // Structural equality check for Type representations
1298 bool TypeInt::eq( const Type *t ) const {
1299   const TypeInt *r = t->is_int(); // Handy access
1300   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1301 }
1302 
1303 //------------------------------hash-------------------------------------------
1304 // Type-specific hashing function.
1305 int TypeInt::hash(void) const {
1306   return _lo+_hi+_widen+(int)Type::Int;
1307 }
1308 
1309 //------------------------------is_finite--------------------------------------
1310 // Has a finite value
1311 bool TypeInt::is_finite() const {
1312   return true;
1313 }
1314 
1315 //------------------------------dump2------------------------------------------
1316 // Dump TypeInt
1317 #ifndef PRODUCT
1318 static const char* intname(char* buf, jint n) {
1319   if (n == min_jint)
1320     return "min";
1321   else if (n < min_jint + 10000)
1322     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1323   else if (n == max_jint)
1324     return "max";
1325   else if (n > max_jint - 10000)
1326     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1327   else
1328     sprintf(buf, INT32_FORMAT, n);
1329   return buf;
1330 }
1331 
1332 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1333   char buf[40], buf2[40];
1334   if (_lo == min_jint && _hi == max_jint)
1335     st->print("int");
1336   else if (is_con())
1337     st->print("int:%s", intname(buf, get_con()));
1338   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1339     st->print("bool");
1340   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1341     st->print("byte");
1342   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1343     st->print("char");
1344   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1345     st->print("short");
1346   else if (_hi == max_jint)
1347     st->print("int:>=%s", intname(buf, _lo));
1348   else if (_lo == min_jint)
1349     st->print("int:<=%s", intname(buf, _hi));
1350   else
1351     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1352 
1353   if (_widen != 0 && this != TypeInt::INT)
1354     st->print(":%.*s", _widen, "wwww");
1355 }
1356 #endif
1357 
1358 //------------------------------singleton--------------------------------------
1359 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1360 // constants.
1361 bool TypeInt::singleton(void) const {
1362   return _lo >= _hi;
1363 }
1364 
1365 bool TypeInt::empty(void) const {
1366   return _lo > _hi;
1367 }
1368 
1369 //=============================================================================
1370 // Convenience common pre-built types.
1371 const TypeLong *TypeLong::MINUS_1;// -1
1372 const TypeLong *TypeLong::ZERO; // 0
1373 const TypeLong *TypeLong::ONE;  // 1
1374 const TypeLong *TypeLong::POS;  // >=0
1375 const TypeLong *TypeLong::LONG; // 64-bit integers
1376 const TypeLong *TypeLong::INT;  // 32-bit subrange
1377 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1378 
1379 //------------------------------TypeLong---------------------------------------
1380 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1381 }
1382 
1383 //------------------------------make-------------------------------------------
1384 const TypeLong *TypeLong::make( jlong lo ) {
1385   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1386 }
1387 
1388 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1389   // Certain normalizations keep us sane when comparing types.
1390   // The 'SMALLINT' covers constants.
1391   if (lo <= hi) {
1392     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1393     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1394   } else {
1395     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1396     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1397   }
1398   return w;
1399 }
1400 
1401 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1402   w = normalize_long_widen(lo, hi, w);
1403   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1404 }
1405 
1406 
1407 //------------------------------meet-------------------------------------------
1408 // Compute the MEET of two types.  It returns a new Type representation object
1409 // with reference count equal to the number of Types pointing at it.
1410 // Caller should wrap a Types around it.
1411 const Type *TypeLong::xmeet( const Type *t ) const {
1412   // Perform a fast test for common case; meeting the same types together.
1413   if( this == t ) return this;  // Meeting same type?
1414 
1415   // Currently "this->_base" is a TypeLong
1416   switch (t->base()) {          // Switch on original type
1417   case AnyPtr:                  // Mixing with oops happens when javac
1418   case RawPtr:                  // reuses local variables
1419   case OopPtr:
1420   case InstPtr:
1421   case AryPtr:
1422   case MetadataPtr:
1423   case KlassPtr:
1424   case NarrowOop:
1425   case NarrowKlass:
1426   case Int:
1427   case FloatTop:
1428   case FloatCon:
1429   case FloatBot:
1430   case DoubleTop:
1431   case DoubleCon:
1432   case DoubleBot:
1433   case Bottom:                  // Ye Olde Default
1434     return Type::BOTTOM;
1435   default:                      // All else is a mistake
1436     typerr(t);
1437   case Top:                     // No change
1438     return this;
1439   case Long:                    // Long vs Long?
1440     break;
1441   }
1442 
1443   // Expand covered set
1444   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1445   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1446 }
1447 
1448 //------------------------------xdual------------------------------------------
1449 // Dual: reverse hi & lo; flip widen
1450 const Type *TypeLong::xdual() const {
1451   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1452   return new TypeLong(_hi,_lo,w);
1453 }
1454 
1455 //------------------------------widen------------------------------------------
1456 // Only happens for optimistic top-down optimizations.
1457 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1458   // Coming from TOP or such; no widening
1459   if( old->base() != Long ) return this;
1460   const TypeLong *ot = old->is_long();
1461 
1462   // If new guy is equal to old guy, no widening
1463   if( _lo == ot->_lo && _hi == ot->_hi )
1464     return old;
1465 
1466   // If new guy contains old, then we widened
1467   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1468     // New contains old
1469     // If new guy is already wider than old, no widening
1470     if( _widen > ot->_widen ) return this;
1471     // If old guy was a constant, do not bother
1472     if (ot->_lo == ot->_hi)  return this;
1473     // Now widen new guy.
1474     // Check for widening too far
1475     if (_widen == WidenMax) {
1476       jlong max = max_jlong;
1477       jlong min = min_jlong;
1478       if (limit->isa_long()) {
1479         max = limit->is_long()->_hi;
1480         min = limit->is_long()->_lo;
1481       }
1482       if (min < _lo && _hi < max) {
1483         // If neither endpoint is extremal yet, push out the endpoint
1484         // which is closer to its respective limit.
1485         if (_lo >= 0 ||                 // easy common case
1486             (julong)(_lo - min) >= (julong)(max - _hi)) {
1487           // Try to widen to an unsigned range type of 32/63 bits:
1488           if (max >= max_juint && _hi < max_juint)
1489             return make(_lo, max_juint, WidenMax);
1490           else
1491             return make(_lo, max, WidenMax);
1492         } else {
1493           return make(min, _hi, WidenMax);
1494         }
1495       }
1496       return TypeLong::LONG;
1497     }
1498     // Returned widened new guy
1499     return make(_lo,_hi,_widen+1);
1500   }
1501 
1502   // If old guy contains new, then we probably widened too far & dropped to
1503   // bottom.  Return the wider fellow.
1504   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1505     return old;
1506 
1507   //  fatal("Long value range is not subset");
1508   // return this;
1509   return TypeLong::LONG;
1510 }
1511 
1512 //------------------------------narrow----------------------------------------
1513 // Only happens for pessimistic optimizations.
1514 const Type *TypeLong::narrow( const Type *old ) const {
1515   if (_lo >= _hi)  return this;   // already narrow enough
1516   if (old == NULL)  return this;
1517   const TypeLong* ot = old->isa_long();
1518   if (ot == NULL)  return this;
1519   jlong olo = ot->_lo;
1520   jlong ohi = ot->_hi;
1521 
1522   // If new guy is equal to old guy, no narrowing
1523   if (_lo == olo && _hi == ohi)  return old;
1524 
1525   // If old guy was maximum range, allow the narrowing
1526   if (olo == min_jlong && ohi == max_jlong)  return this;
1527 
1528   if (_lo < olo || _hi > ohi)
1529     return this;                // doesn't narrow; pretty wierd
1530 
1531   // The new type narrows the old type, so look for a "death march".
1532   // See comments on PhaseTransform::saturate.
1533   julong nrange = _hi - _lo;
1534   julong orange = ohi - olo;
1535   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1536     // Use the new type only if the range shrinks a lot.
1537     // We do not want the optimizer computing 2^31 point by point.
1538     return old;
1539   }
1540 
1541   return this;
1542 }
1543 
1544 //-----------------------------filter------------------------------------------
1545 const Type *TypeLong::filter( const Type *kills ) const {
1546   const TypeLong* ft = join(kills)->isa_long();
1547   if (ft == NULL || ft->empty())
1548     return Type::TOP;           // Canonical empty value
1549   if (ft->_widen < this->_widen) {
1550     // Do not allow the value of kill->_widen to affect the outcome.
1551     // The widen bits must be allowed to run freely through the graph.
1552     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1553   }
1554   return ft;
1555 }
1556 
1557 //------------------------------eq---------------------------------------------
1558 // Structural equality check for Type representations
1559 bool TypeLong::eq( const Type *t ) const {
1560   const TypeLong *r = t->is_long(); // Handy access
1561   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1562 }
1563 
1564 //------------------------------hash-------------------------------------------
1565 // Type-specific hashing function.
1566 int TypeLong::hash(void) const {
1567   return (int)(_lo+_hi+_widen+(int)Type::Long);
1568 }
1569 
1570 //------------------------------is_finite--------------------------------------
1571 // Has a finite value
1572 bool TypeLong::is_finite() const {
1573   return true;
1574 }
1575 
1576 //------------------------------dump2------------------------------------------
1577 // Dump TypeLong
1578 #ifndef PRODUCT
1579 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1580   if (n > x) {
1581     if (n >= x + 10000)  return NULL;
1582     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1583   } else if (n < x) {
1584     if (n <= x - 10000)  return NULL;
1585     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1586   } else {
1587     return xname;
1588   }
1589   return buf;
1590 }
1591 
1592 static const char* longname(char* buf, jlong n) {
1593   const char* str;
1594   if (n == min_jlong)
1595     return "min";
1596   else if (n < min_jlong + 10000)
1597     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1598   else if (n == max_jlong)
1599     return "max";
1600   else if (n > max_jlong - 10000)
1601     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1602   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1603     return str;
1604   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1605     return str;
1606   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1607     return str;
1608   else
1609     sprintf(buf, JLONG_FORMAT, n);
1610   return buf;
1611 }
1612 
1613 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1614   char buf[80], buf2[80];
1615   if (_lo == min_jlong && _hi == max_jlong)
1616     st->print("long");
1617   else if (is_con())
1618     st->print("long:%s", longname(buf, get_con()));
1619   else if (_hi == max_jlong)
1620     st->print("long:>=%s", longname(buf, _lo));
1621   else if (_lo == min_jlong)
1622     st->print("long:<=%s", longname(buf, _hi));
1623   else
1624     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1625 
1626   if (_widen != 0 && this != TypeLong::LONG)
1627     st->print(":%.*s", _widen, "wwww");
1628 }
1629 #endif
1630 
1631 //------------------------------singleton--------------------------------------
1632 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1633 // constants
1634 bool TypeLong::singleton(void) const {
1635   return _lo >= _hi;
1636 }
1637 
1638 bool TypeLong::empty(void) const {
1639   return _lo > _hi;
1640 }
1641 
1642 //=============================================================================
1643 // Convenience common pre-built types.
1644 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1645 const TypeTuple *TypeTuple::IFFALSE;
1646 const TypeTuple *TypeTuple::IFTRUE;
1647 const TypeTuple *TypeTuple::IFNEITHER;
1648 const TypeTuple *TypeTuple::LOOPBODY;
1649 const TypeTuple *TypeTuple::MEMBAR;
1650 const TypeTuple *TypeTuple::STORECONDITIONAL;
1651 const TypeTuple *TypeTuple::START_I2C;
1652 const TypeTuple *TypeTuple::INT_PAIR;
1653 const TypeTuple *TypeTuple::LONG_PAIR;
1654 const TypeTuple *TypeTuple::INT_CC_PAIR;
1655 
1656 
1657 //------------------------------make-------------------------------------------
1658 // Make a TypeTuple from the range of a method signature
1659 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1660   ciType* return_type = sig->return_type();
1661   uint total_fields = TypeFunc::Parms + return_type->size();
1662   const Type **field_array = fields(total_fields);
1663   switch (return_type->basic_type()) {
1664   case T_LONG:
1665     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1666     field_array[TypeFunc::Parms+1] = Type::HALF;
1667     break;
1668   case T_DOUBLE:
1669     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1670     field_array[TypeFunc::Parms+1] = Type::HALF;
1671     break;
1672   case T_OBJECT:
1673   case T_ARRAY:
1674   case T_BOOLEAN:
1675   case T_CHAR:
1676   case T_FLOAT:
1677   case T_BYTE:
1678   case T_SHORT:
1679   case T_INT:
1680     field_array[TypeFunc::Parms] = get_const_type(return_type);
1681     break;
1682   case T_VOID:
1683     break;
1684   default:
1685     ShouldNotReachHere();
1686   }
1687   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1688 }
1689 
1690 // Make a TypeTuple from the domain of a method signature
1691 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1692   uint total_fields = TypeFunc::Parms + sig->size();
1693 
1694   uint pos = TypeFunc::Parms;
1695   const Type **field_array;
1696   if (recv != NULL) {
1697     total_fields++;
1698     field_array = fields(total_fields);
1699     // Use get_const_type here because it respects UseUniqueSubclasses:
1700     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
1701   } else {
1702     field_array = fields(total_fields);
1703   }
1704 
1705   int i = 0;
1706   while (pos < total_fields) {
1707     ciType* type = sig->type_at(i);
1708 
1709     switch (type->basic_type()) {
1710     case T_LONG:
1711       field_array[pos++] = TypeLong::LONG;
1712       field_array[pos++] = Type::HALF;
1713       break;
1714     case T_DOUBLE:
1715       field_array[pos++] = Type::DOUBLE;
1716       field_array[pos++] = Type::HALF;
1717       break;
1718     case T_OBJECT:
1719     case T_ARRAY:
1720     case T_BOOLEAN:
1721     case T_CHAR:
1722     case T_FLOAT:
1723     case T_BYTE:
1724     case T_SHORT:
1725     case T_INT:
1726       field_array[pos++] = get_const_type(type);
1727       break;
1728     default:
1729       ShouldNotReachHere();
1730     }
1731     i++;
1732   }
1733   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1734 }
1735 
1736 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1737   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1738 }
1739 
1740 //------------------------------fields-----------------------------------------
1741 // Subroutine call type with space allocated for argument types
1742 const Type **TypeTuple::fields( uint arg_cnt ) {
1743   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1744   flds[TypeFunc::Control  ] = Type::CONTROL;
1745   flds[TypeFunc::I_O      ] = Type::ABIO;
1746   flds[TypeFunc::Memory   ] = Type::MEMORY;
1747   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1748   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1749 
1750   return flds;
1751 }
1752 
1753 //------------------------------meet-------------------------------------------
1754 // Compute the MEET of two types.  It returns a new Type object.
1755 const Type *TypeTuple::xmeet( const Type *t ) const {
1756   // Perform a fast test for common case; meeting the same types together.
1757   if( this == t ) return this;  // Meeting same type-rep?
1758 
1759   // Current "this->_base" is Tuple
1760   switch (t->base()) {          // switch on original type
1761 
1762   case Bottom:                  // Ye Olde Default
1763     return t;
1764 
1765   default:                      // All else is a mistake
1766     typerr(t);
1767 
1768   case Tuple: {                 // Meeting 2 signatures?
1769     const TypeTuple *x = t->is_tuple();
1770     assert( _cnt == x->_cnt, "" );
1771     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1772     for( uint i=0; i<_cnt; i++ )
1773       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1774     return TypeTuple::make(_cnt,fields);
1775   }
1776   case Top:
1777     break;
1778   }
1779   return this;                  // Return the double constant
1780 }
1781 
1782 //------------------------------xdual------------------------------------------
1783 // Dual: compute field-by-field dual
1784 const Type *TypeTuple::xdual() const {
1785   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1786   for( uint i=0; i<_cnt; i++ )
1787     fields[i] = _fields[i]->dual();
1788   return new TypeTuple(_cnt,fields);
1789 }
1790 
1791 //------------------------------eq---------------------------------------------
1792 // Structural equality check for Type representations
1793 bool TypeTuple::eq( const Type *t ) const {
1794   const TypeTuple *s = (const TypeTuple *)t;
1795   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1796   for (uint i = 0; i < _cnt; i++)
1797     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1798       return false;             // Missed
1799   return true;
1800 }
1801 
1802 //------------------------------hash-------------------------------------------
1803 // Type-specific hashing function.
1804 int TypeTuple::hash(void) const {
1805   intptr_t sum = _cnt;
1806   for( uint i=0; i<_cnt; i++ )
1807     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1808   return sum;
1809 }
1810 
1811 //------------------------------dump2------------------------------------------
1812 // Dump signature Type
1813 #ifndef PRODUCT
1814 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1815   st->print("{");
1816   if( !depth || d[this] ) {     // Check for recursive print
1817     st->print("...}");
1818     return;
1819   }
1820   d.Insert((void*)this, (void*)this);   // Stop recursion
1821   if( _cnt ) {
1822     uint i;
1823     for( i=0; i<_cnt-1; i++ ) {
1824       st->print("%d:", i);
1825       _fields[i]->dump2(d, depth-1, st);
1826       st->print(", ");
1827     }
1828     st->print("%d:", i);
1829     _fields[i]->dump2(d, depth-1, st);
1830   }
1831   st->print("}");
1832 }
1833 #endif
1834 
1835 //------------------------------singleton--------------------------------------
1836 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1837 // constants (Ldi nodes).  Singletons are integer, float or double constants
1838 // or a single symbol.
1839 bool TypeTuple::singleton(void) const {
1840   return false;                 // Never a singleton
1841 }
1842 
1843 bool TypeTuple::empty(void) const {
1844   for( uint i=0; i<_cnt; i++ ) {
1845     if (_fields[i]->empty())  return true;
1846   }
1847   return false;
1848 }
1849 
1850 //=============================================================================
1851 // Convenience common pre-built types.
1852 
1853 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1854   // Certain normalizations keep us sane when comparing types.
1855   // We do not want arrayOop variables to differ only by the wideness
1856   // of their index types.  Pick minimum wideness, since that is the
1857   // forced wideness of small ranges anyway.
1858   if (size->_widen != Type::WidenMin)
1859     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1860   else
1861     return size;
1862 }
1863 
1864 //------------------------------make-------------------------------------------
1865 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1866   if (UseCompressedOops && elem->isa_oopptr()) {
1867     elem = elem->make_narrowoop();
1868   }
1869   size = normalize_array_size(size);
1870   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1871 }
1872 
1873 //------------------------------meet-------------------------------------------
1874 // Compute the MEET of two types.  It returns a new Type object.
1875 const Type *TypeAry::xmeet( const Type *t ) const {
1876   // Perform a fast test for common case; meeting the same types together.
1877   if( this == t ) return this;  // Meeting same type-rep?
1878 
1879   // Current "this->_base" is Ary
1880   switch (t->base()) {          // switch on original type
1881 
1882   case Bottom:                  // Ye Olde Default
1883     return t;
1884 
1885   default:                      // All else is a mistake
1886     typerr(t);
1887 
1888   case Array: {                 // Meeting 2 arrays?
1889     const TypeAry *a = t->is_ary();
1890     return TypeAry::make(_elem->meet(a->_elem),
1891                          _size->xmeet(a->_size)->is_int(),
1892                          _stable & a->_stable);
1893   }
1894   case Top:
1895     break;
1896   }
1897   return this;                  // Return the double constant
1898 }
1899 
1900 //------------------------------xdual------------------------------------------
1901 // Dual: compute field-by-field dual
1902 const Type *TypeAry::xdual() const {
1903   const TypeInt* size_dual = _size->dual()->is_int();
1904   size_dual = normalize_array_size(size_dual);
1905   return new TypeAry(_elem->dual(), size_dual, !_stable);
1906 }
1907 
1908 //------------------------------eq---------------------------------------------
1909 // Structural equality check for Type representations
1910 bool TypeAry::eq( const Type *t ) const {
1911   const TypeAry *a = (const TypeAry*)t;
1912   return _elem == a->_elem &&
1913     _stable == a->_stable &&
1914     _size == a->_size;
1915 }
1916 
1917 //------------------------------hash-------------------------------------------
1918 // Type-specific hashing function.
1919 int TypeAry::hash(void) const {
1920   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1921 }
1922 
1923 //----------------------interface_vs_oop---------------------------------------
1924 #ifdef ASSERT
1925 bool TypeAry::interface_vs_oop(const Type *t) const {
1926   const TypeAry* t_ary = t->is_ary();
1927   if (t_ary) {
1928     return _elem->interface_vs_oop(t_ary->_elem);
1929   }
1930   return false;
1931 }
1932 #endif
1933 
1934 //------------------------------dump2------------------------------------------
1935 #ifndef PRODUCT
1936 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1937   if (_stable)  st->print("stable:");
1938   _elem->dump2(d, depth, st);
1939   st->print("[");
1940   _size->dump2(d, depth, st);
1941   st->print("]");
1942 }
1943 #endif
1944 
1945 //------------------------------singleton--------------------------------------
1946 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1947 // constants (Ldi nodes).  Singletons are integer, float or double constants
1948 // or a single symbol.
1949 bool TypeAry::singleton(void) const {
1950   return false;                 // Never a singleton
1951 }
1952 
1953 bool TypeAry::empty(void) const {
1954   return _elem->empty() || _size->empty();
1955 }
1956 
1957 //--------------------------ary_must_be_exact----------------------------------
1958 bool TypeAry::ary_must_be_exact() const {
1959   if (!UseExactTypes)       return false;
1960   // This logic looks at the element type of an array, and returns true
1961   // if the element type is either a primitive or a final instance class.
1962   // In such cases, an array built on this ary must have no subclasses.
1963   if (_elem == BOTTOM)      return false;  // general array not exact
1964   if (_elem == TOP   )      return false;  // inverted general array not exact
1965   const TypeOopPtr*  toop = NULL;
1966   if (UseCompressedOops && _elem->isa_narrowoop()) {
1967     toop = _elem->make_ptr()->isa_oopptr();
1968   } else {
1969     toop = _elem->isa_oopptr();
1970   }
1971   if (!toop)                return true;   // a primitive type, like int
1972   ciKlass* tklass = toop->klass();
1973   if (tklass == NULL)       return false;  // unloaded class
1974   if (!tklass->is_loaded()) return false;  // unloaded class
1975   const TypeInstPtr* tinst;
1976   if (_elem->isa_narrowoop())
1977     tinst = _elem->make_ptr()->isa_instptr();
1978   else
1979     tinst = _elem->isa_instptr();
1980   if (tinst)
1981     return tklass->as_instance_klass()->is_final();
1982   const TypeAryPtr*  tap;
1983   if (_elem->isa_narrowoop())
1984     tap = _elem->make_ptr()->isa_aryptr();
1985   else
1986     tap = _elem->isa_aryptr();
1987   if (tap)
1988     return tap->ary()->ary_must_be_exact();
1989   return false;
1990 }
1991 
1992 //==============================TypeVect=======================================
1993 // Convenience common pre-built types.
1994 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
1995 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
1996 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
1997 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
1998 
1999 //------------------------------make-------------------------------------------
2000 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2001   BasicType elem_bt = elem->array_element_basic_type();
2002   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2003   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2004   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2005   int size = length * type2aelembytes(elem_bt);
2006   switch (Matcher::vector_ideal_reg(size)) {
2007   case Op_VecS:
2008     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2009   case Op_VecD:
2010   case Op_RegD:
2011     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2012   case Op_VecX:
2013     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2014   case Op_VecY:
2015     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2016   }
2017  ShouldNotReachHere();
2018   return NULL;
2019 }
2020 
2021 //------------------------------meet-------------------------------------------
2022 // Compute the MEET of two types.  It returns a new Type object.
2023 const Type *TypeVect::xmeet( const Type *t ) const {
2024   // Perform a fast test for common case; meeting the same types together.
2025   if( this == t ) return this;  // Meeting same type-rep?
2026 
2027   // Current "this->_base" is Vector
2028   switch (t->base()) {          // switch on original type
2029 
2030   case Bottom:                  // Ye Olde Default
2031     return t;
2032 
2033   default:                      // All else is a mistake
2034     typerr(t);
2035 
2036   case VectorS:
2037   case VectorD:
2038   case VectorX:
2039   case VectorY: {                // Meeting 2 vectors?
2040     const TypeVect* v = t->is_vect();
2041     assert(  base() == v->base(), "");
2042     assert(length() == v->length(), "");
2043     assert(element_basic_type() == v->element_basic_type(), "");
2044     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2045   }
2046   case Top:
2047     break;
2048   }
2049   return this;
2050 }
2051 
2052 //------------------------------xdual------------------------------------------
2053 // Dual: compute field-by-field dual
2054 const Type *TypeVect::xdual() const {
2055   return new TypeVect(base(), _elem->dual(), _length);
2056 }
2057 
2058 //------------------------------eq---------------------------------------------
2059 // Structural equality check for Type representations
2060 bool TypeVect::eq(const Type *t) const {
2061   const TypeVect *v = t->is_vect();
2062   return (_elem == v->_elem) && (_length == v->_length);
2063 }
2064 
2065 //------------------------------hash-------------------------------------------
2066 // Type-specific hashing function.
2067 int TypeVect::hash(void) const {
2068   return (intptr_t)_elem + (intptr_t)_length;
2069 }
2070 
2071 //------------------------------singleton--------------------------------------
2072 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2073 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2074 // constant value (when vector is created with Replicate code).
2075 bool TypeVect::singleton(void) const {
2076 // There is no Con node for vectors yet.
2077 //  return _elem->singleton();
2078   return false;
2079 }
2080 
2081 bool TypeVect::empty(void) const {
2082   return _elem->empty();
2083 }
2084 
2085 //------------------------------dump2------------------------------------------
2086 #ifndef PRODUCT
2087 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2088   switch (base()) {
2089   case VectorS:
2090     st->print("vectors["); break;
2091   case VectorD:
2092     st->print("vectord["); break;
2093   case VectorX:
2094     st->print("vectorx["); break;
2095   case VectorY:
2096     st->print("vectory["); break;
2097   default:
2098     ShouldNotReachHere();
2099   }
2100   st->print("%d]:{", _length);
2101   _elem->dump2(d, depth, st);
2102   st->print("}");
2103 }
2104 #endif
2105 
2106 
2107 //=============================================================================
2108 // Convenience common pre-built types.
2109 const TypePtr *TypePtr::NULL_PTR;
2110 const TypePtr *TypePtr::NOTNULL;
2111 const TypePtr *TypePtr::BOTTOM;
2112 
2113 //------------------------------meet-------------------------------------------
2114 // Meet over the PTR enum
2115 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2116   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2117   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2118   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2119   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2120   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2121   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2122   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2123 };
2124 
2125 //------------------------------make-------------------------------------------
2126 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2127   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2128 }
2129 
2130 //------------------------------cast_to_ptr_type-------------------------------
2131 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2132   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2133   if( ptr == _ptr ) return this;
2134   return make(_base, ptr, _offset);
2135 }
2136 
2137 //------------------------------get_con----------------------------------------
2138 intptr_t TypePtr::get_con() const {
2139   assert( _ptr == Null, "" );
2140   return _offset;
2141 }
2142 
2143 //------------------------------meet-------------------------------------------
2144 // Compute the MEET of two types.  It returns a new Type object.
2145 const Type *TypePtr::xmeet( const Type *t ) const {
2146   // Perform a fast test for common case; meeting the same types together.
2147   if( this == t ) return this;  // Meeting same type-rep?
2148 
2149   // Current "this->_base" is AnyPtr
2150   switch (t->base()) {          // switch on original type
2151   case Int:                     // Mixing ints & oops happens when javac
2152   case Long:                    // reuses local variables
2153   case FloatTop:
2154   case FloatCon:
2155   case FloatBot:
2156   case DoubleTop:
2157   case DoubleCon:
2158   case DoubleBot:
2159   case NarrowOop:
2160   case NarrowKlass:
2161   case Bottom:                  // Ye Olde Default
2162     return Type::BOTTOM;
2163   case Top:
2164     return this;
2165 
2166   case AnyPtr: {                // Meeting to AnyPtrs
2167     const TypePtr *tp = t->is_ptr();
2168     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2169   }
2170   case RawPtr:                  // For these, flip the call around to cut down
2171   case OopPtr:
2172   case InstPtr:                 // on the cases I have to handle.
2173   case AryPtr:
2174   case MetadataPtr:
2175   case KlassPtr:
2176     return t->xmeet(this);      // Call in reverse direction
2177   default:                      // All else is a mistake
2178     typerr(t);
2179 
2180   }
2181   return this;
2182 }
2183 
2184 //------------------------------meet_offset------------------------------------
2185 int TypePtr::meet_offset( int offset ) const {
2186   // Either is 'TOP' offset?  Return the other offset!
2187   if( _offset == OffsetTop ) return offset;
2188   if( offset == OffsetTop ) return _offset;
2189   // If either is different, return 'BOTTOM' offset
2190   if( _offset != offset ) return OffsetBot;
2191   return _offset;
2192 }
2193 
2194 //------------------------------dual_offset------------------------------------
2195 int TypePtr::dual_offset( ) const {
2196   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2197   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2198   return _offset;               // Map everything else into self
2199 }
2200 
2201 //------------------------------xdual------------------------------------------
2202 // Dual: compute field-by-field dual
2203 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2204   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2205 };
2206 const Type *TypePtr::xdual() const {
2207   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2208 }
2209 
2210 //------------------------------xadd_offset------------------------------------
2211 int TypePtr::xadd_offset( intptr_t offset ) const {
2212   // Adding to 'TOP' offset?  Return 'TOP'!
2213   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2214   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2215   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2216   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2217   offset += (intptr_t)_offset;
2218   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2219 
2220   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2221   // It is possible to construct a negative offset during PhaseCCP
2222 
2223   return (int)offset;        // Sum valid offsets
2224 }
2225 
2226 //------------------------------add_offset-------------------------------------
2227 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2228   return make( AnyPtr, _ptr, xadd_offset(offset) );
2229 }
2230 
2231 //------------------------------eq---------------------------------------------
2232 // Structural equality check for Type representations
2233 bool TypePtr::eq( const Type *t ) const {
2234   const TypePtr *a = (const TypePtr*)t;
2235   return _ptr == a->ptr() && _offset == a->offset();
2236 }
2237 
2238 //------------------------------hash-------------------------------------------
2239 // Type-specific hashing function.
2240 int TypePtr::hash(void) const {
2241   return _ptr + _offset;
2242 }
2243 
2244 //------------------------------dump2------------------------------------------
2245 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2246   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2247 };
2248 
2249 #ifndef PRODUCT
2250 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2251   if( _ptr == Null ) st->print("NULL");
2252   else st->print("%s *", ptr_msg[_ptr]);
2253   if( _offset == OffsetTop ) st->print("+top");
2254   else if( _offset == OffsetBot ) st->print("+bot");
2255   else if( _offset ) st->print("+%d", _offset);
2256 }
2257 #endif
2258 
2259 //------------------------------singleton--------------------------------------
2260 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2261 // constants
2262 bool TypePtr::singleton(void) const {
2263   // TopPTR, Null, AnyNull, Constant are all singletons
2264   return (_offset != OffsetBot) && !below_centerline(_ptr);
2265 }
2266 
2267 bool TypePtr::empty(void) const {
2268   return (_offset == OffsetTop) || above_centerline(_ptr);
2269 }
2270 
2271 //=============================================================================
2272 // Convenience common pre-built types.
2273 const TypeRawPtr *TypeRawPtr::BOTTOM;
2274 const TypeRawPtr *TypeRawPtr::NOTNULL;
2275 
2276 //------------------------------make-------------------------------------------
2277 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2278   assert( ptr != Constant, "what is the constant?" );
2279   assert( ptr != Null, "Use TypePtr for NULL" );
2280   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2281 }
2282 
2283 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2284   assert( bits, "Use TypePtr for NULL" );
2285   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2286 }
2287 
2288 //------------------------------cast_to_ptr_type-------------------------------
2289 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2290   assert( ptr != Constant, "what is the constant?" );
2291   assert( ptr != Null, "Use TypePtr for NULL" );
2292   assert( _bits==0, "Why cast a constant address?");
2293   if( ptr == _ptr ) return this;
2294   return make(ptr);
2295 }
2296 
2297 //------------------------------get_con----------------------------------------
2298 intptr_t TypeRawPtr::get_con() const {
2299   assert( _ptr == Null || _ptr == Constant, "" );
2300   return (intptr_t)_bits;
2301 }
2302 
2303 //------------------------------meet-------------------------------------------
2304 // Compute the MEET of two types.  It returns a new Type object.
2305 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2306   // Perform a fast test for common case; meeting the same types together.
2307   if( this == t ) return this;  // Meeting same type-rep?
2308 
2309   // Current "this->_base" is RawPtr
2310   switch( t->base() ) {         // switch on original type
2311   case Bottom:                  // Ye Olde Default
2312     return t;
2313   case Top:
2314     return this;
2315   case AnyPtr:                  // Meeting to AnyPtrs
2316     break;
2317   case RawPtr: {                // might be top, bot, any/not or constant
2318     enum PTR tptr = t->is_ptr()->ptr();
2319     enum PTR ptr = meet_ptr( tptr );
2320     if( ptr == Constant ) {     // Cannot be equal constants, so...
2321       if( tptr == Constant && _ptr != Constant)  return t;
2322       if( _ptr == Constant && tptr != Constant)  return this;
2323       ptr = NotNull;            // Fall down in lattice
2324     }
2325     return make( ptr );
2326   }
2327 
2328   case OopPtr:
2329   case InstPtr:
2330   case AryPtr:
2331   case MetadataPtr:
2332   case KlassPtr:
2333     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2334   default:                      // All else is a mistake
2335     typerr(t);
2336   }
2337 
2338   // Found an AnyPtr type vs self-RawPtr type
2339   const TypePtr *tp = t->is_ptr();
2340   switch (tp->ptr()) {
2341   case TypePtr::TopPTR:  return this;
2342   case TypePtr::BotPTR:  return t;
2343   case TypePtr::Null:
2344     if( _ptr == TypePtr::TopPTR ) return t;
2345     return TypeRawPtr::BOTTOM;
2346   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2347   case TypePtr::AnyNull:
2348     if( _ptr == TypePtr::Constant) return this;
2349     return make( meet_ptr(TypePtr::AnyNull) );
2350   default: ShouldNotReachHere();
2351   }
2352   return this;
2353 }
2354 
2355 //------------------------------xdual------------------------------------------
2356 // Dual: compute field-by-field dual
2357 const Type *TypeRawPtr::xdual() const {
2358   return new TypeRawPtr( dual_ptr(), _bits );
2359 }
2360 
2361 //------------------------------add_offset-------------------------------------
2362 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2363   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2364   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2365   if( offset == 0 ) return this; // No change
2366   switch (_ptr) {
2367   case TypePtr::TopPTR:
2368   case TypePtr::BotPTR:
2369   case TypePtr::NotNull:
2370     return this;
2371   case TypePtr::Null:
2372   case TypePtr::Constant: {
2373     address bits = _bits+offset;
2374     if ( bits == 0 ) return TypePtr::NULL_PTR;
2375     return make( bits );
2376   }
2377   default:  ShouldNotReachHere();
2378   }
2379   return NULL;                  // Lint noise
2380 }
2381 
2382 //------------------------------eq---------------------------------------------
2383 // Structural equality check for Type representations
2384 bool TypeRawPtr::eq( const Type *t ) const {
2385   const TypeRawPtr *a = (const TypeRawPtr*)t;
2386   return _bits == a->_bits && TypePtr::eq(t);
2387 }
2388 
2389 //------------------------------hash-------------------------------------------
2390 // Type-specific hashing function.
2391 int TypeRawPtr::hash(void) const {
2392   return (intptr_t)_bits + TypePtr::hash();
2393 }
2394 
2395 //------------------------------dump2------------------------------------------
2396 #ifndef PRODUCT
2397 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2398   if( _ptr == Constant )
2399     st->print(INTPTR_FORMAT, _bits);
2400   else
2401     st->print("rawptr:%s", ptr_msg[_ptr]);
2402 }
2403 #endif
2404 
2405 //=============================================================================
2406 // Convenience common pre-built type.
2407 const TypeOopPtr *TypeOopPtr::BOTTOM;
2408 
2409 //------------------------------TypeOopPtr-------------------------------------
2410 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
2411   : TypePtr(t, ptr, offset),
2412     _const_oop(o), _klass(k),
2413     _klass_is_exact(xk),
2414     _is_ptr_to_narrowoop(false),
2415     _is_ptr_to_narrowklass(false),
2416     _is_ptr_to_boxed_value(false),
2417     _instance_id(instance_id) {
2418   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2419       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2420     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2421   }
2422 #ifdef _LP64
2423   if (_offset != 0) {
2424     if (_offset == oopDesc::klass_offset_in_bytes()) {
2425       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2426     } else if (klass() == NULL) {
2427       // Array with unknown body type
2428       assert(this->isa_aryptr(), "only arrays without klass");
2429       _is_ptr_to_narrowoop = UseCompressedOops;
2430     } else if (this->isa_aryptr()) {
2431       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2432                              _offset != arrayOopDesc::length_offset_in_bytes());
2433     } else if (klass()->is_instance_klass()) {
2434       ciInstanceKlass* ik = klass()->as_instance_klass();
2435       ciField* field = NULL;
2436       if (this->isa_klassptr()) {
2437         // Perm objects don't use compressed references
2438       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2439         // unsafe access
2440         _is_ptr_to_narrowoop = UseCompressedOops;
2441       } else { // exclude unsafe ops
2442         assert(this->isa_instptr(), "must be an instance ptr.");
2443 
2444         if (klass() == ciEnv::current()->Class_klass() &&
2445             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2446              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2447           // Special hidden fields from the Class.
2448           assert(this->isa_instptr(), "must be an instance ptr.");
2449           _is_ptr_to_narrowoop = false;
2450         } else if (klass() == ciEnv::current()->Class_klass() &&
2451                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2452           // Static fields
2453           assert(o != NULL, "must be constant");
2454           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2455           ciField* field = k->get_field_by_offset(_offset, true);
2456           assert(field != NULL, "missing field");
2457           BasicType basic_elem_type = field->layout_type();
2458           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2459                                                        basic_elem_type == T_ARRAY);
2460         } else {
2461           // Instance fields which contains a compressed oop references.
2462           field = ik->get_field_by_offset(_offset, false);
2463           if (field != NULL) {
2464             BasicType basic_elem_type = field->layout_type();
2465             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2466                                                          basic_elem_type == T_ARRAY);
2467           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2468             // Compile::find_alias_type() cast exactness on all types to verify
2469             // that it does not affect alias type.
2470             _is_ptr_to_narrowoop = UseCompressedOops;
2471           } else {
2472             // Type for the copy start in LibraryCallKit::inline_native_clone().
2473             _is_ptr_to_narrowoop = UseCompressedOops;
2474           }
2475         }
2476       }
2477     }
2478   }
2479 #endif
2480 }
2481 
2482 //------------------------------make-------------------------------------------
2483 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2484                                    int offset, int instance_id) {
2485   assert(ptr != Constant, "no constant generic pointers");
2486   ciKlass*  k = Compile::current()->env()->Object_klass();
2487   bool      xk = false;
2488   ciObject* o = NULL;
2489   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
2490 }
2491 
2492 
2493 //------------------------------cast_to_ptr_type-------------------------------
2494 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2495   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2496   if( ptr == _ptr ) return this;
2497   return make(ptr, _offset, _instance_id);
2498 }
2499 
2500 //-----------------------------cast_to_instance_id----------------------------
2501 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2502   // There are no instances of a general oop.
2503   // Return self unchanged.
2504   return this;
2505 }
2506 
2507 //-----------------------------cast_to_exactness-------------------------------
2508 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2509   // There is no such thing as an exact general oop.
2510   // Return self unchanged.
2511   return this;
2512 }
2513 
2514 
2515 //------------------------------as_klass_type----------------------------------
2516 // Return the klass type corresponding to this instance or array type.
2517 // It is the type that is loaded from an object of this type.
2518 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2519   ciKlass* k = klass();
2520   bool    xk = klass_is_exact();
2521   if (k == NULL)
2522     return TypeKlassPtr::OBJECT;
2523   else
2524     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2525 }
2526 
2527 
2528 //------------------------------meet-------------------------------------------
2529 // Compute the MEET of two types.  It returns a new Type object.
2530 const Type *TypeOopPtr::xmeet( const Type *t ) const {
2531   // Perform a fast test for common case; meeting the same types together.
2532   if( this == t ) return this;  // Meeting same type-rep?
2533 
2534   // Current "this->_base" is OopPtr
2535   switch (t->base()) {          // switch on original type
2536 
2537   case Int:                     // Mixing ints & oops happens when javac
2538   case Long:                    // reuses local variables
2539   case FloatTop:
2540   case FloatCon:
2541   case FloatBot:
2542   case DoubleTop:
2543   case DoubleCon:
2544   case DoubleBot:
2545   case NarrowOop:
2546   case NarrowKlass:
2547   case Bottom:                  // Ye Olde Default
2548     return Type::BOTTOM;
2549   case Top:
2550     return this;
2551 
2552   default:                      // All else is a mistake
2553     typerr(t);
2554 
2555   case RawPtr:
2556   case MetadataPtr:
2557   case KlassPtr:
2558     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2559 
2560   case AnyPtr: {
2561     // Found an AnyPtr type vs self-OopPtr type
2562     const TypePtr *tp = t->is_ptr();
2563     int offset = meet_offset(tp->offset());
2564     PTR ptr = meet_ptr(tp->ptr());
2565     switch (tp->ptr()) {
2566     case Null:
2567       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2568       // else fall through:
2569     case TopPTR:
2570     case AnyNull: {
2571       int instance_id = meet_instance_id(InstanceTop);
2572       return make(ptr, offset, instance_id);
2573     }
2574     case BotPTR:
2575     case NotNull:
2576       return TypePtr::make(AnyPtr, ptr, offset);
2577     default: typerr(t);
2578     }
2579   }
2580 
2581   case OopPtr: {                 // Meeting to other OopPtrs
2582     const TypeOopPtr *tp = t->is_oopptr();
2583     int instance_id = meet_instance_id(tp->instance_id());
2584     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
2585   }
2586 
2587   case InstPtr:                  // For these, flip the call around to cut down
2588   case AryPtr:
2589     return t->xmeet(this);      // Call in reverse direction
2590 
2591   } // End of switch
2592   return this;                  // Return the double constant
2593 }
2594 
2595 
2596 //------------------------------xdual------------------------------------------
2597 // Dual of a pure heap pointer.  No relevant klass or oop information.
2598 const Type *TypeOopPtr::xdual() const {
2599   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2600   assert(const_oop() == NULL,             "no constants here");
2601   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
2602 }
2603 
2604 //--------------------------make_from_klass_common-----------------------------
2605 // Computes the element-type given a klass.
2606 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2607   if (klass->is_instance_klass()) {
2608     Compile* C = Compile::current();
2609     Dependencies* deps = C->dependencies();
2610     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2611     // Element is an instance
2612     bool klass_is_exact = false;
2613     if (klass->is_loaded()) {
2614       // Try to set klass_is_exact.
2615       ciInstanceKlass* ik = klass->as_instance_klass();
2616       klass_is_exact = ik->is_final();
2617       if (!klass_is_exact && klass_change
2618           && deps != NULL && UseUniqueSubclasses) {
2619         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2620         if (sub != NULL) {
2621           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2622           klass = ik = sub;
2623           klass_is_exact = sub->is_final();
2624         }
2625       }
2626       if (!klass_is_exact && try_for_exact
2627           && deps != NULL && UseExactTypes) {
2628         if (!ik->is_interface() && !ik->has_subklass()) {
2629           // Add a dependence; if concrete subclass added we need to recompile
2630           deps->assert_leaf_type(ik);
2631           klass_is_exact = true;
2632         }
2633       }
2634     }
2635     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2636   } else if (klass->is_obj_array_klass()) {
2637     // Element is an object array. Recursively call ourself.
2638     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2639     bool xk = etype->klass_is_exact();
2640     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2641     // We used to pass NotNull in here, asserting that the sub-arrays
2642     // are all not-null.  This is not true in generally, as code can
2643     // slam NULLs down in the subarrays.
2644     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2645     return arr;
2646   } else if (klass->is_type_array_klass()) {
2647     // Element is an typeArray
2648     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2649     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2650     // We used to pass NotNull in here, asserting that the array pointer
2651     // is not-null. That was not true in general.
2652     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2653     return arr;
2654   } else {
2655     ShouldNotReachHere();
2656     return NULL;
2657   }
2658 }
2659 
2660 //------------------------------make_from_constant-----------------------------
2661 // Make a java pointer from an oop constant
2662 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2663                                                  bool require_constant,
2664                                                  bool is_autobox_cache) {
2665   assert(!o->is_null_object(), "null object not yet handled here.");
2666   ciKlass* klass = o->klass();
2667   if (klass->is_instance_klass()) {
2668     // Element is an instance
2669     if (require_constant) {
2670       if (!o->can_be_constant())  return NULL;
2671     } else if (!o->should_be_constant()) {
2672       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2673     }
2674     return TypeInstPtr::make(o);
2675   } else if (klass->is_obj_array_klass()) {
2676     // Element is an object array. Recursively call ourself.
2677     const TypeOopPtr *etype =
2678       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2679     if (is_autobox_cache) {
2680       // The pointers in the autobox arrays are always non-null.
2681       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2682     }
2683     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2684     // We used to pass NotNull in here, asserting that the sub-arrays
2685     // are all not-null.  This is not true in generally, as code can
2686     // slam NULLs down in the subarrays.
2687     if (require_constant) {
2688       if (!o->can_be_constant())  return NULL;
2689     } else if (!o->should_be_constant()) {
2690       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2691     }
2692     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, is_autobox_cache);
2693     return arr;
2694   } else if (klass->is_type_array_klass()) {
2695     // Element is an typeArray
2696     const Type* etype =
2697       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2698     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2699     // We used to pass NotNull in here, asserting that the array pointer
2700     // is not-null. That was not true in general.
2701     if (require_constant) {
2702       if (!o->can_be_constant())  return NULL;
2703     } else if (!o->should_be_constant()) {
2704       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2705     }
2706     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2707     return arr;
2708   }
2709 
2710   fatal("unhandled object type");
2711   return NULL;
2712 }
2713 
2714 //------------------------------get_con----------------------------------------
2715 intptr_t TypeOopPtr::get_con() const {
2716   assert( _ptr == Null || _ptr == Constant, "" );
2717   assert( _offset >= 0, "" );
2718 
2719   if (_offset != 0) {
2720     // After being ported to the compiler interface, the compiler no longer
2721     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2722     // to a handle at compile time.  This handle is embedded in the generated
2723     // code and dereferenced at the time the nmethod is made.  Until that time,
2724     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2725     // have access to the addresses!).  This does not seem to currently happen,
2726     // but this assertion here is to help prevent its occurence.
2727     tty->print_cr("Found oop constant with non-zero offset");
2728     ShouldNotReachHere();
2729   }
2730 
2731   return (intptr_t)const_oop()->constant_encoding();
2732 }
2733 
2734 
2735 //-----------------------------filter------------------------------------------
2736 // Do not allow interface-vs.-noninterface joins to collapse to top.
2737 const Type *TypeOopPtr::filter( const Type *kills ) const {
2738 
2739   const Type* ft = join(kills);
2740   const TypeInstPtr* ftip = ft->isa_instptr();
2741   const TypeInstPtr* ktip = kills->isa_instptr();
2742   const TypeKlassPtr* ftkp = ft->isa_klassptr();
2743   const TypeKlassPtr* ktkp = kills->isa_klassptr();
2744 
2745   if (ft->empty()) {
2746     // Check for evil case of 'this' being a class and 'kills' expecting an
2747     // interface.  This can happen because the bytecodes do not contain
2748     // enough type info to distinguish a Java-level interface variable
2749     // from a Java-level object variable.  If we meet 2 classes which
2750     // both implement interface I, but their meet is at 'j/l/O' which
2751     // doesn't implement I, we have no way to tell if the result should
2752     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2753     // into a Phi which "knows" it's an Interface type we'll have to
2754     // uplift the type.
2755     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2756       return kills;             // Uplift to interface
2757     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
2758       return kills;             // Uplift to interface
2759 
2760     return Type::TOP;           // Canonical empty value
2761   }
2762 
2763   // If we have an interface-typed Phi or cast and we narrow to a class type,
2764   // the join should report back the class.  However, if we have a J/L/Object
2765   // class-typed Phi and an interface flows in, it's possible that the meet &
2766   // join report an interface back out.  This isn't possible but happens
2767   // because the type system doesn't interact well with interfaces.
2768   if (ftip != NULL && ktip != NULL &&
2769       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2770       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2771     // Happens in a CTW of rt.jar, 320-341, no extra flags
2772     assert(!ftip->klass_is_exact(), "interface could not be exact");
2773     return ktip->cast_to_ptr_type(ftip->ptr());
2774   }
2775   // Interface klass type could be exact in opposite to interface type,
2776   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
2777   if (ftkp != NULL && ktkp != NULL &&
2778       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
2779       !ftkp->klass_is_exact() && // Keep exact interface klass
2780       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
2781     return ktkp->cast_to_ptr_type(ftkp->ptr());
2782   }
2783 
2784   return ft;
2785 }
2786 
2787 //------------------------------eq---------------------------------------------
2788 // Structural equality check for Type representations
2789 bool TypeOopPtr::eq( const Type *t ) const {
2790   const TypeOopPtr *a = (const TypeOopPtr*)t;
2791   if (_klass_is_exact != a->_klass_is_exact ||
2792       _instance_id != a->_instance_id)  return false;
2793   ciObject* one = const_oop();
2794   ciObject* two = a->const_oop();
2795   if (one == NULL || two == NULL) {
2796     return (one == two) && TypePtr::eq(t);
2797   } else {
2798     return one->equals(two) && TypePtr::eq(t);
2799   }
2800 }
2801 
2802 //------------------------------hash-------------------------------------------
2803 // Type-specific hashing function.
2804 int TypeOopPtr::hash(void) const {
2805   return
2806     (const_oop() ? const_oop()->hash() : 0) +
2807     _klass_is_exact +
2808     _instance_id +
2809     TypePtr::hash();
2810 }
2811 
2812 //------------------------------dump2------------------------------------------
2813 #ifndef PRODUCT
2814 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2815   st->print("oopptr:%s", ptr_msg[_ptr]);
2816   if( _klass_is_exact ) st->print(":exact");
2817   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2818   switch( _offset ) {
2819   case OffsetTop: st->print("+top"); break;
2820   case OffsetBot: st->print("+any"); break;
2821   case         0: break;
2822   default:        st->print("+%d",_offset); break;
2823   }
2824   if (_instance_id == InstanceTop)
2825     st->print(",iid=top");
2826   else if (_instance_id != InstanceBot)
2827     st->print(",iid=%d",_instance_id);
2828 }
2829 #endif
2830 
2831 //------------------------------singleton--------------------------------------
2832 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2833 // constants
2834 bool TypeOopPtr::singleton(void) const {
2835   // detune optimizer to not generate constant oop + constant offset as a constant!
2836   // TopPTR, Null, AnyNull, Constant are all singletons
2837   return (_offset == 0) && !below_centerline(_ptr);
2838 }
2839 
2840 //------------------------------add_offset-------------------------------------
2841 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
2842   return make( _ptr, xadd_offset(offset), _instance_id);
2843 }
2844 
2845 //------------------------------meet_instance_id--------------------------------
2846 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2847   // Either is 'TOP' instance?  Return the other instance!
2848   if( _instance_id == InstanceTop ) return  instance_id;
2849   if(  instance_id == InstanceTop ) return _instance_id;
2850   // If either is different, return 'BOTTOM' instance
2851   if( _instance_id != instance_id ) return InstanceBot;
2852   return _instance_id;
2853 }
2854 
2855 //------------------------------dual_instance_id--------------------------------
2856 int TypeOopPtr::dual_instance_id( ) const {
2857   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2858   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2859   return _instance_id;              // Map everything else into self
2860 }
2861 
2862 
2863 //=============================================================================
2864 // Convenience common pre-built types.
2865 const TypeInstPtr *TypeInstPtr::NOTNULL;
2866 const TypeInstPtr *TypeInstPtr::BOTTOM;
2867 const TypeInstPtr *TypeInstPtr::MIRROR;
2868 const TypeInstPtr *TypeInstPtr::MARK;
2869 const TypeInstPtr *TypeInstPtr::KLASS;
2870 
2871 //------------------------------TypeInstPtr-------------------------------------
2872 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
2873  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
2874    assert(k != NULL &&
2875           (k->is_loaded() || o == NULL),
2876           "cannot have constants with non-loaded klass");
2877 };
2878 
2879 //------------------------------make-------------------------------------------
2880 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
2881                                      ciKlass* k,
2882                                      bool xk,
2883                                      ciObject* o,
2884                                      int offset,
2885                                      int instance_id) {
2886   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
2887   // Either const_oop() is NULL or else ptr is Constant
2888   assert( (!o && ptr != Constant) || (o && ptr == Constant),
2889           "constant pointers must have a value supplied" );
2890   // Ptr is never Null
2891   assert( ptr != Null, "NULL pointers are not typed" );
2892 
2893   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
2894   if (!UseExactTypes)  xk = false;
2895   if (ptr == Constant) {
2896     // Note:  This case includes meta-object constants, such as methods.
2897     xk = true;
2898   } else if (k->is_loaded()) {
2899     ciInstanceKlass* ik = k->as_instance_klass();
2900     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
2901     if (xk && ik->is_interface())  xk = false;  // no exact interface
2902   }
2903 
2904   // Now hash this baby
2905   TypeInstPtr *result =
2906     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
2907 
2908   return result;
2909 }
2910 
2911 /**
2912  *  Create constant type for a constant boxed value
2913  */
2914 const Type* TypeInstPtr::get_const_boxed_value() const {
2915   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
2916   assert((const_oop() != NULL), "should be called only for constant object");
2917   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
2918   BasicType bt = constant.basic_type();
2919   switch (bt) {
2920     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
2921     case T_INT:      return TypeInt::make(constant.as_int());
2922     case T_CHAR:     return TypeInt::make(constant.as_char());
2923     case T_BYTE:     return TypeInt::make(constant.as_byte());
2924     case T_SHORT:    return TypeInt::make(constant.as_short());
2925     case T_FLOAT:    return TypeF::make(constant.as_float());
2926     case T_DOUBLE:   return TypeD::make(constant.as_double());
2927     case T_LONG:     return TypeLong::make(constant.as_long());
2928     default:         break;
2929   }
2930   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
2931   return NULL;
2932 }
2933 
2934 //------------------------------cast_to_ptr_type-------------------------------
2935 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
2936   if( ptr == _ptr ) return this;
2937   // Reconstruct _sig info here since not a problem with later lazy
2938   // construction, _sig will show up on demand.
2939   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
2940 }
2941 
2942 
2943 //-----------------------------cast_to_exactness-------------------------------
2944 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
2945   if( klass_is_exact == _klass_is_exact ) return this;
2946   if (!UseExactTypes)  return this;
2947   if (!_klass->is_loaded())  return this;
2948   ciInstanceKlass* ik = _klass->as_instance_klass();
2949   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
2950   if( ik->is_interface() )              return this;  // cannot set xk
2951   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
2952 }
2953 
2954 //-----------------------------cast_to_instance_id----------------------------
2955 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
2956   if( instance_id == _instance_id ) return this;
2957   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
2958 }
2959 
2960 //------------------------------xmeet_unloaded---------------------------------
2961 // Compute the MEET of two InstPtrs when at least one is unloaded.
2962 // Assume classes are different since called after check for same name/class-loader
2963 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
2964     int off = meet_offset(tinst->offset());
2965     PTR ptr = meet_ptr(tinst->ptr());
2966     int instance_id = meet_instance_id(tinst->instance_id());
2967 
2968     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
2969     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
2970     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
2971       //
2972       // Meet unloaded class with java/lang/Object
2973       //
2974       // Meet
2975       //          |                     Unloaded Class
2976       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
2977       //  ===================================================================
2978       //   TOP    | ..........................Unloaded......................|
2979       //  AnyNull |  U-AN    |................Unloaded......................|
2980       // Constant | ... O-NN .................................. |   O-BOT   |
2981       //  NotNull | ... O-NN .................................. |   O-BOT   |
2982       //  BOTTOM  | ........................Object-BOTTOM ..................|
2983       //
2984       assert(loaded->ptr() != TypePtr::Null, "insanity check");
2985       //
2986       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
2987       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
2988       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
2989       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
2990         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
2991         else                                      { return TypeInstPtr::NOTNULL; }
2992       }
2993       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
2994 
2995       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
2996     }
2997 
2998     // Both are unloaded, not the same class, not Object
2999     // Or meet unloaded with a different loaded class, not java/lang/Object
3000     if( ptr != TypePtr::BotPTR ) {
3001       return TypeInstPtr::NOTNULL;
3002     }
3003     return TypeInstPtr::BOTTOM;
3004 }
3005 
3006 
3007 //------------------------------meet-------------------------------------------
3008 // Compute the MEET of two types.  It returns a new Type object.
3009 const Type *TypeInstPtr::xmeet( const Type *t ) const {
3010   // Perform a fast test for common case; meeting the same types together.
3011   if( this == t ) return this;  // Meeting same type-rep?
3012 
3013   // Current "this->_base" is Pointer
3014   switch (t->base()) {          // switch on original type
3015 
3016   case Int:                     // Mixing ints & oops happens when javac
3017   case Long:                    // reuses local variables
3018   case FloatTop:
3019   case FloatCon:
3020   case FloatBot:
3021   case DoubleTop:
3022   case DoubleCon:
3023   case DoubleBot:
3024   case NarrowOop:
3025   case NarrowKlass:
3026   case Bottom:                  // Ye Olde Default
3027     return Type::BOTTOM;
3028   case Top:
3029     return this;
3030 
3031   default:                      // All else is a mistake
3032     typerr(t);
3033 
3034   case MetadataPtr:
3035   case KlassPtr:
3036   case RawPtr: return TypePtr::BOTTOM;
3037 
3038   case AryPtr: {                // All arrays inherit from Object class
3039     const TypeAryPtr *tp = t->is_aryptr();
3040     int offset = meet_offset(tp->offset());
3041     PTR ptr = meet_ptr(tp->ptr());
3042     int instance_id = meet_instance_id(tp->instance_id());
3043     switch (ptr) {
3044     case TopPTR:
3045     case AnyNull:                // Fall 'down' to dual of object klass
3046       if (klass()->equals(ciEnv::current()->Object_klass())) {
3047         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
3048       } else {
3049         // cannot subclass, so the meet has to fall badly below the centerline
3050         ptr = NotNull;
3051         instance_id = InstanceBot;
3052         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
3053       }
3054     case Constant:
3055     case NotNull:
3056     case BotPTR:                // Fall down to object klass
3057       // LCA is object_klass, but if we subclass from the top we can do better
3058       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3059         // If 'this' (InstPtr) is above the centerline and it is Object class
3060         // then we can subclass in the Java class hierarchy.
3061         if (klass()->equals(ciEnv::current()->Object_klass())) {
3062           // that is, tp's array type is a subtype of my klass
3063           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3064                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
3065         }
3066       }
3067       // The other case cannot happen, since I cannot be a subtype of an array.
3068       // The meet falls down to Object class below centerline.
3069       if( ptr == Constant )
3070          ptr = NotNull;
3071       instance_id = InstanceBot;
3072       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
3073     default: typerr(t);
3074     }
3075   }
3076 
3077   case OopPtr: {                // Meeting to OopPtrs
3078     // Found a OopPtr type vs self-InstPtr type
3079     const TypeOopPtr *tp = t->is_oopptr();
3080     int offset = meet_offset(tp->offset());
3081     PTR ptr = meet_ptr(tp->ptr());
3082     switch (tp->ptr()) {
3083     case TopPTR:
3084     case AnyNull: {
3085       int instance_id = meet_instance_id(InstanceTop);
3086       return make(ptr, klass(), klass_is_exact(),
3087                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
3088     }
3089     case NotNull:
3090     case BotPTR: {
3091       int instance_id = meet_instance_id(tp->instance_id());
3092       return TypeOopPtr::make(ptr, offset, instance_id);
3093     }
3094     default: typerr(t);
3095     }
3096   }
3097 
3098   case AnyPtr: {                // Meeting to AnyPtrs
3099     // Found an AnyPtr type vs self-InstPtr type
3100     const TypePtr *tp = t->is_ptr();
3101     int offset = meet_offset(tp->offset());
3102     PTR ptr = meet_ptr(tp->ptr());
3103     switch (tp->ptr()) {
3104     case Null:
3105       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
3106       // else fall through to AnyNull
3107     case TopPTR:
3108     case AnyNull: {
3109       int instance_id = meet_instance_id(InstanceTop);
3110       return make( ptr, klass(), klass_is_exact(),
3111                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
3112     }
3113     case NotNull:
3114     case BotPTR:
3115       return TypePtr::make( AnyPtr, ptr, offset );
3116     default: typerr(t);
3117     }
3118   }
3119 
3120   /*
3121                  A-top         }
3122                /   |   \       }  Tops
3123            B-top A-any C-top   }
3124               | /  |  \ |      }  Any-nulls
3125            B-any   |   C-any   }
3126               |    |    |
3127            B-con A-con C-con   } constants; not comparable across classes
3128               |    |    |
3129            B-not   |   C-not   }
3130               | \  |  / |      }  not-nulls
3131            B-bot A-not C-bot   }
3132                \   |   /       }  Bottoms
3133                  A-bot         }
3134   */
3135 
3136   case InstPtr: {                // Meeting 2 Oops?
3137     // Found an InstPtr sub-type vs self-InstPtr type
3138     const TypeInstPtr *tinst = t->is_instptr();
3139     int off = meet_offset( tinst->offset() );
3140     PTR ptr = meet_ptr( tinst->ptr() );
3141     int instance_id = meet_instance_id(tinst->instance_id());
3142 
3143     // Check for easy case; klasses are equal (and perhaps not loaded!)
3144     // If we have constants, then we created oops so classes are loaded
3145     // and we can handle the constants further down.  This case handles
3146     // both-not-loaded or both-loaded classes
3147     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3148       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
3149     }
3150 
3151     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3152     ciKlass* tinst_klass = tinst->klass();
3153     ciKlass* this_klass  = this->klass();
3154     bool tinst_xk = tinst->klass_is_exact();
3155     bool this_xk  = this->klass_is_exact();
3156     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3157       // One of these classes has not been loaded
3158       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3159 #ifndef PRODUCT
3160       if( PrintOpto && Verbose ) {
3161         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3162         tty->print("  this == "); this->dump(); tty->cr();
3163         tty->print(" tinst == "); tinst->dump(); tty->cr();
3164       }
3165 #endif
3166       return unloaded_meet;
3167     }
3168 
3169     // Handle mixing oops and interfaces first.
3170     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
3171       ciKlass *tmp = tinst_klass; // Swap interface around
3172       tinst_klass = this_klass;
3173       this_klass = tmp;
3174       bool tmp2 = tinst_xk;
3175       tinst_xk = this_xk;
3176       this_xk = tmp2;
3177     }
3178     if (tinst_klass->is_interface() &&
3179         !(this_klass->is_interface() ||
3180           // Treat java/lang/Object as an honorary interface,
3181           // because we need a bottom for the interface hierarchy.
3182           this_klass == ciEnv::current()->Object_klass())) {
3183       // Oop meets interface!
3184 
3185       // See if the oop subtypes (implements) interface.
3186       ciKlass *k;
3187       bool xk;
3188       if( this_klass->is_subtype_of( tinst_klass ) ) {
3189         // Oop indeed subtypes.  Now keep oop or interface depending
3190         // on whether we are both above the centerline or either is
3191         // below the centerline.  If we are on the centerline
3192         // (e.g., Constant vs. AnyNull interface), use the constant.
3193         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3194         // If we are keeping this_klass, keep its exactness too.
3195         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3196       } else {                  // Does not implement, fall to Object
3197         // Oop does not implement interface, so mixing falls to Object
3198         // just like the verifier does (if both are above the
3199         // centerline fall to interface)
3200         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3201         xk = above_centerline(ptr) ? tinst_xk : false;
3202         // Watch out for Constant vs. AnyNull interface.
3203         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3204         instance_id = InstanceBot;
3205       }
3206       ciObject* o = NULL;  // the Constant value, if any
3207       if (ptr == Constant) {
3208         // Find out which constant.
3209         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3210       }
3211       return make( ptr, k, xk, o, off, instance_id );
3212     }
3213 
3214     // Either oop vs oop or interface vs interface or interface vs Object
3215 
3216     // !!! Here's how the symmetry requirement breaks down into invariants:
3217     // If we split one up & one down AND they subtype, take the down man.
3218     // If we split one up & one down AND they do NOT subtype, "fall hard".
3219     // If both are up and they subtype, take the subtype class.
3220     // If both are up and they do NOT subtype, "fall hard".
3221     // If both are down and they subtype, take the supertype class.
3222     // If both are down and they do NOT subtype, "fall hard".
3223     // Constants treated as down.
3224 
3225     // Now, reorder the above list; observe that both-down+subtype is also
3226     // "fall hard"; "fall hard" becomes the default case:
3227     // If we split one up & one down AND they subtype, take the down man.
3228     // If both are up and they subtype, take the subtype class.
3229 
3230     // If both are down and they subtype, "fall hard".
3231     // If both are down and they do NOT subtype, "fall hard".
3232     // If both are up and they do NOT subtype, "fall hard".
3233     // If we split one up & one down AND they do NOT subtype, "fall hard".
3234 
3235     // If a proper subtype is exact, and we return it, we return it exactly.
3236     // If a proper supertype is exact, there can be no subtyping relationship!
3237     // If both types are equal to the subtype, exactness is and-ed below the
3238     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3239 
3240     // Check for subtyping:
3241     ciKlass *subtype = NULL;
3242     bool subtype_exact = false;
3243     if( tinst_klass->equals(this_klass) ) {
3244       subtype = this_klass;
3245       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3246     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3247       subtype = this_klass;     // Pick subtyping class
3248       subtype_exact = this_xk;
3249     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3250       subtype = tinst_klass;    // Pick subtyping class
3251       subtype_exact = tinst_xk;
3252     }
3253 
3254     if( subtype ) {
3255       if( above_centerline(ptr) ) { // both are up?
3256         this_klass = tinst_klass = subtype;
3257         this_xk = tinst_xk = subtype_exact;
3258       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3259         this_klass = tinst_klass; // tinst is down; keep down man
3260         this_xk = tinst_xk;
3261       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3262         tinst_klass = this_klass; // this is down; keep down man
3263         tinst_xk = this_xk;
3264       } else {
3265         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3266       }
3267     }
3268 
3269     // Check for classes now being equal
3270     if (tinst_klass->equals(this_klass)) {
3271       // If the klasses are equal, the constants may still differ.  Fall to
3272       // NotNull if they do (neither constant is NULL; that is a special case
3273       // handled elsewhere).
3274       ciObject* o = NULL;             // Assume not constant when done
3275       ciObject* this_oop  = const_oop();
3276       ciObject* tinst_oop = tinst->const_oop();
3277       if( ptr == Constant ) {
3278         if (this_oop != NULL && tinst_oop != NULL &&
3279             this_oop->equals(tinst_oop) )
3280           o = this_oop;
3281         else if (above_centerline(this ->_ptr))
3282           o = tinst_oop;
3283         else if (above_centerline(tinst ->_ptr))
3284           o = this_oop;
3285         else
3286           ptr = NotNull;
3287       }
3288       return make( ptr, this_klass, this_xk, o, off, instance_id );
3289     } // Else classes are not equal
3290 
3291     // Since klasses are different, we require a LCA in the Java
3292     // class hierarchy - which means we have to fall to at least NotNull.
3293     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3294       ptr = NotNull;
3295     instance_id = InstanceBot;
3296 
3297     // Now we find the LCA of Java classes
3298     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3299     return make( ptr, k, false, NULL, off, instance_id );
3300   } // End of case InstPtr
3301 
3302   } // End of switch
3303   return this;                  // Return the double constant
3304 }
3305 
3306 
3307 //------------------------java_mirror_type--------------------------------------
3308 ciType* TypeInstPtr::java_mirror_type() const {
3309   // must be a singleton type
3310   if( const_oop() == NULL )  return NULL;
3311 
3312   // must be of type java.lang.Class
3313   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3314 
3315   return const_oop()->as_instance()->java_mirror_type();
3316 }
3317 
3318 
3319 //------------------------------xdual------------------------------------------
3320 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3321 // inheritance mechanism.
3322 const Type *TypeInstPtr::xdual() const {
3323   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
3324 }
3325 
3326 //------------------------------eq---------------------------------------------
3327 // Structural equality check for Type representations
3328 bool TypeInstPtr::eq( const Type *t ) const {
3329   const TypeInstPtr *p = t->is_instptr();
3330   return
3331     klass()->equals(p->klass()) &&
3332     TypeOopPtr::eq(p);          // Check sub-type stuff
3333 }
3334 
3335 //------------------------------hash-------------------------------------------
3336 // Type-specific hashing function.
3337 int TypeInstPtr::hash(void) const {
3338   int hash = klass()->hash() + TypeOopPtr::hash();
3339   return hash;
3340 }
3341 
3342 //------------------------------dump2------------------------------------------
3343 // Dump oop Type
3344 #ifndef PRODUCT
3345 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3346   // Print the name of the klass.
3347   klass()->print_name_on(st);
3348 
3349   switch( _ptr ) {
3350   case Constant:
3351     // TO DO: Make CI print the hex address of the underlying oop.
3352     if (WizardMode || Verbose) {
3353       const_oop()->print_oop(st);
3354     }
3355   case BotPTR:
3356     if (!WizardMode && !Verbose) {
3357       if( _klass_is_exact ) st->print(":exact");
3358       break;
3359     }
3360   case TopPTR:
3361   case AnyNull:
3362   case NotNull:
3363     st->print(":%s", ptr_msg[_ptr]);
3364     if( _klass_is_exact ) st->print(":exact");
3365     break;
3366   }
3367 
3368   if( _offset ) {               // Dump offset, if any
3369     if( _offset == OffsetBot )      st->print("+any");
3370     else if( _offset == OffsetTop ) st->print("+unknown");
3371     else st->print("+%d", _offset);
3372   }
3373 
3374   st->print(" *");
3375   if (_instance_id == InstanceTop)
3376     st->print(",iid=top");
3377   else if (_instance_id != InstanceBot)
3378     st->print(",iid=%d",_instance_id);
3379 }
3380 #endif
3381 
3382 //------------------------------add_offset-------------------------------------
3383 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
3384   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
3385 }
3386 
3387 //=============================================================================
3388 // Convenience common pre-built types.
3389 const TypeAryPtr *TypeAryPtr::RANGE;
3390 const TypeAryPtr *TypeAryPtr::OOPS;
3391 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3392 const TypeAryPtr *TypeAryPtr::BYTES;
3393 const TypeAryPtr *TypeAryPtr::SHORTS;
3394 const TypeAryPtr *TypeAryPtr::CHARS;
3395 const TypeAryPtr *TypeAryPtr::INTS;
3396 const TypeAryPtr *TypeAryPtr::LONGS;
3397 const TypeAryPtr *TypeAryPtr::FLOATS;
3398 const TypeAryPtr *TypeAryPtr::DOUBLES;
3399 
3400 //------------------------------make-------------------------------------------
3401 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3402   assert(!(k == NULL && ary->_elem->isa_int()),
3403          "integral arrays must be pre-equipped with a class");
3404   if (!xk)  xk = ary->ary_must_be_exact();
3405   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3406   if (!UseExactTypes)  xk = (ptr == Constant);
3407   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false))->hashcons();
3408 }
3409 
3410 //------------------------------make-------------------------------------------
3411 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, bool is_autobox_cache) {
3412   assert(!(k == NULL && ary->_elem->isa_int()),
3413          "integral arrays must be pre-equipped with a class");
3414   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3415   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3416   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3417   if (!UseExactTypes)  xk = (ptr == Constant);
3418   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache))->hashcons();
3419 }
3420 
3421 //------------------------------cast_to_ptr_type-------------------------------
3422 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3423   if( ptr == _ptr ) return this;
3424   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
3425 }
3426 
3427 
3428 //-----------------------------cast_to_exactness-------------------------------
3429 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3430   if( klass_is_exact == _klass_is_exact ) return this;
3431   if (!UseExactTypes)  return this;
3432   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3433   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
3434 }
3435 
3436 //-----------------------------cast_to_instance_id----------------------------
3437 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3438   if( instance_id == _instance_id ) return this;
3439   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
3440 }
3441 
3442 //-----------------------------narrow_size_type-------------------------------
3443 // Local cache for arrayOopDesc::max_array_length(etype),
3444 // which is kind of slow (and cached elsewhere by other users).
3445 static jint max_array_length_cache[T_CONFLICT+1];
3446 static jint max_array_length(BasicType etype) {
3447   jint& cache = max_array_length_cache[etype];
3448   jint res = cache;
3449   if (res == 0) {
3450     switch (etype) {
3451     case T_NARROWOOP:
3452       etype = T_OBJECT;
3453       break;
3454     case T_NARROWKLASS:
3455     case T_CONFLICT:
3456     case T_ILLEGAL:
3457     case T_VOID:
3458       etype = T_BYTE;           // will produce conservatively high value
3459     }
3460     cache = res = arrayOopDesc::max_array_length(etype);
3461   }
3462   return res;
3463 }
3464 
3465 // Narrow the given size type to the index range for the given array base type.
3466 // Return NULL if the resulting int type becomes empty.
3467 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3468   jint hi = size->_hi;
3469   jint lo = size->_lo;
3470   jint min_lo = 0;
3471   jint max_hi = max_array_length(elem()->basic_type());
3472   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3473   bool chg = false;
3474   if (lo < min_lo) {
3475     lo = min_lo;
3476     if (size->is_con()) {
3477       hi = lo;
3478     }
3479     chg = true;
3480   }
3481   if (hi > max_hi) {
3482     hi = max_hi;
3483     if (size->is_con()) {
3484       lo = hi;
3485     }
3486     chg = true;
3487   }
3488   // Negative length arrays will produce weird intermediate dead fast-path code
3489   if (lo > hi)
3490     return TypeInt::ZERO;
3491   if (!chg)
3492     return size;
3493   return TypeInt::make(lo, hi, Type::WidenMin);
3494 }
3495 
3496 //-------------------------------cast_to_size----------------------------------
3497 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3498   assert(new_size != NULL, "");
3499   new_size = narrow_size_type(new_size);
3500   if (new_size == size())  return this;
3501   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3502   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3503 }
3504 
3505 
3506 //------------------------------cast_to_stable---------------------------------
3507 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3508   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3509     return this;
3510 
3511   const Type* elem = this->elem();
3512   const TypePtr* elem_ptr = elem->make_ptr();
3513 
3514   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3515     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3516     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3517   }
3518 
3519   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3520 
3521   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3522 }
3523 
3524 //-----------------------------stable_dimension--------------------------------
3525 int TypeAryPtr::stable_dimension() const {
3526   if (!is_stable())  return 0;
3527   int dim = 1;
3528   const TypePtr* elem_ptr = elem()->make_ptr();
3529   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3530     dim += elem_ptr->is_aryptr()->stable_dimension();
3531   return dim;
3532 }
3533 
3534 //------------------------------eq---------------------------------------------
3535 // Structural equality check for Type representations
3536 bool TypeAryPtr::eq( const Type *t ) const {
3537   const TypeAryPtr *p = t->is_aryptr();
3538   return
3539     _ary == p->_ary &&  // Check array
3540     TypeOopPtr::eq(p);  // Check sub-parts
3541 }
3542 
3543 //------------------------------hash-------------------------------------------
3544 // Type-specific hashing function.
3545 int TypeAryPtr::hash(void) const {
3546   return (intptr_t)_ary + TypeOopPtr::hash();
3547 }
3548 
3549 //------------------------------meet-------------------------------------------
3550 // Compute the MEET of two types.  It returns a new Type object.
3551 const Type *TypeAryPtr::xmeet( const Type *t ) const {
3552   // Perform a fast test for common case; meeting the same types together.
3553   if( this == t ) return this;  // Meeting same type-rep?
3554   // Current "this->_base" is Pointer
3555   switch (t->base()) {          // switch on original type
3556 
3557   // Mixing ints & oops happens when javac reuses local variables
3558   case Int:
3559   case Long:
3560   case FloatTop:
3561   case FloatCon:
3562   case FloatBot:
3563   case DoubleTop:
3564   case DoubleCon:
3565   case DoubleBot:
3566   case NarrowOop:
3567   case NarrowKlass:
3568   case Bottom:                  // Ye Olde Default
3569     return Type::BOTTOM;
3570   case Top:
3571     return this;
3572 
3573   default:                      // All else is a mistake
3574     typerr(t);
3575 
3576   case OopPtr: {                // Meeting to OopPtrs
3577     // Found a OopPtr type vs self-AryPtr type
3578     const TypeOopPtr *tp = t->is_oopptr();
3579     int offset = meet_offset(tp->offset());
3580     PTR ptr = meet_ptr(tp->ptr());
3581     switch (tp->ptr()) {
3582     case TopPTR:
3583     case AnyNull: {
3584       int instance_id = meet_instance_id(InstanceTop);
3585       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3586                   _ary, _klass, _klass_is_exact, offset, instance_id);
3587     }
3588     case BotPTR:
3589     case NotNull: {
3590       int instance_id = meet_instance_id(tp->instance_id());
3591       return TypeOopPtr::make(ptr, offset, instance_id);
3592     }
3593     default: ShouldNotReachHere();
3594     }
3595   }
3596 
3597   case AnyPtr: {                // Meeting two AnyPtrs
3598     // Found an AnyPtr type vs self-AryPtr type
3599     const TypePtr *tp = t->is_ptr();
3600     int offset = meet_offset(tp->offset());
3601     PTR ptr = meet_ptr(tp->ptr());
3602     switch (tp->ptr()) {
3603     case TopPTR:
3604       return this;
3605     case BotPTR:
3606     case NotNull:
3607       return TypePtr::make(AnyPtr, ptr, offset);
3608     case Null:
3609       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3610       // else fall through to AnyNull
3611     case AnyNull: {
3612       int instance_id = meet_instance_id(InstanceTop);
3613       return make( ptr, (ptr == Constant ? const_oop() : NULL),
3614                   _ary, _klass, _klass_is_exact, offset, instance_id);
3615     }
3616     default: ShouldNotReachHere();
3617     }
3618   }
3619 
3620   case MetadataPtr:
3621   case KlassPtr:
3622   case RawPtr: return TypePtr::BOTTOM;
3623 
3624   case AryPtr: {                // Meeting 2 references?
3625     const TypeAryPtr *tap = t->is_aryptr();
3626     int off = meet_offset(tap->offset());
3627     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
3628     PTR ptr = meet_ptr(tap->ptr());
3629     int instance_id = meet_instance_id(tap->instance_id());
3630     ciKlass* lazy_klass = NULL;
3631     if (tary->_elem->isa_int()) {
3632       // Integral array element types have irrelevant lattice relations.
3633       // It is the klass that determines array layout, not the element type.
3634       if (_klass == NULL)
3635         lazy_klass = tap->_klass;
3636       else if (tap->_klass == NULL || tap->_klass == _klass) {
3637         lazy_klass = _klass;
3638       } else {
3639         // Something like byte[int+] meets char[int+].
3640         // This must fall to bottom, not (int[-128..65535])[int+].
3641         instance_id = InstanceBot;
3642         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3643       }
3644     } else // Non integral arrays.
3645     // Must fall to bottom if exact klasses in upper lattice
3646     // are not equal or super klass is exact.
3647     if ( above_centerline(ptr) && klass() != tap->klass() &&
3648          // meet with top[] and bottom[] are processed further down:
3649          tap ->_klass != NULL  && this->_klass != NULL   &&
3650          // both are exact and not equal:
3651         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
3652          // 'tap'  is exact and super or unrelated:
3653          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3654          // 'this' is exact and super or unrelated:
3655          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3656       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3657       return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
3658     }
3659 
3660     bool xk = false;
3661     switch (tap->ptr()) {
3662     case AnyNull:
3663     case TopPTR:
3664       // Compute new klass on demand, do not use tap->_klass
3665       xk = (tap->_klass_is_exact | this->_klass_is_exact);
3666       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
3667     case Constant: {
3668       ciObject* o = const_oop();
3669       if( _ptr == Constant ) {
3670         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3671           xk = (klass() == tap->klass());
3672           ptr = NotNull;
3673           o = NULL;
3674           instance_id = InstanceBot;
3675         } else {
3676           xk = true;
3677         }
3678       } else if( above_centerline(_ptr) ) {
3679         o = tap->const_oop();
3680         xk = true;
3681       } else {
3682         // Only precise for identical arrays
3683         xk = this->_klass_is_exact && (klass() == tap->klass());
3684       }
3685       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
3686     }
3687     case NotNull:
3688     case BotPTR:
3689       // Compute new klass on demand, do not use tap->_klass
3690       if (above_centerline(this->_ptr))
3691             xk = tap->_klass_is_exact;
3692       else if (above_centerline(tap->_ptr))
3693             xk = this->_klass_is_exact;
3694       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3695               (klass() == tap->klass()); // Only precise for identical arrays
3696       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
3697     default: ShouldNotReachHere();
3698     }
3699   }
3700 
3701   // All arrays inherit from Object class
3702   case InstPtr: {
3703     const TypeInstPtr *tp = t->is_instptr();
3704     int offset = meet_offset(tp->offset());
3705     PTR ptr = meet_ptr(tp->ptr());
3706     int instance_id = meet_instance_id(tp->instance_id());
3707     switch (ptr) {
3708     case TopPTR:
3709     case AnyNull:                // Fall 'down' to dual of object klass
3710       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3711         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
3712       } else {
3713         // cannot subclass, so the meet has to fall badly below the centerline
3714         ptr = NotNull;
3715         instance_id = InstanceBot;
3716         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3717       }
3718     case Constant:
3719     case NotNull:
3720     case BotPTR:                // Fall down to object klass
3721       // LCA is object_klass, but if we subclass from the top we can do better
3722       if (above_centerline(tp->ptr())) {
3723         // If 'tp'  is above the centerline and it is Object class
3724         // then we can subclass in the Java class hierarchy.
3725         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3726           // that is, my array type is a subtype of 'tp' klass
3727           return make( ptr, (ptr == Constant ? const_oop() : NULL),
3728                        _ary, _klass, _klass_is_exact, offset, instance_id );
3729         }
3730       }
3731       // The other case cannot happen, since t cannot be a subtype of an array.
3732       // The meet falls down to Object class below centerline.
3733       if( ptr == Constant )
3734          ptr = NotNull;
3735       instance_id = InstanceBot;
3736       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3737     default: typerr(t);
3738     }
3739   }
3740   }
3741   return this;                  // Lint noise
3742 }
3743 
3744 //------------------------------xdual------------------------------------------
3745 // Dual: compute field-by-field dual
3746 const Type *TypeAryPtr::xdual() const {
3747   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache() );
3748 }
3749 
3750 //----------------------interface_vs_oop---------------------------------------
3751 #ifdef ASSERT
3752 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3753   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3754   if (t_aryptr) {
3755     return _ary->interface_vs_oop(t_aryptr->_ary);
3756   }
3757   return false;
3758 }
3759 #endif
3760 
3761 //------------------------------dump2------------------------------------------
3762 #ifndef PRODUCT
3763 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3764   _ary->dump2(d,depth,st);
3765   switch( _ptr ) {
3766   case Constant:
3767     const_oop()->print(st);
3768     break;
3769   case BotPTR:
3770     if (!WizardMode && !Verbose) {
3771       if( _klass_is_exact ) st->print(":exact");
3772       break;
3773     }
3774   case TopPTR:
3775   case AnyNull:
3776   case NotNull:
3777     st->print(":%s", ptr_msg[_ptr]);
3778     if( _klass_is_exact ) st->print(":exact");
3779     break;
3780   }
3781 
3782   if( _offset != 0 ) {
3783     int header_size = objArrayOopDesc::header_size() * wordSize;
3784     if( _offset == OffsetTop )       st->print("+undefined");
3785     else if( _offset == OffsetBot )  st->print("+any");
3786     else if( _offset < header_size ) st->print("+%d", _offset);
3787     else {
3788       BasicType basic_elem_type = elem()->basic_type();
3789       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3790       int elem_size = type2aelembytes(basic_elem_type);
3791       st->print("[%d]", (_offset - array_base)/elem_size);
3792     }
3793   }
3794   st->print(" *");
3795   if (_instance_id == InstanceTop)
3796     st->print(",iid=top");
3797   else if (_instance_id != InstanceBot)
3798     st->print(",iid=%d",_instance_id);
3799 }
3800 #endif
3801 
3802 bool TypeAryPtr::empty(void) const {
3803   if (_ary->empty())       return true;
3804   return TypeOopPtr::empty();
3805 }
3806 
3807 //------------------------------add_offset-------------------------------------
3808 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
3809   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
3810 }
3811 
3812 
3813 //=============================================================================
3814 
3815 //------------------------------hash-------------------------------------------
3816 // Type-specific hashing function.
3817 int TypeNarrowPtr::hash(void) const {
3818   return _ptrtype->hash() + 7;
3819 }
3820 
3821 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
3822   return _ptrtype->singleton();
3823 }
3824 
3825 bool TypeNarrowPtr::empty(void) const {
3826   return _ptrtype->empty();
3827 }
3828 
3829 intptr_t TypeNarrowPtr::get_con() const {
3830   return _ptrtype->get_con();
3831 }
3832 
3833 bool TypeNarrowPtr::eq( const Type *t ) const {
3834   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
3835   if (tc != NULL) {
3836     if (_ptrtype->base() != tc->_ptrtype->base()) {
3837       return false;
3838     }
3839     return tc->_ptrtype->eq(_ptrtype);
3840   }
3841   return false;
3842 }
3843 
3844 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
3845   const TypePtr* odual = _ptrtype->dual()->is_ptr();
3846   return make_same_narrowptr(odual);
3847 }
3848 
3849 
3850 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
3851   if (isa_same_narrowptr(kills)) {
3852     const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
3853     if (ft->empty())
3854       return Type::TOP;           // Canonical empty value
3855     if (ft->isa_ptr()) {
3856       return make_hash_same_narrowptr(ft->isa_ptr());
3857     }
3858     return ft;
3859   } else if (kills->isa_ptr()) {
3860     const Type* ft = _ptrtype->join(kills);
3861     if (ft->empty())
3862       return Type::TOP;           // Canonical empty value
3863     return ft;
3864   } else {
3865     return Type::TOP;
3866   }
3867 }
3868 
3869 //------------------------------xmeet------------------------------------------
3870 // Compute the MEET of two types.  It returns a new Type object.
3871 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
3872   // Perform a fast test for common case; meeting the same types together.
3873   if( this == t ) return this;  // Meeting same type-rep?
3874 
3875   if (t->base() == base()) {
3876     const Type* result = _ptrtype->xmeet(t->make_ptr());
3877     if (result->isa_ptr()) {
3878       return make_hash_same_narrowptr(result->is_ptr());
3879     }
3880     return result;
3881   }
3882 
3883   // Current "this->_base" is NarrowKlass or NarrowOop
3884   switch (t->base()) {          // switch on original type
3885 
3886   case Int:                     // Mixing ints & oops happens when javac
3887   case Long:                    // reuses local variables
3888   case FloatTop:
3889   case FloatCon:
3890   case FloatBot:
3891   case DoubleTop:
3892   case DoubleCon:
3893   case DoubleBot:
3894   case AnyPtr:
3895   case RawPtr:
3896   case OopPtr:
3897   case InstPtr:
3898   case AryPtr:
3899   case MetadataPtr:
3900   case KlassPtr:
3901   case NarrowOop:
3902   case NarrowKlass:
3903 
3904   case Bottom:                  // Ye Olde Default
3905     return Type::BOTTOM;
3906   case Top:
3907     return this;
3908 
3909   default:                      // All else is a mistake
3910     typerr(t);
3911 
3912   } // End of switch
3913 
3914   return this;
3915 }
3916 
3917 #ifndef PRODUCT
3918 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
3919   _ptrtype->dump2(d, depth, st);
3920 }
3921 #endif
3922 
3923 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
3924 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
3925 
3926 
3927 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
3928   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
3929 }
3930 
3931 
3932 #ifndef PRODUCT
3933 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
3934   st->print("narrowoop: ");
3935   TypeNarrowPtr::dump2(d, depth, st);
3936 }
3937 #endif
3938 
3939 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
3940 
3941 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
3942   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
3943 }
3944 
3945 #ifndef PRODUCT
3946 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
3947   st->print("narrowklass: ");
3948   TypeNarrowPtr::dump2(d, depth, st);
3949 }
3950 #endif
3951 
3952 
3953 //------------------------------eq---------------------------------------------
3954 // Structural equality check for Type representations
3955 bool TypeMetadataPtr::eq( const Type *t ) const {
3956   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
3957   ciMetadata* one = metadata();
3958   ciMetadata* two = a->metadata();
3959   if (one == NULL || two == NULL) {
3960     return (one == two) && TypePtr::eq(t);
3961   } else {
3962     return one->equals(two) && TypePtr::eq(t);
3963   }
3964 }
3965 
3966 //------------------------------hash-------------------------------------------
3967 // Type-specific hashing function.
3968 int TypeMetadataPtr::hash(void) const {
3969   return
3970     (metadata() ? metadata()->hash() : 0) +
3971     TypePtr::hash();
3972 }
3973 
3974 //------------------------------singleton--------------------------------------
3975 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3976 // constants
3977 bool TypeMetadataPtr::singleton(void) const {
3978   // detune optimizer to not generate constant metadta + constant offset as a constant!
3979   // TopPTR, Null, AnyNull, Constant are all singletons
3980   return (_offset == 0) && !below_centerline(_ptr);
3981 }
3982 
3983 //------------------------------add_offset-------------------------------------
3984 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
3985   return make( _ptr, _metadata, xadd_offset(offset));
3986 }
3987 
3988 //-----------------------------filter------------------------------------------
3989 // Do not allow interface-vs.-noninterface joins to collapse to top.
3990 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
3991   const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
3992   if (ft == NULL || ft->empty())
3993     return Type::TOP;           // Canonical empty value
3994   return ft;
3995 }
3996 
3997  //------------------------------get_con----------------------------------------
3998 intptr_t TypeMetadataPtr::get_con() const {
3999   assert( _ptr == Null || _ptr == Constant, "" );
4000   assert( _offset >= 0, "" );
4001 
4002   if (_offset != 0) {
4003     // After being ported to the compiler interface, the compiler no longer
4004     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4005     // to a handle at compile time.  This handle is embedded in the generated
4006     // code and dereferenced at the time the nmethod is made.  Until that time,
4007     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4008     // have access to the addresses!).  This does not seem to currently happen,
4009     // but this assertion here is to help prevent its occurence.
4010     tty->print_cr("Found oop constant with non-zero offset");
4011     ShouldNotReachHere();
4012   }
4013 
4014   return (intptr_t)metadata()->constant_encoding();
4015 }
4016 
4017 //------------------------------cast_to_ptr_type-------------------------------
4018 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4019   if( ptr == _ptr ) return this;
4020   return make(ptr, metadata(), _offset);
4021 }
4022 
4023 //------------------------------meet-------------------------------------------
4024 // Compute the MEET of two types.  It returns a new Type object.
4025 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4026   // Perform a fast test for common case; meeting the same types together.
4027   if( this == t ) return this;  // Meeting same type-rep?
4028 
4029   // Current "this->_base" is OopPtr
4030   switch (t->base()) {          // switch on original type
4031 
4032   case Int:                     // Mixing ints & oops happens when javac
4033   case Long:                    // reuses local variables
4034   case FloatTop:
4035   case FloatCon:
4036   case FloatBot:
4037   case DoubleTop:
4038   case DoubleCon:
4039   case DoubleBot:
4040   case NarrowOop:
4041   case NarrowKlass:
4042   case Bottom:                  // Ye Olde Default
4043     return Type::BOTTOM;
4044   case Top:
4045     return this;
4046 
4047   default:                      // All else is a mistake
4048     typerr(t);
4049 
4050   case AnyPtr: {
4051     // Found an AnyPtr type vs self-OopPtr type
4052     const TypePtr *tp = t->is_ptr();
4053     int offset = meet_offset(tp->offset());
4054     PTR ptr = meet_ptr(tp->ptr());
4055     switch (tp->ptr()) {
4056     case Null:
4057       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
4058       // else fall through:
4059     case TopPTR:
4060     case AnyNull: {
4061       return make(ptr, NULL, offset);
4062     }
4063     case BotPTR:
4064     case NotNull:
4065       return TypePtr::make(AnyPtr, ptr, offset);
4066     default: typerr(t);
4067     }
4068   }
4069 
4070   case RawPtr:
4071   case KlassPtr:
4072   case OopPtr:
4073   case InstPtr:
4074   case AryPtr:
4075     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4076 
4077   case MetadataPtr: {
4078     const TypeMetadataPtr *tp = t->is_metadataptr();
4079     int offset = meet_offset(tp->offset());
4080     PTR tptr = tp->ptr();
4081     PTR ptr = meet_ptr(tptr);
4082     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4083     if (tptr == TopPTR || _ptr == TopPTR ||
4084         metadata()->equals(tp->metadata())) {
4085       return make(ptr, md, offset);
4086     }
4087     // metadata is different
4088     if( ptr == Constant ) {  // Cannot be equal constants, so...
4089       if( tptr == Constant && _ptr != Constant)  return t;
4090       if( _ptr == Constant && tptr != Constant)  return this;
4091       ptr = NotNull;            // Fall down in lattice
4092     }
4093     return make(ptr, NULL, offset);
4094     break;
4095   }
4096   } // End of switch
4097   return this;                  // Return the double constant
4098 }
4099 
4100 
4101 //------------------------------xdual------------------------------------------
4102 // Dual of a pure metadata pointer.
4103 const Type *TypeMetadataPtr::xdual() const {
4104   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4105 }
4106 
4107 //------------------------------dump2------------------------------------------
4108 #ifndef PRODUCT
4109 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4110   st->print("metadataptr:%s", ptr_msg[_ptr]);
4111   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4112   switch( _offset ) {
4113   case OffsetTop: st->print("+top"); break;
4114   case OffsetBot: st->print("+any"); break;
4115   case         0: break;
4116   default:        st->print("+%d",_offset); break;
4117   }
4118 }
4119 #endif
4120 
4121 
4122 //=============================================================================
4123 // Convenience common pre-built type.
4124 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4125 
4126 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4127   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4128 }
4129 
4130 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4131   return make(Constant, m, 0);
4132 }
4133 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4134   return make(Constant, m, 0);
4135 }
4136 
4137 //------------------------------make-------------------------------------------
4138 // Create a meta data constant
4139 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4140   assert(m == NULL || !m->is_klass(), "wrong type");
4141   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4142 }
4143 
4144 
4145 //=============================================================================
4146 // Convenience common pre-built types.
4147 
4148 // Not-null object klass or below
4149 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4150 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4151 
4152 //------------------------------TypeKlassPtr-----------------------------------
4153 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4154   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4155 }
4156 
4157 //------------------------------make-------------------------------------------
4158 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4159 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4160   assert( k != NULL, "Expect a non-NULL klass");
4161   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4162   TypeKlassPtr *r =
4163     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4164 
4165   return r;
4166 }
4167 
4168 //------------------------------eq---------------------------------------------
4169 // Structural equality check for Type representations
4170 bool TypeKlassPtr::eq( const Type *t ) const {
4171   const TypeKlassPtr *p = t->is_klassptr();
4172   return
4173     klass()->equals(p->klass()) &&
4174     TypePtr::eq(p);
4175 }
4176 
4177 //------------------------------hash-------------------------------------------
4178 // Type-specific hashing function.
4179 int TypeKlassPtr::hash(void) const {
4180   return klass()->hash() + TypePtr::hash();
4181 }
4182 
4183 //------------------------------singleton--------------------------------------
4184 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4185 // constants
4186 bool TypeKlassPtr::singleton(void) const {
4187   // detune optimizer to not generate constant klass + constant offset as a constant!
4188   // TopPTR, Null, AnyNull, Constant are all singletons
4189   return (_offset == 0) && !below_centerline(_ptr);
4190 }
4191 
4192 //----------------------compute_klass------------------------------------------
4193 // Compute the defining klass for this class
4194 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4195   // Compute _klass based on element type.
4196   ciKlass* k_ary = NULL;
4197   const TypeInstPtr *tinst;
4198   const TypeAryPtr *tary;
4199   const Type* el = elem();
4200   if (el->isa_narrowoop()) {
4201     el = el->make_ptr();
4202   }
4203 
4204   // Get element klass
4205   if ((tinst = el->isa_instptr()) != NULL) {
4206     // Compute array klass from element klass
4207     k_ary = ciObjArrayKlass::make(tinst->klass());
4208   } else if ((tary = el->isa_aryptr()) != NULL) {
4209     // Compute array klass from element klass
4210     ciKlass* k_elem = tary->klass();
4211     // If element type is something like bottom[], k_elem will be null.
4212     if (k_elem != NULL)
4213       k_ary = ciObjArrayKlass::make(k_elem);
4214   } else if ((el->base() == Type::Top) ||
4215              (el->base() == Type::Bottom)) {
4216     // element type of Bottom occurs from meet of basic type
4217     // and object; Top occurs when doing join on Bottom.
4218     // Leave k_ary at NULL.
4219   } else {
4220     // Cannot compute array klass directly from basic type,
4221     // since subtypes of TypeInt all have basic type T_INT.
4222 #ifdef ASSERT
4223     if (verify && el->isa_int()) {
4224       // Check simple cases when verifying klass.
4225       BasicType bt = T_ILLEGAL;
4226       if (el == TypeInt::BYTE) {
4227         bt = T_BYTE;
4228       } else if (el == TypeInt::SHORT) {
4229         bt = T_SHORT;
4230       } else if (el == TypeInt::CHAR) {
4231         bt = T_CHAR;
4232       } else if (el == TypeInt::INT) {
4233         bt = T_INT;
4234       } else {
4235         return _klass; // just return specified klass
4236       }
4237       return ciTypeArrayKlass::make(bt);
4238     }
4239 #endif
4240     assert(!el->isa_int(),
4241            "integral arrays must be pre-equipped with a class");
4242     // Compute array klass directly from basic type
4243     k_ary = ciTypeArrayKlass::make(el->basic_type());
4244   }
4245   return k_ary;
4246 }
4247 
4248 //------------------------------klass------------------------------------------
4249 // Return the defining klass for this class
4250 ciKlass* TypeAryPtr::klass() const {
4251   if( _klass ) return _klass;   // Return cached value, if possible
4252 
4253   // Oops, need to compute _klass and cache it
4254   ciKlass* k_ary = compute_klass();
4255 
4256   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4257     // The _klass field acts as a cache of the underlying
4258     // ciKlass for this array type.  In order to set the field,
4259     // we need to cast away const-ness.
4260     //
4261     // IMPORTANT NOTE: we *never* set the _klass field for the
4262     // type TypeAryPtr::OOPS.  This Type is shared between all
4263     // active compilations.  However, the ciKlass which represents
4264     // this Type is *not* shared between compilations, so caching
4265     // this value would result in fetching a dangling pointer.
4266     //
4267     // Recomputing the underlying ciKlass for each request is
4268     // a bit less efficient than caching, but calls to
4269     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4270     ((TypeAryPtr*)this)->_klass = k_ary;
4271     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4272         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4273       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4274     }
4275   }
4276   return k_ary;
4277 }
4278 
4279 
4280 //------------------------------add_offset-------------------------------------
4281 // Access internals of klass object
4282 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4283   return make( _ptr, klass(), xadd_offset(offset) );
4284 }
4285 
4286 //------------------------------cast_to_ptr_type-------------------------------
4287 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4288   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4289   if( ptr == _ptr ) return this;
4290   return make(ptr, _klass, _offset);
4291 }
4292 
4293 
4294 //-----------------------------cast_to_exactness-------------------------------
4295 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4296   if( klass_is_exact == _klass_is_exact ) return this;
4297   if (!UseExactTypes)  return this;
4298   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4299 }
4300 
4301 
4302 //-----------------------------as_instance_type--------------------------------
4303 // Corresponding type for an instance of the given class.
4304 // It will be NotNull, and exact if and only if the klass type is exact.
4305 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4306   ciKlass* k = klass();
4307   bool    xk = klass_is_exact();
4308   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4309   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4310   guarantee(toop != NULL, "need type for given klass");
4311   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4312   return toop->cast_to_exactness(xk)->is_oopptr();
4313 }
4314 
4315 
4316 //------------------------------xmeet------------------------------------------
4317 // Compute the MEET of two types, return a new Type object.
4318 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4319   // Perform a fast test for common case; meeting the same types together.
4320   if( this == t ) return this;  // Meeting same type-rep?
4321 
4322   // Current "this->_base" is Pointer
4323   switch (t->base()) {          // switch on original type
4324 
4325   case Int:                     // Mixing ints & oops happens when javac
4326   case Long:                    // reuses local variables
4327   case FloatTop:
4328   case FloatCon:
4329   case FloatBot:
4330   case DoubleTop:
4331   case DoubleCon:
4332   case DoubleBot:
4333   case NarrowOop:
4334   case NarrowKlass:
4335   case Bottom:                  // Ye Olde Default
4336     return Type::BOTTOM;
4337   case Top:
4338     return this;
4339 
4340   default:                      // All else is a mistake
4341     typerr(t);
4342 
4343   case AnyPtr: {                // Meeting to AnyPtrs
4344     // Found an AnyPtr type vs self-KlassPtr type
4345     const TypePtr *tp = t->is_ptr();
4346     int offset = meet_offset(tp->offset());
4347     PTR ptr = meet_ptr(tp->ptr());
4348     switch (tp->ptr()) {
4349     case TopPTR:
4350       return this;
4351     case Null:
4352       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4353     case AnyNull:
4354       return make( ptr, klass(), offset );
4355     case BotPTR:
4356     case NotNull:
4357       return TypePtr::make(AnyPtr, ptr, offset);
4358     default: typerr(t);
4359     }
4360   }
4361 
4362   case RawPtr:
4363   case MetadataPtr:
4364   case OopPtr:
4365   case AryPtr:                  // Meet with AryPtr
4366   case InstPtr:                 // Meet with InstPtr
4367     return TypePtr::BOTTOM;
4368 
4369   //
4370   //             A-top         }
4371   //           /   |   \       }  Tops
4372   //       B-top A-any C-top   }
4373   //          | /  |  \ |      }  Any-nulls
4374   //       B-any   |   C-any   }
4375   //          |    |    |
4376   //       B-con A-con C-con   } constants; not comparable across classes
4377   //          |    |    |
4378   //       B-not   |   C-not   }
4379   //          | \  |  / |      }  not-nulls
4380   //       B-bot A-not C-bot   }
4381   //           \   |   /       }  Bottoms
4382   //             A-bot         }
4383   //
4384 
4385   case KlassPtr: {  // Meet two KlassPtr types
4386     const TypeKlassPtr *tkls = t->is_klassptr();
4387     int  off     = meet_offset(tkls->offset());
4388     PTR  ptr     = meet_ptr(tkls->ptr());
4389 
4390     // Check for easy case; klasses are equal (and perhaps not loaded!)
4391     // If we have constants, then we created oops so classes are loaded
4392     // and we can handle the constants further down.  This case handles
4393     // not-loaded classes
4394     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4395       return make( ptr, klass(), off );
4396     }
4397 
4398     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4399     ciKlass* tkls_klass = tkls->klass();
4400     ciKlass* this_klass = this->klass();
4401     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4402     assert( this_klass->is_loaded(), "This class should have been loaded.");
4403 
4404     // If 'this' type is above the centerline and is a superclass of the
4405     // other, we can treat 'this' as having the same type as the other.
4406     if ((above_centerline(this->ptr())) &&
4407         tkls_klass->is_subtype_of(this_klass)) {
4408       this_klass = tkls_klass;
4409     }
4410     // If 'tinst' type is above the centerline and is a superclass of the
4411     // other, we can treat 'tinst' as having the same type as the other.
4412     if ((above_centerline(tkls->ptr())) &&
4413         this_klass->is_subtype_of(tkls_klass)) {
4414       tkls_klass = this_klass;
4415     }
4416 
4417     // Check for classes now being equal
4418     if (tkls_klass->equals(this_klass)) {
4419       // If the klasses are equal, the constants may still differ.  Fall to
4420       // NotNull if they do (neither constant is NULL; that is a special case
4421       // handled elsewhere).
4422       if( ptr == Constant ) {
4423         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4424             this->klass()->equals(tkls->klass()));
4425         else if (above_centerline(this->ptr()));
4426         else if (above_centerline(tkls->ptr()));
4427         else
4428           ptr = NotNull;
4429       }
4430       return make( ptr, this_klass, off );
4431     } // Else classes are not equal
4432 
4433     // Since klasses are different, we require the LCA in the Java
4434     // class hierarchy - which means we have to fall to at least NotNull.
4435     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4436       ptr = NotNull;
4437     // Now we find the LCA of Java classes
4438     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4439     return   make( ptr, k, off );
4440   } // End of case KlassPtr
4441 
4442   } // End of switch
4443   return this;                  // Return the double constant
4444 }
4445 
4446 //------------------------------xdual------------------------------------------
4447 // Dual: compute field-by-field dual
4448 const Type    *TypeKlassPtr::xdual() const {
4449   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4450 }
4451 
4452 //------------------------------get_con----------------------------------------
4453 intptr_t TypeKlassPtr::get_con() const {
4454   assert( _ptr == Null || _ptr == Constant, "" );
4455   assert( _offset >= 0, "" );
4456 
4457   if (_offset != 0) {
4458     // After being ported to the compiler interface, the compiler no longer
4459     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4460     // to a handle at compile time.  This handle is embedded in the generated
4461     // code and dereferenced at the time the nmethod is made.  Until that time,
4462     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4463     // have access to the addresses!).  This does not seem to currently happen,
4464     // but this assertion here is to help prevent its occurence.
4465     tty->print_cr("Found oop constant with non-zero offset");
4466     ShouldNotReachHere();
4467   }
4468 
4469   return (intptr_t)klass()->constant_encoding();
4470 }
4471 //------------------------------dump2------------------------------------------
4472 // Dump Klass Type
4473 #ifndef PRODUCT
4474 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4475   switch( _ptr ) {
4476   case Constant:
4477     st->print("precise ");
4478   case NotNull:
4479     {
4480       const char *name = klass()->name()->as_utf8();
4481       if( name ) {
4482         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4483       } else {
4484         ShouldNotReachHere();
4485       }
4486     }
4487   case BotPTR:
4488     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4489   case TopPTR:
4490   case AnyNull:
4491     st->print(":%s", ptr_msg[_ptr]);
4492     if( _klass_is_exact ) st->print(":exact");
4493     break;
4494   }
4495 
4496   if( _offset ) {               // Dump offset, if any
4497     if( _offset == OffsetBot )      { st->print("+any"); }
4498     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4499     else                            { st->print("+%d", _offset); }
4500   }
4501 
4502   st->print(" *");
4503 }
4504 #endif
4505 
4506 
4507 
4508 //=============================================================================
4509 // Convenience common pre-built types.
4510 
4511 //------------------------------make-------------------------------------------
4512 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4513   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4514 }
4515 
4516 //------------------------------make-------------------------------------------
4517 const TypeFunc *TypeFunc::make(ciMethod* method) {
4518   Compile* C = Compile::current();
4519   const TypeFunc* tf = C->last_tf(method); // check cache
4520   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4521   const TypeTuple *domain;
4522   if (method->is_static()) {
4523     domain = TypeTuple::make_domain(NULL, method->signature());
4524   } else {
4525     domain = TypeTuple::make_domain(method->holder(), method->signature());
4526   }
4527   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4528   tf = TypeFunc::make(domain, range);
4529   C->set_last_tf(method, tf);  // fill cache
4530   return tf;
4531 }
4532 
4533 //------------------------------meet-------------------------------------------
4534 // Compute the MEET of two types.  It returns a new Type object.
4535 const Type *TypeFunc::xmeet( const Type *t ) const {
4536   // Perform a fast test for common case; meeting the same types together.
4537   if( this == t ) return this;  // Meeting same type-rep?
4538 
4539   // Current "this->_base" is Func
4540   switch (t->base()) {          // switch on original type
4541 
4542   case Bottom:                  // Ye Olde Default
4543     return t;
4544 
4545   default:                      // All else is a mistake
4546     typerr(t);
4547 
4548   case Top:
4549     break;
4550   }
4551   return this;                  // Return the double constant
4552 }
4553 
4554 //------------------------------xdual------------------------------------------
4555 // Dual: compute field-by-field dual
4556 const Type *TypeFunc::xdual() const {
4557   return this;
4558 }
4559 
4560 //------------------------------eq---------------------------------------------
4561 // Structural equality check for Type representations
4562 bool TypeFunc::eq( const Type *t ) const {
4563   const TypeFunc *a = (const TypeFunc*)t;
4564   return _domain == a->_domain &&
4565     _range == a->_range;
4566 }
4567 
4568 //------------------------------hash-------------------------------------------
4569 // Type-specific hashing function.
4570 int TypeFunc::hash(void) const {
4571   return (intptr_t)_domain + (intptr_t)_range;
4572 }
4573 
4574 //------------------------------dump2------------------------------------------
4575 // Dump Function Type
4576 #ifndef PRODUCT
4577 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4578   if( _range->_cnt <= Parms )
4579     st->print("void");
4580   else {
4581     uint i;
4582     for (i = Parms; i < _range->_cnt-1; i++) {
4583       _range->field_at(i)->dump2(d,depth,st);
4584       st->print("/");
4585     }
4586     _range->field_at(i)->dump2(d,depth,st);
4587   }
4588   st->print(" ");
4589   st->print("( ");
4590   if( !depth || d[this] ) {     // Check for recursive dump
4591     st->print("...)");
4592     return;
4593   }
4594   d.Insert((void*)this,(void*)this);    // Stop recursion
4595   if (Parms < _domain->_cnt)
4596     _domain->field_at(Parms)->dump2(d,depth-1,st);
4597   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4598     st->print(", ");
4599     _domain->field_at(i)->dump2(d,depth-1,st);
4600   }
4601   st->print(" )");
4602 }
4603 #endif
4604 
4605 //------------------------------singleton--------------------------------------
4606 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4607 // constants (Ldi nodes).  Singletons are integer, float or double constants
4608 // or a single symbol.
4609 bool TypeFunc::singleton(void) const {
4610   return false;                 // Never a singleton
4611 }
4612 
4613 bool TypeFunc::empty(void) const {
4614   return false;                 // Never empty
4615 }
4616 
4617 
4618 BasicType TypeFunc::return_type() const{
4619   if (range()->cnt() == TypeFunc::Parms) {
4620     return T_VOID;
4621   }
4622   return range()->field_at(TypeFunc::Parms)->basic_type();
4623 }