/* * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_CI_CIMETHODDATA_HPP #define SHARE_VM_CI_CIMETHODDATA_HPP #include "ci/ciClassList.hpp" #include "ci/ciKlass.hpp" #include "ci/ciObject.hpp" #include "ci/ciUtilities.hpp" #include "oops/methodData.hpp" #include "oops/oop.inline.hpp" class ciBitData; class ciCounterData; class ciJumpData; class ciReceiverTypeData; class ciRetData; class ciBranchData; class ciArrayData; class ciMultiBranchData; class ciArgInfoData; class ciCallTypeData; class ciVirtualCallTypeData; typedef ProfileData ciProfileData; class ciBitData : public BitData { public: ciBitData(DataLayout* layout) : BitData(layout) {}; }; class ciCounterData : public CounterData { public: ciCounterData(DataLayout* layout) : CounterData(layout) {}; }; class ciJumpData : public JumpData { public: ciJumpData(DataLayout* layout) : JumpData(layout) {}; }; class ciTypeEntries { protected: static intptr_t translate_klass(intptr_t k) { Klass* v = TypeEntries::valid_klass(k); if (v != NULL) { ciKlass* klass = CURRENT_ENV->get_klass(v); return with_status(klass, k); } return with_status(NULL, k); } public: static ciKlass* valid_ciklass(intptr_t k) { if (!TypeEntries::is_type_none(k) && !TypeEntries::is_type_unknown(k)) { return (ciKlass*)TypeEntries::klass_part(k); } else { return NULL; } } static intptr_t with_status(ciKlass* k, intptr_t in) { return TypeEntries::with_status((intptr_t)k, in); } #ifndef PRODUCT static void print_ciklass(outputStream* st, intptr_t k); #endif }; class ciTypeStackSlotEntries : public TypeStackSlotEntries, ciTypeEntries { public: void translate_type_data_from(const TypeStackSlotEntries* args); ciKlass* valid_type(int i) const { return valid_ciklass(type(i)); } #ifndef PRODUCT void print_data_on(outputStream* st) const; #endif }; class ciReturnTypeEntry : public ReturnTypeEntry, ciTypeEntries { public: void translate_type_data_from(const ReturnTypeEntry* ret); ciKlass* valid_type() const { return valid_ciklass(type()); } #ifndef PRODUCT void print_data_on(outputStream* st) const; #endif }; class ciTypeEntriesAtCall : public TypeEntriesAtCall { private: ciTypeStackSlotEntries* args_type_data() const { return (ciTypeStackSlotEntries*)TypeEntriesAtCall::args_type_data(); } ciReturnTypeEntry* ret_type_data() const { return (ciReturnTypeEntry*)TypeEntriesAtCall::ret_type_data(); } public: void translate_type_data_from(const TypeEntriesAtCall* data) { if (MethodData::profile_arguments() && has_arguments()) { args_type_data()->translate_type_data_from(data->args_type_data()); } if (MethodData::profile_return() && has_return()) { ret_type_data()->translate_type_data_from(data->ret_type_data()); } } #ifndef PRODUCT void print_data_on(outputStream* st) const { if (MethodData::profile_arguments() && has_arguments()) { _pd->tab(st, true); st->print("argument types"); args_type_data()->print_data_on(st); } if (MethodData::profile_return() && has_return()) { _pd->tab(st, true); st->print("return type"); ret_type_data()->print_data_on(st); } } #endif intptr_t argument_type(int i) const { assert(has_arguments(), "no arg type profiling data"); return args_type_data()->type(i); } ciKlass* valid_argument_type(int i) const { assert(has_arguments(), "no arg type profiling data"); return args_type_data()->valid_type(i); } intptr_t return_type() const { assert(has_return(), "no ret type profiling data"); return ret_type_data()->type(); } ciKlass* valid_return_type() const { assert(has_return(), "no ret type profiling data"); return ret_type_data()->valid_type(); } }; class ciCallTypeData : public CallTypeData { public: ciCallTypeData(DataLayout* layout) : CallTypeData(layout) {} ciTypeEntriesAtCall* args_and_ret() const { return (ciTypeEntriesAtCall*)CallTypeData::args_and_ret(); } virtual void translate_from(const ProfileData* data) { args_and_ret()->translate_type_data_from(data->as_CallTypeData()->args_and_ret()); } ciKlass* valid_argument_type(int i) const { return args_and_ret()->valid_argument_type(i); } ciKlass* valid_return_type() const { return args_and_ret()->valid_return_type(); } #ifndef PRODUCT void print_data_on(outputStream* st) const; #endif }; class ciReceiverTypeData : public ReceiverTypeData { public: ciReceiverTypeData(DataLayout* layout) : ReceiverTypeData(layout) {}; void set_receiver(uint row, ciKlass* recv) { assert((uint)row < row_limit(), "oob"); set_intptr_at(receiver0_offset + row * receiver_type_row_cell_count, (intptr_t) recv); } ciKlass* receiver(uint row) const { assert((uint)row < row_limit(), "oob"); ciKlass* recv = (ciKlass*)intptr_at(receiver0_offset + row * receiver_type_row_cell_count); assert(recv == NULL || recv->is_klass(), "wrong type"); return recv; } // Copy & translate from oop based ReceiverTypeData virtual void translate_from(const ProfileData* data) { translate_receiver_data_from(data); } void translate_receiver_data_from(const ProfileData* data); #ifndef PRODUCT void print_data_on(outputStream* st) const; void print_receiver_data_on(outputStream* st) const; #endif }; class ciVirtualCallData : public VirtualCallData { // Fake multiple inheritance... It's a ciReceiverTypeData also. ciReceiverTypeData* rtd_super() const { return (ciReceiverTypeData*) this; } public: ciVirtualCallData(DataLayout* layout) : VirtualCallData(layout) {}; void set_receiver(uint row, ciKlass* recv) { rtd_super()->set_receiver(row, recv); } ciKlass* receiver(uint row) { return rtd_super()->receiver(row); } // Copy & translate from oop based VirtualCallData virtual void translate_from(const ProfileData* data) { rtd_super()->translate_receiver_data_from(data); } #ifndef PRODUCT void print_data_on(outputStream* st) const; #endif }; class ciVirtualCallTypeData : public VirtualCallTypeData { private: // Fake multiple inheritance... It's a ciReceiverTypeData also. ciReceiverTypeData* rtd_super() const { return (ciReceiverTypeData*) this; } public: ciVirtualCallTypeData(DataLayout* layout) : VirtualCallTypeData(layout) {} ciTypeEntriesAtCall* args_and_ret() const { return (ciTypeEntriesAtCall*)VirtualCallTypeData::args_and_ret(); } void set_receiver(uint row, ciKlass* recv) { rtd_super()->set_receiver(row, recv); } ciKlass* receiver(uint row) const { return rtd_super()->receiver(row); } // Copy & translate from oop based VirtualCallData virtual void translate_from(const ProfileData* data) { rtd_super()->translate_receiver_data_from(data); args_and_ret()->translate_type_data_from(data->as_VirtualCallTypeData()->args_and_ret()); } ciKlass* valid_argument_type(int i) const { return args_and_ret()->valid_argument_type(i); } ciKlass* valid_return_type() const { return args_and_ret()->valid_return_type(); } #ifndef PRODUCT void print_data_on(outputStream* st) const; #endif }; class ciRetData : public RetData { public: ciRetData(DataLayout* layout) : RetData(layout) {}; }; class ciBranchData : public BranchData { public: ciBranchData(DataLayout* layout) : BranchData(layout) {}; }; class ciArrayData : public ArrayData { public: ciArrayData(DataLayout* layout) : ArrayData(layout) {}; }; class ciMultiBranchData : public MultiBranchData { public: ciMultiBranchData(DataLayout* layout) : MultiBranchData(layout) {}; }; class ciArgInfoData : public ArgInfoData { public: ciArgInfoData(DataLayout* layout) : ArgInfoData(layout) {}; }; // ciMethodData // // This class represents a MethodData* in the HotSpot virtual // machine. class ciMethodData : public ciMetadata { CI_PACKAGE_ACCESS friend class ciReplay; private: // Size in bytes int _data_size; int _extra_data_size; // Data entries intptr_t* _data; // Cached hint for data_before() int _hint_di; // Is data attached? And is it mature? enum { empty_state, immature_state, mature_state }; u_char _state; // Set this true if empty extra_data slots are ever witnessed. u_char _saw_free_extra_data; // Support for interprocedural escape analysis intx _eflags; // flags on escape information intx _arg_local; // bit set of non-escaping arguments intx _arg_stack; // bit set of stack-allocatable arguments intx _arg_returned; // bit set of returned arguments // Maturity of the oop when the snapshot is taken. int _current_mileage; // These counters hold the age of MDO in tiered. In tiered we can have the same method // running at different compilation levels concurrently. So, in order to precisely measure // its maturity we need separate counters. int _invocation_counter; int _backedge_counter; // Coherent snapshot of original header. MethodData _orig; ciMethodData(MethodData* md); ciMethodData(); // Accessors int data_size() const { return _data_size; } int extra_data_size() const { return _extra_data_size; } intptr_t * data() const { return _data; } MethodData* get_MethodData() const { return (MethodData*)_metadata; } const char* type_string() { return "ciMethodData"; } void print_impl(outputStream* st); DataLayout* data_layout_at(int data_index) const { assert(data_index % sizeof(intptr_t) == 0, "unaligned"); return (DataLayout*) (((address)_data) + data_index); } bool out_of_bounds(int data_index) { return data_index >= data_size(); } // hint accessors int hint_di() const { return _hint_di; } void set_hint_di(int di) { assert(!out_of_bounds(di), "hint_di out of bounds"); _hint_di = di; } ciProfileData* data_before(int bci) { // avoid SEGV on this edge case if (data_size() == 0) return NULL; int hint = hint_di(); if (data_layout_at(hint)->bci() <= bci) return data_at(hint); return first_data(); } // What is the index of the first data entry? int first_di() { return 0; } ciArgInfoData *arg_info() const; public: bool is_method_data() const { return true; } bool is_empty() { return _state == empty_state; } bool is_mature() { return _state == mature_state; } int creation_mileage() { return _orig.creation_mileage(); } int current_mileage() { return _current_mileage; } int invocation_count() { return _invocation_counter; } int backedge_count() { return _backedge_counter; } // Transfer information about the method to MethodData*. // would_profile means we would like to profile this method, // meaning it's not trivial. void set_would_profile(bool p); // Also set the numer of loops and blocks in the method. // Again, this is used to determine if a method is trivial. void set_compilation_stats(short loops, short blocks); // If the compiler finds a profiled type that is known statically // for sure, set it in the MethodData void set_argument_type(int bci, int i, ciKlass* k); void set_return_type(int bci, ciKlass* k); void load_data(); // Convert a dp (data pointer) to a di (data index). int dp_to_di(address dp) { return dp - ((address)_data); } // Get the data at an arbitrary (sort of) data index. ciProfileData* data_at(int data_index); // Walk through the data in order. ciProfileData* first_data() { return data_at(first_di()); } ciProfileData* next_data(ciProfileData* current); bool is_valid(ciProfileData* current) { return current != NULL; } // Get the data at an arbitrary bci, or NULL if there is none. ciProfileData* bci_to_data(int bci); ciProfileData* bci_to_extra_data(int bci, bool create_if_missing); uint overflow_trap_count() const { return _orig.overflow_trap_count(); } uint overflow_recompile_count() const { return _orig.overflow_recompile_count(); } uint decompile_count() const { return _orig.decompile_count(); } uint trap_count(int reason) const { return _orig.trap_count(reason); } uint trap_reason_limit() const { return _orig.trap_reason_limit(); } uint trap_count_limit() const { return _orig.trap_count_limit(); } // Helpful query functions that decode trap_state. int has_trap_at(ciProfileData* data, int reason); int has_trap_at(int bci, int reason) { return has_trap_at(bci_to_data(bci), reason); } int trap_recompiled_at(ciProfileData* data); int trap_recompiled_at(int bci) { return trap_recompiled_at(bci_to_data(bci)); } void clear_escape_info(); bool has_escape_info(); void update_escape_info(); void set_eflag(MethodData::EscapeFlag f); void clear_eflag(MethodData::EscapeFlag f); bool eflag_set(MethodData::EscapeFlag f) const; void set_arg_local(int i); void set_arg_stack(int i); void set_arg_returned(int i); void set_arg_modified(int arg, uint val); bool is_arg_local(int i) const; bool is_arg_stack(int i) const; bool is_arg_returned(int i) const; uint arg_modified(int arg) const; // Code generation helper ByteSize offset_of_slot(ciProfileData* data, ByteSize slot_offset_in_data); int byte_offset_of_slot(ciProfileData* data, ByteSize slot_offset_in_data) { return in_bytes(offset_of_slot(data, slot_offset_in_data)); } #ifndef PRODUCT // printing support for method data void print(); void print_data_on(outputStream* st); #endif void dump_replay_data(outputStream* out); }; #endif // SHARE_VM_CI_CIMETHODDATA_HPP