1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/synchronizer.hpp"
  44 #include "runtime/timer.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #include "utilities/debug.hpp"
  47 #include "utilities/macros.hpp"
  48 
  49 #define __ _masm->
  50 
  51 #ifndef CC_INTERP
  52 
  53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
  55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
  56 
  57 //-----------------------------------------------------------------------------
  58 
  59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  60   address entry = __ pc();
  61 
  62 #ifdef ASSERT
  63   {
  64     Label L;
  65     __ lea(rax, Address(rbp,
  66                         frame::interpreter_frame_monitor_block_top_offset *
  67                         wordSize));
  68     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
  69                          // grows negative)
  70     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
  71     __ stop ("interpreter frame not set up");
  72     __ bind(L);
  73   }
  74 #endif // ASSERT
  75   // Restore bcp under the assumption that the current frame is still
  76   // interpreted
  77   __ restore_bcp();
  78 
  79   // expression stack must be empty before entering the VM if an
  80   // exception happened
  81   __ empty_expression_stack();
  82   // throw exception
  83   __ call_VM(noreg,
  84              CAST_FROM_FN_PTR(address,
  85                               InterpreterRuntime::throw_StackOverflowError));
  86   return entry;
  87 }
  88 
  89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
  90         const char* name) {
  91   address entry = __ pc();
  92   // expression stack must be empty before entering the VM if an
  93   // exception happened
  94   __ empty_expression_stack();
  95   // setup parameters
  96   // ??? convention: expect aberrant index in register ebx
  97   __ lea(c_rarg1, ExternalAddress((address)name));
  98   __ call_VM(noreg,
  99              CAST_FROM_FN_PTR(address,
 100                               InterpreterRuntime::
 101                               throw_ArrayIndexOutOfBoundsException),
 102              c_rarg1, rbx);
 103   return entry;
 104 }
 105 
 106 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 107   address entry = __ pc();
 108 
 109   // object is at TOS
 110   __ pop(c_rarg1);
 111 
 112   // expression stack must be empty before entering the VM if an
 113   // exception happened
 114   __ empty_expression_stack();
 115 
 116   __ call_VM(noreg,
 117              CAST_FROM_FN_PTR(address,
 118                               InterpreterRuntime::
 119                               throw_ClassCastException),
 120              c_rarg1);
 121   return entry;
 122 }
 123 
 124 address TemplateInterpreterGenerator::generate_exception_handler_common(
 125         const char* name, const char* message, bool pass_oop) {
 126   assert(!pass_oop || message == NULL, "either oop or message but not both");
 127   address entry = __ pc();
 128   if (pass_oop) {
 129     // object is at TOS
 130     __ pop(c_rarg2);
 131   }
 132   // expression stack must be empty before entering the VM if an
 133   // exception happened
 134   __ empty_expression_stack();
 135   // setup parameters
 136   __ lea(c_rarg1, ExternalAddress((address)name));
 137   if (pass_oop) {
 138     __ call_VM(rax, CAST_FROM_FN_PTR(address,
 139                                      InterpreterRuntime::
 140                                      create_klass_exception),
 141                c_rarg1, c_rarg2);
 142   } else {
 143     // kind of lame ExternalAddress can't take NULL because
 144     // external_word_Relocation will assert.
 145     if (message != NULL) {
 146       __ lea(c_rarg2, ExternalAddress((address)message));
 147     } else {
 148       __ movptr(c_rarg2, NULL_WORD);
 149     }
 150     __ call_VM(rax,
 151                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 152                c_rarg1, c_rarg2);
 153   }
 154   // throw exception
 155   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 156   return entry;
 157 }
 158 
 159 
 160 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 161   address entry = __ pc();
 162   // NULL last_sp until next java call
 163   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 164   __ dispatch_next(state);
 165   return entry;
 166 }
 167 
 168 
 169 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 170   address entry = __ pc();
 171 
 172   // Restore stack bottom in case i2c adjusted stack
 173   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
 174   // and NULL it as marker that esp is now tos until next java call
 175   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 176 
 177   __ restore_bcp();
 178   __ restore_locals();
 179 
 180   Label L_got_cache, L_giant_index;
 181   if (EnableInvokeDynamic) {
 182     __ cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
 183     __ jcc(Assembler::equal, L_giant_index);
 184   }
 185   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
 186   __ bind(L_got_cache);
 187   __ movl(rbx, Address(rbx, rcx,
 188                        Address::times_ptr,
 189                        in_bytes(ConstantPoolCache::base_offset()) +
 190                        3 * wordSize));
 191   __ andl(rbx, 0xFF);
 192   __ lea(rsp, Address(rsp, rbx, Address::times_8));
 193   __ dispatch_next(state, step);
 194 
 195   // out of the main line of code...
 196   if (EnableInvokeDynamic) {
 197     __ bind(L_giant_index);
 198     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
 199     __ jmp(L_got_cache);
 200   }
 201 
 202   return entry;
 203 }
 204 
 205 
 206 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 207                                                                int step) {
 208   address entry = __ pc();
 209   // NULL last_sp until next java call
 210   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 211   __ restore_bcp();
 212   __ restore_locals();
 213   // handle exceptions
 214   {
 215     Label L;
 216     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
 217     __ jcc(Assembler::zero, L);
 218     __ call_VM(noreg,
 219                CAST_FROM_FN_PTR(address,
 220                                 InterpreterRuntime::throw_pending_exception));
 221     __ should_not_reach_here();
 222     __ bind(L);
 223   }
 224   __ dispatch_next(state, step);
 225   return entry;
 226 }
 227 
 228 int AbstractInterpreter::BasicType_as_index(BasicType type) {
 229   int i = 0;
 230   switch (type) {
 231     case T_BOOLEAN: i = 0; break;
 232     case T_CHAR   : i = 1; break;
 233     case T_BYTE   : i = 2; break;
 234     case T_SHORT  : i = 3; break;
 235     case T_INT    : i = 4; break;
 236     case T_LONG   : i = 5; break;
 237     case T_VOID   : i = 6; break;
 238     case T_FLOAT  : i = 7; break;
 239     case T_DOUBLE : i = 8; break;
 240     case T_OBJECT : i = 9; break;
 241     case T_ARRAY  : i = 9; break;
 242     default       : ShouldNotReachHere();
 243   }
 244   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
 245          "index out of bounds");
 246   return i;
 247 }
 248 
 249 
 250 address TemplateInterpreterGenerator::generate_result_handler_for(
 251         BasicType type) {
 252   address entry = __ pc();
 253   switch (type) {
 254   case T_BOOLEAN: __ c2bool(rax);            break;
 255   case T_CHAR   : __ movzwl(rax, rax);       break;
 256   case T_BYTE   : __ sign_extend_byte(rax);  break;
 257   case T_SHORT  : __ sign_extend_short(rax); break;
 258   case T_INT    : /* nothing to do */        break;
 259   case T_LONG   : /* nothing to do */        break;
 260   case T_VOID   : /* nothing to do */        break;
 261   case T_FLOAT  : /* nothing to do */        break;
 262   case T_DOUBLE : /* nothing to do */        break;
 263   case T_OBJECT :
 264     // retrieve result from frame
 265     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
 266     // and verify it
 267     __ verify_oop(rax);
 268     break;
 269   default       : ShouldNotReachHere();
 270   }
 271   __ ret(0);                                   // return from result handler
 272   return entry;
 273 }
 274 
 275 address TemplateInterpreterGenerator::generate_safept_entry_for(
 276         TosState state,
 277         address runtime_entry) {
 278   address entry = __ pc();
 279   __ push(state);
 280   __ call_VM(noreg, runtime_entry);
 281   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 282   return entry;
 283 }
 284 
 285 
 286 
 287 // Helpers for commoning out cases in the various type of method entries.
 288 //
 289 
 290 
 291 // increment invocation count & check for overflow
 292 //
 293 // Note: checking for negative value instead of overflow
 294 //       so we have a 'sticky' overflow test
 295 //
 296 // rbx: method
 297 // ecx: invocation counter
 298 //
 299 void InterpreterGenerator::generate_counter_incr(
 300         Label* overflow,
 301         Label* profile_method,
 302         Label* profile_method_continue) {
 303   Label done;
 304   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 305   if (TieredCompilation) {
 306     int increment = InvocationCounter::count_increment;
 307     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
 308     Label no_mdo;
 309     if (ProfileInterpreter) {
 310       // Are we profiling?
 311       __ movptr(rax, Address(rbx, Method::method_data_offset()));
 312       __ testptr(rax, rax);
 313       __ jccb(Assembler::zero, no_mdo);
 314       // Increment counter in the MDO
 315       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
 316                                                 in_bytes(InvocationCounter::counter_offset()));
 317       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
 318       __ jmp(done);
 319     }
 320     __ bind(no_mdo);
 321     // Increment counter in MethodCounters
 322     const Address invocation_counter(rax,
 323                   MethodCounters::invocation_counter_offset() +
 324                   InvocationCounter::counter_offset());
 325     __ get_method_counters(rbx, rax, done);
 326     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx,
 327                                false, Assembler::zero, overflow);
 328     __ bind(done);
 329   } else {
 330     const Address backedge_counter(rax,
 331                   MethodCounters::backedge_counter_offset() +
 332                   InvocationCounter::counter_offset());
 333     const Address invocation_counter(rax,
 334                   MethodCounters::invocation_counter_offset() +
 335                   InvocationCounter::counter_offset());
 336 
 337     __ get_method_counters(rbx, rax, done);
 338 
 339     if (ProfileInterpreter) {
 340       __ incrementl(Address(rax,
 341               MethodCounters::interpreter_invocation_counter_offset()));
 342     }
 343     // Update standard invocation counters
 344     __ movl(rcx, invocation_counter);
 345     __ incrementl(rcx, InvocationCounter::count_increment);
 346     __ movl(invocation_counter, rcx); // save invocation count
 347 
 348     __ movl(rax, backedge_counter);   // load backedge counter
 349     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
 350 
 351     __ addl(rcx, rax);                // add both counters
 352 
 353     // profile_method is non-null only for interpreted method so
 354     // profile_method != NULL == !native_call
 355 
 356     if (ProfileInterpreter && profile_method != NULL) {
 357       // Test to see if we should create a method data oop
 358       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
 359       __ jcc(Assembler::less, *profile_method_continue);
 360 
 361       // if no method data exists, go to profile_method
 362       __ test_method_data_pointer(rax, *profile_method);
 363     }
 364 
 365     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 366     __ jcc(Assembler::aboveEqual, *overflow);
 367     __ bind(done);
 368   }
 369 }
 370 
 371 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 372 
 373   // Asm interpreter on entry
 374   // r14 - locals
 375   // r13 - bcp
 376   // rbx - method
 377   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
 378   // rbp - interpreter frame
 379 
 380   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 381   // Everything as it was on entry
 382   // rdx is not restored. Doesn't appear to really be set.
 383 
 384   // InterpreterRuntime::frequency_counter_overflow takes two
 385   // arguments, the first (thread) is passed by call_VM, the second
 386   // indicates if the counter overflow occurs at a backwards branch
 387   // (NULL bcp).  We pass zero for it.  The call returns the address
 388   // of the verified entry point for the method or NULL if the
 389   // compilation did not complete (either went background or bailed
 390   // out).
 391   __ movl(c_rarg1, 0);
 392   __ call_VM(noreg,
 393              CAST_FROM_FN_PTR(address,
 394                               InterpreterRuntime::frequency_counter_overflow),
 395              c_rarg1);
 396 
 397   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
 398   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
 399   // and jump to the interpreted entry.
 400   __ jmp(*do_continue, relocInfo::none);
 401 }
 402 
 403 // See if we've got enough room on the stack for locals plus overhead.
 404 // The expression stack grows down incrementally, so the normal guard
 405 // page mechanism will work for that.
 406 //
 407 // NOTE: Since the additional locals are also always pushed (wasn't
 408 // obvious in generate_method_entry) so the guard should work for them
 409 // too.
 410 //
 411 // Args:
 412 //      rdx: number of additional locals this frame needs (what we must check)
 413 //      rbx: Method*
 414 //
 415 // Kills:
 416 //      rax
 417 void InterpreterGenerator::generate_stack_overflow_check(void) {
 418 
 419   // monitor entry size: see picture of stack set
 420   // (generate_method_entry) and frame_amd64.hpp
 421   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 422 
 423   // total overhead size: entry_size + (saved rbp through expr stack
 424   // bottom).  be sure to change this if you add/subtract anything
 425   // to/from the overhead area
 426   const int overhead_size =
 427     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 428 
 429   const int page_size = os::vm_page_size();
 430 
 431   Label after_frame_check;
 432 
 433   // see if the frame is greater than one page in size. If so,
 434   // then we need to verify there is enough stack space remaining
 435   // for the additional locals.
 436   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
 437   __ jcc(Assembler::belowEqual, after_frame_check);
 438 
 439   // compute rsp as if this were going to be the last frame on
 440   // the stack before the red zone
 441 
 442   const Address stack_base(r15_thread, Thread::stack_base_offset());
 443   const Address stack_size(r15_thread, Thread::stack_size_offset());
 444 
 445   // locals + overhead, in bytes
 446   __ mov(rax, rdx);
 447   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
 448   __ addptr(rax, overhead_size);
 449 
 450 #ifdef ASSERT
 451   Label stack_base_okay, stack_size_okay;
 452   // verify that thread stack base is non-zero
 453   __ cmpptr(stack_base, (int32_t)NULL_WORD);
 454   __ jcc(Assembler::notEqual, stack_base_okay);
 455   __ stop("stack base is zero");
 456   __ bind(stack_base_okay);
 457   // verify that thread stack size is non-zero
 458   __ cmpptr(stack_size, 0);
 459   __ jcc(Assembler::notEqual, stack_size_okay);
 460   __ stop("stack size is zero");
 461   __ bind(stack_size_okay);
 462 #endif
 463 
 464   // Add stack base to locals and subtract stack size
 465   __ addptr(rax, stack_base);
 466   __ subptr(rax, stack_size);
 467 
 468   // Use the maximum number of pages we might bang.
 469   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 470                                                                               (StackRedPages+StackYellowPages);
 471 
 472   // add in the red and yellow zone sizes
 473   __ addptr(rax, max_pages * page_size);
 474 
 475   // check against the current stack bottom
 476   __ cmpptr(rsp, rax);
 477   __ jcc(Assembler::above, after_frame_check);
 478 
 479   // Restore sender's sp as SP. This is necessary if the sender's
 480   // frame is an extended compiled frame (see gen_c2i_adapter())
 481   // and safer anyway in case of JSR292 adaptations.
 482 
 483   __ pop(rax); // return address must be moved if SP is changed
 484   __ mov(rsp, r13);
 485   __ push(rax);
 486 
 487   // Note: the restored frame is not necessarily interpreted.
 488   // Use the shared runtime version of the StackOverflowError.
 489   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 490   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
 491 
 492   // all done with frame size check
 493   __ bind(after_frame_check);
 494 }
 495 
 496 // Allocate monitor and lock method (asm interpreter)
 497 //
 498 // Args:
 499 //      rbx: Method*
 500 //      r14: locals
 501 //
 502 // Kills:
 503 //      rax
 504 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 505 //      rscratch1, rscratch2 (scratch regs)
 506 void InterpreterGenerator::lock_method(void) {
 507   // synchronize method
 508   const Address access_flags(rbx, Method::access_flags_offset());
 509   const Address monitor_block_top(
 510         rbp,
 511         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 512   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 513 
 514 #ifdef ASSERT
 515   {
 516     Label L;
 517     __ movl(rax, access_flags);
 518     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 519     __ jcc(Assembler::notZero, L);
 520     __ stop("method doesn't need synchronization");
 521     __ bind(L);
 522   }
 523 #endif // ASSERT
 524 
 525   // get synchronization object
 526   {
 527     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 528     Label done;
 529     __ movl(rax, access_flags);
 530     __ testl(rax, JVM_ACC_STATIC);
 531     // get receiver (assume this is frequent case)
 532     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
 533     __ jcc(Assembler::zero, done);
 534     __ movptr(rax, Address(rbx, Method::const_offset()));
 535     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
 536     __ movptr(rax, Address(rax,
 537                            ConstantPool::pool_holder_offset_in_bytes()));
 538     __ movptr(rax, Address(rax, mirror_offset));
 539 
 540 #ifdef ASSERT
 541     {
 542       Label L;
 543       __ testptr(rax, rax);
 544       __ jcc(Assembler::notZero, L);
 545       __ stop("synchronization object is NULL");
 546       __ bind(L);
 547     }
 548 #endif // ASSERT
 549 
 550     __ bind(done);
 551   }
 552 
 553   // add space for monitor & lock
 554   __ subptr(rsp, entry_size); // add space for a monitor entry
 555   __ movptr(monitor_block_top, rsp);  // set new monitor block top
 556   // store object
 557   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
 558   __ movptr(c_rarg1, rsp); // object address
 559   __ lock_object(c_rarg1);
 560 }
 561 
 562 // Generate a fixed interpreter frame. This is identical setup for
 563 // interpreted methods and for native methods hence the shared code.
 564 //
 565 // Args:
 566 //      rax: return address
 567 //      rbx: Method*
 568 //      r14: pointer to locals
 569 //      r13: sender sp
 570 //      rdx: cp cache
 571 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 572   // initialize fixed part of activation frame
 573   __ push(rax);        // save return address
 574   __ enter();          // save old & set new rbp
 575   __ push(r13);        // set sender sp
 576   __ push((int)NULL_WORD); // leave last_sp as null
 577   __ movptr(r13, Address(rbx, Method::const_offset()));      // get ConstMethod*
 578   __ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
 579   __ push(rbx);        // save Method*
 580   if (ProfileInterpreter) {
 581     Label method_data_continue;
 582     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
 583     __ testptr(rdx, rdx);
 584     __ jcc(Assembler::zero, method_data_continue);
 585     __ addptr(rdx, in_bytes(MethodData::data_offset()));
 586     __ bind(method_data_continue);
 587     __ push(rdx);      // set the mdp (method data pointer)
 588   } else {
 589     __ push(0);
 590   }
 591 
 592   __ movptr(rdx, Address(rbx, Method::const_offset()));
 593   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
 594   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
 595   __ push(rdx); // set constant pool cache
 596   __ push(r14); // set locals pointer
 597   if (native_call) {
 598     __ push(0); // no bcp
 599   } else {
 600     __ push(r13); // set bcp
 601   }
 602   __ push(0); // reserve word for pointer to expression stack bottom
 603   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
 604 }
 605 
 606 // End of helpers
 607 
 608 // Various method entries
 609 //------------------------------------------------------------------------------------------------------------------------
 610 //
 611 //
 612 
 613 // Call an accessor method (assuming it is resolved, otherwise drop
 614 // into vanilla (slow path) entry
 615 address InterpreterGenerator::generate_accessor_entry(void) {
 616   // rbx: Method*
 617 
 618   // r13: senderSP must preserver for slow path, set SP to it on fast path
 619 
 620   address entry_point = __ pc();
 621   Label xreturn_path;
 622 
 623   // do fastpath for resolved accessor methods
 624   if (UseFastAccessorMethods) {
 625     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
 626     //       thereof; parameter size = 1
 627     // Note: We can only use this code if the getfield has been resolved
 628     //       and if we don't have a null-pointer exception => check for
 629     //       these conditions first and use slow path if necessary.
 630     Label slow_path;
 631     // If we need a safepoint check, generate full interpreter entry.
 632     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 633              SafepointSynchronize::_not_synchronized);
 634 
 635     __ jcc(Assembler::notEqual, slow_path);
 636     // rbx: method
 637     __ movptr(rax, Address(rsp, wordSize));
 638 
 639     // check if local 0 != NULL and read field
 640     __ testptr(rax, rax);
 641     __ jcc(Assembler::zero, slow_path);
 642 
 643     // read first instruction word and extract bytecode @ 1 and index @ 2
 644     __ movptr(rdx, Address(rbx, Method::const_offset()));
 645     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
 646     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
 647     // Shift codes right to get the index on the right.
 648     // The bytecode fetched looks like <index><0xb4><0x2a>
 649     __ shrl(rdx, 2 * BitsPerByte);
 650     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
 651     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
 652 
 653     // rax: local 0
 654     // rbx: method
 655     // rdx: constant pool cache index
 656     // rdi: constant pool cache
 657 
 658     // check if getfield has been resolved and read constant pool cache entry
 659     // check the validity of the cache entry by testing whether _indices field
 660     // contains Bytecode::_getfield in b1 byte.
 661     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
 662            "adjust shift below");
 663     __ movl(rcx,
 664             Address(rdi,
 665                     rdx,
 666                     Address::times_8,
 667                     ConstantPoolCache::base_offset() +
 668                     ConstantPoolCacheEntry::indices_offset()));
 669     __ shrl(rcx, 2 * BitsPerByte);
 670     __ andl(rcx, 0xFF);
 671     __ cmpl(rcx, Bytecodes::_getfield);
 672     __ jcc(Assembler::notEqual, slow_path);
 673 
 674     // Note: constant pool entry is not valid before bytecode is resolved
 675     __ movptr(rcx,
 676               Address(rdi,
 677                       rdx,
 678                       Address::times_8,
 679                       ConstantPoolCache::base_offset() +
 680                       ConstantPoolCacheEntry::f2_offset()));
 681     // edx: flags
 682     __ movl(rdx,
 683             Address(rdi,
 684                     rdx,
 685                     Address::times_8,
 686                     ConstantPoolCache::base_offset() +
 687                     ConstantPoolCacheEntry::flags_offset()));
 688 
 689     Label notObj, notInt, notByte, notShort;
 690     const Address field_address(rax, rcx, Address::times_1);
 691 
 692     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 693     // because they are different sizes.
 694     // Use the type from the constant pool cache
 695     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
 696     // Make sure we don't need to mask edx after the above shift
 697     ConstantPoolCacheEntry::verify_tos_state_shift();
 698 
 699     __ cmpl(rdx, atos);
 700     __ jcc(Assembler::notEqual, notObj);
 701     // atos
 702     __ load_heap_oop(rax, field_address);
 703     __ jmp(xreturn_path);
 704 
 705     __ bind(notObj);
 706     __ cmpl(rdx, itos);
 707     __ jcc(Assembler::notEqual, notInt);
 708     // itos
 709     __ movl(rax, field_address);
 710     __ jmp(xreturn_path);
 711 
 712     __ bind(notInt);
 713     __ cmpl(rdx, btos);
 714     __ jcc(Assembler::notEqual, notByte);
 715     // btos
 716     __ load_signed_byte(rax, field_address);
 717     __ jmp(xreturn_path);
 718 
 719     __ bind(notByte);
 720     __ cmpl(rdx, stos);
 721     __ jcc(Assembler::notEqual, notShort);
 722     // stos
 723     __ load_signed_short(rax, field_address);
 724     __ jmp(xreturn_path);
 725 
 726     __ bind(notShort);
 727 #ifdef ASSERT
 728     Label okay;
 729     __ cmpl(rdx, ctos);
 730     __ jcc(Assembler::equal, okay);
 731     __ stop("what type is this?");
 732     __ bind(okay);
 733 #endif
 734     // ctos
 735     __ load_unsigned_short(rax, field_address);
 736 
 737     __ bind(xreturn_path);
 738 
 739     // _ireturn/_areturn
 740     __ pop(rdi);
 741     __ mov(rsp, r13);
 742     __ jmp(rdi);
 743     __ ret(0);
 744 
 745     // generate a vanilla interpreter entry as the slow path
 746     __ bind(slow_path);
 747     (void) generate_normal_entry(false);
 748   } else {
 749     (void) generate_normal_entry(false);
 750   }
 751 
 752   return entry_point;
 753 }
 754 
 755 // Method entry for java.lang.ref.Reference.get.
 756 address InterpreterGenerator::generate_Reference_get_entry(void) {
 757 #if INCLUDE_ALL_GCS
 758   // Code: _aload_0, _getfield, _areturn
 759   // parameter size = 1
 760   //
 761   // The code that gets generated by this routine is split into 2 parts:
 762   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 763   //    2. The slow path - which is an expansion of the regular method entry.
 764   //
 765   // Notes:-
 766   // * In the G1 code we do not check whether we need to block for
 767   //   a safepoint. If G1 is enabled then we must execute the specialized
 768   //   code for Reference.get (except when the Reference object is null)
 769   //   so that we can log the value in the referent field with an SATB
 770   //   update buffer.
 771   //   If the code for the getfield template is modified so that the
 772   //   G1 pre-barrier code is executed when the current method is
 773   //   Reference.get() then going through the normal method entry
 774   //   will be fine.
 775   // * The G1 code can, however, check the receiver object (the instance
 776   //   of java.lang.Reference) and jump to the slow path if null. If the
 777   //   Reference object is null then we obviously cannot fetch the referent
 778   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 779   //   regular method entry code to generate the NPE.
 780   //
 781   // This code is based on generate_accessor_enty.
 782   //
 783   // rbx: Method*
 784 
 785   // r13: senderSP must preserve for slow path, set SP to it on fast path
 786 
 787   address entry = __ pc();
 788 
 789   const int referent_offset = java_lang_ref_Reference::referent_offset;
 790   guarantee(referent_offset > 0, "referent offset not initialized");
 791 
 792   if (UseG1GC) {
 793     Label slow_path;
 794     // rbx: method
 795 
 796     // Check if local 0 != NULL
 797     // If the receiver is null then it is OK to jump to the slow path.
 798     __ movptr(rax, Address(rsp, wordSize));
 799 
 800     __ testptr(rax, rax);
 801     __ jcc(Assembler::zero, slow_path);
 802 
 803     // rax: local 0
 804     // rbx: method (but can be used as scratch now)
 805     // rdx: scratch
 806     // rdi: scratch
 807 
 808     // Generate the G1 pre-barrier code to log the value of
 809     // the referent field in an SATB buffer.
 810 
 811     // Load the value of the referent field.
 812     const Address field_address(rax, referent_offset);
 813     __ load_heap_oop(rax, field_address);
 814 
 815     // Generate the G1 pre-barrier code to log the value of
 816     // the referent field in an SATB buffer.
 817     __ g1_write_barrier_pre(noreg /* obj */,
 818                             rax /* pre_val */,
 819                             r15_thread /* thread */,
 820                             rbx /* tmp */,
 821                             true /* tosca_live */,
 822                             true /* expand_call */);
 823 
 824     // _areturn
 825     __ pop(rdi);                // get return address
 826     __ mov(rsp, r13);           // set sp to sender sp
 827     __ jmp(rdi);
 828     __ ret(0);
 829 
 830     // generate a vanilla interpreter entry as the slow path
 831     __ bind(slow_path);
 832     (void) generate_normal_entry(false);
 833 
 834     return entry;
 835   }
 836 #endif // INCLUDE_ALL_GCS
 837 
 838   // If G1 is not enabled then attempt to go through the accessor entry point
 839   // Reference.get is an accessor
 840   return generate_accessor_entry();
 841 }
 842 
 843 /**
 844  * Method entry for static native methods:
 845  *   int java.util.zip.CRC32.update(int crc, int b)
 846  */
 847 address InterpreterGenerator::generate_CRC32_update_entry() {
 848   if (UseCRC32Intrinsics) {
 849     address entry = __ pc();
 850 
 851     // rbx,: Method*
 852     // r13: senderSP must preserved for slow path, set SP to it on fast path
 853     // c_rarg0: scratch (rdi on non-Win64, rcx on Win64)
 854     // c_rarg1: scratch (rsi on non-Win64, rdx on Win64)
 855 
 856     Label slow_path;
 857     // If we need a safepoint check, generate full interpreter entry.
 858     ExternalAddress state(SafepointSynchronize::address_of_state());
 859     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 860              SafepointSynchronize::_not_synchronized);
 861     __ jcc(Assembler::notEqual, slow_path);
 862 
 863     // We don't generate local frame and don't align stack because
 864     // we call stub code and there is no safepoint on this path.
 865 
 866     // Load parameters
 867     const Register crc = rax;  // crc
 868     const Register val = c_rarg0;  // source java byte value
 869     const Register tbl = c_rarg1;  // scratch
 870 
 871     // Arguments are reversed on java expression stack
 872     __ movl(val, Address(rsp,   wordSize)); // byte value
 873     __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC
 874 
 875     __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
 876     __ notl(crc); // ~crc
 877     __ update_byte_crc32(crc, val, tbl);
 878     __ notl(crc); // ~crc
 879     // result in rax
 880 
 881     // _areturn
 882     __ pop(rdi);                // get return address
 883     __ mov(rsp, r13);           // set sp to sender sp
 884     __ jmp(rdi);
 885 
 886     // generate a vanilla native entry as the slow path
 887     __ bind(slow_path);
 888 
 889     (void) generate_native_entry(false);
 890 
 891     return entry;
 892   }
 893   return generate_native_entry(false);
 894 }
 895 
 896 /**
 897  * Method entry for static native methods:
 898  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
 899  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
 900  */
 901 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
 902   if (UseCRC32Intrinsics) {
 903     address entry = __ pc();
 904 
 905     // rbx,: Method*
 906     // r13: senderSP must preserved for slow path, set SP to it on fast path
 907 
 908     Label slow_path;
 909     // If we need a safepoint check, generate full interpreter entry.
 910     ExternalAddress state(SafepointSynchronize::address_of_state());
 911     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 912              SafepointSynchronize::_not_synchronized);
 913     __ jcc(Assembler::notEqual, slow_path);
 914 
 915     // We don't generate local frame and don't align stack because
 916     // we call stub code and there is no safepoint on this path.
 917 
 918     // Load parameters
 919     const Register crc = c_rarg0;  // crc
 920     const Register buf = c_rarg1;  // source java byte array address
 921     const Register len = c_rarg2;  // length
 922     const Register off = len;      // offset (never overlaps with 'len')
 923 
 924     // Arguments are reversed on java expression stack
 925     // Calculate address of start element
 926     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
 927       __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
 928       __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
 929       __ addq(buf, off); // + offset
 930       __ movl(crc,   Address(rsp, 5*wordSize)); // Initial CRC
 931     } else {
 932       __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
 933       __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
 934       __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
 935       __ addq(buf, off); // + offset
 936       __ movl(crc,   Address(rsp, 4*wordSize)); // Initial CRC
 937     }
 938     // Can now load 'len' since we're finished with 'off'
 939     __ movl(len, Address(rsp, wordSize)); // Length
 940 
 941     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
 942     // result in rax
 943 
 944     // _areturn
 945     __ pop(rdi);                // get return address
 946     __ mov(rsp, r13);           // set sp to sender sp
 947     __ jmp(rdi);
 948 
 949     // generate a vanilla native entry as the slow path
 950     __ bind(slow_path);
 951 
 952     (void) generate_native_entry(false);
 953 
 954     return entry;
 955   }
 956   return generate_native_entry(false);
 957 }
 958 
 959 // Interpreter stub for calling a native method. (asm interpreter)
 960 // This sets up a somewhat different looking stack for calling the
 961 // native method than the typical interpreter frame setup.
 962 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 963   // determine code generation flags
 964   bool inc_counter  = UseCompiler || CountCompiledCalls;
 965 
 966   // rbx: Method*
 967   // r13: sender sp
 968 
 969   address entry_point = __ pc();
 970 
 971   const Address constMethod       (rbx, Method::const_offset());
 972   const Address access_flags      (rbx, Method::access_flags_offset());
 973   const Address size_of_parameters(rcx, ConstMethod::
 974                                         size_of_parameters_offset());
 975 
 976 
 977   // get parameter size (always needed)
 978   __ movptr(rcx, constMethod);
 979   __ load_unsigned_short(rcx, size_of_parameters);
 980 
 981   // native calls don't need the stack size check since they have no
 982   // expression stack and the arguments are already on the stack and
 983   // we only add a handful of words to the stack
 984 
 985   // rbx: Method*
 986   // rcx: size of parameters
 987   // r13: sender sp
 988   __ pop(rax);                                       // get return address
 989 
 990   // for natives the size of locals is zero
 991 
 992   // compute beginning of parameters (r14)
 993   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
 994 
 995   // add 2 zero-initialized slots for native calls
 996   // initialize result_handler slot
 997   __ push((int) NULL_WORD);
 998   // slot for oop temp
 999   // (static native method holder mirror/jni oop result)
1000   __ push((int) NULL_WORD);
1001 
1002   // initialize fixed part of activation frame
1003   generate_fixed_frame(true);
1004 
1005   // make sure method is native & not abstract
1006 #ifdef ASSERT
1007   __ movl(rax, access_flags);
1008   {
1009     Label L;
1010     __ testl(rax, JVM_ACC_NATIVE);
1011     __ jcc(Assembler::notZero, L);
1012     __ stop("tried to execute non-native method as native");
1013     __ bind(L);
1014   }
1015   {
1016     Label L;
1017     __ testl(rax, JVM_ACC_ABSTRACT);
1018     __ jcc(Assembler::zero, L);
1019     __ stop("tried to execute abstract method in interpreter");
1020     __ bind(L);
1021   }
1022 #endif
1023 
1024   // Since at this point in the method invocation the exception handler
1025   // would try to exit the monitor of synchronized methods which hasn't
1026   // been entered yet, we set the thread local variable
1027   // _do_not_unlock_if_synchronized to true. The remove_activation will
1028   // check this flag.
1029 
1030   const Address do_not_unlock_if_synchronized(r15_thread,
1031         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1032   __ movbool(do_not_unlock_if_synchronized, true);
1033 
1034   // increment invocation count & check for overflow
1035   Label invocation_counter_overflow;
1036   if (inc_counter) {
1037     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1038   }
1039 
1040   Label continue_after_compile;
1041   __ bind(continue_after_compile);
1042 
1043   bang_stack_shadow_pages(true);
1044 
1045   // reset the _do_not_unlock_if_synchronized flag
1046   __ movbool(do_not_unlock_if_synchronized, false);
1047 
1048   // check for synchronized methods
1049   // Must happen AFTER invocation_counter check and stack overflow check,
1050   // so method is not locked if overflows.
1051   if (synchronized) {
1052     lock_method();
1053   } else {
1054     // no synchronization necessary
1055 #ifdef ASSERT
1056     {
1057       Label L;
1058       __ movl(rax, access_flags);
1059       __ testl(rax, JVM_ACC_SYNCHRONIZED);
1060       __ jcc(Assembler::zero, L);
1061       __ stop("method needs synchronization");
1062       __ bind(L);
1063     }
1064 #endif
1065   }
1066 
1067   // start execution
1068 #ifdef ASSERT
1069   {
1070     Label L;
1071     const Address monitor_block_top(rbp,
1072                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1073     __ movptr(rax, monitor_block_top);
1074     __ cmpptr(rax, rsp);
1075     __ jcc(Assembler::equal, L);
1076     __ stop("broken stack frame setup in interpreter");
1077     __ bind(L);
1078   }
1079 #endif
1080 
1081   // jvmti support
1082   __ notify_method_entry();
1083 
1084   // work registers
1085   const Register method = rbx;
1086   const Register t      = r11;
1087 
1088   // allocate space for parameters
1089   __ get_method(method);
1090   __ movptr(t, Address(method, Method::const_offset()));
1091   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1092   __ shll(t, Interpreter::logStackElementSize);
1093 
1094   __ subptr(rsp, t);
1095   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1096   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
1097 
1098   // get signature handler
1099   {
1100     Label L;
1101     __ movptr(t, Address(method, Method::signature_handler_offset()));
1102     __ testptr(t, t);
1103     __ jcc(Assembler::notZero, L);
1104     __ call_VM(noreg,
1105                CAST_FROM_FN_PTR(address,
1106                                 InterpreterRuntime::prepare_native_call),
1107                method);
1108     __ get_method(method);
1109     __ movptr(t, Address(method, Method::signature_handler_offset()));
1110     __ bind(L);
1111   }
1112 
1113   // call signature handler
1114   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
1115          "adjust this code");
1116   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
1117          "adjust this code");
1118   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1119           "adjust this code");
1120 
1121   // The generated handlers do not touch RBX (the method oop).
1122   // However, large signatures cannot be cached and are generated
1123   // each time here.  The slow-path generator can do a GC on return,
1124   // so we must reload it after the call.
1125   __ call(t);
1126   __ get_method(method);        // slow path can do a GC, reload RBX
1127 
1128 
1129   // result handler is in rax
1130   // set result handler
1131   __ movptr(Address(rbp,
1132                     (frame::interpreter_frame_result_handler_offset) * wordSize),
1133             rax);
1134 
1135   // pass mirror handle if static call
1136   {
1137     Label L;
1138     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1139     __ movl(t, Address(method, Method::access_flags_offset()));
1140     __ testl(t, JVM_ACC_STATIC);
1141     __ jcc(Assembler::zero, L);
1142     // get mirror
1143     __ movptr(t, Address(method, Method::const_offset()));
1144     __ movptr(t, Address(t, ConstMethod::constants_offset()));
1145     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
1146     __ movptr(t, Address(t, mirror_offset));
1147     // copy mirror into activation frame
1148     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
1149             t);
1150     // pass handle to mirror
1151     __ lea(c_rarg1,
1152            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
1153     __ bind(L);
1154   }
1155 
1156   // get native function entry point
1157   {
1158     Label L;
1159     __ movptr(rax, Address(method, Method::native_function_offset()));
1160     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1161     __ movptr(rscratch2, unsatisfied.addr());
1162     __ cmpptr(rax, rscratch2);
1163     __ jcc(Assembler::notEqual, L);
1164     __ call_VM(noreg,
1165                CAST_FROM_FN_PTR(address,
1166                                 InterpreterRuntime::prepare_native_call),
1167                method);
1168     __ get_method(method);
1169     __ movptr(rax, Address(method, Method::native_function_offset()));
1170     __ bind(L);
1171   }
1172 
1173   // pass JNIEnv
1174   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
1175 
1176   // It is enough that the pc() points into the right code
1177   // segment. It does not have to be the correct return pc.
1178   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
1179 
1180   // change thread state
1181 #ifdef ASSERT
1182   {
1183     Label L;
1184     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
1185     __ cmpl(t, _thread_in_Java);
1186     __ jcc(Assembler::equal, L);
1187     __ stop("Wrong thread state in native stub");
1188     __ bind(L);
1189   }
1190 #endif
1191 
1192   // Change state to native
1193 
1194   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
1195           _thread_in_native);
1196 
1197   // Call the native method.
1198   __ call(rax);
1199   // result potentially in rax or xmm0
1200 
1201   // Verify or restore cpu control state after JNI call
1202   __ restore_cpu_control_state_after_jni();
1203 
1204   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1205   // in order to extract the result of a method call. If the order of these
1206   // pushes change or anything else is added to the stack then the code in
1207   // interpreter_frame_result must also change.
1208 
1209   __ push(dtos);
1210   __ push(ltos);
1211 
1212   // change thread state
1213   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
1214           _thread_in_native_trans);
1215 
1216   if (os::is_MP()) {
1217     if (UseMembar) {
1218       // Force this write out before the read below
1219       __ membar(Assembler::Membar_mask_bits(
1220            Assembler::LoadLoad | Assembler::LoadStore |
1221            Assembler::StoreLoad | Assembler::StoreStore));
1222     } else {
1223       // Write serialization page so VM thread can do a pseudo remote membar.
1224       // We use the current thread pointer to calculate a thread specific
1225       // offset to write to within the page. This minimizes bus traffic
1226       // due to cache line collision.
1227       __ serialize_memory(r15_thread, rscratch2);
1228     }
1229   }
1230 
1231   // check for safepoint operation in progress and/or pending suspend requests
1232   {
1233     Label Continue;
1234     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1235              SafepointSynchronize::_not_synchronized);
1236 
1237     Label L;
1238     __ jcc(Assembler::notEqual, L);
1239     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
1240     __ jcc(Assembler::equal, Continue);
1241     __ bind(L);
1242 
1243     // Don't use call_VM as it will see a possible pending exception
1244     // and forward it and never return here preventing us from
1245     // clearing _last_native_pc down below.  Also can't use
1246     // call_VM_leaf either as it will check to see if r13 & r14 are
1247     // preserved and correspond to the bcp/locals pointers. So we do a
1248     // runtime call by hand.
1249     //
1250     __ mov(c_rarg0, r15_thread);
1251     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1252     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1253     __ andptr(rsp, -16); // align stack as required by ABI
1254     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1255     __ mov(rsp, r12); // restore sp
1256     __ reinit_heapbase();
1257     __ bind(Continue);
1258   }
1259 
1260   // change thread state
1261   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
1262 
1263   // reset_last_Java_frame
1264   __ reset_last_Java_frame(true, true);
1265 
1266   // reset handle block
1267   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
1268   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1269 
1270   // If result is an oop unbox and store it in frame where gc will see it
1271   // and result handler will pick it up
1272 
1273   {
1274     Label no_oop, store_result;
1275     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1276     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
1277     __ jcc(Assembler::notEqual, no_oop);
1278     // retrieve result
1279     __ pop(ltos);
1280     __ testptr(rax, rax);
1281     __ jcc(Assembler::zero, store_result);
1282     __ movptr(rax, Address(rax, 0));
1283     __ bind(store_result);
1284     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
1285     // keep stack depth as expected by pushing oop which will eventually be discarde
1286     __ push(ltos);
1287     __ bind(no_oop);
1288   }
1289 
1290 
1291   {
1292     Label no_reguard;
1293     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
1294             JavaThread::stack_guard_yellow_disabled);
1295     __ jcc(Assembler::notEqual, no_reguard);
1296 
1297     __ pusha(); // XXX only save smashed registers
1298     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1299     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1300     __ andptr(rsp, -16); // align stack as required by ABI
1301     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1302     __ mov(rsp, r12); // restore sp
1303     __ popa(); // XXX only restore smashed registers
1304     __ reinit_heapbase();
1305 
1306     __ bind(no_reguard);
1307   }
1308 
1309 
1310   // The method register is junk from after the thread_in_native transition
1311   // until here.  Also can't call_VM until the bcp has been
1312   // restored.  Need bcp for throwing exception below so get it now.
1313   __ get_method(method);
1314 
1315   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
1316   // r13 == code_base()
1317   __ movptr(r13, Address(method, Method::const_offset()));   // get ConstMethod*
1318   __ lea(r13, Address(r13, ConstMethod::codes_offset()));    // get codebase
1319   // handle exceptions (exception handling will handle unlocking!)
1320   {
1321     Label L;
1322     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
1323     __ jcc(Assembler::zero, L);
1324     // Note: At some point we may want to unify this with the code
1325     // used in call_VM_base(); i.e., we should use the
1326     // StubRoutines::forward_exception code. For now this doesn't work
1327     // here because the rsp is not correctly set at this point.
1328     __ MacroAssembler::call_VM(noreg,
1329                                CAST_FROM_FN_PTR(address,
1330                                InterpreterRuntime::throw_pending_exception));
1331     __ should_not_reach_here();
1332     __ bind(L);
1333   }
1334 
1335   // do unlocking if necessary
1336   {
1337     Label L;
1338     __ movl(t, Address(method, Method::access_flags_offset()));
1339     __ testl(t, JVM_ACC_SYNCHRONIZED);
1340     __ jcc(Assembler::zero, L);
1341     // the code below should be shared with interpreter macro
1342     // assembler implementation
1343     {
1344       Label unlock;
1345       // BasicObjectLock will be first in list, since this is a
1346       // synchronized method. However, need to check that the object
1347       // has not been unlocked by an explicit monitorexit bytecode.
1348       const Address monitor(rbp,
1349                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1350                                        wordSize - sizeof(BasicObjectLock)));
1351 
1352       // monitor expect in c_rarg1 for slow unlock path
1353       __ lea(c_rarg1, monitor); // address of first monitor
1354 
1355       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1356       __ testptr(t, t);
1357       __ jcc(Assembler::notZero, unlock);
1358 
1359       // Entry already unlocked, need to throw exception
1360       __ MacroAssembler::call_VM(noreg,
1361                                  CAST_FROM_FN_PTR(address,
1362                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1363       __ should_not_reach_here();
1364 
1365       __ bind(unlock);
1366       __ unlock_object(c_rarg1);
1367     }
1368     __ bind(L);
1369   }
1370 
1371   // jvmti support
1372   // Note: This must happen _after_ handling/throwing any exceptions since
1373   //       the exception handler code notifies the runtime of method exits
1374   //       too. If this happens before, method entry/exit notifications are
1375   //       not properly paired (was bug - gri 11/22/99).
1376   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1377 
1378   // restore potential result in edx:eax, call result handler to
1379   // restore potential result in ST0 & handle result
1380 
1381   __ pop(ltos);
1382   __ pop(dtos);
1383 
1384   __ movptr(t, Address(rbp,
1385                        (frame::interpreter_frame_result_handler_offset) * wordSize));
1386   __ call(t);
1387 
1388   // remove activation
1389   __ movptr(t, Address(rbp,
1390                        frame::interpreter_frame_sender_sp_offset *
1391                        wordSize)); // get sender sp
1392   __ leave();                                // remove frame anchor
1393   __ pop(rdi);                               // get return address
1394   __ mov(rsp, t);                            // set sp to sender sp
1395   __ jmp(rdi);
1396 
1397   if (inc_counter) {
1398     // Handle overflow of counter and compile method
1399     __ bind(invocation_counter_overflow);
1400     generate_counter_overflow(&continue_after_compile);
1401   }
1402 
1403   return entry_point;
1404 }
1405 
1406 //
1407 // Generic interpreted method entry to (asm) interpreter
1408 //
1409 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1410   // determine code generation flags
1411   bool inc_counter  = UseCompiler || CountCompiledCalls;
1412 
1413   // ebx: Method*
1414   // r13: sender sp
1415   address entry_point = __ pc();
1416 
1417   const Address constMethod(rbx, Method::const_offset());
1418   const Address access_flags(rbx, Method::access_flags_offset());
1419   const Address size_of_parameters(rdx,
1420                                    ConstMethod::size_of_parameters_offset());
1421   const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset());
1422 
1423 
1424   // get parameter size (always needed)
1425   __ movptr(rdx, constMethod);
1426   __ load_unsigned_short(rcx, size_of_parameters);
1427 
1428   // rbx: Method*
1429   // rcx: size of parameters
1430   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
1431 
1432   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
1433   __ subl(rdx, rcx); // rdx = no. of additional locals
1434 
1435   // YYY
1436 //   __ incrementl(rdx);
1437 //   __ andl(rdx, -2);
1438 
1439   // see if we've got enough room on the stack for locals plus overhead.
1440   generate_stack_overflow_check();
1441 
1442   // get return address
1443   __ pop(rax);
1444 
1445   // compute beginning of parameters (r14)
1446   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
1447 
1448   // rdx - # of additional locals
1449   // allocate space for locals
1450   // explicitly initialize locals
1451   {
1452     Label exit, loop;
1453     __ testl(rdx, rdx);
1454     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
1455     __ bind(loop);
1456     __ push((int) NULL_WORD); // initialize local variables
1457     __ decrementl(rdx); // until everything initialized
1458     __ jcc(Assembler::greater, loop);
1459     __ bind(exit);
1460   }
1461 
1462   // initialize fixed part of activation frame
1463   generate_fixed_frame(false);
1464 
1465   // make sure method is not native & not abstract
1466 #ifdef ASSERT
1467   __ movl(rax, access_flags);
1468   {
1469     Label L;
1470     __ testl(rax, JVM_ACC_NATIVE);
1471     __ jcc(Assembler::zero, L);
1472     __ stop("tried to execute native method as non-native");
1473     __ bind(L);
1474   }
1475   {
1476     Label L;
1477     __ testl(rax, JVM_ACC_ABSTRACT);
1478     __ jcc(Assembler::zero, L);
1479     __ stop("tried to execute abstract method in interpreter");
1480     __ bind(L);
1481   }
1482 #endif
1483 
1484   // Since at this point in the method invocation the exception
1485   // handler would try to exit the monitor of synchronized methods
1486   // which hasn't been entered yet, we set the thread local variable
1487   // _do_not_unlock_if_synchronized to true. The remove_activation
1488   // will check this flag.
1489 
1490   const Address do_not_unlock_if_synchronized(r15_thread,
1491         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1492   __ movbool(do_not_unlock_if_synchronized, true);
1493 
1494   // increment invocation count & check for overflow
1495   Label invocation_counter_overflow;
1496   Label profile_method;
1497   Label profile_method_continue;
1498   if (inc_counter) {
1499     generate_counter_incr(&invocation_counter_overflow,
1500                           &profile_method,
1501                           &profile_method_continue);
1502     if (ProfileInterpreter) {
1503       __ bind(profile_method_continue);
1504     }
1505   }
1506 
1507   Label continue_after_compile;
1508   __ bind(continue_after_compile);
1509 
1510   // check for synchronized interpreted methods
1511   bang_stack_shadow_pages(false);
1512 
1513   // reset the _do_not_unlock_if_synchronized flag
1514   __ movbool(do_not_unlock_if_synchronized, false);
1515 
1516   // check for synchronized methods
1517   // Must happen AFTER invocation_counter check and stack overflow check,
1518   // so method is not locked if overflows.
1519   if (synchronized) {
1520     // Allocate monitor and lock method
1521     lock_method();
1522   } else {
1523     // no synchronization necessary
1524 #ifdef ASSERT
1525     {
1526       Label L;
1527       __ movl(rax, access_flags);
1528       __ testl(rax, JVM_ACC_SYNCHRONIZED);
1529       __ jcc(Assembler::zero, L);
1530       __ stop("method needs synchronization");
1531       __ bind(L);
1532     }
1533 #endif
1534   }
1535 
1536   // start execution
1537 #ifdef ASSERT
1538   {
1539     Label L;
1540      const Address monitor_block_top (rbp,
1541                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1542     __ movptr(rax, monitor_block_top);
1543     __ cmpptr(rax, rsp);
1544     __ jcc(Assembler::equal, L);
1545     __ stop("broken stack frame setup in interpreter");
1546     __ bind(L);
1547   }
1548 #endif
1549 
1550   // jvmti support
1551   __ notify_method_entry();
1552 
1553   __ dispatch_next(vtos);
1554 
1555   // invocation counter overflow
1556   if (inc_counter) {
1557     if (ProfileInterpreter) {
1558       // We have decided to profile this method in the interpreter
1559       __ bind(profile_method);
1560       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1561       __ set_method_data_pointer_for_bcp();
1562       __ get_method(rbx);
1563       __ jmp(profile_method_continue);
1564     }
1565     // Handle overflow of counter and compile method
1566     __ bind(invocation_counter_overflow);
1567     generate_counter_overflow(&continue_after_compile);
1568   }
1569 
1570   return entry_point;
1571 }
1572 
1573 // Entry points
1574 //
1575 // Here we generate the various kind of entries into the interpreter.
1576 // The two main entry type are generic bytecode methods and native
1577 // call method.  These both come in synchronized and non-synchronized
1578 // versions but the frame layout they create is very similar. The
1579 // other method entry types are really just special purpose entries
1580 // that are really entry and interpretation all in one. These are for
1581 // trivial methods like accessor, empty, or special math methods.
1582 //
1583 // When control flow reaches any of the entry types for the interpreter
1584 // the following holds ->
1585 //
1586 // Arguments:
1587 //
1588 // rbx: Method*
1589 //
1590 // Stack layout immediately at entry
1591 //
1592 // [ return address     ] <--- rsp
1593 // [ parameter n        ]
1594 //   ...
1595 // [ parameter 1        ]
1596 // [ expression stack   ] (caller's java expression stack)
1597 
1598 // Assuming that we don't go to one of the trivial specialized entries
1599 // the stack will look like below when we are ready to execute the
1600 // first bytecode (or call the native routine). The register usage
1601 // will be as the template based interpreter expects (see
1602 // interpreter_amd64.hpp).
1603 //
1604 // local variables follow incoming parameters immediately; i.e.
1605 // the return address is moved to the end of the locals).
1606 //
1607 // [ monitor entry      ] <--- rsp
1608 //   ...
1609 // [ monitor entry      ]
1610 // [ expr. stack bottom ]
1611 // [ saved r13          ]
1612 // [ current r14        ]
1613 // [ Method*            ]
1614 // [ saved ebp          ] <--- rbp
1615 // [ return address     ]
1616 // [ local variable m   ]
1617 //   ...
1618 // [ local variable 1   ]
1619 // [ parameter n        ]
1620 //   ...
1621 // [ parameter 1        ] <--- r14
1622 
1623 address AbstractInterpreterGenerator::generate_method_entry(
1624                                         AbstractInterpreter::MethodKind kind) {
1625   // determine code generation flags
1626   bool synchronized = false;
1627   address entry_point = NULL;
1628   InterpreterGenerator* ig_this = (InterpreterGenerator*)this;
1629 
1630   switch (kind) {
1631   case Interpreter::zerolocals             :                                                      break;
1632   case Interpreter::zerolocals_synchronized: synchronized = true;                                 break;
1633   case Interpreter::native                 : entry_point = ig_this->generate_native_entry(false); break;
1634   case Interpreter::native_synchronized    : entry_point = ig_this->generate_native_entry(true);  break;
1635   case Interpreter::empty                  : entry_point = ig_this->generate_empty_entry();       break;
1636   case Interpreter::accessor               : entry_point = ig_this->generate_accessor_entry();    break;
1637   case Interpreter::abstract               : entry_point = ig_this->generate_abstract_entry();    break;
1638 
1639   case Interpreter::java_lang_math_sin     : // fall thru
1640   case Interpreter::java_lang_math_cos     : // fall thru
1641   case Interpreter::java_lang_math_tan     : // fall thru
1642   case Interpreter::java_lang_math_abs     : // fall thru
1643   case Interpreter::java_lang_math_log     : // fall thru
1644   case Interpreter::java_lang_math_log10   : // fall thru
1645   case Interpreter::java_lang_math_sqrt    : // fall thru
1646   case Interpreter::java_lang_math_pow     : // fall thru
1647   case Interpreter::java_lang_math_exp     : entry_point = ig_this->generate_math_entry(kind);      break;
1648   case Interpreter::java_lang_ref_reference_get
1649                                            : entry_point = ig_this->generate_Reference_get_entry(); break;
1650   case Interpreter::java_util_zip_CRC32_update
1651                                            : entry_point = ig_this->generate_CRC32_update_entry();  break;
1652   case Interpreter::java_util_zip_CRC32_updateBytes
1653                                            : // fall thru
1654   case Interpreter::java_util_zip_CRC32_updateByteBuffer
1655                                            : entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break;
1656   default:
1657     fatal(err_msg("unexpected method kind: %d", kind));
1658     break;
1659   }
1660 
1661   if (entry_point) {
1662     return entry_point;
1663   }
1664 
1665   return ig_this->generate_normal_entry(synchronized);
1666 }
1667 
1668 // These should never be compiled since the interpreter will prefer
1669 // the compiled version to the intrinsic version.
1670 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1671   switch (method_kind(m)) {
1672     case Interpreter::java_lang_math_sin     : // fall thru
1673     case Interpreter::java_lang_math_cos     : // fall thru
1674     case Interpreter::java_lang_math_tan     : // fall thru
1675     case Interpreter::java_lang_math_abs     : // fall thru
1676     case Interpreter::java_lang_math_log     : // fall thru
1677     case Interpreter::java_lang_math_log10   : // fall thru
1678     case Interpreter::java_lang_math_sqrt    : // fall thru
1679     case Interpreter::java_lang_math_pow     : // fall thru
1680     case Interpreter::java_lang_math_exp     :
1681       return false;
1682     default:
1683       return true;
1684   }
1685 }
1686 
1687 // How much stack a method activation needs in words.
1688 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1689   const int entry_size = frame::interpreter_frame_monitor_size();
1690 
1691   // total overhead size: entry_size + (saved rbp thru expr stack
1692   // bottom).  be sure to change this if you add/subtract anything
1693   // to/from the overhead area
1694   const int overhead_size =
1695     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
1696 
1697   const int stub_code = frame::entry_frame_after_call_words;
1698   const int method_stack = (method->max_locals() + method->max_stack()) *
1699                            Interpreter::stackElementWords;
1700   return (overhead_size + method_stack + stub_code);
1701 }
1702 
1703 int AbstractInterpreter::layout_activation(Method* method,
1704                                            int tempcount,
1705                                            int popframe_extra_args,
1706                                            int moncount,
1707                                            int caller_actual_parameters,
1708                                            int callee_param_count,
1709                                            int callee_locals,
1710                                            frame* caller,
1711                                            frame* interpreter_frame,
1712                                            bool is_top_frame,
1713                                            bool is_bottom_frame) {
1714   // Note: This calculation must exactly parallel the frame setup
1715   // in AbstractInterpreterGenerator::generate_method_entry.
1716   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
1717   // The frame interpreter_frame, if not NULL, is guaranteed to be the
1718   // right size, as determined by a previous call to this method.
1719   // It is also guaranteed to be walkable even though it is in a skeletal state
1720 
1721   // fixed size of an interpreter frame:
1722   int max_locals = method->max_locals() * Interpreter::stackElementWords;
1723   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
1724                      Interpreter::stackElementWords;
1725 
1726   int overhead = frame::sender_sp_offset -
1727                  frame::interpreter_frame_initial_sp_offset;
1728   // Our locals were accounted for by the caller (or last_frame_adjust
1729   // on the transistion) Since the callee parameters already account
1730   // for the callee's params we only need to account for the extra
1731   // locals.
1732   int size = overhead +
1733          (callee_locals - callee_param_count)*Interpreter::stackElementWords +
1734          moncount * frame::interpreter_frame_monitor_size() +
1735          tempcount* Interpreter::stackElementWords + popframe_extra_args;
1736   if (interpreter_frame != NULL) {
1737 #ifdef ASSERT
1738     if (!EnableInvokeDynamic)
1739       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
1740       // Probably, since deoptimization doesn't work yet.
1741       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
1742     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
1743 #endif
1744 
1745     interpreter_frame->interpreter_frame_set_method(method);
1746     // NOTE the difference in using sender_sp and
1747     // interpreter_frame_sender_sp interpreter_frame_sender_sp is
1748     // the original sp of the caller (the unextended_sp) and
1749     // sender_sp is fp+16 XXX
1750     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
1751 
1752 #ifdef ASSERT
1753     if (caller->is_interpreted_frame()) {
1754       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
1755     }
1756 #endif
1757 
1758     interpreter_frame->interpreter_frame_set_locals(locals);
1759     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
1760     BasicObjectLock* monbot = montop - moncount;
1761     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
1762 
1763     // Set last_sp
1764     intptr_t*  esp = (intptr_t*) monbot -
1765                      tempcount*Interpreter::stackElementWords -
1766                      popframe_extra_args;
1767     interpreter_frame->interpreter_frame_set_last_sp(esp);
1768 
1769     // All frames but the initial (oldest) interpreter frame we fill in have
1770     // a value for sender_sp that allows walking the stack but isn't
1771     // truly correct. Correct the value here.
1772     if (extra_locals != 0 &&
1773         interpreter_frame->sender_sp() ==
1774         interpreter_frame->interpreter_frame_sender_sp()) {
1775       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
1776                                                          extra_locals);
1777     }
1778     *interpreter_frame->interpreter_frame_cache_addr() =
1779       method->constants()->cache();
1780   }
1781   return size;
1782 }
1783 
1784 //-----------------------------------------------------------------------------
1785 // Exceptions
1786 
1787 void TemplateInterpreterGenerator::generate_throw_exception() {
1788   // Entry point in previous activation (i.e., if the caller was
1789   // interpreted)
1790   Interpreter::_rethrow_exception_entry = __ pc();
1791   // Restore sp to interpreter_frame_last_sp even though we are going
1792   // to empty the expression stack for the exception processing.
1793   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
1794   // rax: exception
1795   // rdx: return address/pc that threw exception
1796   __ restore_bcp();    // r13 points to call/send
1797   __ restore_locals();
1798   __ reinit_heapbase();  // restore r12 as heapbase.
1799   // Entry point for exceptions thrown within interpreter code
1800   Interpreter::_throw_exception_entry = __ pc();
1801   // expression stack is undefined here
1802   // rax: exception
1803   // r13: exception bcp
1804   __ verify_oop(rax);
1805   __ mov(c_rarg1, rax);
1806 
1807   // expression stack must be empty before entering the VM in case of
1808   // an exception
1809   __ empty_expression_stack();
1810   // find exception handler address and preserve exception oop
1811   __ call_VM(rdx,
1812              CAST_FROM_FN_PTR(address,
1813                           InterpreterRuntime::exception_handler_for_exception),
1814              c_rarg1);
1815   // rax: exception handler entry point
1816   // rdx: preserved exception oop
1817   // r13: bcp for exception handler
1818   __ push_ptr(rdx); // push exception which is now the only value on the stack
1819   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
1820 
1821   // If the exception is not handled in the current frame the frame is
1822   // removed and the exception is rethrown (i.e. exception
1823   // continuation is _rethrow_exception).
1824   //
1825   // Note: At this point the bci is still the bxi for the instruction
1826   // which caused the exception and the expression stack is
1827   // empty. Thus, for any VM calls at this point, GC will find a legal
1828   // oop map (with empty expression stack).
1829 
1830   // In current activation
1831   // tos: exception
1832   // esi: exception bcp
1833 
1834   //
1835   // JVMTI PopFrame support
1836   //
1837 
1838   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1839   __ empty_expression_stack();
1840   // Set the popframe_processing bit in pending_popframe_condition
1841   // indicating that we are currently handling popframe, so that
1842   // call_VMs that may happen later do not trigger new popframe
1843   // handling cycles.
1844   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
1845   __ orl(rdx, JavaThread::popframe_processing_bit);
1846   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
1847 
1848   {
1849     // Check to see whether we are returning to a deoptimized frame.
1850     // (The PopFrame call ensures that the caller of the popped frame is
1851     // either interpreted or compiled and deoptimizes it if compiled.)
1852     // In this case, we can't call dispatch_next() after the frame is
1853     // popped, but instead must save the incoming arguments and restore
1854     // them after deoptimization has occurred.
1855     //
1856     // Note that we don't compare the return PC against the
1857     // deoptimization blob's unpack entry because of the presence of
1858     // adapter frames in C2.
1859     Label caller_not_deoptimized;
1860     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
1861     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1862                                InterpreterRuntime::interpreter_contains), c_rarg1);
1863     __ testl(rax, rax);
1864     __ jcc(Assembler::notZero, caller_not_deoptimized);
1865 
1866     // Compute size of arguments for saving when returning to
1867     // deoptimized caller
1868     __ get_method(rax);
1869     __ movptr(rax, Address(rax, Method::const_offset()));
1870     __ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod::
1871                                                 size_of_parameters_offset())));
1872     __ shll(rax, Interpreter::logStackElementSize);
1873     __ restore_locals(); // XXX do we need this?
1874     __ subptr(r14, rax);
1875     __ addptr(r14, wordSize);
1876     // Save these arguments
1877     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1878                                            Deoptimization::
1879                                            popframe_preserve_args),
1880                           r15_thread, rax, r14);
1881 
1882     __ remove_activation(vtos, rdx,
1883                          /* throw_monitor_exception */ false,
1884                          /* install_monitor_exception */ false,
1885                          /* notify_jvmdi */ false);
1886 
1887     // Inform deoptimization that it is responsible for restoring
1888     // these arguments
1889     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
1890             JavaThread::popframe_force_deopt_reexecution_bit);
1891 
1892     // Continue in deoptimization handler
1893     __ jmp(rdx);
1894 
1895     __ bind(caller_not_deoptimized);
1896   }
1897 
1898   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
1899                        /* throw_monitor_exception */ false,
1900                        /* install_monitor_exception */ false,
1901                        /* notify_jvmdi */ false);
1902 
1903   // Finish with popframe handling
1904   // A previous I2C followed by a deoptimization might have moved the
1905   // outgoing arguments further up the stack. PopFrame expects the
1906   // mutations to those outgoing arguments to be preserved and other
1907   // constraints basically require this frame to look exactly as
1908   // though it had previously invoked an interpreted activation with
1909   // no space between the top of the expression stack (current
1910   // last_sp) and the top of stack. Rather than force deopt to
1911   // maintain this kind of invariant all the time we call a small
1912   // fixup routine to move the mutated arguments onto the top of our
1913   // expression stack if necessary.
1914   __ mov(c_rarg1, rsp);
1915   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1916   // PC must point into interpreter here
1917   __ set_last_Java_frame(noreg, rbp, __ pc());
1918   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
1919   __ reset_last_Java_frame(true, true);
1920   // Restore the last_sp and null it out
1921   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1922   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
1923 
1924   __ restore_bcp();  // XXX do we need this?
1925   __ restore_locals(); // XXX do we need this?
1926   // The method data pointer was incremented already during
1927   // call profiling. We have to restore the mdp for the current bcp.
1928   if (ProfileInterpreter) {
1929     __ set_method_data_pointer_for_bcp();
1930   }
1931 
1932   // Clear the popframe condition flag
1933   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
1934           JavaThread::popframe_inactive);
1935 
1936 #if INCLUDE_JVMTI
1937   if (EnableInvokeDynamic) {
1938     Label L_done;
1939     const Register local0 = r14;
1940 
1941     __ cmpb(Address(r13, 0), Bytecodes::_invokestatic);
1942     __ jcc(Assembler::notEqual, L_done);
1943 
1944     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1945     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1946 
1947     __ get_method(rdx);
1948     __ movptr(rax, Address(local0, 0));
1949     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, r13);
1950 
1951     __ testptr(rax, rax);
1952     __ jcc(Assembler::zero, L_done);
1953 
1954     __ movptr(Address(rbx, 0), rax);
1955     __ bind(L_done);
1956   }
1957 #endif // INCLUDE_JVMTI
1958 
1959   __ dispatch_next(vtos);
1960   // end of PopFrame support
1961 
1962   Interpreter::_remove_activation_entry = __ pc();
1963 
1964   // preserve exception over this code sequence
1965   __ pop_ptr(rax);
1966   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
1967   // remove the activation (without doing throws on illegalMonitorExceptions)
1968   __ remove_activation(vtos, rdx, false, true, false);
1969   // restore exception
1970   __ get_vm_result(rax, r15_thread);
1971 
1972   // In between activations - previous activation type unknown yet
1973   // compute continuation point - the continuation point expects the
1974   // following registers set up:
1975   //
1976   // rax: exception
1977   // rdx: return address/pc that threw exception
1978   // rsp: expression stack of caller
1979   // rbp: ebp of caller
1980   __ push(rax);                                  // save exception
1981   __ push(rdx);                                  // save return address
1982   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1983                           SharedRuntime::exception_handler_for_return_address),
1984                         r15_thread, rdx);
1985   __ mov(rbx, rax);                              // save exception handler
1986   __ pop(rdx);                                   // restore return address
1987   __ pop(rax);                                   // restore exception
1988   // Note that an "issuing PC" is actually the next PC after the call
1989   __ jmp(rbx);                                   // jump to exception
1990                                                  // handler of caller
1991 }
1992 
1993 
1994 //
1995 // JVMTI ForceEarlyReturn support
1996 //
1997 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1998   address entry = __ pc();
1999 
2000   __ restore_bcp();
2001   __ restore_locals();
2002   __ empty_expression_stack();
2003   __ load_earlyret_value(state);
2004 
2005   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
2006   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
2007 
2008   // Clear the earlyret state
2009   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
2010 
2011   __ remove_activation(state, rsi,
2012                        false, /* throw_monitor_exception */
2013                        false, /* install_monitor_exception */
2014                        true); /* notify_jvmdi */
2015   __ jmp(rsi);
2016 
2017   return entry;
2018 } // end of ForceEarlyReturn support
2019 
2020 
2021 //-----------------------------------------------------------------------------
2022 // Helper for vtos entry point generation
2023 
2024 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2025                                                          address& bep,
2026                                                          address& cep,
2027                                                          address& sep,
2028                                                          address& aep,
2029                                                          address& iep,
2030                                                          address& lep,
2031                                                          address& fep,
2032                                                          address& dep,
2033                                                          address& vep) {
2034   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2035   Label L;
2036   aep = __ pc();  __ push_ptr();  __ jmp(L);
2037   fep = __ pc();  __ push_f();    __ jmp(L);
2038   dep = __ pc();  __ push_d();    __ jmp(L);
2039   lep = __ pc();  __ push_l();    __ jmp(L);
2040   bep = cep = sep =
2041   iep = __ pc();  __ push_i();
2042   vep = __ pc();
2043   __ bind(L);
2044   generate_and_dispatch(t);
2045 }
2046 
2047 
2048 //-----------------------------------------------------------------------------
2049 // Generation of individual instructions
2050 
2051 // helpers for generate_and_dispatch
2052 
2053 
2054 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2055   : TemplateInterpreterGenerator(code) {
2056    generate_all(); // down here so it can be "virtual"
2057 }
2058 
2059 //-----------------------------------------------------------------------------
2060 
2061 // Non-product code
2062 #ifndef PRODUCT
2063 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2064   address entry = __ pc();
2065 
2066   __ push(state);
2067   __ push(c_rarg0);
2068   __ push(c_rarg1);
2069   __ push(c_rarg2);
2070   __ push(c_rarg3);
2071   __ mov(c_rarg2, rax);  // Pass itos
2072 #ifdef _WIN64
2073   __ movflt(xmm3, xmm0); // Pass ftos
2074 #endif
2075   __ call_VM(noreg,
2076              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
2077              c_rarg1, c_rarg2, c_rarg3);
2078   __ pop(c_rarg3);
2079   __ pop(c_rarg2);
2080   __ pop(c_rarg1);
2081   __ pop(c_rarg0);
2082   __ pop(state);
2083   __ ret(0);                                   // return from result handler
2084 
2085   return entry;
2086 }
2087 
2088 void TemplateInterpreterGenerator::count_bytecode() {
2089   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
2090 }
2091 
2092 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2093   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
2094 }
2095 
2096 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2097   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
2098   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
2099   __ orl(rbx,
2100          ((int) t->bytecode()) <<
2101          BytecodePairHistogram::log2_number_of_codes);
2102   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
2103   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
2104   __ incrementl(Address(rscratch1, rbx, Address::times_4));
2105 }
2106 
2107 
2108 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2109   // Call a little run-time stub to avoid blow-up for each bytecode.
2110   // The run-time runtime saves the right registers, depending on
2111   // the tosca in-state for the given template.
2112 
2113   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2114          "entry must have been generated");
2115   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
2116   __ andptr(rsp, -16); // align stack as required by ABI
2117   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
2118   __ mov(rsp, r12); // restore sp
2119   __ reinit_heapbase();
2120 }
2121 
2122 
2123 void TemplateInterpreterGenerator::stop_interpreter_at() {
2124   Label L;
2125   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
2126            StopInterpreterAt);
2127   __ jcc(Assembler::notEqual, L);
2128   __ int3();
2129   __ bind(L);
2130 }
2131 #endif // !PRODUCT
2132 #endif // ! CC_INTERP