1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76 
  77 private:
  78   // Every data layout begins with a header.  This header
  79   // contains a tag, which is used to indicate the size/layout
  80   // of the data, 4 bits of flags, which can be used in any way,
  81   // 4 bits of trap history (none/one reason/many reasons),
  82   // and a bci, which is used to tie this piece of data to a
  83   // specific bci in the bytecodes.
  84   union {
  85     intptr_t _bits;
  86     struct {
  87       u1 _tag;
  88       u1 _flags;
  89       u2 _bci;
  90     } _struct;
  91   } _header;
  92 
  93   // The data layout has an arbitrary number of cells, each sized
  94   // to accomodate a pointer or an integer.
  95   intptr_t _cells[1];
  96 
  97   // Some types of data layouts need a length field.
  98   static bool needs_array_len(u1 tag);
  99 
 100 public:
 101   enum {
 102     counter_increment = 1
 103   };
 104 
 105   enum {
 106     cell_size = sizeof(intptr_t)
 107   };
 108 
 109   // Tag values
 110   enum {
 111     no_tag,
 112     bit_data_tag,
 113     counter_data_tag,
 114     jump_data_tag,
 115     receiver_type_data_tag,
 116     virtual_call_data_tag,
 117     ret_data_tag,
 118     branch_data_tag,
 119     multi_branch_data_tag,
 120     arg_info_data_tag,
 121     call_type_data_tag,
 122     virtual_call_type_data_tag
 123   };
 124 
 125   enum {
 126     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 127     // The trap state breaks down further as [recompile:1 | reason:3].
 128     // This further breakdown is defined in deoptimization.cpp.
 129     // See Deoptimization::trap_state_reason for an assert that
 130     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 131     //
 132     // The trap_state is collected only if ProfileTraps is true.
 133     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 134     trap_shift = BitsPerByte - trap_bits,
 135     trap_mask = right_n_bits(trap_bits),
 136     trap_mask_in_place = (trap_mask << trap_shift),
 137     flag_limit = trap_shift,
 138     flag_mask = right_n_bits(flag_limit),
 139     first_flag = 0
 140   };
 141 
 142   // Size computation
 143   static int header_size_in_bytes() {
 144     return cell_size;
 145   }
 146   static int header_size_in_cells() {
 147     return 1;
 148   }
 149 
 150   static int compute_size_in_bytes(int cell_count) {
 151     return header_size_in_bytes() + cell_count * cell_size;
 152   }
 153 
 154   // Initialization
 155   void initialize(u1 tag, u2 bci, int cell_count);
 156 
 157   // Accessors
 158   u1 tag() {
 159     return _header._struct._tag;
 160   }
 161 
 162   // Return a few bits of trap state.  Range is [0..trap_mask].
 163   // The state tells if traps with zero, one, or many reasons have occurred.
 164   // It also tells whether zero or many recompilations have occurred.
 165   // The associated trap histogram in the MDO itself tells whether
 166   // traps are common or not.  If a BCI shows that a trap X has
 167   // occurred, and the MDO shows N occurrences of X, we make the
 168   // simplifying assumption that all N occurrences can be blamed
 169   // on that BCI.
 170   int trap_state() const {
 171     return ((_header._struct._flags >> trap_shift) & trap_mask);
 172   }
 173 
 174   void set_trap_state(int new_state) {
 175     assert(ProfileTraps, "used only under +ProfileTraps");
 176     uint old_flags = (_header._struct._flags & flag_mask);
 177     _header._struct._flags = (new_state << trap_shift) | old_flags;
 178   }
 179 
 180   u1 flags() const {
 181     return _header._struct._flags;
 182   }
 183 
 184   u2 bci() const {
 185     return _header._struct._bci;
 186   }
 187 
 188   void set_header(intptr_t value) {
 189     _header._bits = value;
 190   }
 191   void release_set_header(intptr_t value) {
 192     OrderAccess::release_store_ptr(&_header._bits, value);
 193   }
 194   intptr_t header() {
 195     return _header._bits;
 196   }
 197   void set_cell_at(int index, intptr_t value) {
 198     _cells[index] = value;
 199   }
 200   void release_set_cell_at(int index, intptr_t value) {
 201     OrderAccess::release_store_ptr(&_cells[index], value);
 202   }
 203   intptr_t cell_at(int index) const {
 204     return _cells[index];
 205   }
 206 
 207   void set_flag_at(int flag_number) {
 208     assert(flag_number < flag_limit, "oob");
 209     _header._struct._flags |= (0x1 << flag_number);
 210   }
 211   bool flag_at(int flag_number) const {
 212     assert(flag_number < flag_limit, "oob");
 213     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 214   }
 215 
 216   // Low-level support for code generation.
 217   static ByteSize header_offset() {
 218     return byte_offset_of(DataLayout, _header);
 219   }
 220   static ByteSize tag_offset() {
 221     return byte_offset_of(DataLayout, _header._struct._tag);
 222   }
 223   static ByteSize flags_offset() {
 224     return byte_offset_of(DataLayout, _header._struct._flags);
 225   }
 226   static ByteSize bci_offset() {
 227     return byte_offset_of(DataLayout, _header._struct._bci);
 228   }
 229   static ByteSize cell_offset(int index) {
 230     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 231   }
 232   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 233   static int flag_number_to_byte_constant(int flag_number) {
 234     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 235     DataLayout temp; temp.set_header(0);
 236     temp.set_flag_at(flag_number);
 237     return temp._header._struct._flags;
 238   }
 239   // Return a value which, when or-ed as a word into _header, sets the flag.
 240   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 241     DataLayout temp; temp.set_header(0);
 242     temp._header._struct._flags = byte_constant;
 243     return temp._header._bits;
 244   }
 245 
 246   ProfileData* data_in();
 247 
 248   // GC support
 249   void clean_weak_klass_links(BoolObjectClosure* cl);
 250 };
 251 
 252 
 253 // ProfileData class hierarchy
 254 class ProfileData;
 255 class   BitData;
 256 class     CounterData;
 257 class       ReceiverTypeData;
 258 class         VirtualCallData;
 259 class           VirtualCallTypeData;
 260 class       RetData;
 261 class       CallTypeData;
 262 class   JumpData;
 263 class     BranchData;
 264 class   ArrayData;
 265 class     MultiBranchData;
 266 class     ArgInfoData;
 267 
 268 // ProfileData
 269 //
 270 // A ProfileData object is created to refer to a section of profiling
 271 // data in a structured way.
 272 class ProfileData : public ResourceObj {
 273   friend class TypeEntries;
 274   friend class TypeEntriesAtCall;
 275   friend class ReturnTypeEntry;
 276   friend class TypeStackSlotEntries;
 277 private:
 278 #ifndef PRODUCT
 279   enum {
 280     tab_width_one = 16,
 281     tab_width_two = 36
 282   };
 283 #endif // !PRODUCT
 284 
 285   // This is a pointer to a section of profiling data.
 286   DataLayout* _data;
 287 
 288 protected:
 289   DataLayout* data() { return _data; }
 290   const DataLayout* data() const { return _data; }
 291 
 292   enum {
 293     cell_size = DataLayout::cell_size
 294   };
 295 
 296 public:
 297   // How many cells are in this?
 298   virtual int cell_count() const {
 299     ShouldNotReachHere();
 300     return -1;
 301   }
 302 
 303   // Return the size of this data.
 304   int size_in_bytes() {
 305     return DataLayout::compute_size_in_bytes(cell_count());
 306   }
 307 
 308 protected:
 309   // Low-level accessors for underlying data
 310   void set_intptr_at(int index, intptr_t value) {
 311     assert(0 <= index && index < cell_count(), "oob");
 312     data()->set_cell_at(index, value);
 313   }
 314   void release_set_intptr_at(int index, intptr_t value) {
 315     assert(0 <= index && index < cell_count(), "oob");
 316     data()->release_set_cell_at(index, value);
 317   }
 318   intptr_t intptr_at(int index) const {
 319     assert(0 <= index && index < cell_count(), "oob");
 320     return data()->cell_at(index);
 321   }
 322   void set_uint_at(int index, uint value) {
 323     set_intptr_at(index, (intptr_t) value);
 324   }
 325   void release_set_uint_at(int index, uint value) {
 326     release_set_intptr_at(index, (intptr_t) value);
 327   }
 328   uint uint_at(int index) const {
 329     return (uint)intptr_at(index);
 330   }
 331   void set_int_at(int index, int value) {
 332     set_intptr_at(index, (intptr_t) value);
 333   }
 334   void release_set_int_at(int index, int value) {
 335     release_set_intptr_at(index, (intptr_t) value);
 336   }
 337   int int_at(int index) const {
 338     return (int)intptr_at(index);
 339   }
 340   int int_at_unchecked(int index) const {
 341     return (int)data()->cell_at(index);
 342   }
 343   void set_oop_at(int index, oop value) {
 344     set_intptr_at(index, (intptr_t) value);
 345   }
 346   oop oop_at(int index) const {
 347     return (oop)intptr_at(index);
 348   }
 349 
 350   void set_flag_at(int flag_number) {
 351     data()->set_flag_at(flag_number);
 352   }
 353   bool flag_at(int flag_number) const {
 354     return data()->flag_at(flag_number);
 355   }
 356 
 357   // two convenient imports for use by subclasses:
 358   static ByteSize cell_offset(int index) {
 359     return DataLayout::cell_offset(index);
 360   }
 361   static int flag_number_to_byte_constant(int flag_number) {
 362     return DataLayout::flag_number_to_byte_constant(flag_number);
 363   }
 364 
 365   ProfileData(DataLayout* data) {
 366     _data = data;
 367   }
 368 
 369 public:
 370   // Constructor for invalid ProfileData.
 371   ProfileData();
 372 
 373   u2 bci() const {
 374     return data()->bci();
 375   }
 376 
 377   address dp() {
 378     return (address)_data;
 379   }
 380 
 381   int trap_state() const {
 382     return data()->trap_state();
 383   }
 384   void set_trap_state(int new_state) {
 385     data()->set_trap_state(new_state);
 386   }
 387 
 388   // Type checking
 389   virtual bool is_BitData()         const { return false; }
 390   virtual bool is_CounterData()     const { return false; }
 391   virtual bool is_JumpData()        const { return false; }
 392   virtual bool is_ReceiverTypeData()const { return false; }
 393   virtual bool is_VirtualCallData() const { return false; }
 394   virtual bool is_RetData()         const { return false; }
 395   virtual bool is_BranchData()      const { return false; }
 396   virtual bool is_ArrayData()       const { return false; }
 397   virtual bool is_MultiBranchData() const { return false; }
 398   virtual bool is_ArgInfoData()     const { return false; }
 399   virtual bool is_CallTypeData()    const { return false; }
 400   virtual bool is_VirtualCallTypeData()const { return false; }
 401 
 402 
 403   BitData* as_BitData() const {
 404     assert(is_BitData(), "wrong type");
 405     return is_BitData()         ? (BitData*)        this : NULL;
 406   }
 407   CounterData* as_CounterData() const {
 408     assert(is_CounterData(), "wrong type");
 409     return is_CounterData()     ? (CounterData*)    this : NULL;
 410   }
 411   JumpData* as_JumpData() const {
 412     assert(is_JumpData(), "wrong type");
 413     return is_JumpData()        ? (JumpData*)       this : NULL;
 414   }
 415   ReceiverTypeData* as_ReceiverTypeData() const {
 416     assert(is_ReceiverTypeData(), "wrong type");
 417     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 418   }
 419   VirtualCallData* as_VirtualCallData() const {
 420     assert(is_VirtualCallData(), "wrong type");
 421     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 422   }
 423   RetData* as_RetData() const {
 424     assert(is_RetData(), "wrong type");
 425     return is_RetData()         ? (RetData*)        this : NULL;
 426   }
 427   BranchData* as_BranchData() const {
 428     assert(is_BranchData(), "wrong type");
 429     return is_BranchData()      ? (BranchData*)     this : NULL;
 430   }
 431   ArrayData* as_ArrayData() const {
 432     assert(is_ArrayData(), "wrong type");
 433     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 434   }
 435   MultiBranchData* as_MultiBranchData() const {
 436     assert(is_MultiBranchData(), "wrong type");
 437     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 438   }
 439   ArgInfoData* as_ArgInfoData() const {
 440     assert(is_ArgInfoData(), "wrong type");
 441     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 442   }
 443   CallTypeData* as_CallTypeData() const {
 444     assert(is_CallTypeData(), "wrong type");
 445     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 446   }
 447   VirtualCallTypeData* as_VirtualCallTypeData() const {
 448     assert(is_VirtualCallTypeData(), "wrong type");
 449     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 450   }
 451 
 452 
 453   // Subclass specific initialization
 454   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 455 
 456   // GC support
 457   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 458 
 459   // CI translation: ProfileData can represent both MethodDataOop data
 460   // as well as CIMethodData data. This function is provided for translating
 461   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 462   // most ProfileData don't require any translation, so we provide the null
 463   // translation here, and the required translators are in the ci subclasses.
 464   virtual void translate_from(const ProfileData* data) {}
 465 
 466   virtual void print_data_on(outputStream* st) const {
 467     ShouldNotReachHere();
 468   }
 469 
 470 #ifndef PRODUCT
 471   void print_shared(outputStream* st, const char* name) const;
 472   void tab(outputStream* st, bool first = false) const;
 473 #endif
 474 };
 475 
 476 // BitData
 477 //
 478 // A BitData holds a flag or two in its header.
 479 class BitData : public ProfileData {
 480 protected:
 481   enum {
 482     // null_seen:
 483     //  saw a null operand (cast/aastore/instanceof)
 484     null_seen_flag              = DataLayout::first_flag + 0
 485   };
 486   enum { bit_cell_count = 0 };  // no additional data fields needed.
 487 public:
 488   BitData(DataLayout* layout) : ProfileData(layout) {
 489   }
 490 
 491   virtual bool is_BitData() const { return true; }
 492 
 493   static int static_cell_count() {
 494     return bit_cell_count;
 495   }
 496 
 497   virtual int cell_count() const {
 498     return static_cell_count();
 499   }
 500 
 501   // Accessor
 502 
 503   // The null_seen flag bit is specially known to the interpreter.
 504   // Consulting it allows the compiler to avoid setting up null_check traps.
 505   bool null_seen()     { return flag_at(null_seen_flag); }
 506   void set_null_seen()    { set_flag_at(null_seen_flag); }
 507 
 508 
 509   // Code generation support
 510   static int null_seen_byte_constant() {
 511     return flag_number_to_byte_constant(null_seen_flag);
 512   }
 513 
 514   static ByteSize bit_data_size() {
 515     return cell_offset(bit_cell_count);
 516   }
 517 
 518 #ifndef PRODUCT
 519   void print_data_on(outputStream* st) const;
 520 #endif
 521 };
 522 
 523 // CounterData
 524 //
 525 // A CounterData corresponds to a simple counter.
 526 class CounterData : public BitData {
 527 protected:
 528   enum {
 529     count_off,
 530     counter_cell_count
 531   };
 532 public:
 533   CounterData(DataLayout* layout) : BitData(layout) {}
 534 
 535   virtual bool is_CounterData() const { return true; }
 536 
 537   static int static_cell_count() {
 538     return counter_cell_count;
 539   }
 540 
 541   virtual int cell_count() const {
 542     return static_cell_count();
 543   }
 544 
 545   // Direct accessor
 546   uint count() const {
 547     return uint_at(count_off);
 548   }
 549 
 550   // Code generation support
 551   static ByteSize count_offset() {
 552     return cell_offset(count_off);
 553   }
 554   static ByteSize counter_data_size() {
 555     return cell_offset(counter_cell_count);
 556   }
 557 
 558   void set_count(uint count) {
 559     set_uint_at(count_off, count);
 560   }
 561 
 562 #ifndef PRODUCT
 563   void print_data_on(outputStream* st) const;
 564 #endif
 565 };
 566 
 567 // JumpData
 568 //
 569 // A JumpData is used to access profiling information for a direct
 570 // branch.  It is a counter, used for counting the number of branches,
 571 // plus a data displacement, used for realigning the data pointer to
 572 // the corresponding target bci.
 573 class JumpData : public ProfileData {
 574 protected:
 575   enum {
 576     taken_off_set,
 577     displacement_off_set,
 578     jump_cell_count
 579   };
 580 
 581   void set_displacement(int displacement) {
 582     set_int_at(displacement_off_set, displacement);
 583   }
 584 
 585 public:
 586   JumpData(DataLayout* layout) : ProfileData(layout) {
 587     assert(layout->tag() == DataLayout::jump_data_tag ||
 588       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 589   }
 590 
 591   virtual bool is_JumpData() const { return true; }
 592 
 593   static int static_cell_count() {
 594     return jump_cell_count;
 595   }
 596 
 597   virtual int cell_count() const {
 598     return static_cell_count();
 599   }
 600 
 601   // Direct accessor
 602   uint taken() const {
 603     return uint_at(taken_off_set);
 604   }
 605 
 606   void set_taken(uint cnt) {
 607     set_uint_at(taken_off_set, cnt);
 608   }
 609 
 610   // Saturating counter
 611   uint inc_taken() {
 612     uint cnt = taken() + 1;
 613     // Did we wrap? Will compiler screw us??
 614     if (cnt == 0) cnt--;
 615     set_uint_at(taken_off_set, cnt);
 616     return cnt;
 617   }
 618 
 619   int displacement() const {
 620     return int_at(displacement_off_set);
 621   }
 622 
 623   // Code generation support
 624   static ByteSize taken_offset() {
 625     return cell_offset(taken_off_set);
 626   }
 627 
 628   static ByteSize displacement_offset() {
 629     return cell_offset(displacement_off_set);
 630   }
 631 
 632   // Specific initialization.
 633   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 634 
 635 #ifndef PRODUCT
 636   void print_data_on(outputStream* st) const;
 637 #endif
 638 };
 639 
 640 // Entries in a ProfileData object to record types: it can either be
 641 // none (no profile), unknown (conflicting profile data) or a klass if
 642 // a single one is seen. Whether a null reference was seen is also
 643 // recorded. No counter is associated with the type and a single type
 644 // is tracked (unlike VirtualCallData).
 645 class TypeEntries {
 646 
 647 public:
 648 
 649   // A single cell is used to record information for a type:
 650   // - the cell is initialized to 0
 651   // - when a type is discovered it is stored in the cell
 652   // - bit zero of the cell is used to record whether a null reference
 653   // was encountered or not
 654   // - bit 1 is set to record a conflict in the type information
 655 
 656   enum {
 657     null_seen = 1,
 658     type_mask = ~null_seen,
 659     type_unknown = 2,
 660     status_bits = null_seen | type_unknown,
 661     type_klass_mask = ~status_bits
 662   };
 663 
 664   // what to initialize a cell to
 665   static intptr_t type_none() {
 666     return NULL;
 667   }
 668 
 669   // null seen = bit 0 set?
 670   static bool was_null_seen(intptr_t v) {
 671     return v & null_seen;
 672   }
 673 
 674   // conflicting type information = bit 1 set?
 675   static bool is_type_unknown(intptr_t v) {
 676     return v & type_unknown;
 677   }
 678 
 679   // not type information yet = all bits cleared, ignoring bit 0?
 680   static bool is_type_none(intptr_t v) {
 681     return (v & type_mask) == 0;
 682   }
 683 
 684   // recorded type: cell without bit 0 and 1
 685   static intptr_t klass_part(intptr_t v) {
 686     intptr_t r = v & type_klass_mask;
 687     assert (r != NULL, "invalid");
 688     return r;
 689   }
 690 
 691   // type recorded
 692   static Klass* valid_klass(intptr_t k) {
 693     if (!is_type_none(k) &&
 694         !is_type_unknown(k)) {
 695       return (Klass*)klass_part(k);
 696     } else {
 697       return NULL;
 698     }
 699   }
 700 
 701   static intptr_t with_status(intptr_t k, intptr_t in) {
 702     return k | (in & status_bits);
 703   }
 704 
 705   static intptr_t with_status(Klass* k, intptr_t in) {
 706     return with_status((intptr_t)k, in);
 707   }
 708 
 709 #ifndef PRODUCT
 710   static void print_klass(outputStream* st, intptr_t k);
 711 #endif
 712 
 713   // GC support
 714   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 715 
 716 protected:
 717   // ProfileData object these entries are part of
 718   ProfileData* _pd;
 719   // offset within the ProfileData object where the entries start
 720   const int _base_off;
 721 
 722   TypeEntries(int base_off, ProfileData* pd)
 723     : _base_off(base_off), _pd(pd) {}
 724 
 725   void set_intptr_at(int index, intptr_t value) {
 726     _pd->set_intptr_at(index, value);
 727   }
 728 
 729   intptr_t intptr_at(int index) const {
 730     return _pd->intptr_at(index);
 731   }
 732 };
 733 
 734 // Type entries used for arguments passed at a call and parameters on
 735 // method entry. 2 cells per entry: one for the type encoded as in
 736 // TypeEntries and one initialized with the stack slot where the
 737 // profiled object is to be found so that the interpreter can locate
 738 // it quickly.
 739 class TypeStackSlotEntries : public TypeEntries {
 740 
 741 private:
 742   enum {
 743     stack_slot_entry,
 744     type_entry,
 745     per_arg_cell_count
 746   };
 747 
 748   // offset of cell for stack slot for entry i within ProfileData object
 749   int stack_slot_offset(int i) const {
 750     return _base_off + stack_slot_local_offset(i);
 751   }
 752 
 753 protected:
 754   const int _nb_entries;
 755 
 756   // offset of cell for type for entry i within ProfileData object
 757   int type_offset(int i) const {
 758     return _base_off + type_local_offset(i);
 759   }
 760 
 761 public:
 762 
 763   TypeStackSlotEntries(int base_off, ProfileData* pd, int nb_entries)
 764     : TypeEntries(base_off, pd), _nb_entries(nb_entries) {}
 765 
 766   static int compute_cell_count(Symbol* signature, int max);
 767 
 768   void post_initialize(Symbol* signature, bool has_receiver);
 769 
 770   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 771   static int stack_slot_local_offset(int i) {
 772     return i * per_arg_cell_count + stack_slot_entry;
 773   }
 774 
 775   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 776   static int type_local_offset(int i) {
 777     return i * per_arg_cell_count + type_entry;
 778   }
 779 
 780   // stack slot for entry i
 781   uint stack_slot(int i) const {
 782     assert(i >= 0 && i < _nb_entries, "oob");
 783     return _pd->uint_at(stack_slot_offset(i));
 784   }
 785 
 786   // set stack slot for entry i
 787   void set_stack_slot(int i, uint num) {
 788     assert(i >= 0 && i < _nb_entries, "oob");
 789     _pd->set_uint_at(stack_slot_offset(i), num);
 790   }
 791   
 792   // type for entry i
 793   intptr_t type(int i) const {
 794     assert(i >= 0 && i < _nb_entries, "oob");
 795     return _pd->intptr_at(type_offset(i));
 796   }
 797 
 798   // set type for entry i
 799   void set_type(int i, intptr_t k) {
 800     assert(i >= 0 && i < _nb_entries, "oob");
 801     _pd->set_intptr_at(type_offset(i), k);
 802   }
 803 
 804   static ByteSize per_arg_size() {
 805     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 806   }
 807 
 808   static int per_arg_count() {
 809     return per_arg_cell_count ;
 810   }
 811 
 812   // GC support
 813   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 814 
 815 #ifndef PRODUCT
 816   void print_data_on(outputStream* st) const;
 817 #endif
 818 };
 819 
 820 // Type entry used for return from a call. A single cell to record the
 821 // type.
 822 class ReturnTypeEntry : public TypeEntries {
 823 
 824 private:
 825   enum {
 826     cell_count = 1
 827   };
 828 
 829 public:
 830   ReturnTypeEntry(int base_off, ProfileData* pd)
 831     : TypeEntries(base_off, pd) {}
 832 
 833   void post_initialize() {
 834     set_type(type_none());
 835   }
 836 
 837   intptr_t type() const {
 838     assert_profiling_enabled();
 839     return _pd->intptr_at(_base_off);
 840   }
 841 
 842   void set_type(intptr_t k) {
 843     assert_profiling_enabled();
 844     _pd->set_intptr_at(_base_off, k);
 845   }
 846 
 847   static int static_cell_count() {
 848     assert_profiling_enabled();
 849     return cell_count;
 850   }
 851 
 852   static ByteSize size() {
 853     assert_profiling_enabled();
 854     return in_ByteSize(cell_count * DataLayout::cell_size);
 855   }
 856 
 857   ByteSize type_offset() {
 858     assert_profiling_enabled();
 859     return DataLayout::cell_offset(_base_off);
 860   }
 861 
 862   static bool profiling_enabled();
 863 
 864   static void assert_profiling_enabled() {
 865     assert(profiling_enabled(), "args profiling should be on");
 866   }
 867 
 868   // GC support
 869   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 870 
 871 #ifndef PRODUCT
 872   void print_data_on(outputStream* st) const;
 873 #endif
 874 };
 875 
 876 // Entries to collect type information at a call: contains arguments
 877 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 878 // number of cells. Because the number of cells for the return type is
 879 // smaller than the number of cells for the type of an arguments, the
 880 // number of cells is used to tell how many arguments are profiled and
 881 // whether a return value is profiled. See has_arguments() and
 882 // has_return().
 883 class TypeEntriesAtCall {
 884 
 885 private:
 886 
 887   // offset within the ProfileData object where the entries start
 888   const int _base_off;
 889   // entries for arguments if any
 890   TypeStackSlotEntries _args;
 891   // entry for return type if any
 892   ReturnTypeEntry _ret;
 893 
 894   // Start with a header if needed. It stores the number of cells used
 895   // for this call type information. Unless we collect only return
 896   // type profiling or only profiling for a single argument the number
 897   // of cells is unknown statically.
 898   static int header_cell_count() {
 899     return (arguments_profiling_enabled() && (TypeProfileArgsLimit > 1 || return_profiling_enabled())) ? 1 : 0;
 900   }
 901 
 902   static int cell_count_local_offset() {
 903     assert(arguments_profiling_enabled() && (TypeProfileArgsLimit > 1 || return_profiling_enabled()), "no cell count");
 904     return 0;
 905   }
 906 
 907   int cell_count_global_offset() const {
 908     return _base_off + cell_count_local_offset();
 909   }
 910 
 911   static int stack_slot_local_offset(int i) {
 912     assert_arguments_profiling_enabled();
 913     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 914   }
 915 
 916   static int argument_type_local_offset(int i) {
 917     assert_arguments_profiling_enabled();
 918     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
 919   }
 920 
 921   void check_number_of_arguments(uint total) {
 922     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
 923   }
 924 
 925   // number of cells not counting the header
 926   int cell_count_no_header() const {
 927     return _pd->uint_at(cell_count_global_offset());
 928   }
 929   
 930   static bool arguments_profiling_enabled();
 931   static void assert_arguments_profiling_enabled() {
 932     assert(arguments_profiling_enabled(), "args profiling should be on");
 933   }
 934   static bool return_profiling_enabled() {
 935     return ReturnTypeEntry::profiling_enabled();
 936   }
 937   static void assert_return_profiling_enabled() {
 938     ReturnTypeEntry::assert_profiling_enabled();
 939   }
 940 
 941 protected:
 942 
 943   // ProfileData object these entries are part of
 944   ProfileData* _pd;
 945 
 946   // An entry for a return value takes less space than an entry for an
 947   // argument so if the number of cells exceeds the number of cells
 948   // needed for an argument, this object contains type information for
 949   // at least one argument.
 950   bool has_arguments() const {
 951     assert_arguments_profiling_enabled();
 952     return return_profiling_enabled() ? (cell_count_no_header() >= TypeStackSlotEntries::per_arg_count()) : true;
 953   }
 954 
 955 public:
 956   TypeEntriesAtCall(int base_off, ProfileData* pd)
 957     : _base_off(base_off), _pd(pd),
 958       _args(base_off + header_cell_count(), pd, arguments_profiling_enabled() ? number_of_arguments() : 0),
 959       _ret((arguments_profiling_enabled() && return_profiling_enabled()) ? cell_count() - ReturnTypeEntry::static_cell_count() : _base_off, pd)
 960   {}
 961 
 962   static int compute_cell_count(BytecodeStream* stream);
 963 
 964   static void initialize(DataLayout* dl, int base, int cell_count) {
 965     if (arguments_profiling_enabled() && (TypeProfileArgsLimit > 1 || return_profiling_enabled())) {
 966       int off = base + cell_count_local_offset();
 967       dl->set_cell_at(off, cell_count - base - header_cell_count());
 968     }
 969   }
 970 
 971   void post_initialize(BytecodeStream* stream);
 972 
 973   uint number_of_arguments() const {
 974     assert_arguments_profiling_enabled();
 975     if (TypeProfileArgsLimit > 1) {
 976       // An entry for a return value takes less space than an entry
 977       // for an argument, so number of cells divided by the number of
 978       // cells for an argument is the number of arguments being
 979       // profiled in this object.
 980       int cell_count = cell_count_no_header();
 981       assert(!return_profiling_enabled() || TypeStackSlotEntries::per_arg_count() > ReturnTypeEntry::static_cell_count(), "need each per arg entry to be bigger than ret entry");
 982       int nb = cell_count / TypeStackSlotEntries::per_arg_count();
 983       assert((!has_arguments() && nb == 0) || (nb > 0 && nb <= TypeProfileArgsLimit) , "only when we profile args");
 984       return nb;
 985     } else {
 986       assert(TypeProfileArgsLimit == 1, "at least one arg");
 987       return 1;
 988     }
 989   }
 990   
 991   int cell_count() const {
 992     if (arguments_profiling_enabled() && (TypeProfileArgsLimit > 1 || return_profiling_enabled())) {
 993       return _base_off + header_cell_count() + _pd->int_at_unchecked(cell_count_global_offset());
 994     } else if (arguments_profiling_enabled()) {
 995       return _base_off + TypeStackSlotEntries::per_arg_count();
 996     } else {
 997      assert_return_profiling_enabled();
 998       return _base_off + ReturnTypeEntry::static_cell_count();
 999     } 
1000   }
1001 
1002   const TypeStackSlotEntries* args_type_data() const { return &_args; }
1003   const ReturnTypeEntry* ret_type_data() const { return &_ret; }
1004 
1005   // An entry for a return value takes less space than an entry for an
1006   // argument, so if the remainder of the number of cells divided by
1007   // the number of cells for an argument is not null, a return value
1008   // is profiled in this object.
1009   bool has_return() const {
1010    assert_return_profiling_enabled();
1011    return arguments_profiling_enabled() ? (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0 : true;
1012   }
1013 
1014   void set_argument_type(int i, Klass* k) {
1015     intptr_t current = _args.type(i);
1016     _args.set_type(i, TypeEntries::with_status(k, current));
1017   }
1018 
1019   void set_return_type(Klass* k) {
1020     intptr_t current = _ret.type();
1021     _ret.set_type(TypeEntries::with_status(k, current));
1022   }
1023 
1024   // Code generation support
1025   static ByteSize cell_count_offset() {
1026     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1027   }
1028 
1029   static ByteSize args_data_offset() {
1030     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1031   }
1032 
1033   static ByteSize stack_slot_offset(int i) {
1034     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1035   }
1036 
1037   static ByteSize argument_type_offset(int i) {
1038     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1039   }
1040 
1041   ByteSize return_type_offset() {
1042     return _ret.type_offset();
1043   }
1044 
1045   // GC support
1046   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1047 
1048 #ifndef PRODUCT
1049   void print_data_on(outputStream* st) const;
1050 #endif
1051 };
1052 
1053 // CallTypeData
1054 //
1055 // A CallTypeData is used to access profiling information about a non
1056 // virtual call for which we collect type information about arguments
1057 // and return value.
1058 class CallTypeData : public CounterData {
1059 private:
1060   TypeEntriesAtCall _args_and_ret;
1061 
1062 public:
1063   CallTypeData(DataLayout* layout) :
1064     CounterData(layout), _args_and_ret(CounterData::static_cell_count(), this)  {
1065     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1066   }
1067 
1068   const TypeEntriesAtCall* args_and_ret() const { return &_args_and_ret; }
1069 
1070   virtual bool is_CallTypeData() const { return true; }
1071 
1072   static int static_cell_count() {
1073     return -1;
1074   }
1075 
1076   static int compute_cell_count(BytecodeStream* stream) {
1077     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1078   }
1079   
1080   static void initialize(DataLayout* dl, int cell_count) {
1081     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1082   }
1083 
1084   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {
1085     _args_and_ret.post_initialize(stream);
1086   }
1087 
1088   virtual int cell_count() const {
1089     return _args_and_ret.cell_count();
1090   }
1091 
1092   uint number_of_arguments() const {
1093     return args_and_ret()->number_of_arguments();
1094   }
1095 
1096   void set_argument_type(int i, Klass* k) {
1097     _args_and_ret.set_argument_type(i, k);
1098   }
1099 
1100   void set_return_type(Klass* k) {
1101     _args_and_ret.set_return_type(k);
1102   }
1103   
1104   // Code generation support
1105   static ByteSize args_data_offset() {
1106     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1107   }
1108 
1109   // GC support
1110   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1111     _args_and_ret.clean_weak_klass_links(is_alive_closure);
1112   }
1113 
1114 #ifndef PRODUCT
1115   virtual void print_data_on(outputStream* st) const;
1116 #endif
1117 };
1118 
1119 // ReceiverTypeData
1120 //
1121 // A ReceiverTypeData is used to access profiling information about a
1122 // dynamic type check.  It consists of a counter which counts the total times
1123 // that the check is reached, and a series of (Klass*, count) pairs
1124 // which are used to store a type profile for the receiver of the check.
1125 class ReceiverTypeData : public CounterData {
1126 protected:
1127   enum {
1128     receiver0_offset = counter_cell_count,
1129     count0_offset,
1130     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1131   };
1132 
1133 public:
1134   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1135     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1136            layout->tag() == DataLayout::virtual_call_data_tag ||
1137            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1138   }
1139 
1140   virtual bool is_ReceiverTypeData() const { return true; }
1141 
1142   static int static_cell_count() {
1143     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1144   }
1145 
1146   virtual int cell_count() const {
1147     return static_cell_count();
1148   }
1149 
1150   // Direct accessors
1151   static uint row_limit() {
1152     return TypeProfileWidth;
1153   }
1154   static int receiver_cell_index(uint row) {
1155     return receiver0_offset + row * receiver_type_row_cell_count;
1156   }
1157   static int receiver_count_cell_index(uint row) {
1158     return count0_offset + row * receiver_type_row_cell_count;
1159   }
1160 
1161   Klass* receiver(uint row) const {
1162     assert(row < row_limit(), "oob");
1163 
1164     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1165     assert(recv == NULL || recv->is_klass(), "wrong type");
1166     return recv;
1167   }
1168 
1169   void set_receiver(uint row, Klass* k) {
1170     assert((uint)row < row_limit(), "oob");
1171     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1172   }
1173 
1174   uint receiver_count(uint row) const {
1175     assert(row < row_limit(), "oob");
1176     return uint_at(receiver_count_cell_index(row));
1177   }
1178 
1179   void set_receiver_count(uint row, uint count) {
1180     assert(row < row_limit(), "oob");
1181     set_uint_at(receiver_count_cell_index(row), count);
1182   }
1183 
1184   void clear_row(uint row) {
1185     assert(row < row_limit(), "oob");
1186     // Clear total count - indicator of polymorphic call site.
1187     // The site may look like as monomorphic after that but
1188     // it allow to have more accurate profiling information because
1189     // there was execution phase change since klasses were unloaded.
1190     // If the site is still polymorphic then MDO will be updated
1191     // to reflect it. But it could be the case that the site becomes
1192     // only bimorphic. Then keeping total count not 0 will be wrong.
1193     // Even if we use monomorphic (when it is not) for compilation
1194     // we will only have trap, deoptimization and recompile again
1195     // with updated MDO after executing method in Interpreter.
1196     // An additional receiver will be recorded in the cleaned row
1197     // during next call execution.
1198     //
1199     // Note: our profiling logic works with empty rows in any slot.
1200     // We do sorting a profiling info (ciCallProfile) for compilation.
1201     //
1202     set_count(0);
1203     set_receiver(row, NULL);
1204     set_receiver_count(row, 0);
1205   }
1206 
1207   // Code generation support
1208   static ByteSize receiver_offset(uint row) {
1209     return cell_offset(receiver_cell_index(row));
1210   }
1211   static ByteSize receiver_count_offset(uint row) {
1212     return cell_offset(receiver_count_cell_index(row));
1213   }
1214   static ByteSize receiver_type_data_size() {
1215     return cell_offset(static_cell_count());
1216   }
1217 
1218   // GC support
1219   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1220 
1221 #ifndef PRODUCT
1222   void print_receiver_data_on(outputStream* st) const;
1223   void print_data_on(outputStream* st) const;
1224 #endif
1225 };
1226 
1227 // VirtualCallData
1228 //
1229 // A VirtualCallData is used to access profiling information about a
1230 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1231 class VirtualCallData : public ReceiverTypeData {
1232 public:
1233   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1234     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1235            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1236   }
1237 
1238   virtual bool is_VirtualCallData() const { return true; }
1239 
1240   static int static_cell_count() {
1241     // At this point we could add more profile state, e.g., for arguments.
1242     // But for now it's the same size as the base record type.
1243     return ReceiverTypeData::static_cell_count();
1244   }
1245 
1246   virtual int cell_count() const {
1247     return static_cell_count();
1248   }
1249 
1250   // Direct accessors
1251   static ByteSize virtual_call_data_size() {
1252     return cell_offset(static_cell_count());
1253   }
1254 
1255 #ifndef PRODUCT
1256   void print_data_on(outputStream* st) const;
1257 #endif
1258 };
1259 
1260 // VirtualCallTypeData
1261 //
1262 // A VirtualCallTypeData is used to access profiling information about
1263 // a virtual call for which we collect type information about
1264 // arguments and return value.
1265 class VirtualCallTypeData : public VirtualCallData {
1266 private:
1267   TypeEntriesAtCall _args_and_ret;
1268 
1269 public:
1270   VirtualCallTypeData(DataLayout* layout) :
1271     VirtualCallData(layout), _args_and_ret(VirtualCallData::static_cell_count(), this)  {
1272     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1273   }
1274 
1275   const TypeEntriesAtCall* args_and_ret() const { return &_args_and_ret; }
1276 
1277   virtual bool is_VirtualCallTypeData() const { return true; }
1278 
1279   static int static_cell_count() {
1280     return -1;
1281   }
1282 
1283   static int compute_cell_count(BytecodeStream* stream) {
1284     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1285   }
1286   
1287   static void initialize(DataLayout* dl, int cell_count) {
1288     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1289   }
1290 
1291   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {
1292     _args_and_ret.post_initialize(stream);
1293   }
1294 
1295   virtual int cell_count() const {
1296     return _args_and_ret.cell_count();
1297   }
1298 
1299   uint number_of_arguments() const {
1300     return args_and_ret()->number_of_arguments();
1301   }
1302 
1303   void set_argument_type(int i, Klass* k) {
1304     _args_and_ret.set_argument_type(i, k);
1305   }
1306 
1307   void set_return_type(Klass* k) {
1308     _args_and_ret.set_return_type(k);
1309   }
1310 
1311   // Code generation support
1312   static ByteSize args_data_offset() {
1313     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1314   }
1315 
1316   // GC support
1317   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1318     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1319     _args_and_ret.clean_weak_klass_links(is_alive_closure);
1320   }
1321 
1322 #ifndef PRODUCT
1323   virtual void print_data_on(outputStream* st) const;
1324 #endif
1325 };
1326 
1327 // RetData
1328 //
1329 // A RetData is used to access profiling information for a ret bytecode.
1330 // It is composed of a count of the number of times that the ret has
1331 // been executed, followed by a series of triples of the form
1332 // (bci, count, di) which count the number of times that some bci was the
1333 // target of the ret and cache a corresponding data displacement.
1334 class RetData : public CounterData {
1335 protected:
1336   enum {
1337     bci0_offset = counter_cell_count,
1338     count0_offset,
1339     displacement0_offset,
1340     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1341   };
1342 
1343   void set_bci(uint row, int bci) {
1344     assert((uint)row < row_limit(), "oob");
1345     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1346   }
1347   void release_set_bci(uint row, int bci) {
1348     assert((uint)row < row_limit(), "oob");
1349     // 'release' when setting the bci acts as a valid flag for other
1350     // threads wrt bci_count and bci_displacement.
1351     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1352   }
1353   void set_bci_count(uint row, uint count) {
1354     assert((uint)row < row_limit(), "oob");
1355     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1356   }
1357   void set_bci_displacement(uint row, int disp) {
1358     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1359   }
1360 
1361 public:
1362   RetData(DataLayout* layout) : CounterData(layout) {
1363     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1364   }
1365 
1366   virtual bool is_RetData() const { return true; }
1367 
1368   enum {
1369     no_bci = -1 // value of bci when bci1/2 are not in use.
1370   };
1371 
1372   static int static_cell_count() {
1373     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1374   }
1375 
1376   virtual int cell_count() const {
1377     return static_cell_count();
1378   }
1379 
1380   static uint row_limit() {
1381     return BciProfileWidth;
1382   }
1383   static int bci_cell_index(uint row) {
1384     return bci0_offset + row * ret_row_cell_count;
1385   }
1386   static int bci_count_cell_index(uint row) {
1387     return count0_offset + row * ret_row_cell_count;
1388   }
1389   static int bci_displacement_cell_index(uint row) {
1390     return displacement0_offset + row * ret_row_cell_count;
1391   }
1392 
1393   // Direct accessors
1394   int bci(uint row) const {
1395     return int_at(bci_cell_index(row));
1396   }
1397   uint bci_count(uint row) const {
1398     return uint_at(bci_count_cell_index(row));
1399   }
1400   int bci_displacement(uint row) const {
1401     return int_at(bci_displacement_cell_index(row));
1402   }
1403 
1404   // Interpreter Runtime support
1405   address fixup_ret(int return_bci, MethodData* mdo);
1406 
1407   // Code generation support
1408   static ByteSize bci_offset(uint row) {
1409     return cell_offset(bci_cell_index(row));
1410   }
1411   static ByteSize bci_count_offset(uint row) {
1412     return cell_offset(bci_count_cell_index(row));
1413   }
1414   static ByteSize bci_displacement_offset(uint row) {
1415     return cell_offset(bci_displacement_cell_index(row));
1416   }
1417 
1418   // Specific initialization.
1419   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1420 
1421 #ifndef PRODUCT
1422   void print_data_on(outputStream* st) const;
1423 #endif
1424 };
1425 
1426 // BranchData
1427 //
1428 // A BranchData is used to access profiling data for a two-way branch.
1429 // It consists of taken and not_taken counts as well as a data displacement
1430 // for the taken case.
1431 class BranchData : public JumpData {
1432 protected:
1433   enum {
1434     not_taken_off_set = jump_cell_count,
1435     branch_cell_count
1436   };
1437 
1438   void set_displacement(int displacement) {
1439     set_int_at(displacement_off_set, displacement);
1440   }
1441 
1442 public:
1443   BranchData(DataLayout* layout) : JumpData(layout) {
1444     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1445   }
1446 
1447   virtual bool is_BranchData() const { return true; }
1448 
1449   static int static_cell_count() {
1450     return branch_cell_count;
1451   }
1452 
1453   virtual int cell_count() const {
1454     return static_cell_count();
1455   }
1456 
1457   // Direct accessor
1458   uint not_taken() const {
1459     return uint_at(not_taken_off_set);
1460   }
1461 
1462   void set_not_taken(uint cnt) {
1463     set_uint_at(not_taken_off_set, cnt);
1464   }
1465 
1466   uint inc_not_taken() {
1467     uint cnt = not_taken() + 1;
1468     // Did we wrap? Will compiler screw us??
1469     if (cnt == 0) cnt--;
1470     set_uint_at(not_taken_off_set, cnt);
1471     return cnt;
1472   }
1473 
1474   // Code generation support
1475   static ByteSize not_taken_offset() {
1476     return cell_offset(not_taken_off_set);
1477   }
1478   static ByteSize branch_data_size() {
1479     return cell_offset(branch_cell_count);
1480   }
1481 
1482   // Specific initialization.
1483   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1484 
1485 #ifndef PRODUCT
1486   void print_data_on(outputStream* st) const;
1487 #endif
1488 };
1489 
1490 // ArrayData
1491 //
1492 // A ArrayData is a base class for accessing profiling data which does
1493 // not have a statically known size.  It consists of an array length
1494 // and an array start.
1495 class ArrayData : public ProfileData {
1496 protected:
1497   friend class DataLayout;
1498 
1499   enum {
1500     array_len_off_set,
1501     array_start_off_set
1502   };
1503 
1504   uint array_uint_at(int index) const {
1505     int aindex = index + array_start_off_set;
1506     return uint_at(aindex);
1507   }
1508   int array_int_at(int index) const {
1509     int aindex = index + array_start_off_set;
1510     return int_at(aindex);
1511   }
1512   oop array_oop_at(int index) const {
1513     int aindex = index + array_start_off_set;
1514     return oop_at(aindex);
1515   }
1516   void array_set_int_at(int index, int value) {
1517     int aindex = index + array_start_off_set;
1518     set_int_at(aindex, value);
1519   }
1520 
1521   // Code generation support for subclasses.
1522   static ByteSize array_element_offset(int index) {
1523     return cell_offset(array_start_off_set + index);
1524   }
1525 
1526 public:
1527   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1528 
1529   virtual bool is_ArrayData() const { return true; }
1530 
1531   static int static_cell_count() {
1532     return -1;
1533   }
1534 
1535   int array_len() const {
1536     return int_at_unchecked(array_len_off_set);
1537   }
1538 
1539   virtual int cell_count() const {
1540     return array_len() + 1;
1541   }
1542 
1543   // Code generation support
1544   static ByteSize array_len_offset() {
1545     return cell_offset(array_len_off_set);
1546   }
1547   static ByteSize array_start_offset() {
1548     return cell_offset(array_start_off_set);
1549   }
1550 };
1551 
1552 // MultiBranchData
1553 //
1554 // A MultiBranchData is used to access profiling information for
1555 // a multi-way branch (*switch bytecodes).  It consists of a series
1556 // of (count, displacement) pairs, which count the number of times each
1557 // case was taken and specify the data displacment for each branch target.
1558 class MultiBranchData : public ArrayData {
1559 protected:
1560   enum {
1561     default_count_off_set,
1562     default_disaplacement_off_set,
1563     case_array_start
1564   };
1565   enum {
1566     relative_count_off_set,
1567     relative_displacement_off_set,
1568     per_case_cell_count
1569   };
1570 
1571   void set_default_displacement(int displacement) {
1572     array_set_int_at(default_disaplacement_off_set, displacement);
1573   }
1574   void set_displacement_at(int index, int displacement) {
1575     array_set_int_at(case_array_start +
1576                      index * per_case_cell_count +
1577                      relative_displacement_off_set,
1578                      displacement);
1579   }
1580 
1581 public:
1582   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1583     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1584   }
1585 
1586   virtual bool is_MultiBranchData() const { return true; }
1587 
1588   static int compute_cell_count(BytecodeStream* stream);
1589 
1590   int number_of_cases() const {
1591     int alen = array_len() - 2; // get rid of default case here.
1592     assert(alen % per_case_cell_count == 0, "must be even");
1593     return (alen / per_case_cell_count);
1594   }
1595 
1596   uint default_count() const {
1597     return array_uint_at(default_count_off_set);
1598   }
1599   int default_displacement() const {
1600     return array_int_at(default_disaplacement_off_set);
1601   }
1602 
1603   uint count_at(int index) const {
1604     return array_uint_at(case_array_start +
1605                          index * per_case_cell_count +
1606                          relative_count_off_set);
1607   }
1608   int displacement_at(int index) const {
1609     return array_int_at(case_array_start +
1610                         index * per_case_cell_count +
1611                         relative_displacement_off_set);
1612   }
1613 
1614   // Code generation support
1615   static ByteSize default_count_offset() {
1616     return array_element_offset(default_count_off_set);
1617   }
1618   static ByteSize default_displacement_offset() {
1619     return array_element_offset(default_disaplacement_off_set);
1620   }
1621   static ByteSize case_count_offset(int index) {
1622     return case_array_offset() +
1623            (per_case_size() * index) +
1624            relative_count_offset();
1625   }
1626   static ByteSize case_array_offset() {
1627     return array_element_offset(case_array_start);
1628   }
1629   static ByteSize per_case_size() {
1630     return in_ByteSize(per_case_cell_count) * cell_size;
1631   }
1632   static ByteSize relative_count_offset() {
1633     return in_ByteSize(relative_count_off_set) * cell_size;
1634   }
1635   static ByteSize relative_displacement_offset() {
1636     return in_ByteSize(relative_displacement_off_set) * cell_size;
1637   }
1638 
1639   // Specific initialization.
1640   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1641 
1642 #ifndef PRODUCT
1643   void print_data_on(outputStream* st) const;
1644 #endif
1645 };
1646 
1647 class ArgInfoData : public ArrayData {
1648 
1649 public:
1650   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1651     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1652   }
1653 
1654   virtual bool is_ArgInfoData() const { return true; }
1655 
1656 
1657   int number_of_args() const {
1658     return array_len();
1659   }
1660 
1661   uint arg_modified(int arg) const {
1662     return array_uint_at(arg);
1663   }
1664 
1665   void set_arg_modified(int arg, uint val) {
1666     array_set_int_at(arg, val);
1667   }
1668 
1669 #ifndef PRODUCT
1670   void print_data_on(outputStream* st) const;
1671 #endif
1672 };
1673 
1674 // MethodData*
1675 //
1676 // A MethodData* holds information which has been collected about
1677 // a method.  Its layout looks like this:
1678 //
1679 // -----------------------------
1680 // | header                    |
1681 // | klass                     |
1682 // -----------------------------
1683 // | method                    |
1684 // | size of the MethodData* |
1685 // -----------------------------
1686 // | Data entries...           |
1687 // |   (variable size)         |
1688 // |                           |
1689 // .                           .
1690 // .                           .
1691 // .                           .
1692 // |                           |
1693 // -----------------------------
1694 //
1695 // The data entry area is a heterogeneous array of DataLayouts. Each
1696 // DataLayout in the array corresponds to a specific bytecode in the
1697 // method.  The entries in the array are sorted by the corresponding
1698 // bytecode.  Access to the data is via resource-allocated ProfileData,
1699 // which point to the underlying blocks of DataLayout structures.
1700 //
1701 // During interpretation, if profiling in enabled, the interpreter
1702 // maintains a method data pointer (mdp), which points at the entry
1703 // in the array corresponding to the current bci.  In the course of
1704 // intepretation, when a bytecode is encountered that has profile data
1705 // associated with it, the entry pointed to by mdp is updated, then the
1706 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1707 // is NULL to begin with, the interpreter assumes that the current method
1708 // is not (yet) being profiled.
1709 //
1710 // In MethodData* parlance, "dp" is a "data pointer", the actual address
1711 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1712 // from the base of the data entry array.  A "displacement" is the byte offset
1713 // in certain ProfileData objects that indicate the amount the mdp must be
1714 // adjusted in the event of a change in control flow.
1715 //
1716 
1717 class MethodData : public Metadata {
1718   friend class VMStructs;
1719 private:
1720   friend class ProfileData;
1721 
1722   // Back pointer to the Method*
1723   Method* _method;
1724 
1725   // Size of this oop in bytes
1726   int _size;
1727 
1728   // Cached hint for bci_to_dp and bci_to_data
1729   int _hint_di;
1730 
1731   MethodData(methodHandle method, int size, TRAPS);
1732 public:
1733   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
1734   MethodData() {}; // For ciMethodData
1735 
1736   bool is_methodData() const volatile { return true; }
1737 
1738   // Whole-method sticky bits and flags
1739   enum {
1740     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
1741     _trap_hist_mask     = max_jubyte,
1742     _extra_data_count   = 4     // extra DataLayout headers, for trap history
1743   }; // Public flag values
1744 private:
1745   uint _nof_decompiles;             // count of all nmethod removals
1746   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
1747   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
1748   union {
1749     intptr_t _align;
1750     u1 _array[_trap_hist_limit];
1751   } _trap_hist;
1752 
1753   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1754   intx              _eflags;          // flags on escape information
1755   intx              _arg_local;       // bit set of non-escaping arguments
1756   intx              _arg_stack;       // bit set of stack-allocatable arguments
1757   intx              _arg_returned;    // bit set of returned arguments
1758 
1759   int _creation_mileage;              // method mileage at MDO creation
1760 
1761   // How many invocations has this MDO seen?
1762   // These counters are used to determine the exact age of MDO.
1763   // We need those because in tiered a method can be concurrently
1764   // executed at different levels.
1765   InvocationCounter _invocation_counter;
1766   // Same for backedges.
1767   InvocationCounter _backedge_counter;
1768   // Counter values at the time profiling started.
1769   int               _invocation_counter_start;
1770   int               _backedge_counter_start;
1771   // Number of loops and blocks is computed when compiling the first
1772   // time with C1. It is used to determine if method is trivial.
1773   short             _num_loops;
1774   short             _num_blocks;
1775   // Highest compile level this method has ever seen.
1776   u1                _highest_comp_level;
1777   // Same for OSR level
1778   u1                _highest_osr_comp_level;
1779   // Does this method contain anything worth profiling?
1780   bool              _would_profile;
1781 
1782   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
1783   int _data_size;
1784 
1785   // Beginning of the data entries
1786   intptr_t _data[1];
1787 
1788   // Helper for size computation
1789   static int compute_data_size(BytecodeStream* stream);
1790   static int bytecode_cell_count(Bytecodes::Code code);
1791   enum { no_profile_data = -1, variable_cell_count = -2 };
1792 
1793   // Helper for initialization
1794   DataLayout* data_layout_at(int data_index) const {
1795     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
1796     return (DataLayout*) (((address)_data) + data_index);
1797   }
1798 
1799   // Initialize an individual data segment.  Returns the size of
1800   // the segment in bytes.
1801   int initialize_data(BytecodeStream* stream, int data_index);
1802 
1803   // Helper for data_at
1804   DataLayout* limit_data_position() const {
1805     return (DataLayout*)((address)data_base() + _data_size);
1806   }
1807   bool out_of_bounds(int data_index) const {
1808     return data_index >= data_size();
1809   }
1810 
1811   // Give each of the data entries a chance to perform specific
1812   // data initialization.
1813   void post_initialize(BytecodeStream* stream);
1814 
1815   // hint accessors
1816   int      hint_di() const  { return _hint_di; }
1817   void set_hint_di(int di)  {
1818     assert(!out_of_bounds(di), "hint_di out of bounds");
1819     _hint_di = di;
1820   }
1821   ProfileData* data_before(int bci) {
1822     // avoid SEGV on this edge case
1823     if (data_size() == 0)
1824       return NULL;
1825     int hint = hint_di();
1826     if (data_layout_at(hint)->bci() <= bci)
1827       return data_at(hint);
1828     return first_data();
1829   }
1830 
1831   // What is the index of the first data entry?
1832   int first_di() const { return 0; }
1833 
1834   // Find or create an extra ProfileData:
1835   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
1836 
1837   // return the argument info cell
1838   ArgInfoData *arg_info();
1839 
1840   enum {
1841     no_type_profile = 0,
1842     type_profile_jsr292 = 1,
1843     type_profile_all = 2
1844   };
1845 
1846   static bool profile_jsr292(methodHandle m, int bci);
1847   static int profile_arguments_flag();
1848   static bool profile_arguments_jsr292_only();
1849   static bool profile_all_arguments();
1850   static bool profile_arguments_for_invoke(methodHandle m, int bci);
1851   static int profile_return_flag();
1852   static bool profile_return_jsr292_only();
1853   static bool profile_all_return();
1854   static bool profile_return_for_invoke(methodHandle m, int bci);
1855 
1856 public:
1857   static int header_size() {
1858     return sizeof(MethodData)/wordSize;
1859   }
1860 
1861   // Compute the size of a MethodData* before it is created.
1862   static int compute_allocation_size_in_bytes(methodHandle method);
1863   static int compute_allocation_size_in_words(methodHandle method);
1864   static int compute_extra_data_count(int data_size, int empty_bc_count);
1865 
1866   // Determine if a given bytecode can have profile information.
1867   static bool bytecode_has_profile(Bytecodes::Code code) {
1868     return bytecode_cell_count(code) != no_profile_data;
1869   }
1870 
1871   // reset into original state
1872   void init();
1873 
1874   // My size
1875   int size_in_bytes() const { return _size; }
1876   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
1877 #if INCLUDE_SERVICES
1878   void collect_statistics(KlassSizeStats *sz) const;
1879 #endif
1880 
1881   int      creation_mileage() const  { return _creation_mileage; }
1882   void set_creation_mileage(int x)   { _creation_mileage = x; }
1883 
1884   int invocation_count() {
1885     if (invocation_counter()->carry()) {
1886       return InvocationCounter::count_limit;
1887     }
1888     return invocation_counter()->count();
1889   }
1890   int backedge_count() {
1891     if (backedge_counter()->carry()) {
1892       return InvocationCounter::count_limit;
1893     }
1894     return backedge_counter()->count();
1895   }
1896 
1897   int invocation_count_start() {
1898     if (invocation_counter()->carry()) {
1899       return 0;
1900     }
1901     return _invocation_counter_start;
1902   }
1903 
1904   int backedge_count_start() {
1905     if (backedge_counter()->carry()) {
1906       return 0;
1907     }
1908     return _backedge_counter_start;
1909   }
1910 
1911   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
1912   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
1913 
1914   void reset_start_counters() {
1915     _invocation_counter_start = invocation_count();
1916     _backedge_counter_start = backedge_count();
1917   }
1918 
1919   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
1920   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
1921 
1922   void set_would_profile(bool p)              { _would_profile = p;    }
1923   bool would_profile() const                  { return _would_profile; }
1924 
1925   int highest_comp_level() const              { return _highest_comp_level;      }
1926   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
1927   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
1928   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
1929 
1930   int num_loops() const                       { return _num_loops;  }
1931   void set_num_loops(int n)                   { _num_loops = n;     }
1932   int num_blocks() const                      { return _num_blocks; }
1933   void set_num_blocks(int n)                  { _num_blocks = n;    }
1934 
1935   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
1936   static int mileage_of(Method* m);
1937 
1938   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1939   enum EscapeFlag {
1940     estimated    = 1 << 0,
1941     return_local = 1 << 1,
1942     return_allocated = 1 << 2,
1943     allocated_escapes = 1 << 3,
1944     unknown_modified = 1 << 4
1945   };
1946 
1947   intx eflags()                                  { return _eflags; }
1948   intx arg_local()                               { return _arg_local; }
1949   intx arg_stack()                               { return _arg_stack; }
1950   intx arg_returned()                            { return _arg_returned; }
1951   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
1952                                                    assert(aid != NULL, "arg_info must be not null");
1953                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1954                                                    return aid->arg_modified(a); }
1955 
1956   void set_eflags(intx v)                        { _eflags = v; }
1957   void set_arg_local(intx v)                     { _arg_local = v; }
1958   void set_arg_stack(intx v)                     { _arg_stack = v; }
1959   void set_arg_returned(intx v)                  { _arg_returned = v; }
1960   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
1961                                                    assert(aid != NULL, "arg_info must be not null");
1962                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1963                                                    aid->set_arg_modified(a, v); }
1964 
1965   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
1966 
1967   // Location and size of data area
1968   address data_base() const {
1969     return (address) _data;
1970   }
1971   int data_size() const {
1972     return _data_size;
1973   }
1974 
1975   // Accessors
1976   Method* method() const { return _method; }
1977 
1978   // Get the data at an arbitrary (sort of) data index.
1979   ProfileData* data_at(int data_index) const;
1980 
1981   // Walk through the data in order.
1982   ProfileData* first_data() const { return data_at(first_di()); }
1983   ProfileData* next_data(ProfileData* current) const;
1984   bool is_valid(ProfileData* current) const { return current != NULL; }
1985 
1986   // Convert a dp (data pointer) to a di (data index).
1987   int dp_to_di(address dp) const {
1988     return dp - ((address)_data);
1989   }
1990 
1991   address di_to_dp(int di) {
1992     return (address)data_layout_at(di);
1993   }
1994 
1995   // bci to di/dp conversion.
1996   address bci_to_dp(int bci);
1997   int bci_to_di(int bci) {
1998     return dp_to_di(bci_to_dp(bci));
1999   }
2000 
2001   // Get the data at an arbitrary bci, or NULL if there is none.
2002   ProfileData* bci_to_data(int bci);
2003 
2004   // Same, but try to create an extra_data record if one is needed:
2005   ProfileData* allocate_bci_to_data(int bci) {
2006     ProfileData* data = bci_to_data(bci);
2007     return (data != NULL) ? data : bci_to_extra_data(bci, true);
2008   }
2009 
2010   // Add a handful of extra data records, for trap tracking.
2011   DataLayout* extra_data_base() const { return limit_data_position(); }
2012   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2013   int extra_data_size() const { return (address)extra_data_limit()
2014                                - (address)extra_data_base(); }
2015   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
2016 
2017   // Return (uint)-1 for overflow.
2018   uint trap_count(int reason) const {
2019     assert((uint)reason < _trap_hist_limit, "oob");
2020     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2021   }
2022   // For loops:
2023   static uint trap_reason_limit() { return _trap_hist_limit; }
2024   static uint trap_count_limit()  { return _trap_hist_mask; }
2025   uint inc_trap_count(int reason) {
2026     // Count another trap, anywhere in this method.
2027     assert(reason >= 0, "must be single trap");
2028     if ((uint)reason < _trap_hist_limit) {
2029       uint cnt1 = 1 + _trap_hist._array[reason];
2030       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2031         _trap_hist._array[reason] = cnt1;
2032         return cnt1;
2033       } else {
2034         return _trap_hist_mask + (++_nof_overflow_traps);
2035       }
2036     } else {
2037       // Could not represent the count in the histogram.
2038       return (++_nof_overflow_traps);
2039     }
2040   }
2041 
2042   uint overflow_trap_count() const {
2043     return _nof_overflow_traps;
2044   }
2045   uint overflow_recompile_count() const {
2046     return _nof_overflow_recompiles;
2047   }
2048   void inc_overflow_recompile_count() {
2049     _nof_overflow_recompiles += 1;
2050   }
2051   uint decompile_count() const {
2052     return _nof_decompiles;
2053   }
2054   void inc_decompile_count() {
2055     _nof_decompiles += 1;
2056     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2057       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2058     }
2059   }
2060 
2061   // Support for code generation
2062   static ByteSize data_offset() {
2063     return byte_offset_of(MethodData, _data[0]);
2064   }
2065 
2066   static ByteSize invocation_counter_offset() {
2067     return byte_offset_of(MethodData, _invocation_counter);
2068   }
2069   static ByteSize backedge_counter_offset() {
2070     return byte_offset_of(MethodData, _backedge_counter);
2071   }
2072 
2073   // Deallocation support - no pointer fields to deallocate
2074   void deallocate_contents(ClassLoaderData* loader_data) {}
2075 
2076   // GC support
2077   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2078 
2079   // Printing
2080 #ifndef PRODUCT
2081   void print_on      (outputStream* st) const;
2082 #endif
2083   void print_value_on(outputStream* st) const;
2084 
2085 #ifndef PRODUCT
2086   // printing support for method data
2087   void print_data_on(outputStream* st) const;
2088 #endif
2089 
2090   const char* internal_name() const { return "{method data}"; }
2091 
2092   // verification
2093   void verify_on(outputStream* st);
2094   void verify_data_on(outputStream* st);
2095 
2096   static bool profile_arguments();
2097   static bool profile_return();
2098 };
2099 
2100 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP