1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/bitMap.inline.hpp"
  38 #include "utilities/macros.hpp"
  39 #if INCLUDE_ALL_GCS
  40 #include "gc_implementation/g1/heapRegion.hpp"
  41 #endif // INCLUDE_ALL_GCS
  42 
  43 #ifdef ASSERT
  44 #define __ gen()->lir(__FILE__, __LINE__)->
  45 #else
  46 #define __ gen()->lir()->
  47 #endif
  48 
  49 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  50 #ifdef ARM
  51 #define PATCHED_ADDR  (204)
  52 #else
  53 #define PATCHED_ADDR  (max_jint)
  54 #endif
  55 
  56 void PhiResolverState::reset(int max_vregs) {
  57   // Initialize array sizes
  58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  59   _virtual_operands.trunc_to(0);
  60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _other_operands.trunc_to(0);
  62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _vreg_table.trunc_to(0);
  64 }
  65 
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _temp(LIR_OprFact::illegalOpr)
  85 {
  86   // reinitialize the shared state arrays
  87   _state.reset(max_vregs);
  88 }
  89 
  90 
  91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  92   assert(src->is_valid(), "");
  93   assert(dest->is_valid(), "");
  94   __ move(src, dest);
  95 }
  96 
  97 
  98 void PhiResolver::move_temp_to(LIR_Opr dest) {
  99   assert(_temp->is_valid(), "");
 100   emit_move(_temp, dest);
 101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 102 }
 103 
 104 
 105 void PhiResolver::move_to_temp(LIR_Opr src) {
 106   assert(_temp->is_illegal(), "");
 107   _temp = _gen->new_register(src->type());
 108   emit_move(src, _temp);
 109 }
 110 
 111 
 112 // Traverse assignment graph in depth first order and generate moves in post order
 113 // ie. two assignments: b := c, a := b start with node c:
 114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 115 // Generates moves in this order: move b to a and move c to b
 116 // ie. cycle a := b, b := a start with node a
 117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 118 // Generates moves in this order: move b to temp, move a to b, move temp to a
 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 120   if (!dest->visited()) {
 121     dest->set_visited();
 122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 123       move(dest, dest->destination_at(i));
 124     }
 125   } else if (!dest->start_node()) {
 126     // cylce in graph detected
 127     assert(_loop == NULL, "only one loop valid!");
 128     _loop = dest;
 129     move_to_temp(src->operand());
 130     return;
 131   } // else dest is a start node
 132 
 133   if (!dest->assigned()) {
 134     if (_loop == dest) {
 135       move_temp_to(dest->operand());
 136       dest->set_assigned();
 137     } else if (src != NULL) {
 138       emit_move(src->operand(), dest->operand());
 139       dest->set_assigned();
 140     }
 141   }
 142 }
 143 
 144 
 145 PhiResolver::~PhiResolver() {
 146   int i;
 147   // resolve any cycles in moves from and to virtual registers
 148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 149     ResolveNode* node = virtual_operands()[i];
 150     if (!node->visited()) {
 151       _loop = NULL;
 152       move(NULL, node);
 153       node->set_start_node();
 154       assert(_temp->is_illegal(), "move_temp_to() call missing");
 155     }
 156   }
 157 
 158   // generate move for move from non virtual register to abitrary destination
 159   for (i = other_operands().length() - 1; i >= 0; i --) {
 160     ResolveNode* node = other_operands()[i];
 161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 162       emit_move(node->operand(), node->destination_at(j)->operand());
 163     }
 164   }
 165 }
 166 
 167 
 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 169   ResolveNode* node;
 170   if (opr->is_virtual()) {
 171     int vreg_num = opr->vreg_number();
 172     node = vreg_table().at_grow(vreg_num, NULL);
 173     assert(node == NULL || node->operand() == opr, "");
 174     if (node == NULL) {
 175       node = new ResolveNode(opr);
 176       vreg_table()[vreg_num] = node;
 177     }
 178     // Make sure that all virtual operands show up in the list when
 179     // they are used as the source of a move.
 180     if (source && !virtual_operands().contains(node)) {
 181       virtual_operands().append(node);
 182     }
 183   } else {
 184     assert(source, "");
 185     node = new ResolveNode(opr);
 186     other_operands().append(node);
 187   }
 188   return node;
 189 }
 190 
 191 
 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 193   assert(dest->is_virtual(), "");
 194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 195   assert(src->is_valid(), "");
 196   assert(dest->is_valid(), "");
 197   ResolveNode* source = source_node(src);
 198   source->append(destination_node(dest));
 199 }
 200 
 201 
 202 //--------------------------------------------------------------
 203 // LIRItem
 204 
 205 void LIRItem::set_result(LIR_Opr opr) {
 206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 207   value()->set_operand(opr);
 208 
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 211   }
 212 
 213   _result = opr;
 214 }
 215 
 216 void LIRItem::load_item() {
 217   if (result()->is_illegal()) {
 218     // update the items result
 219     _result = value()->operand();
 220   }
 221   if (!result()->is_register()) {
 222     LIR_Opr reg = _gen->new_register(value()->type());
 223     __ move(result(), reg);
 224     if (result()->is_constant()) {
 225       _result = reg;
 226     } else {
 227       set_result(reg);
 228     }
 229   }
 230 }
 231 
 232 
 233 void LIRItem::load_for_store(BasicType type) {
 234   if (_gen->can_store_as_constant(value(), type)) {
 235     _result = value()->operand();
 236     if (!_result->is_constant()) {
 237       _result = LIR_OprFact::value_type(value()->type());
 238     }
 239   } else if (type == T_BYTE || type == T_BOOLEAN) {
 240     load_byte_item();
 241   } else {
 242     load_item();
 243   }
 244 }
 245 
 246 void LIRItem::load_item_force(LIR_Opr reg) {
 247   LIR_Opr r = result();
 248   if (r != reg) {
 249 #if !defined(ARM) && !defined(E500V2)
 250     if (r->type() != reg->type()) {
 251       // moves between different types need an intervening spill slot
 252       r = _gen->force_to_spill(r, reg->type());
 253     }
 254 #endif
 255     __ move(r, reg);
 256     _result = reg;
 257   }
 258 }
 259 
 260 ciObject* LIRItem::get_jobject_constant() const {
 261   ObjectType* oc = type()->as_ObjectType();
 262   if (oc) {
 263     return oc->constant_value();
 264   }
 265   return NULL;
 266 }
 267 
 268 
 269 jint LIRItem::get_jint_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_IntConstant() != NULL, "type check");
 272   return type()->as_IntConstant()->value();
 273 }
 274 
 275 
 276 jint LIRItem::get_address_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_AddressConstant() != NULL, "type check");
 279   return type()->as_AddressConstant()->value();
 280 }
 281 
 282 
 283 jfloat LIRItem::get_jfloat_constant() const {
 284   assert(is_constant() && value() != NULL, "");
 285   assert(type()->as_FloatConstant() != NULL, "type check");
 286   return type()->as_FloatConstant()->value();
 287 }
 288 
 289 
 290 jdouble LIRItem::get_jdouble_constant() const {
 291   assert(is_constant() && value() != NULL, "");
 292   assert(type()->as_DoubleConstant() != NULL, "type check");
 293   return type()->as_DoubleConstant()->value();
 294 }
 295 
 296 
 297 jlong LIRItem::get_jlong_constant() const {
 298   assert(is_constant() && value() != NULL, "");
 299   assert(type()->as_LongConstant() != NULL, "type check");
 300   return type()->as_LongConstant()->value();
 301 }
 302 
 303 
 304 
 305 //--------------------------------------------------------------
 306 
 307 
 308 void LIRGenerator::init() {
 309   _bs = Universe::heap()->barrier_set();
 310 }
 311 
 312 
 313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 314 #ifndef PRODUCT
 315   if (PrintIRWithLIR) {
 316     block->print();
 317   }
 318 #endif
 319 
 320   // set up the list of LIR instructions
 321   assert(block->lir() == NULL, "LIR list already computed for this block");
 322   _lir = new LIR_List(compilation(), block);
 323   block->set_lir(_lir);
 324 
 325   __ branch_destination(block->label());
 326 
 327   if (LIRTraceExecution &&
 328       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 329       !block->is_set(BlockBegin::exception_entry_flag)) {
 330     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 331     trace_block_entry(block);
 332   }
 333 }
 334 
 335 
 336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 337 #ifndef PRODUCT
 338   if (PrintIRWithLIR) {
 339     tty->cr();
 340   }
 341 #endif
 342 
 343   // LIR_Opr for unpinned constants shouldn't be referenced by other
 344   // blocks so clear them out after processing the block.
 345   for (int i = 0; i < _unpinned_constants.length(); i++) {
 346     _unpinned_constants.at(i)->clear_operand();
 347   }
 348   _unpinned_constants.trunc_to(0);
 349 
 350   // clear our any registers for other local constants
 351   _constants.trunc_to(0);
 352   _reg_for_constants.trunc_to(0);
 353 }
 354 
 355 
 356 void LIRGenerator::block_do(BlockBegin* block) {
 357   CHECK_BAILOUT();
 358 
 359   block_do_prolog(block);
 360   set_block(block);
 361 
 362   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 363     if (instr->is_pinned()) do_root(instr);
 364   }
 365 
 366   set_block(NULL);
 367   block_do_epilog(block);
 368 }
 369 
 370 
 371 //-------------------------LIRGenerator-----------------------------
 372 
 373 // This is where the tree-walk starts; instr must be root;
 374 void LIRGenerator::do_root(Value instr) {
 375   CHECK_BAILOUT();
 376 
 377   InstructionMark im(compilation(), instr);
 378 
 379   assert(instr->is_pinned(), "use only with roots");
 380   assert(instr->subst() == instr, "shouldn't have missed substitution");
 381 
 382   instr->visit(this);
 383 
 384   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 385          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 386 }
 387 
 388 
 389 // This is called for each node in tree; the walk stops if a root is reached
 390 void LIRGenerator::walk(Value instr) {
 391   InstructionMark im(compilation(), instr);
 392   //stop walk when encounter a root
 393   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 394     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 395   } else {
 396     assert(instr->subst() == instr, "shouldn't have missed substitution");
 397     instr->visit(this);
 398     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 399   }
 400 }
 401 
 402 
 403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 404   assert(state != NULL, "state must be defined");
 405 
 406 #ifndef PRODUCT
 407   state->verify();
 408 #endif
 409 
 410   ValueStack* s = state;
 411   for_each_state(s) {
 412     if (s->kind() == ValueStack::EmptyExceptionState) {
 413       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 414       continue;
 415     }
 416 
 417     int index;
 418     Value value;
 419     for_each_stack_value(s, index, value) {
 420       assert(value->subst() == value, "missed substitution");
 421       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 422         walk(value);
 423         assert(value->operand()->is_valid(), "must be evaluated now");
 424       }
 425     }
 426 
 427     int bci = s->bci();
 428     IRScope* scope = s->scope();
 429     ciMethod* method = scope->method();
 430 
 431     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 432     if (bci == SynchronizationEntryBCI) {
 433       if (x->as_ExceptionObject() || x->as_Throw()) {
 434         // all locals are dead on exit from the synthetic unlocker
 435         liveness.clear();
 436       } else {
 437         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 438       }
 439     }
 440     if (!liveness.is_valid()) {
 441       // Degenerate or breakpointed method.
 442       bailout("Degenerate or breakpointed method");
 443     } else {
 444       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 445       for_each_local_value(s, index, value) {
 446         assert(value->subst() == value, "missed substition");
 447         if (liveness.at(index) && !value->type()->is_illegal()) {
 448           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 449             walk(value);
 450             assert(value->operand()->is_valid(), "must be evaluated now");
 451           }
 452         } else {
 453           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 454           s->invalidate_local(index);
 455         }
 456       }
 457     }
 458   }
 459 
 460   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 461 }
 462 
 463 
 464 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 465   return state_for(x, x->exception_state());
 466 }
 467 
 468 
 469 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
 470   if (!obj->is_loaded() || PatchALot) {
 471     assert(info != NULL, "info must be set if class is not loaded");
 472     __ klass2reg_patch(NULL, r, info);
 473   } else {
 474     // no patching needed
 475     __ metadata2reg(obj->constant_encoding(), r);
 476   }
 477 }
 478 
 479 
 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 482   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 483   if (index->is_constant()) {
 484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 485                 index->as_jint(), null_check_info);
 486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 487   } else {
 488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 491   }
 492 }
 493 
 494 
 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 496   CodeStub* stub = new RangeCheckStub(info, index, true);
 497   if (index->is_constant()) {
 498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 502                 java_nio_Buffer::limit_offset(), T_INT, info);
 503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 504   }
 505   __ move(index, result);
 506 }
 507 
 508 
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (TwoOperandLIRForm && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:
 530       {
 531         if (is_strictfp) {
 532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 533         } else {
 534           __ mul(left_op, right_op, result_op); break;
 535         }
 536       }
 537       break;
 538 
 539     case Bytecodes::_imul:
 540       {
 541         bool    did_strength_reduce = false;
 542 
 543         if (right->is_constant()) {
 544           int c = right->as_jint();
 545           if (is_power_of_2(c)) {
 546             // do not need tmp here
 547             __ shift_left(left_op, exact_log2(c), result_op);
 548             did_strength_reduce = true;
 549           } else {
 550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 551           }
 552         }
 553         // we couldn't strength reduce so just emit the multiply
 554         if (!did_strength_reduce) {
 555           __ mul(left_op, right_op, result_op);
 556         }
 557       }
 558       break;
 559 
 560     case Bytecodes::_dsub:
 561     case Bytecodes::_fsub:
 562     case Bytecodes::_lsub:
 563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 564 
 565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 566     // ldiv and lrem are implemented with a direct runtime call
 567 
 568     case Bytecodes::_ddiv:
 569       {
 570         if (is_strictfp) {
 571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 572         } else {
 573           __ div (left_op, right_op, result_op); break;
 574         }
 575       }
 576       break;
 577 
 578     case Bytecodes::_drem:
 579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 580 
 581     default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 587   arithmetic_op(code, result, left, right, false, tmp);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 598 }
 599 
 600 
 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 602   if (TwoOperandLIRForm && value != result_op) {
 603     assert(count != result_op, "malformed");
 604     __ move(value, result_op);
 605     value = result_op;
 606   }
 607 
 608   assert(count->is_constant() || count->is_register(), "must be");
 609   switch(code) {
 610   case Bytecodes::_ishl:
 611   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 612   case Bytecodes::_ishr:
 613   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 614   case Bytecodes::_iushr:
 615   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 616   default: ShouldNotReachHere();
 617   }
 618 }
 619 
 620 
 621 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 622   if (TwoOperandLIRForm && left_op != result_op) {
 623     assert(right_op != result_op, "malformed");
 624     __ move(left_op, result_op);
 625     left_op = result_op;
 626   }
 627 
 628   switch(code) {
 629     case Bytecodes::_iand:
 630     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 631 
 632     case Bytecodes::_ior:
 633     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 634 
 635     case Bytecodes::_ixor:
 636     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 637 
 638     default: ShouldNotReachHere();
 639   }
 640 }
 641 
 642 
 643 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 644   if (!GenerateSynchronizationCode) return;
 645   // for slow path, use debug info for state after successful locking
 646   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 647   __ load_stack_address_monitor(monitor_no, lock);
 648   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 649   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 650 }
 651 
 652 
 653 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 654   if (!GenerateSynchronizationCode) return;
 655   // setup registers
 656   LIR_Opr hdr = lock;
 657   lock = new_hdr;
 658   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 659   __ load_stack_address_monitor(monitor_no, lock);
 660   __ unlock_object(hdr, object, lock, scratch, slow_path);
 661 }
 662 
 663 
 664 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 665   klass2reg_with_patching(klass_reg, klass, info);
 666   // If klass is not loaded we do not know if the klass has finalizers:
 667   if (UseFastNewInstance && klass->is_loaded()
 668       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 669 
 670     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 671 
 672     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 673 
 674     assert(klass->is_loaded(), "must be loaded");
 675     // allocate space for instance
 676     assert(klass->size_helper() >= 0, "illegal instance size");
 677     const int instance_size = align_object_size(klass->size_helper());
 678     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 679                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 680   } else {
 681     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 682     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 683     __ branch_destination(slow_path->continuation());
 684   }
 685 }
 686 
 687 
 688 static bool is_constant_zero(Instruction* inst) {
 689   IntConstant* c = inst->type()->as_IntConstant();
 690   if (c) {
 691     return (c->value() == 0);
 692   }
 693   return false;
 694 }
 695 
 696 
 697 static bool positive_constant(Instruction* inst) {
 698   IntConstant* c = inst->type()->as_IntConstant();
 699   if (c) {
 700     return (c->value() >= 0);
 701   }
 702   return false;
 703 }
 704 
 705 
 706 static ciArrayKlass* as_array_klass(ciType* type) {
 707   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 708     return (ciArrayKlass*)type;
 709   } else {
 710     return NULL;
 711   }
 712 }
 713 
 714 static ciType* phi_declared_type(Phi* phi) {
 715   ciType* t = phi->operand_at(0)->declared_type();
 716   if (t == NULL) {
 717     return NULL;
 718   }
 719   for(int i = 1; i < phi->operand_count(); i++) {
 720     if (t != phi->operand_at(i)->declared_type()) {
 721       return NULL;
 722     }
 723   }
 724   return t;
 725 }
 726 
 727 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 728   Instruction* src     = x->argument_at(0);
 729   Instruction* src_pos = x->argument_at(1);
 730   Instruction* dst     = x->argument_at(2);
 731   Instruction* dst_pos = x->argument_at(3);
 732   Instruction* length  = x->argument_at(4);
 733 
 734   // first try to identify the likely type of the arrays involved
 735   ciArrayKlass* expected_type = NULL;
 736   bool is_exact = false, src_objarray = false, dst_objarray = false;
 737   {
 738     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 739     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 740     Phi* phi;
 741     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 742       src_declared_type = as_array_klass(phi_declared_type(phi));
 743     }
 744     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 745     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 746     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 747       dst_declared_type = as_array_klass(phi_declared_type(phi));
 748     }
 749 
 750     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 751       // the types exactly match so the type is fully known
 752       is_exact = true;
 753       expected_type = src_exact_type;
 754     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 755       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 756       ciArrayKlass* src_type = NULL;
 757       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 758         src_type = (ciArrayKlass*) src_exact_type;
 759       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 760         src_type = (ciArrayKlass*) src_declared_type;
 761       }
 762       if (src_type != NULL) {
 763         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 764           is_exact = true;
 765           expected_type = dst_type;
 766         }
 767       }
 768     }
 769     // at least pass along a good guess
 770     if (expected_type == NULL) expected_type = dst_exact_type;
 771     if (expected_type == NULL) expected_type = src_declared_type;
 772     if (expected_type == NULL) expected_type = dst_declared_type;
 773 
 774     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 775     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 776   }
 777 
 778   // if a probable array type has been identified, figure out if any
 779   // of the required checks for a fast case can be elided.
 780   int flags = LIR_OpArrayCopy::all_flags;
 781 
 782   if (!src_objarray)
 783     flags &= ~LIR_OpArrayCopy::src_objarray;
 784   if (!dst_objarray)
 785     flags &= ~LIR_OpArrayCopy::dst_objarray;
 786 
 787   if (!x->arg_needs_null_check(0))
 788     flags &= ~LIR_OpArrayCopy::src_null_check;
 789   if (!x->arg_needs_null_check(2))
 790     flags &= ~LIR_OpArrayCopy::dst_null_check;
 791 
 792 
 793   if (expected_type != NULL) {
 794     Value length_limit = NULL;
 795 
 796     IfOp* ifop = length->as_IfOp();
 797     if (ifop != NULL) {
 798       // look for expressions like min(v, a.length) which ends up as
 799       //   x > y ? y : x  or  x >= y ? y : x
 800       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 801           ifop->x() == ifop->fval() &&
 802           ifop->y() == ifop->tval()) {
 803         length_limit = ifop->y();
 804       }
 805     }
 806 
 807     // try to skip null checks and range checks
 808     NewArray* src_array = src->as_NewArray();
 809     if (src_array != NULL) {
 810       flags &= ~LIR_OpArrayCopy::src_null_check;
 811       if (length_limit != NULL &&
 812           src_array->length() == length_limit &&
 813           is_constant_zero(src_pos)) {
 814         flags &= ~LIR_OpArrayCopy::src_range_check;
 815       }
 816     }
 817 
 818     NewArray* dst_array = dst->as_NewArray();
 819     if (dst_array != NULL) {
 820       flags &= ~LIR_OpArrayCopy::dst_null_check;
 821       if (length_limit != NULL &&
 822           dst_array->length() == length_limit &&
 823           is_constant_zero(dst_pos)) {
 824         flags &= ~LIR_OpArrayCopy::dst_range_check;
 825       }
 826     }
 827 
 828     // check from incoming constant values
 829     if (positive_constant(src_pos))
 830       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 831     if (positive_constant(dst_pos))
 832       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 833     if (positive_constant(length))
 834       flags &= ~LIR_OpArrayCopy::length_positive_check;
 835 
 836     // see if the range check can be elided, which might also imply
 837     // that src or dst is non-null.
 838     ArrayLength* al = length->as_ArrayLength();
 839     if (al != NULL) {
 840       if (al->array() == src) {
 841         // it's the length of the source array
 842         flags &= ~LIR_OpArrayCopy::length_positive_check;
 843         flags &= ~LIR_OpArrayCopy::src_null_check;
 844         if (is_constant_zero(src_pos))
 845           flags &= ~LIR_OpArrayCopy::src_range_check;
 846       }
 847       if (al->array() == dst) {
 848         // it's the length of the destination array
 849         flags &= ~LIR_OpArrayCopy::length_positive_check;
 850         flags &= ~LIR_OpArrayCopy::dst_null_check;
 851         if (is_constant_zero(dst_pos))
 852           flags &= ~LIR_OpArrayCopy::dst_range_check;
 853       }
 854     }
 855     if (is_exact) {
 856       flags &= ~LIR_OpArrayCopy::type_check;
 857     }
 858   }
 859 
 860   IntConstant* src_int = src_pos->type()->as_IntConstant();
 861   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 862   if (src_int && dst_int) {
 863     int s_offs = src_int->value();
 864     int d_offs = dst_int->value();
 865     if (src_int->value() >= dst_int->value()) {
 866       flags &= ~LIR_OpArrayCopy::overlapping;
 867     }
 868     if (expected_type != NULL) {
 869       BasicType t = expected_type->element_type()->basic_type();
 870       int element_size = type2aelembytes(t);
 871       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 872           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 873         flags &= ~LIR_OpArrayCopy::unaligned;
 874       }
 875     }
 876   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 877     // src and dest positions are the same, or dst is zero so assume
 878     // nonoverlapping copy.
 879     flags &= ~LIR_OpArrayCopy::overlapping;
 880   }
 881 
 882   if (src == dst) {
 883     // moving within a single array so no type checks are needed
 884     if (flags & LIR_OpArrayCopy::type_check) {
 885       flags &= ~LIR_OpArrayCopy::type_check;
 886     }
 887   }
 888   *flagsp = flags;
 889   *expected_typep = (ciArrayKlass*)expected_type;
 890 }
 891 
 892 
 893 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 894   assert(opr->is_register(), "why spill if item is not register?");
 895 
 896   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 897     LIR_Opr result = new_register(T_FLOAT);
 898     set_vreg_flag(result, must_start_in_memory);
 899     assert(opr->is_register(), "only a register can be spilled");
 900     assert(opr->value_type()->is_float(), "rounding only for floats available");
 901     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 902     return result;
 903   }
 904   return opr;
 905 }
 906 
 907 
 908 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 909   assert(type2size[t] == type2size[value->type()],
 910          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 911   if (!value->is_register()) {
 912     // force into a register
 913     LIR_Opr r = new_register(value->type());
 914     __ move(value, r);
 915     value = r;
 916   }
 917 
 918   // create a spill location
 919   LIR_Opr tmp = new_register(t);
 920   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 921 
 922   // move from register to spill
 923   __ move(value, tmp);
 924   return tmp;
 925 }
 926 
 927 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 928   if (if_instr->should_profile()) {
 929     ciMethod* method = if_instr->profiled_method();
 930     assert(method != NULL, "method should be set if branch is profiled");
 931     ciMethodData* md = method->method_data_or_null();
 932     assert(md != NULL, "Sanity");
 933     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 934     assert(data != NULL, "must have profiling data");
 935     assert(data->is_BranchData(), "need BranchData for two-way branches");
 936     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 937     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 938     if (if_instr->is_swapped()) {
 939       int t = taken_count_offset;
 940       taken_count_offset = not_taken_count_offset;
 941       not_taken_count_offset = t;
 942     }
 943 
 944     LIR_Opr md_reg = new_register(T_METADATA);
 945     __ metadata2reg(md->constant_encoding(), md_reg);
 946 
 947     LIR_Opr data_offset_reg = new_pointer_register();
 948     __ cmove(lir_cond(cond),
 949              LIR_OprFact::intptrConst(taken_count_offset),
 950              LIR_OprFact::intptrConst(not_taken_count_offset),
 951              data_offset_reg, as_BasicType(if_instr->x()->type()));
 952 
 953     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 954     LIR_Opr data_reg = new_pointer_register();
 955     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 956     __ move(data_addr, data_reg);
 957     // Use leal instead of add to avoid destroying condition codes on x86
 958     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 959     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 960     __ move(data_reg, data_addr);
 961   }
 962 }
 963 
 964 // Phi technique:
 965 // This is about passing live values from one basic block to the other.
 966 // In code generated with Java it is rather rare that more than one
 967 // value is on the stack from one basic block to the other.
 968 // We optimize our technique for efficient passing of one value
 969 // (of type long, int, double..) but it can be extended.
 970 // When entering or leaving a basic block, all registers and all spill
 971 // slots are release and empty. We use the released registers
 972 // and spill slots to pass the live values from one block
 973 // to the other. The topmost value, i.e., the value on TOS of expression
 974 // stack is passed in registers. All other values are stored in spilling
 975 // area. Every Phi has an index which designates its spill slot
 976 // At exit of a basic block, we fill the register(s) and spill slots.
 977 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 978 // and locks necessary registers and spilling slots.
 979 
 980 
 981 // move current value to referenced phi function
 982 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 983   Phi* phi = sux_val->as_Phi();
 984   // cur_val can be null without phi being null in conjunction with inlining
 985   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 986     LIR_Opr operand = cur_val->operand();
 987     if (cur_val->operand()->is_illegal()) {
 988       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 989              "these can be produced lazily");
 990       operand = operand_for_instruction(cur_val);
 991     }
 992     resolver->move(operand, operand_for_instruction(phi));
 993   }
 994 }
 995 
 996 
 997 // Moves all stack values into their PHI position
 998 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 999   BlockBegin* bb = block();
1000   if (bb->number_of_sux() == 1) {
1001     BlockBegin* sux = bb->sux_at(0);
1002     assert(sux->number_of_preds() > 0, "invalid CFG");
1003 
1004     // a block with only one predecessor never has phi functions
1005     if (sux->number_of_preds() > 1) {
1006       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1007       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1008 
1009       ValueStack* sux_state = sux->state();
1010       Value sux_value;
1011       int index;
1012 
1013       assert(cur_state->scope() == sux_state->scope(), "not matching");
1014       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1015       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1016 
1017       for_each_stack_value(sux_state, index, sux_value) {
1018         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1019       }
1020 
1021       for_each_local_value(sux_state, index, sux_value) {
1022         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1023       }
1024 
1025       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1026     }
1027   }
1028 }
1029 
1030 
1031 LIR_Opr LIRGenerator::new_register(BasicType type) {
1032   int vreg = _virtual_register_number;
1033   // add a little fudge factor for the bailout, since the bailout is
1034   // only checked periodically.  This gives a few extra registers to
1035   // hand out before we really run out, which helps us keep from
1036   // tripping over assertions.
1037   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1038     bailout("out of virtual registers");
1039     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1040       // wrap it around
1041       _virtual_register_number = LIR_OprDesc::vreg_base;
1042     }
1043   }
1044   _virtual_register_number += 1;
1045   return LIR_OprFact::virtual_register(vreg, type);
1046 }
1047 
1048 
1049 // Try to lock using register in hint
1050 LIR_Opr LIRGenerator::rlock(Value instr) {
1051   return new_register(instr->type());
1052 }
1053 
1054 
1055 // does an rlock and sets result
1056 LIR_Opr LIRGenerator::rlock_result(Value x) {
1057   LIR_Opr reg = rlock(x);
1058   set_result(x, reg);
1059   return reg;
1060 }
1061 
1062 
1063 // does an rlock and sets result
1064 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1065   LIR_Opr reg;
1066   switch (type) {
1067   case T_BYTE:
1068   case T_BOOLEAN:
1069     reg = rlock_byte(type);
1070     break;
1071   default:
1072     reg = rlock(x);
1073     break;
1074   }
1075 
1076   set_result(x, reg);
1077   return reg;
1078 }
1079 
1080 
1081 //---------------------------------------------------------------------
1082 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1083   ObjectType* oc = value->type()->as_ObjectType();
1084   if (oc) {
1085     return oc->constant_value();
1086   }
1087   return NULL;
1088 }
1089 
1090 
1091 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1092   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1093   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1094 
1095   // no moves are created for phi functions at the begin of exception
1096   // handlers, so assign operands manually here
1097   for_each_phi_fun(block(), phi,
1098                    operand_for_instruction(phi));
1099 
1100   LIR_Opr thread_reg = getThreadPointer();
1101   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1102                exceptionOopOpr());
1103   __ move_wide(LIR_OprFact::oopConst(NULL),
1104                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1105   __ move_wide(LIR_OprFact::oopConst(NULL),
1106                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1107 
1108   LIR_Opr result = new_register(T_OBJECT);
1109   __ move(exceptionOopOpr(), result);
1110   set_result(x, result);
1111 }
1112 
1113 
1114 //----------------------------------------------------------------------
1115 //----------------------------------------------------------------------
1116 //----------------------------------------------------------------------
1117 //----------------------------------------------------------------------
1118 //                        visitor functions
1119 //----------------------------------------------------------------------
1120 //----------------------------------------------------------------------
1121 //----------------------------------------------------------------------
1122 //----------------------------------------------------------------------
1123 
1124 void LIRGenerator::do_Phi(Phi* x) {
1125   // phi functions are never visited directly
1126   ShouldNotReachHere();
1127 }
1128 
1129 
1130 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1131 void LIRGenerator::do_Constant(Constant* x) {
1132   if (x->state_before() != NULL) {
1133     // Any constant with a ValueStack requires patching so emit the patch here
1134     LIR_Opr reg = rlock_result(x);
1135     CodeEmitInfo* info = state_for(x, x->state_before());
1136     __ oop2reg_patch(NULL, reg, info);
1137   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1138     if (!x->is_pinned()) {
1139       // unpinned constants are handled specially so that they can be
1140       // put into registers when they are used multiple times within a
1141       // block.  After the block completes their operand will be
1142       // cleared so that other blocks can't refer to that register.
1143       set_result(x, load_constant(x));
1144     } else {
1145       LIR_Opr res = x->operand();
1146       if (!res->is_valid()) {
1147         res = LIR_OprFact::value_type(x->type());
1148       }
1149       if (res->is_constant()) {
1150         LIR_Opr reg = rlock_result(x);
1151         __ move(res, reg);
1152       } else {
1153         set_result(x, res);
1154       }
1155     }
1156   } else {
1157     set_result(x, LIR_OprFact::value_type(x->type()));
1158   }
1159 }
1160 
1161 
1162 void LIRGenerator::do_Local(Local* x) {
1163   // operand_for_instruction has the side effect of setting the result
1164   // so there's no need to do it here.
1165   operand_for_instruction(x);
1166 }
1167 
1168 
1169 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1170   Unimplemented();
1171 }
1172 
1173 
1174 void LIRGenerator::do_Return(Return* x) {
1175   if (compilation()->env()->dtrace_method_probes()) {
1176     BasicTypeList signature;
1177     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1178     signature.append(T_OBJECT); // Method*
1179     LIR_OprList* args = new LIR_OprList();
1180     args->append(getThreadPointer());
1181     LIR_Opr meth = new_register(T_METADATA);
1182     __ metadata2reg(method()->constant_encoding(), meth);
1183     args->append(meth);
1184     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1185   }
1186 
1187   if (x->type()->is_void()) {
1188     __ return_op(LIR_OprFact::illegalOpr);
1189   } else {
1190     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1191     LIRItem result(x->result(), this);
1192 
1193     result.load_item_force(reg);
1194     __ return_op(result.result());
1195   }
1196   set_no_result(x);
1197 }
1198 
1199 // Examble: ref.get()
1200 // Combination of LoadField and g1 pre-write barrier
1201 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1202 
1203   const int referent_offset = java_lang_ref_Reference::referent_offset;
1204   guarantee(referent_offset > 0, "referent offset not initialized");
1205 
1206   assert(x->number_of_arguments() == 1, "wrong type");
1207 
1208   LIRItem reference(x->argument_at(0), this);
1209   reference.load_item();
1210 
1211   // need to perform the null check on the reference objecy
1212   CodeEmitInfo* info = NULL;
1213   if (x->needs_null_check()) {
1214     info = state_for(x);
1215   }
1216 
1217   LIR_Address* referent_field_adr =
1218     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1219 
1220   LIR_Opr result = rlock_result(x);
1221 
1222   __ load(referent_field_adr, result, info);
1223 
1224   // Register the value in the referent field with the pre-barrier
1225   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1226               result /* pre_val */,
1227               false  /* do_load */,
1228               false  /* patch */,
1229               NULL   /* info */);
1230 }
1231 
1232 // Example: clazz.isInstance(object)
1233 void LIRGenerator::do_isInstance(Intrinsic* x) {
1234   assert(x->number_of_arguments() == 2, "wrong type");
1235 
1236   // TODO could try to substitute this node with an equivalent InstanceOf
1237   // if clazz is known to be a constant Class. This will pick up newly found
1238   // constants after HIR construction. I'll leave this to a future change.
1239 
1240   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1241   // could follow the aastore example in a future change.
1242 
1243   LIRItem clazz(x->argument_at(0), this);
1244   LIRItem object(x->argument_at(1), this);
1245   clazz.load_item();
1246   object.load_item();
1247   LIR_Opr result = rlock_result(x);
1248 
1249   // need to perform null check on clazz
1250   if (x->needs_null_check()) {
1251     CodeEmitInfo* info = state_for(x);
1252     __ null_check(clazz.result(), info);
1253   }
1254 
1255   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1256                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1257                                      x->type(),
1258                                      NULL); // NULL CodeEmitInfo results in a leaf call
1259   __ move(call_result, result);
1260 }
1261 
1262 // Example: object.getClass ()
1263 void LIRGenerator::do_getClass(Intrinsic* x) {
1264   assert(x->number_of_arguments() == 1, "wrong type");
1265 
1266   LIRItem rcvr(x->argument_at(0), this);
1267   rcvr.load_item();
1268   LIR_Opr result = rlock_result(x);
1269 
1270   // need to perform the null check on the rcvr
1271   CodeEmitInfo* info = NULL;
1272   if (x->needs_null_check()) {
1273     info = state_for(x);
1274   }
1275   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), result, info);
1276   __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1277 }
1278 
1279 
1280 // Example: Thread.currentThread()
1281 void LIRGenerator::do_currentThread(Intrinsic* x) {
1282   assert(x->number_of_arguments() == 0, "wrong type");
1283   LIR_Opr reg = rlock_result(x);
1284   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1285 }
1286 
1287 
1288 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1289   assert(x->number_of_arguments() == 1, "wrong type");
1290   LIRItem receiver(x->argument_at(0), this);
1291 
1292   receiver.load_item();
1293   BasicTypeList signature;
1294   signature.append(T_OBJECT); // receiver
1295   LIR_OprList* args = new LIR_OprList();
1296   args->append(receiver.result());
1297   CodeEmitInfo* info = state_for(x, x->state());
1298   call_runtime(&signature, args,
1299                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1300                voidType, info);
1301 
1302   set_no_result(x);
1303 }
1304 
1305 
1306 //------------------------local access--------------------------------------
1307 
1308 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1309   if (x->operand()->is_illegal()) {
1310     Constant* c = x->as_Constant();
1311     if (c != NULL) {
1312       x->set_operand(LIR_OprFact::value_type(c->type()));
1313     } else {
1314       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1315       // allocate a virtual register for this local or phi
1316       x->set_operand(rlock(x));
1317       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1318     }
1319   }
1320   return x->operand();
1321 }
1322 
1323 
1324 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1325   if (opr->is_virtual()) {
1326     return instruction_for_vreg(opr->vreg_number());
1327   }
1328   return NULL;
1329 }
1330 
1331 
1332 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1333   if (reg_num < _instruction_for_operand.length()) {
1334     return _instruction_for_operand.at(reg_num);
1335   }
1336   return NULL;
1337 }
1338 
1339 
1340 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1341   if (_vreg_flags.size_in_bits() == 0) {
1342     BitMap2D temp(100, num_vreg_flags);
1343     temp.clear();
1344     _vreg_flags = temp;
1345   }
1346   _vreg_flags.at_put_grow(vreg_num, f, true);
1347 }
1348 
1349 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1350   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1351     return false;
1352   }
1353   return _vreg_flags.at(vreg_num, f);
1354 }
1355 
1356 
1357 // Block local constant handling.  This code is useful for keeping
1358 // unpinned constants and constants which aren't exposed in the IR in
1359 // registers.  Unpinned Constant instructions have their operands
1360 // cleared when the block is finished so that other blocks can't end
1361 // up referring to their registers.
1362 
1363 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1364   assert(!x->is_pinned(), "only for unpinned constants");
1365   _unpinned_constants.append(x);
1366   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1367 }
1368 
1369 
1370 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1371   BasicType t = c->type();
1372   for (int i = 0; i < _constants.length(); i++) {
1373     LIR_Const* other = _constants.at(i);
1374     if (t == other->type()) {
1375       switch (t) {
1376       case T_INT:
1377       case T_FLOAT:
1378         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1379         break;
1380       case T_LONG:
1381       case T_DOUBLE:
1382         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1383         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1384         break;
1385       case T_OBJECT:
1386         if (c->as_jobject() != other->as_jobject()) continue;
1387         break;
1388       }
1389       return _reg_for_constants.at(i);
1390     }
1391   }
1392 
1393   LIR_Opr result = new_register(t);
1394   __ move((LIR_Opr)c, result);
1395   _constants.append(c);
1396   _reg_for_constants.append(result);
1397   return result;
1398 }
1399 
1400 // Various barriers
1401 
1402 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1403                                bool do_load, bool patch, CodeEmitInfo* info) {
1404   // Do the pre-write barrier, if any.
1405   switch (_bs->kind()) {
1406 #if INCLUDE_ALL_GCS
1407     case BarrierSet::G1SATBCT:
1408     case BarrierSet::G1SATBCTLogging:
1409       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1410       break;
1411 #endif // INCLUDE_ALL_GCS
1412     case BarrierSet::CardTableModRef:
1413     case BarrierSet::CardTableExtension:
1414       // No pre barriers
1415       break;
1416     case BarrierSet::ModRef:
1417     case BarrierSet::Other:
1418       // No pre barriers
1419       break;
1420     default      :
1421       ShouldNotReachHere();
1422 
1423   }
1424 }
1425 
1426 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1427   switch (_bs->kind()) {
1428 #if INCLUDE_ALL_GCS
1429     case BarrierSet::G1SATBCT:
1430     case BarrierSet::G1SATBCTLogging:
1431       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1432       break;
1433 #endif // INCLUDE_ALL_GCS
1434     case BarrierSet::CardTableModRef:
1435     case BarrierSet::CardTableExtension:
1436       CardTableModRef_post_barrier(addr,  new_val);
1437       break;
1438     case BarrierSet::ModRef:
1439     case BarrierSet::Other:
1440       // No post barriers
1441       break;
1442     default      :
1443       ShouldNotReachHere();
1444     }
1445 }
1446 
1447 ////////////////////////////////////////////////////////////////////////
1448 #if INCLUDE_ALL_GCS
1449 
1450 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1451                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1452   // First we test whether marking is in progress.
1453   BasicType flag_type;
1454   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1455     flag_type = T_INT;
1456   } else {
1457     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1458               "Assumption");
1459     flag_type = T_BYTE;
1460   }
1461   LIR_Opr thrd = getThreadPointer();
1462   LIR_Address* mark_active_flag_addr =
1463     new LIR_Address(thrd,
1464                     in_bytes(JavaThread::satb_mark_queue_offset() +
1465                              PtrQueue::byte_offset_of_active()),
1466                     flag_type);
1467   // Read the marking-in-progress flag.
1468   LIR_Opr flag_val = new_register(T_INT);
1469   __ load(mark_active_flag_addr, flag_val);
1470   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1471 
1472   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1473 
1474   CodeStub* slow;
1475 
1476   if (do_load) {
1477     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1478     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1479 
1480     if (patch)
1481       pre_val_patch_code = lir_patch_normal;
1482 
1483     pre_val = new_register(T_OBJECT);
1484 
1485     if (!addr_opr->is_address()) {
1486       assert(addr_opr->is_register(), "must be");
1487       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1488     }
1489     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1490   } else {
1491     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1492     assert(pre_val->is_register(), "must be");
1493     assert(pre_val->type() == T_OBJECT, "must be an object");
1494     assert(info == NULL, "sanity");
1495 
1496     slow = new G1PreBarrierStub(pre_val);
1497   }
1498 
1499   __ branch(lir_cond_notEqual, T_INT, slow);
1500   __ branch_destination(slow->continuation());
1501 }
1502 
1503 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1504   // If the "new_val" is a constant NULL, no barrier is necessary.
1505   if (new_val->is_constant() &&
1506       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1507 
1508   if (!new_val->is_register()) {
1509     LIR_Opr new_val_reg = new_register(T_OBJECT);
1510     if (new_val->is_constant()) {
1511       __ move(new_val, new_val_reg);
1512     } else {
1513       __ leal(new_val, new_val_reg);
1514     }
1515     new_val = new_val_reg;
1516   }
1517   assert(new_val->is_register(), "must be a register at this point");
1518 
1519   if (addr->is_address()) {
1520     LIR_Address* address = addr->as_address_ptr();
1521     LIR_Opr ptr = new_pointer_register();
1522     if (!address->index()->is_valid() && address->disp() == 0) {
1523       __ move(address->base(), ptr);
1524     } else {
1525       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1526       __ leal(addr, ptr);
1527     }
1528     addr = ptr;
1529   }
1530   assert(addr->is_register(), "must be a register at this point");
1531 
1532   LIR_Opr xor_res = new_pointer_register();
1533   LIR_Opr xor_shift_res = new_pointer_register();
1534   if (TwoOperandLIRForm ) {
1535     __ move(addr, xor_res);
1536     __ logical_xor(xor_res, new_val, xor_res);
1537     __ move(xor_res, xor_shift_res);
1538     __ unsigned_shift_right(xor_shift_res,
1539                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1540                             xor_shift_res,
1541                             LIR_OprDesc::illegalOpr());
1542   } else {
1543     __ logical_xor(addr, new_val, xor_res);
1544     __ unsigned_shift_right(xor_res,
1545                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1546                             xor_shift_res,
1547                             LIR_OprDesc::illegalOpr());
1548   }
1549 
1550   if (!new_val->is_register()) {
1551     LIR_Opr new_val_reg = new_register(T_OBJECT);
1552     __ leal(new_val, new_val_reg);
1553     new_val = new_val_reg;
1554   }
1555   assert(new_val->is_register(), "must be a register at this point");
1556 
1557   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1558 
1559   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1560   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1561   __ branch_destination(slow->continuation());
1562 }
1563 
1564 #endif // INCLUDE_ALL_GCS
1565 ////////////////////////////////////////////////////////////////////////
1566 
1567 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1568 
1569   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1570   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1571   if (addr->is_address()) {
1572     LIR_Address* address = addr->as_address_ptr();
1573     // ptr cannot be an object because we use this barrier for array card marks
1574     // and addr can point in the middle of an array.
1575     LIR_Opr ptr = new_pointer_register();
1576     if (!address->index()->is_valid() && address->disp() == 0) {
1577       __ move(address->base(), ptr);
1578     } else {
1579       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1580       __ leal(addr, ptr);
1581     }
1582     addr = ptr;
1583   }
1584   assert(addr->is_register(), "must be a register at this point");
1585 
1586 #ifdef ARM
1587   // TODO: ARM - move to platform-dependent code
1588   LIR_Opr tmp = FrameMap::R14_opr;
1589   if (VM_Version::supports_movw()) {
1590     __ move((LIR_Opr)card_table_base, tmp);
1591   } else {
1592     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1593   }
1594 
1595   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1596   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1597   if(((int)ct->byte_map_base & 0xff) == 0) {
1598     __ move(tmp, card_addr);
1599   } else {
1600     LIR_Opr tmp_zero = new_register(T_INT);
1601     __ move(LIR_OprFact::intConst(0), tmp_zero);
1602     __ move(tmp_zero, card_addr);
1603   }
1604 #else // ARM
1605   LIR_Opr tmp = new_pointer_register();
1606   if (TwoOperandLIRForm) {
1607     __ move(addr, tmp);
1608     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1609   } else {
1610     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1611   }
1612   if (can_inline_as_constant(card_table_base)) {
1613     __ move(LIR_OprFact::intConst(0),
1614               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1615   } else {
1616     __ move(LIR_OprFact::intConst(0),
1617               new LIR_Address(tmp, load_constant(card_table_base),
1618                               T_BYTE));
1619   }
1620 #endif // ARM
1621 }
1622 
1623 
1624 //------------------------field access--------------------------------------
1625 
1626 // Comment copied form templateTable_i486.cpp
1627 // ----------------------------------------------------------------------------
1628 // Volatile variables demand their effects be made known to all CPU's in
1629 // order.  Store buffers on most chips allow reads & writes to reorder; the
1630 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1631 // memory barrier (i.e., it's not sufficient that the interpreter does not
1632 // reorder volatile references, the hardware also must not reorder them).
1633 //
1634 // According to the new Java Memory Model (JMM):
1635 // (1) All volatiles are serialized wrt to each other.
1636 // ALSO reads & writes act as aquire & release, so:
1637 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1638 // the read float up to before the read.  It's OK for non-volatile memory refs
1639 // that happen before the volatile read to float down below it.
1640 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1641 // that happen BEFORE the write float down to after the write.  It's OK for
1642 // non-volatile memory refs that happen after the volatile write to float up
1643 // before it.
1644 //
1645 // We only put in barriers around volatile refs (they are expensive), not
1646 // _between_ memory refs (that would require us to track the flavor of the
1647 // previous memory refs).  Requirements (2) and (3) require some barriers
1648 // before volatile stores and after volatile loads.  These nearly cover
1649 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1650 // case is placed after volatile-stores although it could just as well go
1651 // before volatile-loads.
1652 
1653 
1654 void LIRGenerator::do_StoreField(StoreField* x) {
1655   bool needs_patching = x->needs_patching();
1656   bool is_volatile = x->field()->is_volatile();
1657   BasicType field_type = x->field_type();
1658   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1659 
1660   CodeEmitInfo* info = NULL;
1661   if (needs_patching) {
1662     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1663     info = state_for(x, x->state_before());
1664   } else if (x->needs_null_check()) {
1665     NullCheck* nc = x->explicit_null_check();
1666     if (nc == NULL) {
1667       info = state_for(x);
1668     } else {
1669       info = state_for(nc);
1670     }
1671   }
1672 
1673 
1674   LIRItem object(x->obj(), this);
1675   LIRItem value(x->value(),  this);
1676 
1677   object.load_item();
1678 
1679   if (is_volatile || needs_patching) {
1680     // load item if field is volatile (fewer special cases for volatiles)
1681     // load item if field not initialized
1682     // load item if field not constant
1683     // because of code patching we cannot inline constants
1684     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1685       value.load_byte_item();
1686     } else  {
1687       value.load_item();
1688     }
1689   } else {
1690     value.load_for_store(field_type);
1691   }
1692 
1693   set_no_result(x);
1694 
1695 #ifndef PRODUCT
1696   if (PrintNotLoaded && needs_patching) {
1697     tty->print_cr("   ###class not loaded at store_%s bci %d",
1698                   x->is_static() ?  "static" : "field", x->printable_bci());
1699   }
1700 #endif
1701 
1702   if (x->needs_null_check() &&
1703       (needs_patching ||
1704        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1705     // emit an explicit null check because the offset is too large
1706     __ null_check(object.result(), new CodeEmitInfo(info));
1707   }
1708 
1709   LIR_Address* address;
1710   if (needs_patching) {
1711     // we need to patch the offset in the instruction so don't allow
1712     // generate_address to try to be smart about emitting the -1.
1713     // Otherwise the patching code won't know how to find the
1714     // instruction to patch.
1715     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1716   } else {
1717     address = generate_address(object.result(), x->offset(), field_type);
1718   }
1719 
1720   if (is_volatile && os::is_MP()) {
1721     __ membar_release();
1722   }
1723 
1724   if (is_oop) {
1725     // Do the pre-write barrier, if any.
1726     pre_barrier(LIR_OprFact::address(address),
1727                 LIR_OprFact::illegalOpr /* pre_val */,
1728                 true /* do_load*/,
1729                 needs_patching,
1730                 (info ? new CodeEmitInfo(info) : NULL));
1731   }
1732 
1733   if (is_volatile && !needs_patching) {
1734     volatile_field_store(value.result(), address, info);
1735   } else {
1736     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1737     __ store(value.result(), address, info, patch_code);
1738   }
1739 
1740   if (is_oop) {
1741     // Store to object so mark the card of the header
1742     post_barrier(object.result(), value.result());
1743   }
1744 
1745   if (is_volatile && os::is_MP()) {
1746     __ membar();
1747   }
1748 }
1749 
1750 
1751 void LIRGenerator::do_LoadField(LoadField* x) {
1752   bool needs_patching = x->needs_patching();
1753   bool is_volatile = x->field()->is_volatile();
1754   BasicType field_type = x->field_type();
1755 
1756   CodeEmitInfo* info = NULL;
1757   if (needs_patching) {
1758     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1759     info = state_for(x, x->state_before());
1760   } else if (x->needs_null_check()) {
1761     NullCheck* nc = x->explicit_null_check();
1762     if (nc == NULL) {
1763       info = state_for(x);
1764     } else {
1765       info = state_for(nc);
1766     }
1767   }
1768 
1769   LIRItem object(x->obj(), this);
1770 
1771   object.load_item();
1772 
1773 #ifndef PRODUCT
1774   if (PrintNotLoaded && needs_patching) {
1775     tty->print_cr("   ###class not loaded at load_%s bci %d",
1776                   x->is_static() ?  "static" : "field", x->printable_bci());
1777   }
1778 #endif
1779 
1780   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1781   if (x->needs_null_check() &&
1782       (needs_patching ||
1783        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1784        stress_deopt)) {
1785     LIR_Opr obj = object.result();
1786     if (stress_deopt) {
1787       obj = new_register(T_OBJECT);
1788       __ move(LIR_OprFact::oopConst(NULL), obj);
1789     }
1790     // emit an explicit null check because the offset is too large
1791     __ null_check(obj, new CodeEmitInfo(info));
1792   }
1793 
1794   LIR_Opr reg = rlock_result(x, field_type);
1795   LIR_Address* address;
1796   if (needs_patching) {
1797     // we need to patch the offset in the instruction so don't allow
1798     // generate_address to try to be smart about emitting the -1.
1799     // Otherwise the patching code won't know how to find the
1800     // instruction to patch.
1801     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1802   } else {
1803     address = generate_address(object.result(), x->offset(), field_type);
1804   }
1805 
1806   if (is_volatile && !needs_patching) {
1807     volatile_field_load(address, reg, info);
1808   } else {
1809     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1810     __ load(address, reg, info, patch_code);
1811   }
1812 
1813   if (is_volatile && os::is_MP()) {
1814     __ membar_acquire();
1815   }
1816 }
1817 
1818 
1819 //------------------------java.nio.Buffer.checkIndex------------------------
1820 
1821 // int java.nio.Buffer.checkIndex(int)
1822 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1823   // NOTE: by the time we are in checkIndex() we are guaranteed that
1824   // the buffer is non-null (because checkIndex is package-private and
1825   // only called from within other methods in the buffer).
1826   assert(x->number_of_arguments() == 2, "wrong type");
1827   LIRItem buf  (x->argument_at(0), this);
1828   LIRItem index(x->argument_at(1), this);
1829   buf.load_item();
1830   index.load_item();
1831 
1832   LIR_Opr result = rlock_result(x);
1833   if (GenerateRangeChecks) {
1834     CodeEmitInfo* info = state_for(x);
1835     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1836     if (index.result()->is_constant()) {
1837       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1838       __ branch(lir_cond_belowEqual, T_INT, stub);
1839     } else {
1840       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1841                   java_nio_Buffer::limit_offset(), T_INT, info);
1842       __ branch(lir_cond_aboveEqual, T_INT, stub);
1843     }
1844     __ move(index.result(), result);
1845   } else {
1846     // Just load the index into the result register
1847     __ move(index.result(), result);
1848   }
1849 }
1850 
1851 
1852 //------------------------array access--------------------------------------
1853 
1854 
1855 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1856   LIRItem array(x->array(), this);
1857   array.load_item();
1858   LIR_Opr reg = rlock_result(x);
1859 
1860   CodeEmitInfo* info = NULL;
1861   if (x->needs_null_check()) {
1862     NullCheck* nc = x->explicit_null_check();
1863     if (nc == NULL) {
1864       info = state_for(x);
1865     } else {
1866       info = state_for(nc);
1867     }
1868     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1869       LIR_Opr obj = new_register(T_OBJECT);
1870       __ move(LIR_OprFact::oopConst(NULL), obj);
1871       __ null_check(obj, new CodeEmitInfo(info));
1872     }
1873   }
1874   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1875 }
1876 
1877 
1878 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1879   bool use_length = x->length() != NULL;
1880   LIRItem array(x->array(), this);
1881   LIRItem index(x->index(), this);
1882   LIRItem length(this);
1883   bool needs_range_check = x->compute_needs_range_check();
1884 
1885   if (use_length && needs_range_check) {
1886     length.set_instruction(x->length());
1887     length.load_item();
1888   }
1889 
1890   array.load_item();
1891   if (index.is_constant() && can_inline_as_constant(x->index())) {
1892     // let it be a constant
1893     index.dont_load_item();
1894   } else {
1895     index.load_item();
1896   }
1897 
1898   CodeEmitInfo* range_check_info = state_for(x);
1899   CodeEmitInfo* null_check_info = NULL;
1900   if (x->needs_null_check()) {
1901     NullCheck* nc = x->explicit_null_check();
1902     if (nc != NULL) {
1903       null_check_info = state_for(nc);
1904     } else {
1905       null_check_info = range_check_info;
1906     }
1907     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1908       LIR_Opr obj = new_register(T_OBJECT);
1909       __ move(LIR_OprFact::oopConst(NULL), obj);
1910       __ null_check(obj, new CodeEmitInfo(null_check_info));
1911     }
1912   }
1913 
1914   // emit array address setup early so it schedules better
1915   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1916 
1917   if (GenerateRangeChecks && needs_range_check) {
1918     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1919       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1920     } else if (use_length) {
1921       // TODO: use a (modified) version of array_range_check that does not require a
1922       //       constant length to be loaded to a register
1923       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1924       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1925     } else {
1926       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1927       // The range check performs the null check, so clear it out for the load
1928       null_check_info = NULL;
1929     }
1930   }
1931 
1932   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1933 }
1934 
1935 
1936 void LIRGenerator::do_NullCheck(NullCheck* x) {
1937   if (x->can_trap()) {
1938     LIRItem value(x->obj(), this);
1939     value.load_item();
1940     CodeEmitInfo* info = state_for(x);
1941     __ null_check(value.result(), info);
1942   }
1943 }
1944 
1945 
1946 void LIRGenerator::do_TypeCast(TypeCast* x) {
1947   LIRItem value(x->obj(), this);
1948   value.load_item();
1949   // the result is the same as from the node we are casting
1950   set_result(x, value.result());
1951 }
1952 
1953 
1954 void LIRGenerator::do_Throw(Throw* x) {
1955   LIRItem exception(x->exception(), this);
1956   exception.load_item();
1957   set_no_result(x);
1958   LIR_Opr exception_opr = exception.result();
1959   CodeEmitInfo* info = state_for(x, x->state());
1960 
1961 #ifndef PRODUCT
1962   if (PrintC1Statistics) {
1963     increment_counter(Runtime1::throw_count_address(), T_INT);
1964   }
1965 #endif
1966 
1967   // check if the instruction has an xhandler in any of the nested scopes
1968   bool unwind = false;
1969   if (info->exception_handlers()->length() == 0) {
1970     // this throw is not inside an xhandler
1971     unwind = true;
1972   } else {
1973     // get some idea of the throw type
1974     bool type_is_exact = true;
1975     ciType* throw_type = x->exception()->exact_type();
1976     if (throw_type == NULL) {
1977       type_is_exact = false;
1978       throw_type = x->exception()->declared_type();
1979     }
1980     if (throw_type != NULL && throw_type->is_instance_klass()) {
1981       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1982       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1983     }
1984   }
1985 
1986   // do null check before moving exception oop into fixed register
1987   // to avoid a fixed interval with an oop during the null check.
1988   // Use a copy of the CodeEmitInfo because debug information is
1989   // different for null_check and throw.
1990   if (GenerateCompilerNullChecks &&
1991       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1992     // if the exception object wasn't created using new then it might be null.
1993     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1994   }
1995 
1996   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1997     // we need to go through the exception lookup path to get JVMTI
1998     // notification done
1999     unwind = false;
2000   }
2001 
2002   // move exception oop into fixed register
2003   __ move(exception_opr, exceptionOopOpr());
2004 
2005   if (unwind) {
2006     __ unwind_exception(exceptionOopOpr());
2007   } else {
2008     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2009   }
2010 }
2011 
2012 
2013 void LIRGenerator::do_RoundFP(RoundFP* x) {
2014   LIRItem input(x->input(), this);
2015   input.load_item();
2016   LIR_Opr input_opr = input.result();
2017   assert(input_opr->is_register(), "why round if value is not in a register?");
2018   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2019   if (input_opr->is_single_fpu()) {
2020     set_result(x, round_item(input_opr)); // This code path not currently taken
2021   } else {
2022     LIR_Opr result = new_register(T_DOUBLE);
2023     set_vreg_flag(result, must_start_in_memory);
2024     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2025     set_result(x, result);
2026   }
2027 }
2028 
2029 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2030   LIRItem base(x->base(), this);
2031   LIRItem idx(this);
2032 
2033   base.load_item();
2034   if (x->has_index()) {
2035     idx.set_instruction(x->index());
2036     idx.load_nonconstant();
2037   }
2038 
2039   LIR_Opr reg = rlock_result(x, x->basic_type());
2040 
2041   int   log2_scale = 0;
2042   if (x->has_index()) {
2043     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2044     log2_scale = x->log2_scale();
2045   }
2046 
2047   assert(!x->has_index() || idx.value() == x->index(), "should match");
2048 
2049   LIR_Opr base_op = base.result();
2050 #ifndef _LP64
2051   if (x->base()->type()->tag() == longTag) {
2052     base_op = new_register(T_INT);
2053     __ convert(Bytecodes::_l2i, base.result(), base_op);
2054   } else {
2055     assert(x->base()->type()->tag() == intTag, "must be");
2056   }
2057 #endif
2058 
2059   BasicType dst_type = x->basic_type();
2060   LIR_Opr index_op = idx.result();
2061 
2062   LIR_Address* addr;
2063   if (index_op->is_constant()) {
2064     assert(log2_scale == 0, "must not have a scale");
2065     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2066   } else {
2067 #ifdef X86
2068 #ifdef _LP64
2069     if (!index_op->is_illegal() && index_op->type() == T_INT) {
2070       LIR_Opr tmp = new_pointer_register();
2071       __ convert(Bytecodes::_i2l, index_op, tmp);
2072       index_op = tmp;
2073     }
2074 #endif
2075     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2076 #elif defined(ARM)
2077     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2078 #else
2079     if (index_op->is_illegal() || log2_scale == 0) {
2080 #ifdef _LP64
2081       if (!index_op->is_illegal() && index_op->type() == T_INT) {
2082         LIR_Opr tmp = new_pointer_register();
2083         __ convert(Bytecodes::_i2l, index_op, tmp);
2084         index_op = tmp;
2085       }
2086 #endif
2087       addr = new LIR_Address(base_op, index_op, dst_type);
2088     } else {
2089       LIR_Opr tmp = new_pointer_register();
2090       __ shift_left(index_op, log2_scale, tmp);
2091       addr = new LIR_Address(base_op, tmp, dst_type);
2092     }
2093 #endif
2094   }
2095 
2096   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2097     __ unaligned_move(addr, reg);
2098   } else {
2099     if (dst_type == T_OBJECT && x->is_wide()) {
2100       __ move_wide(addr, reg);
2101     } else {
2102       __ move(addr, reg);
2103     }
2104   }
2105 }
2106 
2107 
2108 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2109   int  log2_scale = 0;
2110   BasicType type = x->basic_type();
2111 
2112   if (x->has_index()) {
2113     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2114     log2_scale = x->log2_scale();
2115   }
2116 
2117   LIRItem base(x->base(), this);
2118   LIRItem value(x->value(), this);
2119   LIRItem idx(this);
2120 
2121   base.load_item();
2122   if (x->has_index()) {
2123     idx.set_instruction(x->index());
2124     idx.load_item();
2125   }
2126 
2127   if (type == T_BYTE || type == T_BOOLEAN) {
2128     value.load_byte_item();
2129   } else {
2130     value.load_item();
2131   }
2132 
2133   set_no_result(x);
2134 
2135   LIR_Opr base_op = base.result();
2136 #ifndef _LP64
2137   if (x->base()->type()->tag() == longTag) {
2138     base_op = new_register(T_INT);
2139     __ convert(Bytecodes::_l2i, base.result(), base_op);
2140   } else {
2141     assert(x->base()->type()->tag() == intTag, "must be");
2142   }
2143 #endif
2144 
2145   LIR_Opr index_op = idx.result();
2146   if (log2_scale != 0) {
2147     // temporary fix (platform dependent code without shift on Intel would be better)
2148     index_op = new_pointer_register();
2149 #ifdef _LP64
2150     if(idx.result()->type() == T_INT) {
2151       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2152     } else {
2153 #endif
2154       // TODO: ARM also allows embedded shift in the address
2155       __ move(idx.result(), index_op);
2156 #ifdef _LP64
2157     }
2158 #endif
2159     __ shift_left(index_op, log2_scale, index_op);
2160   }
2161 #ifdef _LP64
2162   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
2163     LIR_Opr tmp = new_pointer_register();
2164     __ convert(Bytecodes::_i2l, index_op, tmp);
2165     index_op = tmp;
2166   }
2167 #endif
2168 
2169   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2170   __ move(value.result(), addr);
2171 }
2172 
2173 
2174 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2175   BasicType type = x->basic_type();
2176   LIRItem src(x->object(), this);
2177   LIRItem off(x->offset(), this);
2178 
2179   off.load_item();
2180   src.load_item();
2181 
2182   LIR_Opr value = rlock_result(x, x->basic_type());
2183 
2184   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2185 
2186 #if INCLUDE_ALL_GCS
2187   // We might be reading the value of the referent field of a
2188   // Reference object in order to attach it back to the live
2189   // object graph. If G1 is enabled then we need to record
2190   // the value that is being returned in an SATB log buffer.
2191   //
2192   // We need to generate code similar to the following...
2193   //
2194   // if (offset == java_lang_ref_Reference::referent_offset) {
2195   //   if (src != NULL) {
2196   //     if (klass(src)->reference_type() != REF_NONE) {
2197   //       pre_barrier(..., value, ...);
2198   //     }
2199   //   }
2200   // }
2201 
2202   if (UseG1GC && type == T_OBJECT) {
2203     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2204     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2205     bool gen_source_check = true;    // Assume we need to check the src object for null.
2206     bool gen_type_check = true;      // Assume we need to check the reference_type.
2207 
2208     if (off.is_constant()) {
2209       jlong off_con = (off.type()->is_int() ?
2210                         (jlong) off.get_jint_constant() :
2211                         off.get_jlong_constant());
2212 
2213 
2214       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2215         // The constant offset is something other than referent_offset.
2216         // We can skip generating/checking the remaining guards and
2217         // skip generation of the code stub.
2218         gen_pre_barrier = false;
2219       } else {
2220         // The constant offset is the same as referent_offset -
2221         // we do not need to generate a runtime offset check.
2222         gen_offset_check = false;
2223       }
2224     }
2225 
2226     // We don't need to generate stub if the source object is an array
2227     if (gen_pre_barrier && src.type()->is_array()) {
2228       gen_pre_barrier = false;
2229     }
2230 
2231     if (gen_pre_barrier) {
2232       // We still need to continue with the checks.
2233       if (src.is_constant()) {
2234         ciObject* src_con = src.get_jobject_constant();
2235         guarantee(src_con != NULL, "no source constant");
2236 
2237         if (src_con->is_null_object()) {
2238           // The constant src object is null - We can skip
2239           // generating the code stub.
2240           gen_pre_barrier = false;
2241         } else {
2242           // Non-null constant source object. We still have to generate
2243           // the slow stub - but we don't need to generate the runtime
2244           // null object check.
2245           gen_source_check = false;
2246         }
2247       }
2248     }
2249     if (gen_pre_barrier && !PatchALot) {
2250       // Can the klass of object be statically determined to be
2251       // a sub-class of Reference?
2252       ciType* type = src.value()->declared_type();
2253       if ((type != NULL) && type->is_loaded()) {
2254         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2255           gen_type_check = false;
2256         } else if (type->is_klass() &&
2257                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2258           // Not Reference and not Object klass.
2259           gen_pre_barrier = false;
2260         }
2261       }
2262     }
2263 
2264     if (gen_pre_barrier) {
2265       LabelObj* Lcont = new LabelObj();
2266 
2267       // We can have generate one runtime check here. Let's start with
2268       // the offset check.
2269       if (gen_offset_check) {
2270         // if (offset != referent_offset) -> continue
2271         // If offset is an int then we can do the comparison with the
2272         // referent_offset constant; otherwise we need to move
2273         // referent_offset into a temporary register and generate
2274         // a reg-reg compare.
2275 
2276         LIR_Opr referent_off;
2277 
2278         if (off.type()->is_int()) {
2279           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2280         } else {
2281           assert(off.type()->is_long(), "what else?");
2282           referent_off = new_register(T_LONG);
2283           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2284         }
2285         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2286         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2287       }
2288       if (gen_source_check) {
2289         // offset is a const and equals referent offset
2290         // if (source == null) -> continue
2291         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2292         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2293       }
2294       LIR_Opr src_klass = new_register(T_OBJECT);
2295       if (gen_type_check) {
2296         // We have determined that offset == referent_offset && src != null.
2297         // if (src->_klass->_reference_type == REF_NONE) -> continue
2298         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2299         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2300         LIR_Opr reference_type = new_register(T_INT);
2301         __ move(reference_type_addr, reference_type);
2302         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2303         __ branch(lir_cond_equal, T_INT, Lcont->label());
2304       }
2305       {
2306         // We have determined that src->_klass->_reference_type != REF_NONE
2307         // so register the value in the referent field with the pre-barrier.
2308         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2309                     value  /* pre_val */,
2310                     false  /* do_load */,
2311                     false  /* patch */,
2312                     NULL   /* info */);
2313       }
2314       __ branch_destination(Lcont->label());
2315     }
2316   }
2317 #endif // INCLUDE_ALL_GCS
2318 
2319   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2320 }
2321 
2322 
2323 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2324   BasicType type = x->basic_type();
2325   LIRItem src(x->object(), this);
2326   LIRItem off(x->offset(), this);
2327   LIRItem data(x->value(), this);
2328 
2329   src.load_item();
2330   if (type == T_BOOLEAN || type == T_BYTE) {
2331     data.load_byte_item();
2332   } else {
2333     data.load_item();
2334   }
2335   off.load_item();
2336 
2337   set_no_result(x);
2338 
2339   if (x->is_volatile() && os::is_MP()) __ membar_release();
2340   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2341   if (x->is_volatile() && os::is_MP()) __ membar();
2342 }
2343 
2344 
2345 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2346   LIRItem src(x->object(), this);
2347   LIRItem off(x->offset(), this);
2348 
2349   src.load_item();
2350   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2351     // let it be a constant
2352     off.dont_load_item();
2353   } else {
2354     off.load_item();
2355   }
2356 
2357   set_no_result(x);
2358 
2359   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2360   __ prefetch(addr, is_store);
2361 }
2362 
2363 
2364 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2365   do_UnsafePrefetch(x, false);
2366 }
2367 
2368 
2369 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2370   do_UnsafePrefetch(x, true);
2371 }
2372 
2373 
2374 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2375   int lng = x->length();
2376 
2377   for (int i = 0; i < lng; i++) {
2378     SwitchRange* one_range = x->at(i);
2379     int low_key = one_range->low_key();
2380     int high_key = one_range->high_key();
2381     BlockBegin* dest = one_range->sux();
2382     if (low_key == high_key) {
2383       __ cmp(lir_cond_equal, value, low_key);
2384       __ branch(lir_cond_equal, T_INT, dest);
2385     } else if (high_key - low_key == 1) {
2386       __ cmp(lir_cond_equal, value, low_key);
2387       __ branch(lir_cond_equal, T_INT, dest);
2388       __ cmp(lir_cond_equal, value, high_key);
2389       __ branch(lir_cond_equal, T_INT, dest);
2390     } else {
2391       LabelObj* L = new LabelObj();
2392       __ cmp(lir_cond_less, value, low_key);
2393       __ branch(lir_cond_less, T_INT, L->label());
2394       __ cmp(lir_cond_lessEqual, value, high_key);
2395       __ branch(lir_cond_lessEqual, T_INT, dest);
2396       __ branch_destination(L->label());
2397     }
2398   }
2399   __ jump(default_sux);
2400 }
2401 
2402 
2403 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2404   SwitchRangeList* res = new SwitchRangeList();
2405   int len = x->length();
2406   if (len > 0) {
2407     BlockBegin* sux = x->sux_at(0);
2408     int key = x->lo_key();
2409     BlockBegin* default_sux = x->default_sux();
2410     SwitchRange* range = new SwitchRange(key, sux);
2411     for (int i = 0; i < len; i++, key++) {
2412       BlockBegin* new_sux = x->sux_at(i);
2413       if (sux == new_sux) {
2414         // still in same range
2415         range->set_high_key(key);
2416       } else {
2417         // skip tests which explicitly dispatch to the default
2418         if (sux != default_sux) {
2419           res->append(range);
2420         }
2421         range = new SwitchRange(key, new_sux);
2422       }
2423       sux = new_sux;
2424     }
2425     if (res->length() == 0 || res->last() != range)  res->append(range);
2426   }
2427   return res;
2428 }
2429 
2430 
2431 // we expect the keys to be sorted by increasing value
2432 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2433   SwitchRangeList* res = new SwitchRangeList();
2434   int len = x->length();
2435   if (len > 0) {
2436     BlockBegin* default_sux = x->default_sux();
2437     int key = x->key_at(0);
2438     BlockBegin* sux = x->sux_at(0);
2439     SwitchRange* range = new SwitchRange(key, sux);
2440     for (int i = 1; i < len; i++) {
2441       int new_key = x->key_at(i);
2442       BlockBegin* new_sux = x->sux_at(i);
2443       if (key+1 == new_key && sux == new_sux) {
2444         // still in same range
2445         range->set_high_key(new_key);
2446       } else {
2447         // skip tests which explicitly dispatch to the default
2448         if (range->sux() != default_sux) {
2449           res->append(range);
2450         }
2451         range = new SwitchRange(new_key, new_sux);
2452       }
2453       key = new_key;
2454       sux = new_sux;
2455     }
2456     if (res->length() == 0 || res->last() != range)  res->append(range);
2457   }
2458   return res;
2459 }
2460 
2461 
2462 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2463   LIRItem tag(x->tag(), this);
2464   tag.load_item();
2465   set_no_result(x);
2466 
2467   if (x->is_safepoint()) {
2468     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2469   }
2470 
2471   // move values into phi locations
2472   move_to_phi(x->state());
2473 
2474   int lo_key = x->lo_key();
2475   int hi_key = x->hi_key();
2476   int len = x->length();
2477   LIR_Opr value = tag.result();
2478   if (UseTableRanges) {
2479     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2480   } else {
2481     for (int i = 0; i < len; i++) {
2482       __ cmp(lir_cond_equal, value, i + lo_key);
2483       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2484     }
2485     __ jump(x->default_sux());
2486   }
2487 }
2488 
2489 
2490 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2491   LIRItem tag(x->tag(), this);
2492   tag.load_item();
2493   set_no_result(x);
2494 
2495   if (x->is_safepoint()) {
2496     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2497   }
2498 
2499   // move values into phi locations
2500   move_to_phi(x->state());
2501 
2502   LIR_Opr value = tag.result();
2503   if (UseTableRanges) {
2504     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2505   } else {
2506     int len = x->length();
2507     for (int i = 0; i < len; i++) {
2508       __ cmp(lir_cond_equal, value, x->key_at(i));
2509       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2510     }
2511     __ jump(x->default_sux());
2512   }
2513 }
2514 
2515 
2516 void LIRGenerator::do_Goto(Goto* x) {
2517   set_no_result(x);
2518 
2519   if (block()->next()->as_OsrEntry()) {
2520     // need to free up storage used for OSR entry point
2521     LIR_Opr osrBuffer = block()->next()->operand();
2522     BasicTypeList signature;
2523     signature.append(T_INT);
2524     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2525     __ move(osrBuffer, cc->args()->at(0));
2526     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2527                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2528   }
2529 
2530   if (x->is_safepoint()) {
2531     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2532 
2533     // increment backedge counter if needed
2534     CodeEmitInfo* info = state_for(x, state);
2535     increment_backedge_counter(info, x->profiled_bci());
2536     CodeEmitInfo* safepoint_info = state_for(x, state);
2537     __ safepoint(safepoint_poll_register(), safepoint_info);
2538   }
2539 
2540   // Gotos can be folded Ifs, handle this case.
2541   if (x->should_profile()) {
2542     ciMethod* method = x->profiled_method();
2543     assert(method != NULL, "method should be set if branch is profiled");
2544     ciMethodData* md = method->method_data_or_null();
2545     assert(md != NULL, "Sanity");
2546     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2547     assert(data != NULL, "must have profiling data");
2548     int offset;
2549     if (x->direction() == Goto::taken) {
2550       assert(data->is_BranchData(), "need BranchData for two-way branches");
2551       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2552     } else if (x->direction() == Goto::not_taken) {
2553       assert(data->is_BranchData(), "need BranchData for two-way branches");
2554       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2555     } else {
2556       assert(data->is_JumpData(), "need JumpData for branches");
2557       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2558     }
2559     LIR_Opr md_reg = new_register(T_METADATA);
2560     __ metadata2reg(md->constant_encoding(), md_reg);
2561 
2562     increment_counter(new LIR_Address(md_reg, offset,
2563                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2564   }
2565 
2566   // emit phi-instruction move after safepoint since this simplifies
2567   // describing the state as the safepoint.
2568   move_to_phi(x->state());
2569 
2570   __ jump(x->default_sux());
2571 }
2572 
2573 
2574 ciKlass* LIRGenerator::profile_arg_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, Value arg, LIR_Opr& mdp, bool not_null, ciKlass* signature_k) {
2575   ciKlass* result = NULL;
2576   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2577   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2578   // known not to be null or null bit already set and already set to
2579   // unknown: nothing we can do to improve profiling
2580   if (!do_null && !do_update) {
2581     return result;
2582   }
2583 
2584   ciKlass* exact_klass = NULL;
2585   Compilation* comp = Compilation::current();
2586   if (do_update) {
2587     // try to find exact type, using CHA if possible, so that loading
2588     // the klass from the object can be avoided
2589     ciType* type = arg->exact_type();
2590     if (type == NULL) {
2591       type = arg->declared_type();
2592       type = comp->cha_exact_type(type);
2593     }
2594     assert(type == NULL || type->is_klass(), "type should be class");
2595     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2596 
2597     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2598   }
2599 
2600   if (!do_null && !do_update) {
2601     return result;
2602   }
2603 
2604   ciKlass* exact_signature_k = NULL;
2605   if (do_update) {
2606     // Is the type from the signature exact (the only one possible)?
2607     exact_signature_k = signature_k->exact_klass();
2608     if (exact_signature_k == NULL) {
2609       exact_signature_k = comp->cha_exact_type(signature_k);
2610     } else {
2611       result = exact_signature_k;
2612       do_update = false;
2613       // Known statically. No need to emit any code: prevent
2614       // LIR_Assembler::emit_profile_type() from emitting useless code
2615       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2616     }
2617     if (exact_signature_k != NULL && exact_klass != exact_signature_k) {
2618       assert(exact_klass == NULL, "arg and signature disagree?");
2619       // sometimes the type of the signature is better than the best type
2620       // the compiler has
2621       exact_klass = exact_signature_k;
2622       do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2623     }
2624   }
2625 
2626   if (!do_null && !do_update) {
2627     return result;
2628   }
2629 
2630   if (mdp == LIR_OprFact::illegalOpr) {
2631     mdp = new_register(T_METADATA);
2632     __ metadata2reg(md->constant_encoding(), mdp);
2633     if (md_base_offset != 0) {
2634       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2635       mdp = new_pointer_register();
2636       __ leal(LIR_OprFact::address(base_type_address), mdp);
2637     }
2638   }
2639   LIRItem value(arg, this);
2640   value.load_item();
2641   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2642                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2643   return result;
2644 }
2645 
2646 void LIRGenerator::do_Base(Base* x) {
2647   __ std_entry(LIR_OprFact::illegalOpr);
2648   // Emit moves from physical registers / stack slots to virtual registers
2649   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2650   IRScope* irScope = compilation()->hir()->top_scope();
2651   int java_index = 0;
2652   for (int i = 0; i < args->length(); i++) {
2653     LIR_Opr src = args->at(i);
2654     assert(!src->is_illegal(), "check");
2655     BasicType t = src->type();
2656 
2657     // Types which are smaller than int are passed as int, so
2658     // correct the type which passed.
2659     switch (t) {
2660     case T_BYTE:
2661     case T_BOOLEAN:
2662     case T_SHORT:
2663     case T_CHAR:
2664       t = T_INT;
2665       break;
2666     }
2667 
2668     LIR_Opr dest = new_register(t);
2669     __ move(src, dest);
2670 
2671     // Assign new location to Local instruction for this local
2672     Local* local = x->state()->local_at(java_index)->as_Local();
2673     assert(local != NULL, "Locals for incoming arguments must have been created");
2674 #ifndef __SOFTFP__
2675     // The java calling convention passes double as long and float as int.
2676     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2677 #endif // __SOFTFP__
2678     local->set_operand(dest);
2679     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2680     java_index += type2size[t];
2681   }
2682 
2683   if (compilation()->env()->dtrace_method_probes()) {
2684     BasicTypeList signature;
2685     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2686     signature.append(T_OBJECT); // Method*
2687     LIR_OprList* args = new LIR_OprList();
2688     args->append(getThreadPointer());
2689     LIR_Opr meth = new_register(T_METADATA);
2690     __ metadata2reg(method()->constant_encoding(), meth);
2691     args->append(meth);
2692     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2693   }
2694 
2695   if (method()->is_synchronized()) {
2696     LIR_Opr obj;
2697     if (method()->is_static()) {
2698       obj = new_register(T_OBJECT);
2699       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2700     } else {
2701       Local* receiver = x->state()->local_at(0)->as_Local();
2702       assert(receiver != NULL, "must already exist");
2703       obj = receiver->operand();
2704     }
2705     assert(obj->is_valid(), "must be valid");
2706 
2707     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2708       LIR_Opr lock = new_register(T_INT);
2709       __ load_stack_address_monitor(0, lock);
2710 
2711       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2712       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2713 
2714       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2715       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2716     }
2717   }
2718 
2719   // increment invocation counters if needed
2720   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2721     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2722     increment_invocation_counter(info);
2723   }
2724 
2725   // all blocks with a successor must end with an unconditional jump
2726   // to the successor even if they are consecutive
2727   __ jump(x->default_sux());
2728 }
2729 
2730 
2731 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2732   // construct our frame and model the production of incoming pointer
2733   // to the OSR buffer.
2734   __ osr_entry(LIR_Assembler::osrBufferPointer());
2735   LIR_Opr result = rlock_result(x);
2736   __ move(LIR_Assembler::osrBufferPointer(), result);
2737 }
2738 
2739 
2740 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2741   assert(args->length() == arg_list->length(),
2742          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2743   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2744     LIRItem* param = args->at(i);
2745     LIR_Opr loc = arg_list->at(i);
2746     if (loc->is_register()) {
2747       param->load_item_force(loc);
2748     } else {
2749       LIR_Address* addr = loc->as_address_ptr();
2750       param->load_for_store(addr->type());
2751       if (addr->type() == T_OBJECT) {
2752         __ move_wide(param->result(), addr);
2753       } else
2754         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2755           __ unaligned_move(param->result(), addr);
2756         } else {
2757           __ move(param->result(), addr);
2758         }
2759     }
2760   }
2761 
2762   if (x->has_receiver()) {
2763     LIRItem* receiver = args->at(0);
2764     LIR_Opr loc = arg_list->at(0);
2765     if (loc->is_register()) {
2766       receiver->load_item_force(loc);
2767     } else {
2768       assert(loc->is_address(), "just checking");
2769       receiver->load_for_store(T_OBJECT);
2770       __ move_wide(receiver->result(), loc->as_address_ptr());
2771     }
2772   }
2773 }
2774 
2775 
2776 // Visits all arguments, returns appropriate items without loading them
2777 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2778   LIRItemList* argument_items = new LIRItemList();
2779   if (x->has_receiver()) {
2780     LIRItem* receiver = new LIRItem(x->receiver(), this);
2781     argument_items->append(receiver);
2782   }
2783   for (int i = 0; i < x->number_of_arguments(); i++) {
2784     LIRItem* param = new LIRItem(x->argument_at(i), this);
2785     argument_items->append(param);
2786   }
2787   return argument_items;
2788 }
2789 
2790 
2791 // The invoke with receiver has following phases:
2792 //   a) traverse and load/lock receiver;
2793 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2794 //   c) push receiver on stack
2795 //   d) load each of the items and push on stack
2796 //   e) unlock receiver
2797 //   f) move receiver into receiver-register %o0
2798 //   g) lock result registers and emit call operation
2799 //
2800 // Before issuing a call, we must spill-save all values on stack
2801 // that are in caller-save register. "spill-save" moves thos registers
2802 // either in a free callee-save register or spills them if no free
2803 // callee save register is available.
2804 //
2805 // The problem is where to invoke spill-save.
2806 // - if invoked between e) and f), we may lock callee save
2807 //   register in "spill-save" that destroys the receiver register
2808 //   before f) is executed
2809 // - if we rearange the f) to be earlier, by loading %o0, it
2810 //   may destroy a value on the stack that is currently in %o0
2811 //   and is waiting to be spilled
2812 // - if we keep the receiver locked while doing spill-save,
2813 //   we cannot spill it as it is spill-locked
2814 //
2815 void LIRGenerator::do_Invoke(Invoke* x) {
2816   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2817 
2818   LIR_OprList* arg_list = cc->args();
2819   LIRItemList* args = invoke_visit_arguments(x);
2820   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2821 
2822   // setup result register
2823   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2824   if (x->type() != voidType) {
2825     result_register = result_register_for(x->type());
2826   }
2827 
2828   CodeEmitInfo* info = state_for(x, x->state());
2829 
2830   invoke_load_arguments(x, args, arg_list);
2831 
2832   if (x->has_receiver()) {
2833     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2834     receiver = args->at(0)->result();
2835   }
2836 
2837   // emit invoke code
2838   bool optimized = x->target_is_loaded() && x->target_is_final();
2839   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2840 
2841   // JSR 292
2842   // Preserve the SP over MethodHandle call sites.
2843   ciMethod* target = x->target();
2844   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2845                                   target->is_method_handle_intrinsic() ||
2846                                   target->is_compiled_lambda_form());
2847   if (is_method_handle_invoke) {
2848     info->set_is_method_handle_invoke(true);
2849     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2850   }
2851 
2852   switch (x->code()) {
2853     case Bytecodes::_invokestatic:
2854       __ call_static(target, result_register,
2855                      SharedRuntime::get_resolve_static_call_stub(),
2856                      arg_list, info);
2857       break;
2858     case Bytecodes::_invokespecial:
2859     case Bytecodes::_invokevirtual:
2860     case Bytecodes::_invokeinterface:
2861       // for final target we still produce an inline cache, in order
2862       // to be able to call mixed mode
2863       if (x->code() == Bytecodes::_invokespecial || optimized) {
2864         __ call_opt_virtual(target, receiver, result_register,
2865                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2866                             arg_list, info);
2867       } else if (x->vtable_index() < 0) {
2868         __ call_icvirtual(target, receiver, result_register,
2869                           SharedRuntime::get_resolve_virtual_call_stub(),
2870                           arg_list, info);
2871       } else {
2872         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2873         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2874         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2875       }
2876       break;
2877     case Bytecodes::_invokedynamic: {
2878       __ call_dynamic(target, receiver, result_register,
2879                       SharedRuntime::get_resolve_static_call_stub(),
2880                       arg_list, info);
2881       break;
2882     }
2883     default:
2884       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2885       break;
2886   }
2887 
2888   // JSR 292
2889   // Restore the SP after MethodHandle call sites.
2890   if (is_method_handle_invoke) {
2891     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2892   }
2893 
2894   if (x->type()->is_float() || x->type()->is_double()) {
2895     // Force rounding of results from non-strictfp when in strictfp
2896     // scope (or when we don't know the strictness of the callee, to
2897     // be safe.)
2898     if (method()->is_strict()) {
2899       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2900         result_register = round_item(result_register);
2901       }
2902     }
2903   }
2904 
2905   if (result_register->is_valid()) {
2906     LIR_Opr result = rlock_result(x);
2907     __ move(result_register, result);
2908   }
2909 }
2910 
2911 
2912 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2913   assert(x->number_of_arguments() == 1, "wrong type");
2914   LIRItem value       (x->argument_at(0), this);
2915   LIR_Opr reg = rlock_result(x);
2916   value.load_item();
2917   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2918   __ move(tmp, reg);
2919 }
2920 
2921 
2922 
2923 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2924 void LIRGenerator::do_IfOp(IfOp* x) {
2925 #ifdef ASSERT
2926   {
2927     ValueTag xtag = x->x()->type()->tag();
2928     ValueTag ttag = x->tval()->type()->tag();
2929     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2930     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2931     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2932   }
2933 #endif
2934 
2935   LIRItem left(x->x(), this);
2936   LIRItem right(x->y(), this);
2937   left.load_item();
2938   if (can_inline_as_constant(right.value())) {
2939     right.dont_load_item();
2940   } else {
2941     right.load_item();
2942   }
2943 
2944   LIRItem t_val(x->tval(), this);
2945   LIRItem f_val(x->fval(), this);
2946   t_val.dont_load_item();
2947   f_val.dont_load_item();
2948   LIR_Opr reg = rlock_result(x);
2949 
2950   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2951   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2952 }
2953 
2954 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
2955     assert(x->number_of_arguments() == expected_arguments, "wrong type");
2956     LIR_Opr reg = result_register_for(x->type());
2957     __ call_runtime_leaf(routine, getThreadTemp(),
2958                          reg, new LIR_OprList());
2959     LIR_Opr result = rlock_result(x);
2960     __ move(reg, result);
2961 }
2962 
2963 #ifdef TRACE_HAVE_INTRINSICS
2964 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
2965     LIR_Opr thread = getThreadPointer();
2966     LIR_Opr osthread = new_pointer_register();
2967     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
2968     size_t thread_id_size = OSThread::thread_id_size();
2969     if (thread_id_size == (size_t) BytesPerLong) {
2970       LIR_Opr id = new_register(T_LONG);
2971       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
2972       __ convert(Bytecodes::_l2i, id, rlock_result(x));
2973     } else if (thread_id_size == (size_t) BytesPerInt) {
2974       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
2975     } else {
2976       ShouldNotReachHere();
2977     }
2978 }
2979 
2980 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
2981     CodeEmitInfo* info = state_for(x);
2982     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
2983     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
2984     assert(info != NULL, "must have info");
2985     LIRItem arg(x->argument_at(1), this);
2986     arg.load_item();
2987     LIR_Opr klass = new_pointer_register();
2988     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
2989     LIR_Opr id = new_register(T_LONG);
2990     ByteSize offset = TRACE_ID_OFFSET;
2991     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
2992     __ move(trace_id_addr, id);
2993     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
2994     __ store(id, trace_id_addr);
2995     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
2996     __ move(id, rlock_result(x));
2997 }
2998 #endif
2999 
3000 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3001   switch (x->id()) {
3002   case vmIntrinsics::_intBitsToFloat      :
3003   case vmIntrinsics::_doubleToRawLongBits :
3004   case vmIntrinsics::_longBitsToDouble    :
3005   case vmIntrinsics::_floatToRawIntBits   : {
3006     do_FPIntrinsics(x);
3007     break;
3008   }
3009 
3010 #ifdef TRACE_HAVE_INTRINSICS
3011   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3012   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3013   case vmIntrinsics::_counterTime:
3014     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3015     break;
3016 #endif
3017 
3018   case vmIntrinsics::_currentTimeMillis:
3019     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3020     break;
3021 
3022   case vmIntrinsics::_nanoTime:
3023     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3024     break;
3025 
3026   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3027   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3028   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3029   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3030 
3031   case vmIntrinsics::_dlog:           // fall through
3032   case vmIntrinsics::_dlog10:         // fall through
3033   case vmIntrinsics::_dabs:           // fall through
3034   case vmIntrinsics::_dsqrt:          // fall through
3035   case vmIntrinsics::_dtan:           // fall through
3036   case vmIntrinsics::_dsin :          // fall through
3037   case vmIntrinsics::_dcos :          // fall through
3038   case vmIntrinsics::_dexp :          // fall through
3039   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3040   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3041 
3042   // java.nio.Buffer.checkIndex
3043   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3044 
3045   case vmIntrinsics::_compareAndSwapObject:
3046     do_CompareAndSwap(x, objectType);
3047     break;
3048   case vmIntrinsics::_compareAndSwapInt:
3049     do_CompareAndSwap(x, intType);
3050     break;
3051   case vmIntrinsics::_compareAndSwapLong:
3052     do_CompareAndSwap(x, longType);
3053     break;
3054 
3055   case vmIntrinsics::_loadFence :
3056     if (os::is_MP()) __ membar_acquire();
3057     break;
3058   case vmIntrinsics::_storeFence:
3059     if (os::is_MP()) __ membar_release();
3060     break;
3061   case vmIntrinsics::_fullFence :
3062     if (os::is_MP()) __ membar();
3063     break;
3064 
3065   case vmIntrinsics::_Reference_get:
3066     do_Reference_get(x);
3067     break;
3068 
3069   case vmIntrinsics::_updateCRC32:
3070   case vmIntrinsics::_updateBytesCRC32:
3071   case vmIntrinsics::_updateByteBufferCRC32:
3072     do_update_CRC32(x);
3073     break;
3074 
3075   default: ShouldNotReachHere(); break;
3076   }
3077 }
3078 
3079 void LIRGenerator::profile_arguments(ProfileCall* x) {
3080   if (MethodData::profile_arguments()) {
3081     int bci = x->bci_of_invoke();
3082     ciMethodData* md = x->method()->method_data_or_null();
3083     ciProfileData* data = md->bci_to_data(bci);
3084     if (data->is_CallTypeData() || data->is_VirtualCallTypeData()) {
3085       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3086       int base_offset = md->byte_offset_of_slot(data, extra);
3087       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3088       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3089 
3090       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3091       int start = 0;
3092       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3093       if (x->nb_profiled_args() < stop) {
3094         // if called through method handle invoke, some arguments may have been popped
3095         stop = x->nb_profiled_args();
3096       }
3097       ciSignature* sig = x->callee()->signature();
3098       // method handle call to virtual method
3099       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3100       ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3101       for (int i = 0; i < stop; i++) {
3102         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3103         ciKlass* exact = profile_arg_type(md, base_offset, off,
3104                                           args->type(i), x->profiled_arg_at(i+start), mdp,
3105                                           !x->arg_needs_null_check(i+start), sig_stream.next_klass());
3106         if (exact != NULL) {
3107           md->set_argument_type(bci, i, exact);
3108         }
3109       }
3110     }
3111   }
3112 }
3113 
3114 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3115   // Need recv in a temporary register so it interferes with the other temporaries
3116   LIR_Opr recv = LIR_OprFact::illegalOpr;
3117   LIR_Opr mdo = new_register(T_OBJECT);
3118   // tmp is used to hold the counters on SPARC
3119   LIR_Opr tmp = new_pointer_register();
3120 
3121   if (x->nb_profiled_args() > 0) {
3122     profile_arguments(x);
3123   }
3124 
3125   if (x->recv() != NULL) {
3126     LIRItem value(x->recv(), this);
3127     value.load_item();
3128     recv = new_register(T_OBJECT);
3129     __ move(value.result(), recv);
3130   }
3131   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3132 }
3133 
3134 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3135   int bci = x->bci_of_invoke();
3136   ciMethodData* md = x->method()->method_data_or_null();
3137   ciProfileData* data = md->bci_to_data(bci);
3138   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3139   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3140   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3141   ciKlass* exact = profile_arg_type(md, 0, md->byte_offset_of_slot(data, ret->type_offset()),
3142                                     ret->type(), x->ret(), mdp,
3143                                     !x->needs_null_check(), x->callee()->signature()->return_type()->as_klass());
3144   if (exact != NULL) {
3145     md->set_return_type(bci, exact);
3146   }
3147 }
3148 
3149 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3150   // We can safely ignore accessors here, since c2 will inline them anyway,
3151   // accessors are also always mature.
3152   if (!x->inlinee()->is_accessor()) {
3153     CodeEmitInfo* info = state_for(x, x->state(), true);
3154     // Notify the runtime very infrequently only to take care of counter overflows
3155     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3156   }
3157 }
3158 
3159 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3160   int freq_log;
3161   int level = compilation()->env()->comp_level();
3162   if (level == CompLevel_limited_profile) {
3163     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3164   } else if (level == CompLevel_full_profile) {
3165     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3166   } else {
3167     ShouldNotReachHere();
3168   }
3169   // Increment the appropriate invocation/backedge counter and notify the runtime.
3170   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3171 }
3172 
3173 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3174                                                 ciMethod *method, int frequency,
3175                                                 int bci, bool backedge, bool notify) {
3176   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3177   int level = _compilation->env()->comp_level();
3178   assert(level > CompLevel_simple, "Shouldn't be here");
3179 
3180   int offset = -1;
3181   LIR_Opr counter_holder;
3182   if (level == CompLevel_limited_profile) {
3183     MethodCounters* counters_adr = method->ensure_method_counters();
3184     if (counters_adr == NULL) {
3185       bailout("method counters allocation failed");
3186       return;
3187     }
3188     counter_holder = new_pointer_register();
3189     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3190     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3191                                  MethodCounters::invocation_counter_offset());
3192   } else if (level == CompLevel_full_profile) {
3193     counter_holder = new_register(T_METADATA);
3194     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3195                                  MethodData::invocation_counter_offset());
3196     ciMethodData* md = method->method_data_or_null();
3197     assert(md != NULL, "Sanity");
3198     __ metadata2reg(md->constant_encoding(), counter_holder);
3199   } else {
3200     ShouldNotReachHere();
3201   }
3202   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3203   LIR_Opr result = new_register(T_INT);
3204   __ load(counter, result);
3205   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3206   __ store(result, counter);
3207   if (notify) {
3208     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3209     LIR_Opr meth = new_register(T_METADATA);
3210     __ metadata2reg(method->constant_encoding(), meth);
3211     __ logical_and(result, mask, result);
3212     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3213     // The bci for info can point to cmp for if's we want the if bci
3214     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3215     __ branch(lir_cond_equal, T_INT, overflow);
3216     __ branch_destination(overflow->continuation());
3217   }
3218 }
3219 
3220 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3221   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3222   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3223 
3224   if (x->pass_thread()) {
3225     signature->append(T_ADDRESS);
3226     args->append(getThreadPointer());
3227   }
3228 
3229   for (int i = 0; i < x->number_of_arguments(); i++) {
3230     Value a = x->argument_at(i);
3231     LIRItem* item = new LIRItem(a, this);
3232     item->load_item();
3233     args->append(item->result());
3234     signature->append(as_BasicType(a->type()));
3235   }
3236 
3237   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3238   if (x->type() == voidType) {
3239     set_no_result(x);
3240   } else {
3241     __ move(result, rlock_result(x));
3242   }
3243 }
3244 
3245 #ifdef ASSERT
3246 void LIRGenerator::do_Assert(Assert *x) {
3247   ValueTag tag = x->x()->type()->tag();
3248   If::Condition cond = x->cond();
3249 
3250   LIRItem xitem(x->x(), this);
3251   LIRItem yitem(x->y(), this);
3252   LIRItem* xin = &xitem;
3253   LIRItem* yin = &yitem;
3254 
3255   assert(tag == intTag, "Only integer assertions are valid!");
3256 
3257   xin->load_item();
3258   yin->dont_load_item();
3259 
3260   set_no_result(x);
3261 
3262   LIR_Opr left = xin->result();
3263   LIR_Opr right = yin->result();
3264 
3265   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3266 }
3267 #endif
3268 
3269 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3270 
3271 
3272   Instruction *a = x->x();
3273   Instruction *b = x->y();
3274   if (!a || StressRangeCheckElimination) {
3275     assert(!b || StressRangeCheckElimination, "B must also be null");
3276 
3277     CodeEmitInfo *info = state_for(x, x->state());
3278     CodeStub* stub = new PredicateFailedStub(info);
3279 
3280     __ jump(stub);
3281   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3282     int a_int = a->type()->as_IntConstant()->value();
3283     int b_int = b->type()->as_IntConstant()->value();
3284 
3285     bool ok = false;
3286 
3287     switch(x->cond()) {
3288       case Instruction::eql: ok = (a_int == b_int); break;
3289       case Instruction::neq: ok = (a_int != b_int); break;
3290       case Instruction::lss: ok = (a_int < b_int); break;
3291       case Instruction::leq: ok = (a_int <= b_int); break;
3292       case Instruction::gtr: ok = (a_int > b_int); break;
3293       case Instruction::geq: ok = (a_int >= b_int); break;
3294       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3295       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3296       default: ShouldNotReachHere();
3297     }
3298 
3299     if (ok) {
3300 
3301       CodeEmitInfo *info = state_for(x, x->state());
3302       CodeStub* stub = new PredicateFailedStub(info);
3303 
3304       __ jump(stub);
3305     }
3306   } else {
3307 
3308     ValueTag tag = x->x()->type()->tag();
3309     If::Condition cond = x->cond();
3310     LIRItem xitem(x->x(), this);
3311     LIRItem yitem(x->y(), this);
3312     LIRItem* xin = &xitem;
3313     LIRItem* yin = &yitem;
3314 
3315     assert(tag == intTag, "Only integer deoptimizations are valid!");
3316 
3317     xin->load_item();
3318     yin->dont_load_item();
3319     set_no_result(x);
3320 
3321     LIR_Opr left = xin->result();
3322     LIR_Opr right = yin->result();
3323 
3324     CodeEmitInfo *info = state_for(x, x->state());
3325     CodeStub* stub = new PredicateFailedStub(info);
3326 
3327     __ cmp(lir_cond(cond), left, right);
3328     __ branch(lir_cond(cond), right->type(), stub);
3329   }
3330 }
3331 
3332 
3333 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3334   LIRItemList args(1);
3335   LIRItem value(arg1, this);
3336   args.append(&value);
3337   BasicTypeList signature;
3338   signature.append(as_BasicType(arg1->type()));
3339 
3340   return call_runtime(&signature, &args, entry, result_type, info);
3341 }
3342 
3343 
3344 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3345   LIRItemList args(2);
3346   LIRItem value1(arg1, this);
3347   LIRItem value2(arg2, this);
3348   args.append(&value1);
3349   args.append(&value2);
3350   BasicTypeList signature;
3351   signature.append(as_BasicType(arg1->type()));
3352   signature.append(as_BasicType(arg2->type()));
3353 
3354   return call_runtime(&signature, &args, entry, result_type, info);
3355 }
3356 
3357 
3358 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3359                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3360   // get a result register
3361   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3362   LIR_Opr result = LIR_OprFact::illegalOpr;
3363   if (result_type->tag() != voidTag) {
3364     result = new_register(result_type);
3365     phys_reg = result_register_for(result_type);
3366   }
3367 
3368   // move the arguments into the correct location
3369   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3370   assert(cc->length() == args->length(), "argument mismatch");
3371   for (int i = 0; i < args->length(); i++) {
3372     LIR_Opr arg = args->at(i);
3373     LIR_Opr loc = cc->at(i);
3374     if (loc->is_register()) {
3375       __ move(arg, loc);
3376     } else {
3377       LIR_Address* addr = loc->as_address_ptr();
3378 //           if (!can_store_as_constant(arg)) {
3379 //             LIR_Opr tmp = new_register(arg->type());
3380 //             __ move(arg, tmp);
3381 //             arg = tmp;
3382 //           }
3383       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3384         __ unaligned_move(arg, addr);
3385       } else {
3386         __ move(arg, addr);
3387       }
3388     }
3389   }
3390 
3391   if (info) {
3392     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3393   } else {
3394     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3395   }
3396   if (result->is_valid()) {
3397     __ move(phys_reg, result);
3398   }
3399   return result;
3400 }
3401 
3402 
3403 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3404                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3405   // get a result register
3406   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3407   LIR_Opr result = LIR_OprFact::illegalOpr;
3408   if (result_type->tag() != voidTag) {
3409     result = new_register(result_type);
3410     phys_reg = result_register_for(result_type);
3411   }
3412 
3413   // move the arguments into the correct location
3414   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3415 
3416   assert(cc->length() == args->length(), "argument mismatch");
3417   for (int i = 0; i < args->length(); i++) {
3418     LIRItem* arg = args->at(i);
3419     LIR_Opr loc = cc->at(i);
3420     if (loc->is_register()) {
3421       arg->load_item_force(loc);
3422     } else {
3423       LIR_Address* addr = loc->as_address_ptr();
3424       arg->load_for_store(addr->type());
3425       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3426         __ unaligned_move(arg->result(), addr);
3427       } else {
3428         __ move(arg->result(), addr);
3429       }
3430     }
3431   }
3432 
3433   if (info) {
3434     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3435   } else {
3436     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3437   }
3438   if (result->is_valid()) {
3439     __ move(phys_reg, result);
3440   }
3441   return result;
3442 }
3443 
3444 void LIRGenerator::do_MemBar(MemBar* x) {
3445   if (os::is_MP()) {
3446     LIR_Code code = x->code();
3447     switch(code) {
3448       case lir_membar_acquire   : __ membar_acquire(); break;
3449       case lir_membar_release   : __ membar_release(); break;
3450       case lir_membar           : __ membar(); break;
3451       case lir_membar_loadload  : __ membar_loadload(); break;
3452       case lir_membar_storestore: __ membar_storestore(); break;
3453       case lir_membar_loadstore : __ membar_loadstore(); break;
3454       case lir_membar_storeload : __ membar_storeload(); break;
3455       default                   : ShouldNotReachHere(); break;
3456     }
3457   }
3458 }