1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86_32.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/method.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 
  41 
  42 // Implementation of InterpreterMacroAssembler
  43 #ifdef CC_INTERP
  44 void InterpreterMacroAssembler::get_method(Register reg) {
  45   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
  46   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
  47 }
  48 #endif // CC_INTERP
  49 
  50 
  51 #ifndef CC_INTERP
  52 void InterpreterMacroAssembler::call_VM_leaf_base(
  53   address entry_point,
  54   int     number_of_arguments
  55 ) {
  56   // interpreter specific
  57   //
  58   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
  59   //       since these are callee saved registers and no blocking/
  60   //       GC can happen in leaf calls.
  61   // Further Note: DO NOT save/restore bcp/locals. If a caller has
  62   // already saved them so that it can use rsi/rdi as temporaries
  63   // then a save/restore here will DESTROY the copy the caller
  64   // saved! There used to be a save_bcp() that only happened in
  65   // the ASSERT path (no restore_bcp). Which caused bizarre failures
  66   // when jvm built with ASSERTs.
  67 #ifdef ASSERT
  68   { Label L;
  69     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  70     jcc(Assembler::equal, L);
  71     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
  72     bind(L);
  73   }
  74 #endif
  75   // super call
  76   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  77   // interpreter specific
  78 
  79   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
  80   // but since they may not have been saved (and we don't want to
  81   // save them here (see note above) the assert is invalid.
  82 }
  83 
  84 
  85 void InterpreterMacroAssembler::call_VM_base(
  86   Register oop_result,
  87   Register java_thread,
  88   Register last_java_sp,
  89   address  entry_point,
  90   int      number_of_arguments,
  91   bool     check_exceptions
  92 ) {
  93 #ifdef ASSERT
  94   { Label L;
  95     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  96     jcc(Assembler::equal, L);
  97     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
  98     bind(L);
  99   }
 100 #endif /* ASSERT */
 101   // interpreter specific
 102   //
 103   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 104   //       really make a difference for these runtime calls, since they are
 105   //       slow anyway. Btw., bcp must be saved/restored since it may change
 106   //       due to GC.
 107   assert(java_thread == noreg , "not expecting a precomputed java thread");
 108   save_bcp();
 109   // super call
 110   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 111   // interpreter specific
 112   restore_bcp();
 113   restore_locals();
 114 }
 115 
 116 
 117 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 118   if (JvmtiExport::can_pop_frame()) {
 119     Label L;
 120     // Initiate popframe handling only if it is not already being processed.  If the flag
 121     // has the popframe_processing bit set, it means that this code is called *during* popframe
 122     // handling - we don't want to reenter.
 123     Register pop_cond = java_thread;  // Not clear if any other register is available...
 124     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 125     testl(pop_cond, JavaThread::popframe_pending_bit);
 126     jcc(Assembler::zero, L);
 127     testl(pop_cond, JavaThread::popframe_processing_bit);
 128     jcc(Assembler::notZero, L);
 129     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 130     // address of the same-named entrypoint in the generated interpreter code.
 131     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 132     jmp(rax);
 133     bind(L);
 134     get_thread(java_thread);
 135   }
 136 }
 137 
 138 
 139 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 140   get_thread(rcx);
 141   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
 142   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
 143   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
 144   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
 145   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 146                              + in_ByteSize(wordSize));
 147   switch (state) {
 148     case atos: movptr(rax, oop_addr);
 149                movptr(oop_addr, NULL_WORD);
 150                verify_oop(rax, state);                break;
 151     case ltos:
 152                movl(rdx, val_addr1);               // fall through
 153     case btos:                                     // fall through
 154     case ctos:                                     // fall through
 155     case stos:                                     // fall through
 156     case itos: movl(rax, val_addr);                   break;
 157     case ftos: fld_s(val_addr);                       break;
 158     case dtos: fld_d(val_addr);                       break;
 159     case vtos: /* nothing to do */                    break;
 160     default  : ShouldNotReachHere();
 161   }
 162   // Clean up tos value in the thread object
 163   movl(tos_addr,  (int32_t) ilgl);
 164   movptr(val_addr,  NULL_WORD);
 165   NOT_LP64(movptr(val_addr1, NULL_WORD));
 166 }
 167 
 168 
 169 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 170   if (JvmtiExport::can_force_early_return()) {
 171     Label L;
 172     Register tmp = java_thread;
 173     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
 174     testptr(tmp, tmp);
 175     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 176 
 177     // Initiate earlyret handling only if it is not already being processed.
 178     // If the flag has the earlyret_processing bit set, it means that this code
 179     // is called *during* earlyret handling - we don't want to reenter.
 180     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 181     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 182     jcc(Assembler::notEqual, L);
 183 
 184     // Call Interpreter::remove_activation_early_entry() to get the address of the
 185     // same-named entrypoint in the generated interpreter code.
 186     get_thread(java_thread);
 187     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
 188     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 189     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 190     jmp(rax);
 191     bind(L);
 192     get_thread(java_thread);
 193   }
 194 }
 195 
 196 
 197 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 198   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 199   movl(reg, Address(rsi, bcp_offset));
 200   bswapl(reg);
 201   shrl(reg, 16);
 202 }
 203 
 204 
 205 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
 206   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 207   if (index_size == sizeof(u2)) {
 208     load_unsigned_short(reg, Address(rsi, bcp_offset));
 209   } else if (index_size == sizeof(u4)) {
 210     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 211     movl(reg, Address(rsi, bcp_offset));
 212     // Check if the secondary index definition is still ~x, otherwise
 213     // we have to change the following assembler code to calculate the
 214     // plain index.
 215     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 216     notl(reg);  // convert to plain index
 217   } else if (index_size == sizeof(u1)) {
 218     load_unsigned_byte(reg, Address(rsi, bcp_offset));
 219   } else {
 220     ShouldNotReachHere();
 221   }
 222 }
 223 
 224 
 225 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
 226                                                            int bcp_offset, size_t index_size) {
 227   assert_different_registers(cache, index);
 228   get_cache_index_at_bcp(index, bcp_offset, index_size);
 229   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 230   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
 231   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 232   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
 233 }
 234 
 235 
 236 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 237                                                                         Register index,
 238                                                                         Register bytecode,
 239                                                                         int byte_no,
 240                                                                         int bcp_offset,
 241                                                                         size_t index_size) {
 242   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 243   movptr(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 244   const int shift_count = (1 + byte_no) * BitsPerByte;
 245   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 246          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 247          "correct shift count");
 248   shrptr(bytecode, shift_count);
 249   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 250   andptr(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 251 }
 252 
 253 
 254 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 255                                                                int bcp_offset, size_t index_size) {
 256   assert(cache != tmp, "must use different register");
 257   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 258   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
 259                                // convert from field index to ConstantPoolCacheEntry index
 260                                // and from word offset to byte offset
 261   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 262   shll(tmp, 2 + LogBytesPerWord);
 263   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 264                                // skip past the header
 265   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 266   addptr(cache, tmp);            // construct pointer to cache entry
 267 }
 268 
 269 void InterpreterMacroAssembler::get_method_counters(Register method,
 270                                                     Register mcs, Label& skip) {
 271   Label has_counters;
 272   movptr(mcs, Address(method, Method::method_counters_offset()));
 273   testptr(mcs, mcs);
 274   jcc(Assembler::notZero, has_counters);
 275   call_VM(noreg, CAST_FROM_FN_PTR(address,
 276           InterpreterRuntime::build_method_counters), method);
 277   movptr(mcs, Address(method,Method::method_counters_offset()));
 278   testptr(mcs, mcs);
 279   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
 280   bind(has_counters);
 281 }
 282 
 283 // Load object from cpool->resolved_references(index)
 284 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 285                                            Register result, Register index) {
 286   assert_different_registers(result, index);
 287   // convert from field index to resolved_references() index and from
 288   // word index to byte offset. Since this is a java object, it can be compressed
 289   Register tmp = index;  // reuse
 290   shll(tmp, LogBytesPerHeapOop);
 291 
 292   get_constant_pool(result);
 293   // load pointer for resolved_references[] objArray
 294   movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
 295   // JNIHandles::resolve(obj);
 296   movptr(result, Address(result, 0));
 297   // Add in the index
 298   addptr(result, tmp);
 299   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 300 }
 301 
 302   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 303   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
 304   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
 305 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
 306   assert( Rsub_klass != rax, "rax, holds superklass" );
 307   assert( Rsub_klass != rcx, "used as a temp" );
 308   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
 309 
 310   // Profile the not-null value's klass.
 311   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 312 
 313   // Do the check.
 314   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 315 
 316   // Profile the failure of the check.
 317   profile_typecheck_failed(rcx); // blows rcx
 318 }
 319 
 320 void InterpreterMacroAssembler::f2ieee() {
 321   if (IEEEPrecision) {
 322     fstp_s(Address(rsp, 0));
 323     fld_s(Address(rsp, 0));
 324   }
 325 }
 326 
 327 
 328 void InterpreterMacroAssembler::d2ieee() {
 329   if (IEEEPrecision) {
 330     fstp_d(Address(rsp, 0));
 331     fld_d(Address(rsp, 0));
 332   }
 333 }
 334 
 335 // Java Expression Stack
 336 
 337 void InterpreterMacroAssembler::pop_ptr(Register r) {
 338   pop(r);
 339 }
 340 
 341 void InterpreterMacroAssembler::pop_i(Register r) {
 342   pop(r);
 343 }
 344 
 345 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 346   pop(lo);
 347   pop(hi);
 348 }
 349 
 350 void InterpreterMacroAssembler::pop_f() {
 351   fld_s(Address(rsp, 0));
 352   addptr(rsp, 1 * wordSize);
 353 }
 354 
 355 void InterpreterMacroAssembler::pop_d() {
 356   fld_d(Address(rsp, 0));
 357   addptr(rsp, 2 * wordSize);
 358 }
 359 
 360 
 361 void InterpreterMacroAssembler::pop(TosState state) {
 362   switch (state) {
 363     case atos: pop_ptr(rax);                                 break;
 364     case btos:                                               // fall through
 365     case ctos:                                               // fall through
 366     case stos:                                               // fall through
 367     case itos: pop_i(rax);                                   break;
 368     case ltos: pop_l(rax, rdx);                              break;
 369     case ftos: pop_f();                                      break;
 370     case dtos: pop_d();                                      break;
 371     case vtos: /* nothing to do */                           break;
 372     default  : ShouldNotReachHere();
 373   }
 374   verify_oop(rax, state);
 375 }
 376 
 377 void InterpreterMacroAssembler::push_ptr(Register r) {
 378   push(r);
 379 }
 380 
 381 void InterpreterMacroAssembler::push_i(Register r) {
 382   push(r);
 383 }
 384 
 385 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 386   push(hi);
 387   push(lo);
 388 }
 389 
 390 void InterpreterMacroAssembler::push_f() {
 391   // Do not schedule for no AGI! Never write beyond rsp!
 392   subptr(rsp, 1 * wordSize);
 393   fstp_s(Address(rsp, 0));
 394 }
 395 
 396 void InterpreterMacroAssembler::push_d(Register r) {
 397   // Do not schedule for no AGI! Never write beyond rsp!
 398   subptr(rsp, 2 * wordSize);
 399   fstp_d(Address(rsp, 0));
 400 }
 401 
 402 
 403 void InterpreterMacroAssembler::push(TosState state) {
 404   verify_oop(rax, state);
 405   switch (state) {
 406     case atos: push_ptr(rax); break;
 407     case btos:                                               // fall through
 408     case ctos:                                               // fall through
 409     case stos:                                               // fall through
 410     case itos: push_i(rax);                                    break;
 411     case ltos: push_l(rax, rdx);                               break;
 412     case ftos: push_f();                                       break;
 413     case dtos: push_d(rax);                                    break;
 414     case vtos: /* nothing to do */                             break;
 415     default  : ShouldNotReachHere();
 416   }
 417 }
 418 
 419 
 420 // Helpers for swap and dup
 421 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 422   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 423 }
 424 
 425 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 426   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 427 }
 428 
 429 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 430   // set sender sp
 431   lea(rsi, Address(rsp, wordSize));
 432   // record last_sp
 433   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
 434 }
 435 
 436 
 437 // Jump to from_interpreted entry of a call unless single stepping is possible
 438 // in this thread in which case we must call the i2i entry
 439 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 440   prepare_to_jump_from_interpreted();
 441 
 442   if (JvmtiExport::can_post_interpreter_events()) {
 443     Label run_compiled_code;
 444     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 445     // compiled code in threads for which the event is enabled.  Check here for
 446     // interp_only_mode if these events CAN be enabled.
 447     get_thread(temp);
 448     // interp_only is an int, on little endian it is sufficient to test the byte only
 449     // Is a cmpl faster?
 450     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 451     jccb(Assembler::zero, run_compiled_code);
 452     jmp(Address(method, Method::interpreter_entry_offset()));
 453     bind(run_compiled_code);
 454   }
 455 
 456   jmp(Address(method, Method::from_interpreted_offset()));
 457 
 458 }
 459 
 460 
 461 // The following two routines provide a hook so that an implementation
 462 // can schedule the dispatch in two parts.  Intel does not do this.
 463 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 464   // Nothing Intel-specific to be done here.
 465 }
 466 
 467 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 468   dispatch_next(state, step);
 469 }
 470 
 471 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
 472                                               bool verifyoop) {
 473   verify_FPU(1, state);
 474   if (VerifyActivationFrameSize) {
 475     Label L;
 476     mov(rcx, rbp);
 477     subptr(rcx, rsp);
 478     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 479     cmpptr(rcx, min_frame_size);
 480     jcc(Assembler::greaterEqual, L);
 481     stop("broken stack frame");
 482     bind(L);
 483   }
 484   if (verifyoop) verify_oop(rax, state);
 485   Address index(noreg, rbx, Address::times_ptr);
 486   ExternalAddress tbl((address)table);
 487   ArrayAddress dispatch(tbl, index);
 488   jump(dispatch);
 489 }
 490 
 491 
 492 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 493   dispatch_base(state, Interpreter::dispatch_table(state));
 494 }
 495 
 496 
 497 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 498   dispatch_base(state, Interpreter::normal_table(state));
 499 }
 500 
 501 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 502   dispatch_base(state, Interpreter::normal_table(state), false);
 503 }
 504 
 505 
 506 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 507   // load next bytecode (load before advancing rsi to prevent AGI)
 508   load_unsigned_byte(rbx, Address(rsi, step));
 509   // advance rsi
 510   increment(rsi, step);
 511   dispatch_base(state, Interpreter::dispatch_table(state));
 512 }
 513 
 514 
 515 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 516   // load current bytecode
 517   load_unsigned_byte(rbx, Address(rsi, 0));
 518   dispatch_base(state, table);
 519 }
 520 
 521 // remove activation
 522 //
 523 // Unlock the receiver if this is a synchronized method.
 524 // Unlock any Java monitors from syncronized blocks.
 525 // Remove the activation from the stack.
 526 //
 527 // If there are locked Java monitors
 528 //    If throw_monitor_exception
 529 //       throws IllegalMonitorStateException
 530 //    Else if install_monitor_exception
 531 //       installs IllegalMonitorStateException
 532 //    Else
 533 //       no error processing
 534 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
 535                                                   bool throw_monitor_exception,
 536                                                   bool install_monitor_exception,
 537                                                   bool notify_jvmdi) {
 538   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
 539   // check if synchronized method
 540   Label unlocked, unlock, no_unlock;
 541 
 542   get_thread(rcx);
 543   const Address do_not_unlock_if_synchronized(rcx,
 544     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 545 
 546   movbool(rbx, do_not_unlock_if_synchronized);
 547   mov(rdi,rbx);
 548   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 549 
 550   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
 551   movl(rcx, Address(rbx, Method::access_flags_offset()));
 552 
 553   testl(rcx, JVM_ACC_SYNCHRONIZED);
 554   jcc(Assembler::zero, unlocked);
 555 
 556   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 557   // is set.
 558   mov(rcx,rdi);
 559   testbool(rcx);
 560   jcc(Assembler::notZero, no_unlock);
 561 
 562   // unlock monitor
 563   push(state);                                   // save result
 564 
 565   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 566   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 567   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
 568   lea   (rdx, monitor);                          // address of first monitor
 569 
 570   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
 571   testptr(rax, rax);
 572   jcc    (Assembler::notZero, unlock);
 573 
 574   pop(state);
 575   if (throw_monitor_exception) {
 576     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 577 
 578     // Entry already unlocked, need to throw exception
 579     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 580     should_not_reach_here();
 581   } else {
 582     // Monitor already unlocked during a stack unroll.
 583     // If requested, install an illegal_monitor_state_exception.
 584     // Continue with stack unrolling.
 585     if (install_monitor_exception) {
 586       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 587       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 588     }
 589     jmp(unlocked);
 590   }
 591 
 592   bind(unlock);
 593   unlock_object(rdx);
 594   pop(state);
 595 
 596   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
 597   bind(unlocked);
 598 
 599   // rax, rdx: Might contain return value
 600 
 601   // Check that all monitors are unlocked
 602   {
 603     Label loop, exception, entry, restart;
 604     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
 605     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 606     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
 607 
 608     bind(restart);
 609     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
 610     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
 611     jmp(entry);
 612 
 613     // Entry already locked, need to throw exception
 614     bind(exception);
 615 
 616     if (throw_monitor_exception) {
 617       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 618 
 619       // Throw exception
 620       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 621       should_not_reach_here();
 622     } else {
 623       // Stack unrolling. Unlock object and install illegal_monitor_exception
 624       // Unlock does not block, so don't have to worry about the frame
 625 
 626       push(state);
 627       mov(rdx, rcx);
 628       unlock_object(rdx);
 629       pop(state);
 630 
 631       if (install_monitor_exception) {
 632         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 633         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 634       }
 635 
 636       jmp(restart);
 637     }
 638 
 639     bind(loop);
 640     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
 641     jcc(Assembler::notEqual, exception);
 642 
 643     addptr(rcx, entry_size);                     // otherwise advance to next entry
 644     bind(entry);
 645     cmpptr(rcx, rbx);                            // check if bottom reached
 646     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
 647   }
 648 
 649   bind(no_unlock);
 650 
 651   // jvmti support
 652   if (notify_jvmdi) {
 653     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
 654   } else {
 655     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 656   }
 657 
 658   // remove activation
 659   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
 660   leave();                                     // remove frame anchor
 661   pop(ret_addr);                               // get return address
 662   mov(rsp, rbx);                               // set sp to sender sp
 663   if (UseSSE) {
 664     // float and double are returned in xmm register in SSE-mode
 665     if (state == ftos && UseSSE >= 1) {
 666       subptr(rsp, wordSize);
 667       fstp_s(Address(rsp, 0));
 668       movflt(xmm0, Address(rsp, 0));
 669       addptr(rsp, wordSize);
 670     } else if (state == dtos && UseSSE >= 2) {
 671       subptr(rsp, 2*wordSize);
 672       fstp_d(Address(rsp, 0));
 673       movdbl(xmm0, Address(rsp, 0));
 674       addptr(rsp, 2*wordSize);
 675     }
 676   }
 677 }
 678 
 679 #endif /* !CC_INTERP */
 680 
 681 
 682 // Lock object
 683 //
 684 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
 685 // be initialized with object to lock
 686 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
 687   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
 688 
 689   if (UseHeavyMonitors) {
 690     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
 691   } else {
 692 
 693     Label done;
 694 
 695     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
 696     const Register obj_reg  = rcx;  // Will contain the oop
 697 
 698     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 699     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 700     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
 701 
 702     Label slow_case;
 703 
 704     // Load object pointer into obj_reg %rcx
 705     movptr(obj_reg, Address(lock_reg, obj_offset));
 706 
 707     if (UseBiasedLocking) {
 708       // Note: we use noreg for the temporary register since it's hard
 709       // to come up with a free register on all incoming code paths
 710       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
 711     }
 712 
 713     // Load immediate 1 into swap_reg %rax,
 714     movptr(swap_reg, (int32_t)1);
 715 
 716     // Load (object->mark() | 1) into swap_reg %rax,
 717     orptr(swap_reg, Address(obj_reg, 0));
 718 
 719     // Save (object->mark() | 1) into BasicLock's displaced header
 720     movptr(Address(lock_reg, mark_offset), swap_reg);
 721 
 722     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
 723     if (os::is_MP()) {
 724       lock();
 725     }
 726     cmpxchgptr(lock_reg, Address(obj_reg, 0));
 727     if (PrintBiasedLockingStatistics) {
 728       cond_inc32(Assembler::zero,
 729                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 730     }
 731     jcc(Assembler::zero, done);
 732 
 733     // Test if the oopMark is an obvious stack pointer, i.e.,
 734     //  1) (mark & 3) == 0, and
 735     //  2) rsp <= mark < mark + os::pagesize()
 736     //
 737     // These 3 tests can be done by evaluating the following
 738     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
 739     // assuming both stack pointer and pagesize have their
 740     // least significant 2 bits clear.
 741     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
 742     subptr(swap_reg, rsp);
 743     andptr(swap_reg, 3 - os::vm_page_size());
 744 
 745     // Save the test result, for recursive case, the result is zero
 746     movptr(Address(lock_reg, mark_offset), swap_reg);
 747 
 748     if (PrintBiasedLockingStatistics) {
 749       cond_inc32(Assembler::zero,
 750                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 751     }
 752     jcc(Assembler::zero, done);
 753 
 754     bind(slow_case);
 755 
 756     // Call the runtime routine for slow case
 757     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
 758 
 759     bind(done);
 760   }
 761 }
 762 
 763 
 764 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
 765 //
 766 // Argument: rdx : Points to BasicObjectLock structure for lock
 767 // Throw an IllegalMonitorException if object is not locked by current thread
 768 //
 769 // Uses: rax, rbx, rcx, rdx
 770 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
 771   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
 772 
 773   if (UseHeavyMonitors) {
 774     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 775   } else {
 776     Label done;
 777 
 778     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
 779     const Register header_reg = rbx;  // Will contain the old oopMark
 780     const Register obj_reg    = rcx;  // Will contain the oop
 781 
 782     save_bcp(); // Save in case of exception
 783 
 784     // Convert from BasicObjectLock structure to object and BasicLock structure
 785     // Store the BasicLock address into %rax,
 786     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 787 
 788     // Load oop into obj_reg(%rcx)
 789     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
 790 
 791     // Free entry
 792     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
 793 
 794     if (UseBiasedLocking) {
 795       biased_locking_exit(obj_reg, header_reg, done);
 796     }
 797 
 798     // Load the old header from BasicLock structure
 799     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
 800 
 801     // Test for recursion
 802     testptr(header_reg, header_reg);
 803 
 804     // zero for recursive case
 805     jcc(Assembler::zero, done);
 806 
 807     // Atomic swap back the old header
 808     if (os::is_MP()) lock();
 809     cmpxchgptr(header_reg, Address(obj_reg, 0));
 810 
 811     // zero for recursive case
 812     jcc(Assembler::zero, done);
 813 
 814     // Call the runtime routine for slow case.
 815     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
 816     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 817 
 818     bind(done);
 819 
 820     restore_bcp();
 821   }
 822 }
 823 
 824 
 825 #ifndef CC_INTERP
 826 
 827 // Test ImethodDataPtr.  If it is null, continue at the specified label
 828 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
 829   assert(ProfileInterpreter, "must be profiling interpreter");
 830   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
 831   testptr(mdp, mdp);
 832   jcc(Assembler::zero, zero_continue);
 833 }
 834 
 835 
 836 // Set the method data pointer for the current bcp.
 837 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 838   assert(ProfileInterpreter, "must be profiling interpreter");
 839   Label set_mdp;
 840   push(rax);
 841   push(rbx);
 842 
 843   get_method(rbx);
 844   // Test MDO to avoid the call if it is NULL.
 845   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
 846   testptr(rax, rax);
 847   jcc(Assembler::zero, set_mdp);
 848   // rbx,: method
 849   // rsi: bcp
 850   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
 851   // rax,: mdi
 852   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 853   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
 854   addptr(rbx, in_bytes(MethodData::data_offset()));
 855   addptr(rax, rbx);
 856   bind(set_mdp);
 857   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
 858   pop(rbx);
 859   pop(rax);
 860 }
 861 
 862 void InterpreterMacroAssembler::verify_method_data_pointer() {
 863   assert(ProfileInterpreter, "must be profiling interpreter");
 864 #ifdef ASSERT
 865   Label verify_continue;
 866   push(rax);
 867   push(rbx);
 868   push(rcx);
 869   push(rdx);
 870   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
 871   get_method(rbx);
 872 
 873   // If the mdp is valid, it will point to a DataLayout header which is
 874   // consistent with the bcp.  The converse is highly probable also.
 875   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
 876   addptr(rdx, Address(rbx, Method::const_offset()));
 877   lea(rdx, Address(rdx, ConstMethod::codes_offset()));
 878   cmpptr(rdx, rsi);
 879   jcc(Assembler::equal, verify_continue);
 880   // rbx,: method
 881   // rsi: bcp
 882   // rcx: mdp
 883   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
 884   bind(verify_continue);
 885   pop(rdx);
 886   pop(rcx);
 887   pop(rbx);
 888   pop(rax);
 889 #endif // ASSERT
 890 }
 891 
 892 
 893 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
 894   // %%% this seems to be used to store counter data which is surely 32bits
 895   // however 64bit side stores 64 bits which seems wrong
 896   assert(ProfileInterpreter, "must be profiling interpreter");
 897   Address data(mdp_in, constant);
 898   movptr(data, value);
 899 }
 900 
 901 
 902 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 903                                                       int constant,
 904                                                       bool decrement) {
 905   // Counter address
 906   Address data(mdp_in, constant);
 907 
 908   increment_mdp_data_at(data, decrement);
 909 }
 910 
 911 
 912 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
 913                                                       bool decrement) {
 914 
 915   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
 916   assert(ProfileInterpreter, "must be profiling interpreter");
 917 
 918   // %%% 64bit treats this as 64 bit which seems unlikely
 919   if (decrement) {
 920     // Decrement the register.  Set condition codes.
 921     addl(data, -DataLayout::counter_increment);
 922     // If the decrement causes the counter to overflow, stay negative
 923     Label L;
 924     jcc(Assembler::negative, L);
 925     addl(data, DataLayout::counter_increment);
 926     bind(L);
 927   } else {
 928     assert(DataLayout::counter_increment == 1,
 929            "flow-free idiom only works with 1");
 930     // Increment the register.  Set carry flag.
 931     addl(data, DataLayout::counter_increment);
 932     // If the increment causes the counter to overflow, pull back by 1.
 933     sbbl(data, 0);
 934   }
 935 }
 936 
 937 
 938 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 939                                                       Register reg,
 940                                                       int constant,
 941                                                       bool decrement) {
 942   Address data(mdp_in, reg, Address::times_1, constant);
 943 
 944   increment_mdp_data_at(data, decrement);
 945 }
 946 
 947 
 948 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
 949   assert(ProfileInterpreter, "must be profiling interpreter");
 950   int header_offset = in_bytes(DataLayout::header_offset());
 951   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 952   // Set the flag
 953   orl(Address(mdp_in, header_offset), header_bits);
 954 }
 955 
 956 
 957 
 958 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 959                                                  int offset,
 960                                                  Register value,
 961                                                  Register test_value_out,
 962                                                  Label& not_equal_continue) {
 963   assert(ProfileInterpreter, "must be profiling interpreter");
 964   if (test_value_out == noreg) {
 965     cmpptr(value, Address(mdp_in, offset));
 966   } else {
 967     // Put the test value into a register, so caller can use it:
 968     movptr(test_value_out, Address(mdp_in, offset));
 969     cmpptr(test_value_out, value);
 970   }
 971   jcc(Assembler::notEqual, not_equal_continue);
 972 }
 973 
 974 
 975 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
 976   assert(ProfileInterpreter, "must be profiling interpreter");
 977   Address disp_address(mdp_in, offset_of_disp);
 978   addptr(mdp_in,disp_address);
 979   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 980 }
 981 
 982 
 983 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
 984   assert(ProfileInterpreter, "must be profiling interpreter");
 985   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
 986   addptr(mdp_in, disp_address);
 987   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 988 }
 989 
 990 
 991 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
 992   assert(ProfileInterpreter, "must be profiling interpreter");
 993   addptr(mdp_in, constant);
 994   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 995 }
 996 
 997 
 998 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 999   assert(ProfileInterpreter, "must be profiling interpreter");
1000   push(return_bci);             // save/restore across call_VM
1001   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1002   pop(return_bci);
1003 }
1004 
1005 
1006 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1007   if (ProfileInterpreter) {
1008     Label profile_continue;
1009 
1010     // If no method data exists, go to profile_continue.
1011     // Otherwise, assign to mdp
1012     test_method_data_pointer(mdp, profile_continue);
1013 
1014     // We are taking a branch.  Increment the taken count.
1015     // We inline increment_mdp_data_at to return bumped_count in a register
1016     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1017     Address data(mdp, in_bytes(JumpData::taken_offset()));
1018 
1019     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
1020     movl(bumped_count,data);
1021     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
1022     addl(bumped_count, DataLayout::counter_increment);
1023     sbbl(bumped_count, 0);
1024     movl(data,bumped_count);    // Store back out
1025 
1026     // The method data pointer needs to be updated to reflect the new target.
1027     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1028     bind (profile_continue);
1029   }
1030 }
1031 
1032 
1033 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1034   if (ProfileInterpreter) {
1035     Label profile_continue;
1036 
1037     // If no method data exists, go to profile_continue.
1038     test_method_data_pointer(mdp, profile_continue);
1039 
1040     // We are taking a branch.  Increment the not taken count.
1041     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1042 
1043     // The method data pointer needs to be updated to correspond to the next bytecode
1044     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1045     bind (profile_continue);
1046   }
1047 }
1048 
1049 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1050   Label update, next, none;
1051 
1052   verify_oop(obj);
1053 
1054   testptr(obj, obj);
1055   jccb(Assembler::notZero, update);
1056   orptr(mdo_addr, TypeEntries::null_seen);
1057   jmpb(next);
1058 
1059   bind(update);
1060   load_klass(obj, obj);
1061 
1062   xorptr(obj, mdo_addr);
1063   testptr(obj, TypeEntries::type_klass_mask);
1064   jccb(Assembler::zero, next); // klass seen before, nothing to
1065                                // do. The unknown bit may have been
1066                                // set already but no need to check.
1067 
1068   testptr(obj, TypeEntries::type_unknown);
1069   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
1070 
1071   cmpptr(mdo_addr, 0);
1072   jccb(Assembler::equal, none);
1073   cmpptr(mdo_addr, TypeEntries::null_seen);
1074   jccb(Assembler::equal, none);
1075   // There is a chance that the checks above (re-reading profiling
1076   // data from memory) fail if another thread has just set the
1077   // profiling to this obj's klass
1078   xorptr(obj, mdo_addr);
1079   testptr(obj, TypeEntries::type_klass_mask);
1080   jccb(Assembler::zero, next);
1081 
1082   // different than before. Cannot keep accurate profile.
1083   orptr(mdo_addr, TypeEntries::type_unknown);
1084   jmpb(next);
1085 
1086   bind(none);
1087   // first time here. Set profile type.
1088   movptr(mdo_addr, obj);
1089 
1090   bind(next);
1091 }
1092 
1093 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1094   if (!ProfileInterpreter) {
1095     return;
1096   }
1097 
1098   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1099     Label profile_continue;
1100 
1101     test_method_data_pointer(mdp, profile_continue);
1102 
1103     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1104 
1105     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1106     jcc(Assembler::notEqual, profile_continue);
1107 
1108     if (MethodData::profile_arguments()) {
1109       Label done;
1110       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1111       addptr(mdp, off_to_args);
1112 
1113       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1114         if (i > 0 || MethodData::profile_return()) {
1115           // If return value type is profiled we may have no argument to profile
1116           movl(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
1117           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
1118           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
1119           jcc(Assembler::less, done);
1120         }
1121         movptr(tmp, Address(callee, Method::const_offset()));
1122         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1123         // stack offset o (zero based) from the start of the argument
1124         // list, for n arguments translates into offset n - o - 1 from
1125         // the end of the argument list
1126         subl(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
1127         subl(tmp, 1);
1128         Address arg_addr = argument_address(tmp);
1129         movptr(tmp, arg_addr);
1130 
1131         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
1132         profile_obj_type(tmp, mdo_arg_addr);
1133 
1134         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1135         addptr(mdp, to_add);
1136         off_to_args += to_add;
1137       }
1138 
1139       if (MethodData::profile_return()) {
1140         movl(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
1141         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1142       }
1143 
1144       bind(done);
1145 
1146       if (MethodData::profile_return()) {
1147         // We're right after the type profile for the last
1148         // argument. tmp is the number of cell left in the
1149         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1150         // if there's a return to profile.
1151         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1152         shll(tmp, exact_log2(DataLayout::cell_size));
1153         addptr(mdp, tmp);
1154       }
1155       movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp);
1156     } else {
1157       assert(MethodData::profile_return(), "either profile call args or call ret");
1158       update_mdp_by_constant(mdp, in_bytes(ReturnTypeEntry::size()));
1159     }
1160 
1161     // mdp points right after the end of the
1162     // CallTypeData/VirtualCallTypeData, right after the cells for the
1163     // return value type if there's one
1164 
1165     bind(profile_continue);
1166   }
1167 }
1168 
1169 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1170   assert_different_registers(mdp, ret, tmp, rsi);
1171   if (ProfileInterpreter && MethodData::profile_return()) {
1172     Label profile_continue, done;
1173 
1174     test_method_data_pointer(mdp, profile_continue);
1175 
1176     if (MethodData::profile_return_jsr292_only()) {
1177       // If we don't profile all invoke bytecodes we must make sure
1178       // it's a bytecode we indeed profile. We can't go back to the
1179       // begining of the ProfileData we intend to update to check its
1180       // type because we're right after it and we don't known its
1181       // length
1182       Label do_profile;
1183       cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
1184       jcc(Assembler::equal, do_profile);
1185       cmpb(Address(rsi, 0), Bytecodes::_invokehandle);
1186       jcc(Assembler::equal, do_profile);
1187       get_method(tmp);
1188       cmpb(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
1189       jcc(Assembler::notEqual, profile_continue);
1190 
1191       bind(do_profile);
1192     }
1193 
1194     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1195     mov(tmp, ret);
1196     profile_obj_type(tmp, mdo_ret_addr);
1197 
1198     bind(profile_continue);
1199   }
1200 }
1201 
1202 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1203   if (ProfileInterpreter && MethodData::profile_parameters()) {
1204     Label profile_continue, done;
1205 
1206     test_method_data_pointer(mdp, profile_continue);
1207 
1208     // Load the offset of the area within the MDO used for
1209     // parameters. If it's negative we're not profiling any parameters
1210     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1211     testl(tmp1, tmp1);
1212     jcc(Assembler::negative, profile_continue);
1213 
1214     // Compute a pointer to the area for parameters from the offset
1215     // and move the pointer to the slot for the last
1216     // parameters. Collect profiling from last parameter down.
1217     // mdo start + parameters offset + array length - 1
1218     addptr(mdp, tmp1);
1219     movl(tmp1, Address(mdp, in_bytes(ArrayData::array_len_offset())));
1220     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
1221 
1222     Label loop;
1223     bind(loop);
1224 
1225     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1226     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1227     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
1228     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
1229     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
1230 
1231     // load offset on the stack from the slot for this parameter
1232     movl(tmp2, arg_off);
1233     negl(tmp2);
1234     // read the parameter from the local area
1235     movptr(tmp2, Address(rdi, tmp2, Interpreter::stackElementScale()));
1236 
1237     // profile the parameter
1238     profile_obj_type(tmp2, arg_type);
1239 
1240     // go to next parameter
1241     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
1242     jcc(Assembler::positive, loop);
1243 
1244     bind(profile_continue);
1245   }
1246 }
1247 
1248 void InterpreterMacroAssembler::profile_call(Register mdp) {
1249   if (ProfileInterpreter) {
1250     Label profile_continue;
1251 
1252     // If no method data exists, go to profile_continue.
1253     test_method_data_pointer(mdp, profile_continue);
1254 
1255     // We are making a call.  Increment the count.
1256     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1257 
1258     // The method data pointer needs to be updated to reflect the new target.
1259     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1260     bind (profile_continue);
1261   }
1262 }
1263 
1264 
1265 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1266   if (ProfileInterpreter) {
1267     Label profile_continue;
1268 
1269     // If no method data exists, go to profile_continue.
1270     test_method_data_pointer(mdp, profile_continue);
1271 
1272     // We are making a call.  Increment the count.
1273     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1274 
1275     // The method data pointer needs to be updated to reflect the new target.
1276     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1277     bind (profile_continue);
1278   }
1279 }
1280 
1281 
1282 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
1283                                                      Register reg2,
1284                                                      bool receiver_can_be_null) {
1285   if (ProfileInterpreter) {
1286     Label profile_continue;
1287 
1288     // If no method data exists, go to profile_continue.
1289     test_method_data_pointer(mdp, profile_continue);
1290 
1291     Label skip_receiver_profile;
1292     if (receiver_can_be_null) {
1293       Label not_null;
1294       testptr(receiver, receiver);
1295       jccb(Assembler::notZero, not_null);
1296       // We are making a call.  Increment the count for null receiver.
1297       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1298       jmp(skip_receiver_profile);
1299       bind(not_null);
1300     }
1301 
1302     // Record the receiver type.
1303     record_klass_in_profile(receiver, mdp, reg2, true);
1304     bind(skip_receiver_profile);
1305 
1306     // The method data pointer needs to be updated to reflect the new target.
1307     update_mdp_by_constant(mdp,
1308                            in_bytes(VirtualCallData::
1309                                     virtual_call_data_size()));
1310     bind(profile_continue);
1311   }
1312 }
1313 
1314 
1315 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1316                                         Register receiver, Register mdp,
1317                                         Register reg2, int start_row,
1318                                         Label& done, bool is_virtual_call) {
1319   if (TypeProfileWidth == 0) {
1320     if (is_virtual_call) {
1321       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1322     }
1323     return;
1324   }
1325 
1326   int last_row = VirtualCallData::row_limit() - 1;
1327   assert(start_row <= last_row, "must be work left to do");
1328   // Test this row for both the receiver and for null.
1329   // Take any of three different outcomes:
1330   //   1. found receiver => increment count and goto done
1331   //   2. found null => keep looking for case 1, maybe allocate this cell
1332   //   3. found something else => keep looking for cases 1 and 2
1333   // Case 3 is handled by a recursive call.
1334   for (int row = start_row; row <= last_row; row++) {
1335     Label next_test;
1336     bool test_for_null_also = (row == start_row);
1337 
1338     // See if the receiver is receiver[n].
1339     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1340     test_mdp_data_at(mdp, recvr_offset, receiver,
1341                      (test_for_null_also ? reg2 : noreg),
1342                      next_test);
1343     // (Reg2 now contains the receiver from the CallData.)
1344 
1345     // The receiver is receiver[n].  Increment count[n].
1346     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1347     increment_mdp_data_at(mdp, count_offset);
1348     jmp(done);
1349     bind(next_test);
1350 
1351     if (row == start_row) {
1352       Label found_null;
1353       // Failed the equality check on receiver[n]...  Test for null.
1354       testptr(reg2, reg2);
1355       if (start_row == last_row) {
1356         // The only thing left to do is handle the null case.
1357         if (is_virtual_call) {
1358           jccb(Assembler::zero, found_null);
1359           // Receiver did not match any saved receiver and there is no empty row for it.
1360           // Increment total counter to indicate polymorphic case.
1361           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1362           jmp(done);
1363           bind(found_null);
1364         } else {
1365           jcc(Assembler::notZero, done);
1366         }
1367         break;
1368       }
1369       // Since null is rare, make it be the branch-taken case.
1370       jcc(Assembler::zero, found_null);
1371 
1372       // Put all the "Case 3" tests here.
1373       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1374 
1375       // Found a null.  Keep searching for a matching receiver,
1376       // but remember that this is an empty (unused) slot.
1377       bind(found_null);
1378     }
1379   }
1380 
1381   // In the fall-through case, we found no matching receiver, but we
1382   // observed the receiver[start_row] is NULL.
1383 
1384   // Fill in the receiver field and increment the count.
1385   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1386   set_mdp_data_at(mdp, recvr_offset, receiver);
1387   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1388   movptr(reg2, (intptr_t)DataLayout::counter_increment);
1389   set_mdp_data_at(mdp, count_offset, reg2);
1390   if (start_row > 0) {
1391     jmp(done);
1392   }
1393 }
1394 
1395 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1396                                                         Register mdp, Register reg2,
1397                                                         bool is_virtual_call) {
1398   assert(ProfileInterpreter, "must be profiling");
1399   Label done;
1400 
1401   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1402 
1403   bind (done);
1404 }
1405 
1406 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1407   if (ProfileInterpreter) {
1408     Label profile_continue;
1409     uint row;
1410 
1411     // If no method data exists, go to profile_continue.
1412     test_method_data_pointer(mdp, profile_continue);
1413 
1414     // Update the total ret count.
1415     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1416 
1417     for (row = 0; row < RetData::row_limit(); row++) {
1418       Label next_test;
1419 
1420       // See if return_bci is equal to bci[n]:
1421       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
1422                        noreg, next_test);
1423 
1424       // return_bci is equal to bci[n].  Increment the count.
1425       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1426 
1427       // The method data pointer needs to be updated to reflect the new target.
1428       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1429       jmp(profile_continue);
1430       bind(next_test);
1431     }
1432 
1433     update_mdp_for_ret(return_bci);
1434 
1435     bind (profile_continue);
1436   }
1437 }
1438 
1439 
1440 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1441   if (ProfileInterpreter) {
1442     Label profile_continue;
1443 
1444     // If no method data exists, go to profile_continue.
1445     test_method_data_pointer(mdp, profile_continue);
1446 
1447     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1448 
1449     // The method data pointer needs to be updated.
1450     int mdp_delta = in_bytes(BitData::bit_data_size());
1451     if (TypeProfileCasts) {
1452       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1453     }
1454     update_mdp_by_constant(mdp, mdp_delta);
1455 
1456     bind (profile_continue);
1457   }
1458 }
1459 
1460 
1461 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1462   if (ProfileInterpreter && TypeProfileCasts) {
1463     Label profile_continue;
1464 
1465     // If no method data exists, go to profile_continue.
1466     test_method_data_pointer(mdp, profile_continue);
1467 
1468     int count_offset = in_bytes(CounterData::count_offset());
1469     // Back up the address, since we have already bumped the mdp.
1470     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1471 
1472     // *Decrement* the counter.  We expect to see zero or small negatives.
1473     increment_mdp_data_at(mdp, count_offset, true);
1474 
1475     bind (profile_continue);
1476   }
1477 }
1478 
1479 
1480 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
1481 {
1482   if (ProfileInterpreter) {
1483     Label profile_continue;
1484 
1485     // If no method data exists, go to profile_continue.
1486     test_method_data_pointer(mdp, profile_continue);
1487 
1488     // The method data pointer needs to be updated.
1489     int mdp_delta = in_bytes(BitData::bit_data_size());
1490     if (TypeProfileCasts) {
1491       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1492 
1493       // Record the object type.
1494       record_klass_in_profile(klass, mdp, reg2, false);
1495       assert(reg2 == rdi, "we know how to fix this blown reg");
1496       restore_locals();         // Restore EDI
1497     }
1498     update_mdp_by_constant(mdp, mdp_delta);
1499 
1500     bind(profile_continue);
1501   }
1502 }
1503 
1504 
1505 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1506   if (ProfileInterpreter) {
1507     Label profile_continue;
1508 
1509     // If no method data exists, go to profile_continue.
1510     test_method_data_pointer(mdp, profile_continue);
1511 
1512     // Update the default case count
1513     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1514 
1515     // The method data pointer needs to be updated.
1516     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1517 
1518     bind (profile_continue);
1519   }
1520 }
1521 
1522 
1523 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
1524   if (ProfileInterpreter) {
1525     Label profile_continue;
1526 
1527     // If no method data exists, go to profile_continue.
1528     test_method_data_pointer(mdp, profile_continue);
1529 
1530     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1531     movptr(reg2, (intptr_t)in_bytes(MultiBranchData::per_case_size()));
1532     // index is positive and so should have correct value if this code were
1533     // used on 64bits
1534     imulptr(index, reg2);
1535     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
1536 
1537     // Update the case count
1538     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
1539 
1540     // The method data pointer needs to be updated.
1541     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
1542 
1543     bind (profile_continue);
1544   }
1545 }
1546 
1547 #endif // !CC_INTERP
1548 
1549 
1550 
1551 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1552   if (state == atos) MacroAssembler::verify_oop(reg);
1553 }
1554 
1555 
1556 #ifndef CC_INTERP
1557 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1558   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
1559 }
1560 
1561 #endif /* CC_INTERP */
1562 
1563 
1564 void InterpreterMacroAssembler::notify_method_entry() {
1565   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1566   // track stack depth.  If it is possible to enter interp_only_mode we add
1567   // the code to check if the event should be sent.
1568   if (JvmtiExport::can_post_interpreter_events()) {
1569     Label L;
1570     get_thread(rcx);
1571     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1572     testl(rcx,rcx);
1573     jcc(Assembler::zero, L);
1574     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
1575     bind(L);
1576   }
1577 
1578   {
1579     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1580     get_thread(rcx);
1581     get_method(rbx);
1582     call_VM_leaf(
1583       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
1584   }
1585 
1586   // RedefineClasses() tracing support for obsolete method entry
1587   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1588     get_thread(rcx);
1589     get_method(rbx);
1590     call_VM_leaf(
1591       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1592       rcx, rbx);
1593   }
1594 }
1595 
1596 
1597 void InterpreterMacroAssembler::notify_method_exit(
1598     TosState state, NotifyMethodExitMode mode) {
1599   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1600   // track stack depth.  If it is possible to enter interp_only_mode we add
1601   // the code to check if the event should be sent.
1602   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1603     Label L;
1604     // Note: frame::interpreter_frame_result has a dependency on how the
1605     // method result is saved across the call to post_method_exit. If this
1606     // is changed then the interpreter_frame_result implementation will
1607     // need to be updated too.
1608 
1609     // For c++ interpreter the result is always stored at a known location in the frame
1610     // template interpreter will leave it on the top of the stack.
1611     NOT_CC_INTERP(push(state);)
1612     get_thread(rcx);
1613     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1614     testl(rcx,rcx);
1615     jcc(Assembler::zero, L);
1616     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1617     bind(L);
1618     NOT_CC_INTERP(pop(state);)
1619   }
1620 
1621   {
1622     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1623     NOT_CC_INTERP(push(state));
1624     get_thread(rbx);
1625     get_method(rcx);
1626     call_VM_leaf(
1627       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1628       rbx, rcx);
1629     NOT_CC_INTERP(pop(state));
1630   }
1631 }
1632 
1633 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1634 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1635                                                         int increment, int mask,
1636                                                         Register scratch, bool preloaded,
1637                                                         Condition cond, Label* where) {
1638   if (!preloaded) {
1639     movl(scratch, counter_addr);
1640   }
1641   incrementl(scratch, increment);
1642   movl(counter_addr, scratch);
1643   andl(scratch, mask);
1644   jcc(cond, *where);
1645 }