1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86_64.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/method.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 
  41 
  42 // Implementation of InterpreterMacroAssembler
  43 
  44 #ifdef CC_INTERP
  45 void InterpreterMacroAssembler::get_method(Register reg) {
  46   movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
  47   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
  48 }
  49 #endif // CC_INTERP
  50 
  51 #ifndef CC_INTERP
  52 
  53 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
  54                                                   int number_of_arguments) {
  55   // interpreter specific
  56   //
  57   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
  58   //       since these are callee saved registers and no blocking/
  59   //       GC can happen in leaf calls.
  60   // Further Note: DO NOT save/restore bcp/locals. If a caller has
  61   // already saved them so that it can use esi/edi as temporaries
  62   // then a save/restore here will DESTROY the copy the caller
  63   // saved! There used to be a save_bcp() that only happened in
  64   // the ASSERT path (no restore_bcp). Which caused bizarre failures
  65   // when jvm built with ASSERTs.
  66 #ifdef ASSERT
  67   {
  68     Label L;
  69     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  70     jcc(Assembler::equal, L);
  71     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
  72          " last_sp != NULL");
  73     bind(L);
  74   }
  75 #endif
  76   // super call
  77   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  78   // interpreter specific
  79   // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
  80   // but since they may not have been saved (and we don't want to
  81   // save thme here (see note above) the assert is invalid.
  82 }
  83 
  84 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
  85                                              Register java_thread,
  86                                              Register last_java_sp,
  87                                              address  entry_point,
  88                                              int      number_of_arguments,
  89                                              bool     check_exceptions) {
  90   // interpreter specific
  91   //
  92   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
  93   //       really make a difference for these runtime calls, since they are
  94   //       slow anyway. Btw., bcp must be saved/restored since it may change
  95   //       due to GC.
  96   // assert(java_thread == noreg , "not expecting a precomputed java thread");
  97   save_bcp();
  98 #ifdef ASSERT
  99   {
 100     Label L;
 101     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 102     jcc(Assembler::equal, L);
 103     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 104          " last_sp != NULL");
 105     bind(L);
 106   }
 107 #endif /* ASSERT */
 108   // super call
 109   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 110                                entry_point, number_of_arguments,
 111                                check_exceptions);
 112   // interpreter specific
 113   restore_bcp();
 114   restore_locals();
 115 }
 116 
 117 
 118 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 119   if (JvmtiExport::can_pop_frame()) {
 120     Label L;
 121     // Initiate popframe handling only if it is not already being
 122     // processed.  If the flag has the popframe_processing bit set, it
 123     // means that this code is called *during* popframe handling - we
 124     // don't want to reenter.
 125     // This method is only called just after the call into the vm in
 126     // call_VM_base, so the arg registers are available.
 127     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
 128     testl(c_rarg0, JavaThread::popframe_pending_bit);
 129     jcc(Assembler::zero, L);
 130     testl(c_rarg0, JavaThread::popframe_processing_bit);
 131     jcc(Assembler::notZero, L);
 132     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 133     // address of the same-named entrypoint in the generated interpreter code.
 134     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 135     jmp(rax);
 136     bind(L);
 137   }
 138 }
 139 
 140 
 141 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 142   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 143   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 144   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 145   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 146   switch (state) {
 147     case atos: movptr(rax, oop_addr);
 148                movptr(oop_addr, (int32_t)NULL_WORD);
 149                verify_oop(rax, state);              break;
 150     case ltos: movptr(rax, val_addr);                 break;
 151     case btos:                                   // fall through
 152     case ctos:                                   // fall through
 153     case stos:                                   // fall through
 154     case itos: movl(rax, val_addr);                 break;
 155     case ftos: movflt(xmm0, val_addr);              break;
 156     case dtos: movdbl(xmm0, val_addr);              break;
 157     case vtos: /* nothing to do */                  break;
 158     default  : ShouldNotReachHere();
 159   }
 160   // Clean up tos value in the thread object
 161   movl(tos_addr,  (int) ilgl);
 162   movl(val_addr,  (int32_t) NULL_WORD);
 163 }
 164 
 165 
 166 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 167   if (JvmtiExport::can_force_early_return()) {
 168     Label L;
 169     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 170     testptr(c_rarg0, c_rarg0);
 171     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 172 
 173     // Initiate earlyret handling only if it is not already being processed.
 174     // If the flag has the earlyret_processing bit set, it means that this code
 175     // is called *during* earlyret handling - we don't want to reenter.
 176     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
 177     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
 178     jcc(Assembler::notEqual, L);
 179 
 180     // Call Interpreter::remove_activation_early_entry() to get the address of the
 181     // same-named entrypoint in the generated interpreter code.
 182     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 183     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
 184     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
 185     jmp(rax);
 186     bind(L);
 187   }
 188 }
 189 
 190 
 191 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 192   Register reg,
 193   int bcp_offset) {
 194   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 195   movl(reg, Address(r13, bcp_offset));
 196   bswapl(reg);
 197   shrl(reg, 16);
 198 }
 199 
 200 
 201 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 202                                                        int bcp_offset,
 203                                                        size_t index_size) {
 204   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 205   if (index_size == sizeof(u2)) {
 206     load_unsigned_short(index, Address(r13, bcp_offset));
 207   } else if (index_size == sizeof(u4)) {
 208     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 209     movl(index, Address(r13, bcp_offset));
 210     // Check if the secondary index definition is still ~x, otherwise
 211     // we have to change the following assembler code to calculate the
 212     // plain index.
 213     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 214     notl(index);  // convert to plain index
 215   } else if (index_size == sizeof(u1)) {
 216     load_unsigned_byte(index, Address(r13, bcp_offset));
 217   } else {
 218     ShouldNotReachHere();
 219   }
 220 }
 221 
 222 
 223 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 224                                                            Register index,
 225                                                            int bcp_offset,
 226                                                            size_t index_size) {
 227   assert_different_registers(cache, index);
 228   get_cache_index_at_bcp(index, bcp_offset, index_size);
 229   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 230   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 231   // convert from field index to ConstantPoolCacheEntry index
 232   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 233   shll(index, 2);
 234 }
 235 
 236 
 237 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 238                                                                         Register index,
 239                                                                         Register bytecode,
 240                                                                         int byte_no,
 241                                                                         int bcp_offset,
 242                                                                         size_t index_size) {
 243   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 244   // We use a 32-bit load here since the layout of 64-bit words on
 245   // little-endian machines allow us that.
 246   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 247   const int shift_count = (1 + byte_no) * BitsPerByte;
 248   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 249          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 250          "correct shift count");
 251   shrl(bytecode, shift_count);
 252   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 253   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 254 }
 255 
 256 
 257 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 258                                                                Register tmp,
 259                                                                int bcp_offset,
 260                                                                size_t index_size) {
 261   assert(cache != tmp, "must use different register");
 262   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 263   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 264   // convert from field index to ConstantPoolCacheEntry index
 265   // and from word offset to byte offset
 266   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 267   shll(tmp, 2 + LogBytesPerWord);
 268   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 269   // skip past the header
 270   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 271   addptr(cache, tmp);  // construct pointer to cache entry
 272 }
 273 
 274 void InterpreterMacroAssembler::get_method_counters(Register method,
 275                                                     Register mcs, Label& skip) {
 276   Label has_counters;
 277   movptr(mcs, Address(method, Method::method_counters_offset()));
 278   testptr(mcs, mcs);
 279   jcc(Assembler::notZero, has_counters);
 280   call_VM(noreg, CAST_FROM_FN_PTR(address,
 281           InterpreterRuntime::build_method_counters), method);
 282   movptr(mcs, Address(method,Method::method_counters_offset()));
 283   testptr(mcs, mcs);
 284   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
 285   bind(has_counters);
 286 }
 287 
 288 // Load object from cpool->resolved_references(index)
 289 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 290                                            Register result, Register index) {
 291   assert_different_registers(result, index);
 292   // convert from field index to resolved_references() index and from
 293   // word index to byte offset. Since this is a java object, it can be compressed
 294   Register tmp = index;  // reuse
 295   shll(tmp, LogBytesPerHeapOop);
 296 
 297   get_constant_pool(result);
 298   // load pointer for resolved_references[] objArray
 299   movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
 300   // JNIHandles::resolve(obj);
 301   movptr(result, Address(result, 0));
 302   // Add in the index
 303   addptr(result, tmp);
 304   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 305 }
 306 
 307 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 308 // subtype of super_klass.
 309 //
 310 // Args:
 311 //      rax: superklass
 312 //      Rsub_klass: subklass
 313 //
 314 // Kills:
 315 //      rcx, rdi
 316 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 317                                                   Label& ok_is_subtype) {
 318   assert(Rsub_klass != rax, "rax holds superklass");
 319   assert(Rsub_klass != r14, "r14 holds locals");
 320   assert(Rsub_klass != r13, "r13 holds bcp");
 321   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 322   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 323 
 324   // Profile the not-null value's klass.
 325   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 326 
 327   // Do the check.
 328   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 329 
 330   // Profile the failure of the check.
 331   profile_typecheck_failed(rcx); // blows rcx
 332 }
 333 
 334 
 335 
 336 // Java Expression Stack
 337 
 338 void InterpreterMacroAssembler::pop_ptr(Register r) {
 339   pop(r);
 340 }
 341 
 342 void InterpreterMacroAssembler::pop_i(Register r) {
 343   // XXX can't use pop currently, upper half non clean
 344   movl(r, Address(rsp, 0));
 345   addptr(rsp, wordSize);
 346 }
 347 
 348 void InterpreterMacroAssembler::pop_l(Register r) {
 349   movq(r, Address(rsp, 0));
 350   addptr(rsp, 2 * Interpreter::stackElementSize);
 351 }
 352 
 353 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 354   movflt(r, Address(rsp, 0));
 355   addptr(rsp, wordSize);
 356 }
 357 
 358 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 359   movdbl(r, Address(rsp, 0));
 360   addptr(rsp, 2 * Interpreter::stackElementSize);
 361 }
 362 
 363 void InterpreterMacroAssembler::push_ptr(Register r) {
 364   push(r);
 365 }
 366 
 367 void InterpreterMacroAssembler::push_i(Register r) {
 368   push(r);
 369 }
 370 
 371 void InterpreterMacroAssembler::push_l(Register r) {
 372   subptr(rsp, 2 * wordSize);
 373   movq(Address(rsp, 0), r);
 374 }
 375 
 376 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 377   subptr(rsp, wordSize);
 378   movflt(Address(rsp, 0), r);
 379 }
 380 
 381 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 382   subptr(rsp, 2 * wordSize);
 383   movdbl(Address(rsp, 0), r);
 384 }
 385 
 386 void InterpreterMacroAssembler::pop(TosState state) {
 387   switch (state) {
 388   case atos: pop_ptr();                 break;
 389   case btos:
 390   case ctos:
 391   case stos:
 392   case itos: pop_i();                   break;
 393   case ltos: pop_l();                   break;
 394   case ftos: pop_f();                   break;
 395   case dtos: pop_d();                   break;
 396   case vtos: /* nothing to do */        break;
 397   default:   ShouldNotReachHere();
 398   }
 399   verify_oop(rax, state);
 400 }
 401 
 402 void InterpreterMacroAssembler::push(TosState state) {
 403   verify_oop(rax, state);
 404   switch (state) {
 405   case atos: push_ptr();                break;
 406   case btos:
 407   case ctos:
 408   case stos:
 409   case itos: push_i();                  break;
 410   case ltos: push_l();                  break;
 411   case ftos: push_f();                  break;
 412   case dtos: push_d();                  break;
 413   case vtos: /* nothing to do */        break;
 414   default  : ShouldNotReachHere();
 415   }
 416 }
 417 
 418 
 419 // Helpers for swap and dup
 420 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 421   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 422 }
 423 
 424 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 425   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 426 }
 427 
 428 
 429 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 430   // set sender sp
 431   lea(r13, Address(rsp, wordSize));
 432   // record last_sp
 433   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
 434 }
 435 
 436 
 437 // Jump to from_interpreted entry of a call unless single stepping is possible
 438 // in this thread in which case we must call the i2i entry
 439 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 440   prepare_to_jump_from_interpreted();
 441 
 442   if (JvmtiExport::can_post_interpreter_events()) {
 443     Label run_compiled_code;
 444     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 445     // compiled code in threads for which the event is enabled.  Check here for
 446     // interp_only_mode if these events CAN be enabled.
 447     // interp_only is an int, on little endian it is sufficient to test the byte only
 448     // Is a cmpl faster?
 449     cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
 450     jccb(Assembler::zero, run_compiled_code);
 451     jmp(Address(method, Method::interpreter_entry_offset()));
 452     bind(run_compiled_code);
 453   }
 454 
 455   jmp(Address(method, Method::from_interpreted_offset()));
 456 
 457 }
 458 
 459 
 460 // The following two routines provide a hook so that an implementation
 461 // can schedule the dispatch in two parts.  amd64 does not do this.
 462 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 463   // Nothing amd64 specific to be done here
 464 }
 465 
 466 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 467   dispatch_next(state, step);
 468 }
 469 
 470 void InterpreterMacroAssembler::dispatch_base(TosState state,
 471                                               address* table,
 472                                               bool verifyoop) {
 473   verify_FPU(1, state);
 474   if (VerifyActivationFrameSize) {
 475     Label L;
 476     mov(rcx, rbp);
 477     subptr(rcx, rsp);
 478     int32_t min_frame_size =
 479       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 480       wordSize;
 481     cmpptr(rcx, (int32_t)min_frame_size);
 482     jcc(Assembler::greaterEqual, L);
 483     stop("broken stack frame");
 484     bind(L);
 485   }
 486   if (verifyoop) {
 487     verify_oop(rax, state);
 488   }
 489   lea(rscratch1, ExternalAddress((address)table));
 490   jmp(Address(rscratch1, rbx, Address::times_8));
 491 }
 492 
 493 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 494   dispatch_base(state, Interpreter::dispatch_table(state));
 495 }
 496 
 497 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 498   dispatch_base(state, Interpreter::normal_table(state));
 499 }
 500 
 501 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 502   dispatch_base(state, Interpreter::normal_table(state), false);
 503 }
 504 
 505 
 506 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 507   // load next bytecode (load before advancing r13 to prevent AGI)
 508   load_unsigned_byte(rbx, Address(r13, step));
 509   // advance r13
 510   increment(r13, step);
 511   dispatch_base(state, Interpreter::dispatch_table(state));
 512 }
 513 
 514 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 515   // load current bytecode
 516   load_unsigned_byte(rbx, Address(r13, 0));
 517   dispatch_base(state, table);
 518 }
 519 
 520 // remove activation
 521 //
 522 // Unlock the receiver if this is a synchronized method.
 523 // Unlock any Java monitors from syncronized blocks.
 524 // Remove the activation from the stack.
 525 //
 526 // If there are locked Java monitors
 527 //    If throw_monitor_exception
 528 //       throws IllegalMonitorStateException
 529 //    Else if install_monitor_exception
 530 //       installs IllegalMonitorStateException
 531 //    Else
 532 //       no error processing
 533 void InterpreterMacroAssembler::remove_activation(
 534         TosState state,
 535         Register ret_addr,
 536         bool throw_monitor_exception,
 537         bool install_monitor_exception,
 538         bool notify_jvmdi) {
 539   // Note: Registers rdx xmm0 may be in use for the
 540   // result check if synchronized method
 541   Label unlocked, unlock, no_unlock;
 542 
 543   // get the value of _do_not_unlock_if_synchronized into rdx
 544   const Address do_not_unlock_if_synchronized(r15_thread,
 545     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 546   movbool(rdx, do_not_unlock_if_synchronized);
 547   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 548 
 549  // get method access flags
 550   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 551   movl(rcx, Address(rbx, Method::access_flags_offset()));
 552   testl(rcx, JVM_ACC_SYNCHRONIZED);
 553   jcc(Assembler::zero, unlocked);
 554 
 555   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 556   // is set.
 557   testbool(rdx);
 558   jcc(Assembler::notZero, no_unlock);
 559 
 560   // unlock monitor
 561   push(state); // save result
 562 
 563   // BasicObjectLock will be first in list, since this is a
 564   // synchronized method. However, need to check that the object has
 565   // not been unlocked by an explicit monitorexit bytecode.
 566   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 567                         wordSize - (int) sizeof(BasicObjectLock));
 568   // We use c_rarg1 so that if we go slow path it will be the correct
 569   // register for unlock_object to pass to VM directly
 570   lea(c_rarg1, monitor); // address of first monitor
 571 
 572   movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 573   testptr(rax, rax);
 574   jcc(Assembler::notZero, unlock);
 575 
 576   pop(state);
 577   if (throw_monitor_exception) {
 578     // Entry already unlocked, need to throw exception
 579     call_VM(noreg, CAST_FROM_FN_PTR(address,
 580                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 581     should_not_reach_here();
 582   } else {
 583     // Monitor already unlocked during a stack unroll. If requested,
 584     // install an illegal_monitor_state_exception.  Continue with
 585     // stack unrolling.
 586     if (install_monitor_exception) {
 587       call_VM(noreg, CAST_FROM_FN_PTR(address,
 588                      InterpreterRuntime::new_illegal_monitor_state_exception));
 589     }
 590     jmp(unlocked);
 591   }
 592 
 593   bind(unlock);
 594   unlock_object(c_rarg1);
 595   pop(state);
 596 
 597   // Check that for block-structured locking (i.e., that all locked
 598   // objects has been unlocked)
 599   bind(unlocked);
 600 
 601   // rax: Might contain return value
 602 
 603   // Check that all monitors are unlocked
 604   {
 605     Label loop, exception, entry, restart;
 606     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 607     const Address monitor_block_top(
 608         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 609     const Address monitor_block_bot(
 610         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
 611 
 612     bind(restart);
 613     // We use c_rarg1 so that if we go slow path it will be the correct
 614     // register for unlock_object to pass to VM directly
 615     movptr(c_rarg1, monitor_block_top); // points to current entry, starting
 616                                   // with top-most entry
 617     lea(rbx, monitor_block_bot);  // points to word before bottom of
 618                                   // monitor block
 619     jmp(entry);
 620 
 621     // Entry already locked, need to throw exception
 622     bind(exception);
 623 
 624     if (throw_monitor_exception) {
 625       // Throw exception
 626       MacroAssembler::call_VM(noreg,
 627                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 628                                    throw_illegal_monitor_state_exception));
 629       should_not_reach_here();
 630     } else {
 631       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 632       // Unlock does not block, so don't have to worry about the frame.
 633       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 634 
 635       push(state);
 636       unlock_object(c_rarg1);
 637       pop(state);
 638 
 639       if (install_monitor_exception) {
 640         call_VM(noreg, CAST_FROM_FN_PTR(address,
 641                                         InterpreterRuntime::
 642                                         new_illegal_monitor_state_exception));
 643       }
 644 
 645       jmp(restart);
 646     }
 647 
 648     bind(loop);
 649     // check if current entry is used
 650     cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
 651     jcc(Assembler::notEqual, exception);
 652 
 653     addptr(c_rarg1, entry_size); // otherwise advance to next entry
 654     bind(entry);
 655     cmpptr(c_rarg1, rbx); // check if bottom reached
 656     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
 657   }
 658 
 659   bind(no_unlock);
 660 
 661   // jvmti support
 662   if (notify_jvmdi) {
 663     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 664   } else {
 665     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 666   }
 667 
 668   // remove activation
 669   // get sender sp
 670   movptr(rbx,
 671          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
 672   leave();                           // remove frame anchor
 673   pop(ret_addr);                     // get return address
 674   mov(rsp, rbx);                     // set sp to sender sp
 675 }
 676 
 677 #endif // C_INTERP
 678 
 679 // Lock object
 680 //
 681 // Args:
 682 //      c_rarg1: BasicObjectLock to be used for locking
 683 //
 684 // Kills:
 685 //      rax
 686 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 687 //      rscratch1, rscratch2 (scratch regs)
 688 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
 689   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 690 
 691   if (UseHeavyMonitors) {
 692     call_VM(noreg,
 693             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 694             lock_reg);
 695   } else {
 696     Label done;
 697 
 698     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
 699     const Register obj_reg = c_rarg3; // Will contain the oop
 700 
 701     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 702     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 703     const int mark_offset = lock_offset +
 704                             BasicLock::displaced_header_offset_in_bytes();
 705 
 706     Label slow_case;
 707 
 708     // Load object pointer into obj_reg %c_rarg3
 709     movptr(obj_reg, Address(lock_reg, obj_offset));
 710 
 711     if (UseBiasedLocking) {
 712       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
 713     }
 714 
 715     // Load immediate 1 into swap_reg %rax
 716     movl(swap_reg, 1);
 717 
 718     // Load (object->mark() | 1) into swap_reg %rax
 719     orptr(swap_reg, Address(obj_reg, 0));
 720 
 721     // Save (object->mark() | 1) into BasicLock's displaced header
 722     movptr(Address(lock_reg, mark_offset), swap_reg);
 723 
 724     assert(lock_offset == 0,
 725            "displached header must be first word in BasicObjectLock");
 726 
 727     if (os::is_MP()) lock();
 728     cmpxchgptr(lock_reg, Address(obj_reg, 0));
 729     if (PrintBiasedLockingStatistics) {
 730       cond_inc32(Assembler::zero,
 731                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 732     }
 733     jcc(Assembler::zero, done);
 734 
 735     // Test if the oopMark is an obvious stack pointer, i.e.,
 736     //  1) (mark & 7) == 0, and
 737     //  2) rsp <= mark < mark + os::pagesize()
 738     //
 739     // These 3 tests can be done by evaluating the following
 740     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 741     // assuming both stack pointer and pagesize have their
 742     // least significant 3 bits clear.
 743     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
 744     subptr(swap_reg, rsp);
 745     andptr(swap_reg, 7 - os::vm_page_size());
 746 
 747     // Save the test result, for recursive case, the result is zero
 748     movptr(Address(lock_reg, mark_offset), swap_reg);
 749 
 750     if (PrintBiasedLockingStatistics) {
 751       cond_inc32(Assembler::zero,
 752                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 753     }
 754     jcc(Assembler::zero, done);
 755 
 756     bind(slow_case);
 757 
 758     // Call the runtime routine for slow case
 759     call_VM(noreg,
 760             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 761             lock_reg);
 762 
 763     bind(done);
 764   }
 765 }
 766 
 767 
 768 // Unlocks an object. Used in monitorexit bytecode and
 769 // remove_activation.  Throws an IllegalMonitorException if object is
 770 // not locked by current thread.
 771 //
 772 // Args:
 773 //      c_rarg1: BasicObjectLock for lock
 774 //
 775 // Kills:
 776 //      rax
 777 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 778 //      rscratch1, rscratch2 (scratch regs)
 779 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
 780   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 781 
 782   if (UseHeavyMonitors) {
 783     call_VM(noreg,
 784             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 785             lock_reg);
 786   } else {
 787     Label done;
 788 
 789     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
 790     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 791     const Register obj_reg    = c_rarg3;  // Will contain the oop
 792 
 793     save_bcp(); // Save in case of exception
 794 
 795     // Convert from BasicObjectLock structure to object and BasicLock
 796     // structure Store the BasicLock address into %rax
 797     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 798 
 799     // Load oop into obj_reg(%c_rarg3)
 800     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 801 
 802     // Free entry
 803     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
 804 
 805     if (UseBiasedLocking) {
 806       biased_locking_exit(obj_reg, header_reg, done);
 807     }
 808 
 809     // Load the old header from BasicLock structure
 810     movptr(header_reg, Address(swap_reg,
 811                                BasicLock::displaced_header_offset_in_bytes()));
 812 
 813     // Test for recursion
 814     testptr(header_reg, header_reg);
 815 
 816     // zero for recursive case
 817     jcc(Assembler::zero, done);
 818 
 819     // Atomic swap back the old header
 820     if (os::is_MP()) lock();
 821     cmpxchgptr(header_reg, Address(obj_reg, 0));
 822 
 823     // zero for recursive case
 824     jcc(Assembler::zero, done);
 825 
 826     // Call the runtime routine for slow case.
 827     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
 828          obj_reg); // restore obj
 829     call_VM(noreg,
 830             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 831             lock_reg);
 832 
 833     bind(done);
 834 
 835     restore_bcp();
 836   }
 837 }
 838 
 839 #ifndef CC_INTERP
 840 
 841 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 842                                                          Label& zero_continue) {
 843   assert(ProfileInterpreter, "must be profiling interpreter");
 844   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
 845   testptr(mdp, mdp);
 846   jcc(Assembler::zero, zero_continue);
 847 }
 848 
 849 
 850 // Set the method data pointer for the current bcp.
 851 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 852   assert(ProfileInterpreter, "must be profiling interpreter");
 853   Label set_mdp;
 854   push(rax);
 855   push(rbx);
 856 
 857   get_method(rbx);
 858   // Test MDO to avoid the call if it is NULL.
 859   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
 860   testptr(rax, rax);
 861   jcc(Assembler::zero, set_mdp);
 862   // rbx: method
 863   // r13: bcp
 864   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
 865   // rax: mdi
 866   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 867   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
 868   addptr(rbx, in_bytes(MethodData::data_offset()));
 869   addptr(rax, rbx);
 870   bind(set_mdp);
 871   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
 872   pop(rbx);
 873   pop(rax);
 874 }
 875 
 876 void InterpreterMacroAssembler::verify_method_data_pointer() {
 877   assert(ProfileInterpreter, "must be profiling interpreter");
 878 #ifdef ASSERT
 879   Label verify_continue;
 880   push(rax);
 881   push(rbx);
 882   push(c_rarg3);
 883   push(c_rarg2);
 884   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
 885   get_method(rbx);
 886 
 887   // If the mdp is valid, it will point to a DataLayout header which is
 888   // consistent with the bcp.  The converse is highly probable also.
 889   load_unsigned_short(c_rarg2,
 890                       Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
 891   addptr(c_rarg2, Address(rbx, Method::const_offset()));
 892   lea(c_rarg2, Address(c_rarg2, ConstMethod::codes_offset()));
 893   cmpptr(c_rarg2, r13);
 894   jcc(Assembler::equal, verify_continue);
 895   // rbx: method
 896   // r13: bcp
 897   // c_rarg3: mdp
 898   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 899                rbx, r13, c_rarg3);
 900   bind(verify_continue);
 901   pop(c_rarg2);
 902   pop(c_rarg3);
 903   pop(rbx);
 904   pop(rax);
 905 #endif // ASSERT
 906 }
 907 
 908 
 909 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 910                                                 int constant,
 911                                                 Register value) {
 912   assert(ProfileInterpreter, "must be profiling interpreter");
 913   Address data(mdp_in, constant);
 914   movptr(data, value);
 915 }
 916 
 917 
 918 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 919                                                       int constant,
 920                                                       bool decrement) {
 921   // Counter address
 922   Address data(mdp_in, constant);
 923 
 924   increment_mdp_data_at(data, decrement);
 925 }
 926 
 927 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
 928                                                       bool decrement) {
 929   assert(ProfileInterpreter, "must be profiling interpreter");
 930   // %%% this does 64bit counters at best it is wasting space
 931   // at worst it is a rare bug when counters overflow
 932 
 933   if (decrement) {
 934     // Decrement the register.  Set condition codes.
 935     addptr(data, (int32_t) -DataLayout::counter_increment);
 936     // If the decrement causes the counter to overflow, stay negative
 937     Label L;
 938     jcc(Assembler::negative, L);
 939     addptr(data, (int32_t) DataLayout::counter_increment);
 940     bind(L);
 941   } else {
 942     assert(DataLayout::counter_increment == 1,
 943            "flow-free idiom only works with 1");
 944     // Increment the register.  Set carry flag.
 945     addptr(data, DataLayout::counter_increment);
 946     // If the increment causes the counter to overflow, pull back by 1.
 947     sbbptr(data, (int32_t)0);
 948   }
 949 }
 950 
 951 
 952 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 953                                                       Register reg,
 954                                                       int constant,
 955                                                       bool decrement) {
 956   Address data(mdp_in, reg, Address::times_1, constant);
 957 
 958   increment_mdp_data_at(data, decrement);
 959 }
 960 
 961 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 962                                                 int flag_byte_constant) {
 963   assert(ProfileInterpreter, "must be profiling interpreter");
 964   int header_offset = in_bytes(DataLayout::header_offset());
 965   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 966   // Set the flag
 967   orl(Address(mdp_in, header_offset), header_bits);
 968 }
 969 
 970 
 971 
 972 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 973                                                  int offset,
 974                                                  Register value,
 975                                                  Register test_value_out,
 976                                                  Label& not_equal_continue) {
 977   assert(ProfileInterpreter, "must be profiling interpreter");
 978   if (test_value_out == noreg) {
 979     cmpptr(value, Address(mdp_in, offset));
 980   } else {
 981     // Put the test value into a register, so caller can use it:
 982     movptr(test_value_out, Address(mdp_in, offset));
 983     cmpptr(test_value_out, value);
 984   }
 985   jcc(Assembler::notEqual, not_equal_continue);
 986 }
 987 
 988 
 989 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 990                                                      int offset_of_disp) {
 991   assert(ProfileInterpreter, "must be profiling interpreter");
 992   Address disp_address(mdp_in, offset_of_disp);
 993   addptr(mdp_in, disp_address);
 994   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 995 }
 996 
 997 
 998 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 999                                                      Register reg,
1000                                                      int offset_of_disp) {
1001   assert(ProfileInterpreter, "must be profiling interpreter");
1002   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1003   addptr(mdp_in, disp_address);
1004   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1005 }
1006 
1007 
1008 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1009                                                        int constant) {
1010   assert(ProfileInterpreter, "must be profiling interpreter");
1011   addptr(mdp_in, constant);
1012   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1013 }
1014 
1015 
1016 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1017   assert(ProfileInterpreter, "must be profiling interpreter");
1018   push(return_bci); // save/restore across call_VM
1019   call_VM(noreg,
1020           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1021           return_bci);
1022   pop(return_bci);
1023 }
1024 
1025 
1026 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1027                                                      Register bumped_count) {
1028   if (ProfileInterpreter) {
1029     Label profile_continue;
1030 
1031     // If no method data exists, go to profile_continue.
1032     // Otherwise, assign to mdp
1033     test_method_data_pointer(mdp, profile_continue);
1034 
1035     // We are taking a branch.  Increment the taken count.
1036     // We inline increment_mdp_data_at to return bumped_count in a register
1037     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1038     Address data(mdp, in_bytes(JumpData::taken_offset()));
1039     movptr(bumped_count, data);
1040     assert(DataLayout::counter_increment == 1,
1041             "flow-free idiom only works with 1");
1042     addptr(bumped_count, DataLayout::counter_increment);
1043     sbbptr(bumped_count, 0);
1044     movptr(data, bumped_count); // Store back out
1045 
1046     // The method data pointer needs to be updated to reflect the new target.
1047     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1048     bind(profile_continue);
1049   }
1050 }
1051 
1052 
1053 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1054   if (ProfileInterpreter) {
1055     Label profile_continue;
1056 
1057     // If no method data exists, go to profile_continue.
1058     test_method_data_pointer(mdp, profile_continue);
1059 
1060     // We are taking a branch.  Increment the not taken count.
1061     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1062 
1063     // The method data pointer needs to be updated to correspond to
1064     // the next bytecode
1065     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1066     bind(profile_continue);
1067   }
1068 }
1069 
1070 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1071   Label update, next, none;
1072 
1073   verify_oop(obj);
1074 
1075   testptr(obj, obj);
1076   jccb(Assembler::notZero, update);
1077   orptr(mdo_addr, TypeEntries::null_seen);
1078   jmpb(next);
1079 
1080   bind(update);
1081   load_klass(obj, obj);
1082 
1083   xorptr(obj, mdo_addr);
1084   testptr(obj, TypeEntries::type_klass_mask);
1085   jccb(Assembler::zero, next); // klass seen before, nothing to
1086                                // do. The unknown bit may have been
1087                                // set already but no need to check.
1088 
1089   testptr(obj, TypeEntries::type_unknown);
1090   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
1091 
1092   // There is a chance that by the time we do these checks (re-reading
1093   // profiling data from memory) another thread has set the profling
1094   // to this obj's klass and we set the profiling as unknow
1095   // erroneously
1096   cmpptr(mdo_addr, 0);
1097   jccb(Assembler::equal, none);
1098   cmpptr(mdo_addr, TypeEntries::null_seen);
1099   jccb(Assembler::equal, none);
1100   // There is a chance that the checks above (re-reading profiling
1101   // data from memory) fail if another thread has just set the
1102   // profiling to this obj's klass
1103   xorptr(obj, mdo_addr);
1104   testptr(obj, TypeEntries::type_klass_mask);
1105   jccb(Assembler::zero, next);
1106 
1107   // different than before. Cannot keep accurate profile.
1108   orptr(mdo_addr, TypeEntries::type_unknown);
1109   jmpb(next);
1110 
1111   bind(none);
1112   // first time here. Set profile type.
1113   movptr(mdo_addr, obj);
1114 
1115   bind(next);
1116 }
1117 
1118 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1119   if (!ProfileInterpreter) {
1120     return;
1121   }
1122 
1123   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1124     Label profile_continue;
1125 
1126     test_method_data_pointer(mdp, profile_continue);
1127 
1128     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1129 
1130     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1131     jcc(Assembler::notEqual, profile_continue);
1132 
1133     if (MethodData::profile_arguments()) {
1134       Label done;
1135       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1136       addptr(mdp, off_to_args);
1137 
1138       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1139         if (i > 0 || MethodData::profile_return()) {
1140           // If return value type is profiled we may have no argument to profile
1141           movq(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
1142           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
1143           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
1144           jcc(Assembler::less, done);
1145         }
1146         movptr(tmp, Address(callee, Method::const_offset()));
1147         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1148         subq(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
1149         subl(tmp, 1);
1150         Address arg_addr = argument_address(tmp);
1151         movptr(tmp, arg_addr);
1152 
1153         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
1154         profile_obj_type(tmp, mdo_arg_addr);
1155 
1156         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1157         addptr(mdp, to_add);
1158         off_to_args += to_add;
1159       }
1160 
1161       if (MethodData::profile_return()) {
1162         movq(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
1163         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1164       }
1165 
1166       bind(done);
1167 
1168       if (MethodData::profile_return()) {
1169         // We're right after the type profile for the last
1170         // argument. tmp is the number of cell left in the
1171         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1172         // if there's a return to profile.
1173         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1174         shll(tmp, exact_log2(DataLayout::cell_size));
1175         addptr(mdp, tmp);
1176       }
1177       movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp);
1178     } else {
1179       assert(MethodData::profile_return(), "either profile call args or call ret");
1180       update_mdp_by_constant(mdp, in_bytes(ReturnTypeEntry::size()));
1181     }
1182 
1183     // mdp points right after the end of the
1184     // CallTypeData/VirtualCallTypeData, right after the cells for the
1185     // return value type if there's one
1186 
1187     bind(profile_continue);
1188   }
1189 }
1190 
1191 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1192   assert_different_registers(mdp, ret, tmp, r13);
1193   if (ProfileInterpreter && MethodData::profile_return()) {
1194     Label profile_continue, done;
1195 
1196     test_method_data_pointer(mdp, profile_continue);
1197 
1198     if (MethodData::profile_return_jsr292_only()) {
1199       // If we don't profile all invoke bytecodes we must make sure
1200       // it's a bytecode we indeed profile. We can't go back to the
1201       // begining of the ProfileData we intend to update to check its
1202       // type because we're right after it and we don't known its
1203       // length
1204       Label do_profile;
1205       cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
1206       jcc(Assembler::equal, do_profile);
1207       cmpb(Address(r13, 0), Bytecodes::_invokehandle);
1208       jcc(Assembler::equal, do_profile);
1209       get_method(tmp);
1210       cmpb(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
1211       jcc(Assembler::notEqual, profile_continue);
1212 
1213       bind(do_profile);
1214     }
1215 
1216     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1217     mov(tmp, ret);
1218     profile_obj_type(tmp, mdo_ret_addr);
1219 
1220     bind(profile_continue);
1221   }
1222 }
1223 
1224 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1225   if (ProfileInterpreter && MethodData::profile_parameters()) {
1226     Label profile_continue, done;
1227 
1228     test_method_data_pointer(mdp, profile_continue);
1229 
1230     // Load the offset of the area within the MDO used for
1231     // parameters. If it's negative we're not profiling any parameters
1232     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1233     testl(tmp1, tmp1);
1234     jcc(Assembler::negative, profile_continue);
1235 
1236     // Compute a pointer to the area for parameters from the offset
1237     // and move the pointer to the slot for the last
1238     // parameters. Collect profiling from last parameter down.
1239     // mdo start + parameters offset + array length - 1
1240     addptr(mdp, tmp1);
1241     movq(tmp1, Address(mdp, in_bytes(ArrayData::array_len_offset())));
1242     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
1243 
1244     Label loop;
1245     bind(loop);
1246 
1247     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1248     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1249     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
1250     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
1251     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
1252 
1253     // load offset on the stack from the slot for this parameter
1254     movq(tmp2, arg_off);
1255     negq(tmp2);
1256     // read the parameter from the local area
1257     movptr(tmp2, Address(r14, tmp2, Interpreter::stackElementScale()));
1258 
1259     // profile the parameter
1260     profile_obj_type(tmp2, arg_type);
1261 
1262     // go to next parameter
1263     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
1264     jcc(Assembler::positive, loop);
1265 
1266     bind(profile_continue);
1267   }
1268 }
1269 
1270 void InterpreterMacroAssembler::profile_call(Register mdp) {
1271   if (ProfileInterpreter) {
1272     Label profile_continue;
1273 
1274     // If no method data exists, go to profile_continue.
1275     test_method_data_pointer(mdp, profile_continue);
1276 
1277     // We are making a call.  Increment the count.
1278     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1279 
1280     // The method data pointer needs to be updated to reflect the new target.
1281     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1282     bind(profile_continue);
1283   }
1284 }
1285 
1286 
1287 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1288   if (ProfileInterpreter) {
1289     Label profile_continue;
1290 
1291     // If no method data exists, go to profile_continue.
1292     test_method_data_pointer(mdp, profile_continue);
1293 
1294     // We are making a call.  Increment the count.
1295     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1296 
1297     // The method data pointer needs to be updated to reflect the new target.
1298     update_mdp_by_constant(mdp,
1299                            in_bytes(VirtualCallData::
1300                                     virtual_call_data_size()));
1301     bind(profile_continue);
1302   }
1303 }
1304 
1305 
1306 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1307                                                      Register mdp,
1308                                                      Register reg2,
1309                                                      bool receiver_can_be_null) {
1310   if (ProfileInterpreter) {
1311     Label profile_continue;
1312 
1313     // If no method data exists, go to profile_continue.
1314     test_method_data_pointer(mdp, profile_continue);
1315 
1316     Label skip_receiver_profile;
1317     if (receiver_can_be_null) {
1318       Label not_null;
1319       testptr(receiver, receiver);
1320       jccb(Assembler::notZero, not_null);
1321       // We are making a call.  Increment the count for null receiver.
1322       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1323       jmp(skip_receiver_profile);
1324       bind(not_null);
1325     }
1326 
1327     // Record the receiver type.
1328     record_klass_in_profile(receiver, mdp, reg2, true);
1329     bind(skip_receiver_profile);
1330 
1331     // The method data pointer needs to be updated to reflect the new target.
1332     update_mdp_by_constant(mdp,
1333                            in_bytes(VirtualCallData::
1334                                     virtual_call_data_size()));
1335     bind(profile_continue);
1336   }
1337 }
1338 
1339 // This routine creates a state machine for updating the multi-row
1340 // type profile at a virtual call site (or other type-sensitive bytecode).
1341 // The machine visits each row (of receiver/count) until the receiver type
1342 // is found, or until it runs out of rows.  At the same time, it remembers
1343 // the location of the first empty row.  (An empty row records null for its
1344 // receiver, and can be allocated for a newly-observed receiver type.)
1345 // Because there are two degrees of freedom in the state, a simple linear
1346 // search will not work; it must be a decision tree.  Hence this helper
1347 // function is recursive, to generate the required tree structured code.
1348 // It's the interpreter, so we are trading off code space for speed.
1349 // See below for example code.
1350 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1351                                         Register receiver, Register mdp,
1352                                         Register reg2, int start_row,
1353                                         Label& done, bool is_virtual_call) {
1354   if (TypeProfileWidth == 0) {
1355     if (is_virtual_call) {
1356       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1357     }
1358     return;
1359   }
1360 
1361   int last_row = VirtualCallData::row_limit() - 1;
1362   assert(start_row <= last_row, "must be work left to do");
1363   // Test this row for both the receiver and for null.
1364   // Take any of three different outcomes:
1365   //   1. found receiver => increment count and goto done
1366   //   2. found null => keep looking for case 1, maybe allocate this cell
1367   //   3. found something else => keep looking for cases 1 and 2
1368   // Case 3 is handled by a recursive call.
1369   for (int row = start_row; row <= last_row; row++) {
1370     Label next_test;
1371     bool test_for_null_also = (row == start_row);
1372 
1373     // See if the receiver is receiver[n].
1374     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1375     test_mdp_data_at(mdp, recvr_offset, receiver,
1376                      (test_for_null_also ? reg2 : noreg),
1377                      next_test);
1378     // (Reg2 now contains the receiver from the CallData.)
1379 
1380     // The receiver is receiver[n].  Increment count[n].
1381     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1382     increment_mdp_data_at(mdp, count_offset);
1383     jmp(done);
1384     bind(next_test);
1385 
1386     if (test_for_null_also) {
1387       Label found_null;
1388       // Failed the equality check on receiver[n]...  Test for null.
1389       testptr(reg2, reg2);
1390       if (start_row == last_row) {
1391         // The only thing left to do is handle the null case.
1392         if (is_virtual_call) {
1393           jccb(Assembler::zero, found_null);
1394           // Receiver did not match any saved receiver and there is no empty row for it.
1395           // Increment total counter to indicate polymorphic case.
1396           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1397           jmp(done);
1398           bind(found_null);
1399         } else {
1400           jcc(Assembler::notZero, done);
1401         }
1402         break;
1403       }
1404       // Since null is rare, make it be the branch-taken case.
1405       jcc(Assembler::zero, found_null);
1406 
1407       // Put all the "Case 3" tests here.
1408       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1409 
1410       // Found a null.  Keep searching for a matching receiver,
1411       // but remember that this is an empty (unused) slot.
1412       bind(found_null);
1413     }
1414   }
1415 
1416   // In the fall-through case, we found no matching receiver, but we
1417   // observed the receiver[start_row] is NULL.
1418 
1419   // Fill in the receiver field and increment the count.
1420   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1421   set_mdp_data_at(mdp, recvr_offset, receiver);
1422   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1423   movl(reg2, DataLayout::counter_increment);
1424   set_mdp_data_at(mdp, count_offset, reg2);
1425   if (start_row > 0) {
1426     jmp(done);
1427   }
1428 }
1429 
1430 // Example state machine code for three profile rows:
1431 //   // main copy of decision tree, rooted at row[1]
1432 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1433 //   if (row[0].rec != NULL) {
1434 //     // inner copy of decision tree, rooted at row[1]
1435 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1436 //     if (row[1].rec != NULL) {
1437 //       // degenerate decision tree, rooted at row[2]
1438 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1439 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1440 //       row[2].init(rec); goto done;
1441 //     } else {
1442 //       // remember row[1] is empty
1443 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1444 //       row[1].init(rec); goto done;
1445 //     }
1446 //   } else {
1447 //     // remember row[0] is empty
1448 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1449 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1450 //     row[0].init(rec); goto done;
1451 //   }
1452 //   done:
1453 
1454 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1455                                                         Register mdp, Register reg2,
1456                                                         bool is_virtual_call) {
1457   assert(ProfileInterpreter, "must be profiling");
1458   Label done;
1459 
1460   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1461 
1462   bind (done);
1463 }
1464 
1465 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1466                                             Register mdp) {
1467   if (ProfileInterpreter) {
1468     Label profile_continue;
1469     uint row;
1470 
1471     // If no method data exists, go to profile_continue.
1472     test_method_data_pointer(mdp, profile_continue);
1473 
1474     // Update the total ret count.
1475     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1476 
1477     for (row = 0; row < RetData::row_limit(); row++) {
1478       Label next_test;
1479 
1480       // See if return_bci is equal to bci[n]:
1481       test_mdp_data_at(mdp,
1482                        in_bytes(RetData::bci_offset(row)),
1483                        return_bci, noreg,
1484                        next_test);
1485 
1486       // return_bci is equal to bci[n].  Increment the count.
1487       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1488 
1489       // The method data pointer needs to be updated to reflect the new target.
1490       update_mdp_by_offset(mdp,
1491                            in_bytes(RetData::bci_displacement_offset(row)));
1492       jmp(profile_continue);
1493       bind(next_test);
1494     }
1495 
1496     update_mdp_for_ret(return_bci);
1497 
1498     bind(profile_continue);
1499   }
1500 }
1501 
1502 
1503 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1504   if (ProfileInterpreter) {
1505     Label profile_continue;
1506 
1507     // If no method data exists, go to profile_continue.
1508     test_method_data_pointer(mdp, profile_continue);
1509 
1510     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1511 
1512     // The method data pointer needs to be updated.
1513     int mdp_delta = in_bytes(BitData::bit_data_size());
1514     if (TypeProfileCasts) {
1515       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1516     }
1517     update_mdp_by_constant(mdp, mdp_delta);
1518 
1519     bind(profile_continue);
1520   }
1521 }
1522 
1523 
1524 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1525   if (ProfileInterpreter && TypeProfileCasts) {
1526     Label profile_continue;
1527 
1528     // If no method data exists, go to profile_continue.
1529     test_method_data_pointer(mdp, profile_continue);
1530 
1531     int count_offset = in_bytes(CounterData::count_offset());
1532     // Back up the address, since we have already bumped the mdp.
1533     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1534 
1535     // *Decrement* the counter.  We expect to see zero or small negatives.
1536     increment_mdp_data_at(mdp, count_offset, true);
1537 
1538     bind (profile_continue);
1539   }
1540 }
1541 
1542 
1543 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1544   if (ProfileInterpreter) {
1545     Label profile_continue;
1546 
1547     // If no method data exists, go to profile_continue.
1548     test_method_data_pointer(mdp, profile_continue);
1549 
1550     // The method data pointer needs to be updated.
1551     int mdp_delta = in_bytes(BitData::bit_data_size());
1552     if (TypeProfileCasts) {
1553       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1554 
1555       // Record the object type.
1556       record_klass_in_profile(klass, mdp, reg2, false);
1557     }
1558     update_mdp_by_constant(mdp, mdp_delta);
1559 
1560     bind(profile_continue);
1561   }
1562 }
1563 
1564 
1565 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1566   if (ProfileInterpreter) {
1567     Label profile_continue;
1568 
1569     // If no method data exists, go to profile_continue.
1570     test_method_data_pointer(mdp, profile_continue);
1571 
1572     // Update the default case count
1573     increment_mdp_data_at(mdp,
1574                           in_bytes(MultiBranchData::default_count_offset()));
1575 
1576     // The method data pointer needs to be updated.
1577     update_mdp_by_offset(mdp,
1578                          in_bytes(MultiBranchData::
1579                                   default_displacement_offset()));
1580 
1581     bind(profile_continue);
1582   }
1583 }
1584 
1585 
1586 void InterpreterMacroAssembler::profile_switch_case(Register index,
1587                                                     Register mdp,
1588                                                     Register reg2) {
1589   if (ProfileInterpreter) {
1590     Label profile_continue;
1591 
1592     // If no method data exists, go to profile_continue.
1593     test_method_data_pointer(mdp, profile_continue);
1594 
1595     // Build the base (index * per_case_size_in_bytes()) +
1596     // case_array_offset_in_bytes()
1597     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1598     imulptr(index, reg2); // XXX l ?
1599     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1600 
1601     // Update the case count
1602     increment_mdp_data_at(mdp,
1603                           index,
1604                           in_bytes(MultiBranchData::relative_count_offset()));
1605 
1606     // The method data pointer needs to be updated.
1607     update_mdp_by_offset(mdp,
1608                          index,
1609                          in_bytes(MultiBranchData::
1610                                   relative_displacement_offset()));
1611 
1612     bind(profile_continue);
1613   }
1614 }
1615 
1616 
1617 
1618 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1619   if (state == atos) {
1620     MacroAssembler::verify_oop(reg);
1621   }
1622 }
1623 
1624 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1625 }
1626 #endif // !CC_INTERP
1627 
1628 
1629 void InterpreterMacroAssembler::notify_method_entry() {
1630   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1631   // track stack depth.  If it is possible to enter interp_only_mode we add
1632   // the code to check if the event should be sent.
1633   if (JvmtiExport::can_post_interpreter_events()) {
1634     Label L;
1635     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1636     testl(rdx, rdx);
1637     jcc(Assembler::zero, L);
1638     call_VM(noreg, CAST_FROM_FN_PTR(address,
1639                                     InterpreterRuntime::post_method_entry));
1640     bind(L);
1641   }
1642 
1643   {
1644     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1645     get_method(c_rarg1);
1646     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1647                  r15_thread, c_rarg1);
1648   }
1649 
1650   // RedefineClasses() tracing support for obsolete method entry
1651   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1652     get_method(c_rarg1);
1653     call_VM_leaf(
1654       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1655       r15_thread, c_rarg1);
1656   }
1657 }
1658 
1659 
1660 void InterpreterMacroAssembler::notify_method_exit(
1661     TosState state, NotifyMethodExitMode mode) {
1662   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1663   // track stack depth.  If it is possible to enter interp_only_mode we add
1664   // the code to check if the event should be sent.
1665   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1666     Label L;
1667     // Note: frame::interpreter_frame_result has a dependency on how the
1668     // method result is saved across the call to post_method_exit. If this
1669     // is changed then the interpreter_frame_result implementation will
1670     // need to be updated too.
1671 
1672     // For c++ interpreter the result is always stored at a known location in the frame
1673     // template interpreter will leave it on the top of the stack.
1674     NOT_CC_INTERP(push(state);)
1675     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1676     testl(rdx, rdx);
1677     jcc(Assembler::zero, L);
1678     call_VM(noreg,
1679             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1680     bind(L);
1681     NOT_CC_INTERP(pop(state));
1682   }
1683 
1684   {
1685     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1686     NOT_CC_INTERP(push(state));
1687     get_method(c_rarg1);
1688     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1689                  r15_thread, c_rarg1);
1690     NOT_CC_INTERP(pop(state));
1691   }
1692 }
1693 
1694 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1695 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1696                                                         int increment, int mask,
1697                                                         Register scratch, bool preloaded,
1698                                                         Condition cond, Label* where) {
1699   if (!preloaded) {
1700     movl(scratch, counter_addr);
1701   }
1702   incrementl(scratch, increment);
1703   movl(counter_addr, scratch);
1704   andl(scratch, mask);
1705   jcc(cond, *where);
1706 }