1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76 
  77 private:
  78   // Every data layout begins with a header.  This header
  79   // contains a tag, which is used to indicate the size/layout
  80   // of the data, 4 bits of flags, which can be used in any way,
  81   // 4 bits of trap history (none/one reason/many reasons),
  82   // and a bci, which is used to tie this piece of data to a
  83   // specific bci in the bytecodes.
  84   union {
  85     intptr_t _bits;
  86     struct {
  87       u1 _tag;
  88       u1 _flags;
  89       u2 _bci;
  90     } _struct;
  91   } _header;
  92 
  93   // The data layout has an arbitrary number of cells, each sized
  94   // to accomodate a pointer or an integer.
  95   intptr_t _cells[1];
  96 
  97   // Some types of data layouts need a length field.
  98   static bool needs_array_len(u1 tag);
  99 
 100 public:
 101   enum {
 102     counter_increment = 1
 103   };
 104 
 105   enum {
 106     cell_size = sizeof(intptr_t)
 107   };
 108 
 109   // Tag values
 110   enum {
 111     no_tag,
 112     bit_data_tag,
 113     counter_data_tag,
 114     jump_data_tag,
 115     receiver_type_data_tag,
 116     virtual_call_data_tag,
 117     ret_data_tag,
 118     branch_data_tag,
 119     multi_branch_data_tag,
 120     arg_info_data_tag,
 121     call_type_data_tag,
 122     virtual_call_type_data_tag
 123   };
 124 
 125   enum {
 126     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 127     // The trap state breaks down further as [recompile:1 | reason:3].
 128     // This further breakdown is defined in deoptimization.cpp.
 129     // See Deoptimization::trap_state_reason for an assert that
 130     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 131     //
 132     // The trap_state is collected only if ProfileTraps is true.
 133     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 134     trap_shift = BitsPerByte - trap_bits,
 135     trap_mask = right_n_bits(trap_bits),
 136     trap_mask_in_place = (trap_mask << trap_shift),
 137     flag_limit = trap_shift,
 138     flag_mask = right_n_bits(flag_limit),
 139     first_flag = 0
 140   };
 141 
 142   // Size computation
 143   static int header_size_in_bytes() {
 144     return cell_size;
 145   }
 146   static int header_size_in_cells() {
 147     return 1;
 148   }
 149 
 150   static int compute_size_in_bytes(int cell_count) {
 151     return header_size_in_bytes() + cell_count * cell_size;
 152   }
 153 
 154   // Initialization
 155   void initialize(u1 tag, u2 bci, int cell_count);
 156 
 157   // Accessors
 158   u1 tag() {
 159     return _header._struct._tag;
 160   }
 161 
 162   // Return a few bits of trap state.  Range is [0..trap_mask].
 163   // The state tells if traps with zero, one, or many reasons have occurred.
 164   // It also tells whether zero or many recompilations have occurred.
 165   // The associated trap histogram in the MDO itself tells whether
 166   // traps are common or not.  If a BCI shows that a trap X has
 167   // occurred, and the MDO shows N occurrences of X, we make the
 168   // simplifying assumption that all N occurrences can be blamed
 169   // on that BCI.
 170   int trap_state() const {
 171     return ((_header._struct._flags >> trap_shift) & trap_mask);
 172   }
 173 
 174   void set_trap_state(int new_state) {
 175     assert(ProfileTraps, "used only under +ProfileTraps");
 176     uint old_flags = (_header._struct._flags & flag_mask);
 177     _header._struct._flags = (new_state << trap_shift) | old_flags;
 178   }
 179 
 180   u1 flags() const {
 181     return _header._struct._flags;
 182   }
 183 
 184   u2 bci() const {
 185     return _header._struct._bci;
 186   }
 187 
 188   void set_header(intptr_t value) {
 189     _header._bits = value;
 190   }
 191   void release_set_header(intptr_t value) {
 192     OrderAccess::release_store_ptr(&_header._bits, value);
 193   }
 194   intptr_t header() {
 195     return _header._bits;
 196   }
 197   void set_cell_at(int index, intptr_t value) {
 198     _cells[index] = value;
 199   }
 200   void release_set_cell_at(int index, intptr_t value) {
 201     OrderAccess::release_store_ptr(&_cells[index], value);
 202   }
 203   intptr_t cell_at(int index) const {
 204     return _cells[index];
 205   }
 206 
 207   void set_flag_at(int flag_number) {
 208     assert(flag_number < flag_limit, "oob");
 209     _header._struct._flags |= (0x1 << flag_number);
 210   }
 211   bool flag_at(int flag_number) const {
 212     assert(flag_number < flag_limit, "oob");
 213     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 214   }
 215 
 216   // Low-level support for code generation.
 217   static ByteSize header_offset() {
 218     return byte_offset_of(DataLayout, _header);
 219   }
 220   static ByteSize tag_offset() {
 221     return byte_offset_of(DataLayout, _header._struct._tag);
 222   }
 223   static ByteSize flags_offset() {
 224     return byte_offset_of(DataLayout, _header._struct._flags);
 225   }
 226   static ByteSize bci_offset() {
 227     return byte_offset_of(DataLayout, _header._struct._bci);
 228   }
 229   static ByteSize cell_offset(int index) {
 230     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 231   }
 232   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 233   static int flag_number_to_byte_constant(int flag_number) {
 234     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 235     DataLayout temp; temp.set_header(0);
 236     temp.set_flag_at(flag_number);
 237     return temp._header._struct._flags;
 238   }
 239   // Return a value which, when or-ed as a word into _header, sets the flag.
 240   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 241     DataLayout temp; temp.set_header(0);
 242     temp._header._struct._flags = byte_constant;
 243     return temp._header._bits;
 244   }
 245 
 246   ProfileData* data_in();
 247 
 248   // GC support
 249   void clean_weak_klass_links(BoolObjectClosure* cl);
 250 };
 251 
 252 
 253 // ProfileData class hierarchy
 254 class ProfileData;
 255 class   BitData;
 256 class     CounterData;
 257 class       ReceiverTypeData;
 258 class         VirtualCallData;
 259 class           VirtualCallTypeData;
 260 class       RetData;
 261 class       CallTypeData;
 262 class   JumpData;
 263 class     BranchData;
 264 class   ArrayData;
 265 class     MultiBranchData;
 266 class     ArgInfoData;
 267 
 268 // ProfileData
 269 //
 270 // A ProfileData object is created to refer to a section of profiling
 271 // data in a structured way.
 272 class ProfileData : public ResourceObj {
 273   friend class TypeEntries;
 274   friend class ReturnTypeEntry;
 275   friend class TypeStackSlotEntries;
 276 private:
 277 #ifndef PRODUCT
 278   enum {
 279     tab_width_one = 16,
 280     tab_width_two = 36
 281   };
 282 #endif // !PRODUCT
 283 
 284   // This is a pointer to a section of profiling data.
 285   DataLayout* _data;
 286 
 287 protected:
 288   DataLayout* data() { return _data; }
 289   const DataLayout* data() const { return _data; }
 290 
 291   enum {
 292     cell_size = DataLayout::cell_size
 293   };
 294 
 295 public:
 296   // How many cells are in this?
 297   virtual int cell_count() const {
 298     ShouldNotReachHere();
 299     return -1;
 300   }
 301 
 302   // Return the size of this data.
 303   int size_in_bytes() {
 304     return DataLayout::compute_size_in_bytes(cell_count());
 305   }
 306 
 307 protected:
 308   // Low-level accessors for underlying data
 309   void set_intptr_at(int index, intptr_t value) {
 310     assert(0 <= index && index < cell_count(), "oob");
 311     data()->set_cell_at(index, value);
 312   }
 313   void release_set_intptr_at(int index, intptr_t value) {
 314     assert(0 <= index && index < cell_count(), "oob");
 315     data()->release_set_cell_at(index, value);
 316   }
 317   intptr_t intptr_at(int index) const {
 318     assert(0 <= index && index < cell_count(), "oob");
 319     return data()->cell_at(index);
 320   }
 321   void set_uint_at(int index, uint value) {
 322     set_intptr_at(index, (intptr_t) value);
 323   }
 324   void release_set_uint_at(int index, uint value) {
 325     release_set_intptr_at(index, (intptr_t) value);
 326   }
 327   uint uint_at(int index) const {
 328     return (uint)intptr_at(index);
 329   }
 330   void set_int_at(int index, int value) {
 331     set_intptr_at(index, (intptr_t) value);
 332   }
 333   void release_set_int_at(int index, int value) {
 334     release_set_intptr_at(index, (intptr_t) value);
 335   }
 336   int int_at(int index) const {
 337     return (int)intptr_at(index);
 338   }
 339   int int_at_unchecked(int index) const {
 340     return (int)data()->cell_at(index);
 341   }
 342   void set_oop_at(int index, oop value) {
 343     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 344   }
 345   oop oop_at(int index) const {
 346     return cast_to_oop(intptr_at(index));
 347   }
 348 
 349   void set_flag_at(int flag_number) {
 350     data()->set_flag_at(flag_number);
 351   }
 352   bool flag_at(int flag_number) const {
 353     return data()->flag_at(flag_number);
 354   }
 355 
 356   // two convenient imports for use by subclasses:
 357   static ByteSize cell_offset(int index) {
 358     return DataLayout::cell_offset(index);
 359   }
 360   static int flag_number_to_byte_constant(int flag_number) {
 361     return DataLayout::flag_number_to_byte_constant(flag_number);
 362   }
 363 
 364   ProfileData(DataLayout* data) {
 365     _data = data;
 366   }
 367 
 368 public:
 369   // Constructor for invalid ProfileData.
 370   ProfileData();
 371 
 372   u2 bci() const {
 373     return data()->bci();
 374   }
 375 
 376   address dp() {
 377     return (address)_data;
 378   }
 379 
 380   int trap_state() const {
 381     return data()->trap_state();
 382   }
 383   void set_trap_state(int new_state) {
 384     data()->set_trap_state(new_state);
 385   }
 386 
 387   // Type checking
 388   virtual bool is_BitData()         const { return false; }
 389   virtual bool is_CounterData()     const { return false; }
 390   virtual bool is_JumpData()        const { return false; }
 391   virtual bool is_ReceiverTypeData()const { return false; }
 392   virtual bool is_VirtualCallData() const { return false; }
 393   virtual bool is_RetData()         const { return false; }
 394   virtual bool is_BranchData()      const { return false; }
 395   virtual bool is_ArrayData()       const { return false; }
 396   virtual bool is_MultiBranchData() const { return false; }
 397   virtual bool is_ArgInfoData()     const { return false; }
 398   virtual bool is_CallTypeData()    const { return false; }
 399   virtual bool is_VirtualCallTypeData()const { return false; }
 400 
 401 
 402   BitData* as_BitData() const {
 403     assert(is_BitData(), "wrong type");
 404     return is_BitData()         ? (BitData*)        this : NULL;
 405   }
 406   CounterData* as_CounterData() const {
 407     assert(is_CounterData(), "wrong type");
 408     return is_CounterData()     ? (CounterData*)    this : NULL;
 409   }
 410   JumpData* as_JumpData() const {
 411     assert(is_JumpData(), "wrong type");
 412     return is_JumpData()        ? (JumpData*)       this : NULL;
 413   }
 414   ReceiverTypeData* as_ReceiverTypeData() const {
 415     assert(is_ReceiverTypeData(), "wrong type");
 416     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 417   }
 418   VirtualCallData* as_VirtualCallData() const {
 419     assert(is_VirtualCallData(), "wrong type");
 420     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 421   }
 422   RetData* as_RetData() const {
 423     assert(is_RetData(), "wrong type");
 424     return is_RetData()         ? (RetData*)        this : NULL;
 425   }
 426   BranchData* as_BranchData() const {
 427     assert(is_BranchData(), "wrong type");
 428     return is_BranchData()      ? (BranchData*)     this : NULL;
 429   }
 430   ArrayData* as_ArrayData() const {
 431     assert(is_ArrayData(), "wrong type");
 432     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 433   }
 434   MultiBranchData* as_MultiBranchData() const {
 435     assert(is_MultiBranchData(), "wrong type");
 436     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 437   }
 438   ArgInfoData* as_ArgInfoData() const {
 439     assert(is_ArgInfoData(), "wrong type");
 440     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 441   }
 442   CallTypeData* as_CallTypeData() const {
 443     assert(is_CallTypeData(), "wrong type");
 444     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 445   }
 446   VirtualCallTypeData* as_VirtualCallTypeData() const {
 447     assert(is_VirtualCallTypeData(), "wrong type");
 448     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 449   }
 450 
 451 
 452   // Subclass specific initialization
 453   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 454 
 455   // GC support
 456   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 457 
 458   // CI translation: ProfileData can represent both MethodDataOop data
 459   // as well as CIMethodData data. This function is provided for translating
 460   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 461   // most ProfileData don't require any translation, so we provide the null
 462   // translation here, and the required translators are in the ci subclasses.
 463   virtual void translate_from(const ProfileData* data) {}
 464 
 465   virtual void print_data_on(outputStream* st) const {
 466     ShouldNotReachHere();
 467   }
 468 
 469 #ifndef PRODUCT
 470   void print_shared(outputStream* st, const char* name) const;
 471   void tab(outputStream* st, bool first = false) const;
 472 #endif
 473 };
 474 
 475 // BitData
 476 //
 477 // A BitData holds a flag or two in its header.
 478 class BitData : public ProfileData {
 479 protected:
 480   enum {
 481     // null_seen:
 482     //  saw a null operand (cast/aastore/instanceof)
 483     null_seen_flag              = DataLayout::first_flag + 0
 484   };
 485   enum { bit_cell_count = 0 };  // no additional data fields needed.
 486 public:
 487   BitData(DataLayout* layout) : ProfileData(layout) {
 488   }
 489 
 490   virtual bool is_BitData() const { return true; }
 491 
 492   static int static_cell_count() {
 493     return bit_cell_count;
 494   }
 495 
 496   virtual int cell_count() const {
 497     return static_cell_count();
 498   }
 499 
 500   // Accessor
 501 
 502   // The null_seen flag bit is specially known to the interpreter.
 503   // Consulting it allows the compiler to avoid setting up null_check traps.
 504   bool null_seen()     { return flag_at(null_seen_flag); }
 505   void set_null_seen()    { set_flag_at(null_seen_flag); }
 506 
 507 
 508   // Code generation support
 509   static int null_seen_byte_constant() {
 510     return flag_number_to_byte_constant(null_seen_flag);
 511   }
 512 
 513   static ByteSize bit_data_size() {
 514     return cell_offset(bit_cell_count);
 515   }
 516 
 517 #ifndef PRODUCT
 518   void print_data_on(outputStream* st) const;
 519 #endif
 520 };
 521 
 522 // CounterData
 523 //
 524 // A CounterData corresponds to a simple counter.
 525 class CounterData : public BitData {
 526 protected:
 527   enum {
 528     count_off,
 529     counter_cell_count
 530   };
 531 public:
 532   CounterData(DataLayout* layout) : BitData(layout) {}
 533 
 534   virtual bool is_CounterData() const { return true; }
 535 
 536   static int static_cell_count() {
 537     return counter_cell_count;
 538   }
 539 
 540   virtual int cell_count() const {
 541     return static_cell_count();
 542   }
 543 
 544   // Direct accessor
 545   uint count() const {
 546     return uint_at(count_off);
 547   }
 548 
 549   // Code generation support
 550   static ByteSize count_offset() {
 551     return cell_offset(count_off);
 552   }
 553   static ByteSize counter_data_size() {
 554     return cell_offset(counter_cell_count);
 555   }
 556 
 557   void set_count(uint count) {
 558     set_uint_at(count_off, count);
 559   }
 560 
 561 #ifndef PRODUCT
 562   void print_data_on(outputStream* st) const;
 563 #endif
 564 };
 565 
 566 // JumpData
 567 //
 568 // A JumpData is used to access profiling information for a direct
 569 // branch.  It is a counter, used for counting the number of branches,
 570 // plus a data displacement, used for realigning the data pointer to
 571 // the corresponding target bci.
 572 class JumpData : public ProfileData {
 573 protected:
 574   enum {
 575     taken_off_set,
 576     displacement_off_set,
 577     jump_cell_count
 578   };
 579 
 580   void set_displacement(int displacement) {
 581     set_int_at(displacement_off_set, displacement);
 582   }
 583 
 584 public:
 585   JumpData(DataLayout* layout) : ProfileData(layout) {
 586     assert(layout->tag() == DataLayout::jump_data_tag ||
 587       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 588   }
 589 
 590   virtual bool is_JumpData() const { return true; }
 591 
 592   static int static_cell_count() {
 593     return jump_cell_count;
 594   }
 595 
 596   virtual int cell_count() const {
 597     return static_cell_count();
 598   }
 599 
 600   // Direct accessor
 601   uint taken() const {
 602     return uint_at(taken_off_set);
 603   }
 604 
 605   void set_taken(uint cnt) {
 606     set_uint_at(taken_off_set, cnt);
 607   }
 608 
 609   // Saturating counter
 610   uint inc_taken() {
 611     uint cnt = taken() + 1;
 612     // Did we wrap? Will compiler screw us??
 613     if (cnt == 0) cnt--;
 614     set_uint_at(taken_off_set, cnt);
 615     return cnt;
 616   }
 617 
 618   int displacement() const {
 619     return int_at(displacement_off_set);
 620   }
 621 
 622   // Code generation support
 623   static ByteSize taken_offset() {
 624     return cell_offset(taken_off_set);
 625   }
 626 
 627   static ByteSize displacement_offset() {
 628     return cell_offset(displacement_off_set);
 629   }
 630 
 631   // Specific initialization.
 632   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 633 
 634 #ifndef PRODUCT
 635   void print_data_on(outputStream* st) const;
 636 #endif
 637 };
 638 
 639 // Entries in a ProfileData object to record types: it can either be
 640 // none (no profile), unknown (conflicting profile data) or a klass if
 641 // a single one is seen. Whether a null reference was seen is also
 642 // recorded. No counter is associated with the type and a single type
 643 // is tracked (unlike VirtualCallData).
 644 class TypeEntries {
 645 
 646 public:
 647 
 648   // A single cell is used to record information for a type:
 649   // - the cell is initialized to 0
 650   // - when a type is discovered it is stored in the cell
 651   // - bit zero of the cell is used to record whether a null reference
 652   // was encountered or not
 653   // - bit 1 is set to record a conflict in the type information
 654 
 655   enum {
 656     null_seen = 1,
 657     type_mask = ~null_seen,
 658     type_unknown = 2,
 659     status_bits = null_seen | type_unknown,
 660     type_klass_mask = ~status_bits
 661   };
 662 
 663   // what to initialize a cell to
 664   static intptr_t type_none() {
 665     return 0;
 666   }
 667 
 668   // null seen = bit 0 set?
 669   static bool was_null_seen(intptr_t v) {
 670     return (v & null_seen) != 0;
 671   }
 672 
 673   // conflicting type information = bit 1 set?
 674   static bool is_type_unknown(intptr_t v) {
 675     return (v & type_unknown) != 0;
 676   }
 677 
 678   // not type information yet = all bits cleared, ignoring bit 0?
 679   static bool is_type_none(intptr_t v) {
 680     return (v & type_mask) == 0;
 681   }
 682 
 683   // recorded type: cell without bit 0 and 1
 684   static intptr_t klass_part(intptr_t v) {
 685     intptr_t r = v & type_klass_mask;
 686     assert (r != 0, "invalid");
 687     return r;
 688   }
 689 
 690   // type recorded
 691   static Klass* valid_klass(intptr_t k) {
 692     if (!is_type_none(k) &&
 693         !is_type_unknown(k)) {
 694       return (Klass*)klass_part(k);
 695     } else {
 696       return NULL;
 697     }
 698   }
 699 
 700   static intptr_t with_status(intptr_t k, intptr_t in) {
 701     return k | (in & status_bits);
 702   }
 703 
 704   static intptr_t with_status(Klass* k, intptr_t in) {
 705     return with_status((intptr_t)k, in);
 706   }
 707 
 708 #ifndef PRODUCT
 709   static void print_klass(outputStream* st, intptr_t k);
 710 #endif
 711 
 712   // GC support
 713   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 714 
 715 protected:
 716   // ProfileData object these entries are part of
 717   ProfileData* _pd;
 718   // offset within the ProfileData object where the entries start
 719   const int _base_off;
 720 
 721   TypeEntries(int base_off)
 722     : _base_off(base_off), _pd(NULL) {}
 723 
 724   void set_intptr_at(int index, intptr_t value) {
 725     _pd->set_intptr_at(index, value);
 726   }
 727 
 728   intptr_t intptr_at(int index) const {
 729     return _pd->intptr_at(index);
 730   }
 731 
 732 public:
 733   void set_profile_data(ProfileData* pd) {
 734     _pd = pd;
 735   }
 736 };
 737 
 738 // Type entries used for arguments passed at a call and parameters on
 739 // method entry. 2 cells per entry: one for the type encoded as in
 740 // TypeEntries and one initialized with the stack slot where the
 741 // profiled object is to be found so that the interpreter can locate
 742 // it quickly.
 743 class TypeStackSlotEntries : public TypeEntries {
 744 
 745 private:
 746   enum {
 747     stack_slot_entry,
 748     type_entry,
 749     per_arg_cell_count
 750   };
 751 
 752   // offset of cell for stack slot for entry i within ProfileData object
 753   int stack_slot_offset(int i) const {
 754     return _base_off + stack_slot_local_offset(i);
 755   }
 756 
 757 protected:
 758   const int _number_of_entries;
 759 
 760   // offset of cell for type for entry i within ProfileData object
 761   int type_offset(int i) const {
 762     return _base_off + type_local_offset(i);
 763   }
 764 
 765 public:
 766 
 767   TypeStackSlotEntries(int base_off, int nb_entries)
 768     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 769 
 770   static int compute_cell_count(Symbol* signature, int max);
 771 
 772   void post_initialize(Symbol* signature, bool has_receiver);
 773 
 774   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 775   static int stack_slot_local_offset(int i) {
 776     return i * per_arg_cell_count + stack_slot_entry;
 777   }
 778 
 779   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 780   static int type_local_offset(int i) {
 781     return i * per_arg_cell_count + type_entry;
 782   }
 783 
 784   // stack slot for entry i
 785   uint stack_slot(int i) const {
 786     assert(i >= 0 && i < _number_of_entries, "oob");
 787     return _pd->uint_at(stack_slot_offset(i));
 788   }
 789 
 790   // set stack slot for entry i
 791   void set_stack_slot(int i, uint num) {
 792     assert(i >= 0 && i < _number_of_entries, "oob");
 793     _pd->set_uint_at(stack_slot_offset(i), num);
 794   }
 795 
 796   // type for entry i
 797   intptr_t type(int i) const {
 798     assert(i >= 0 && i < _number_of_entries, "oob");
 799     return _pd->intptr_at(type_offset(i));
 800   }
 801 
 802   // set type for entry i
 803   void set_type(int i, intptr_t k) {
 804     assert(i >= 0 && i < _number_of_entries, "oob");
 805     _pd->set_intptr_at(type_offset(i), k);
 806   }
 807 
 808   static ByteSize per_arg_size() {
 809     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 810   }
 811 
 812   static int per_arg_count() {
 813     return per_arg_cell_count ;
 814   }
 815 
 816   // GC support
 817   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 818 
 819 #ifndef PRODUCT
 820   void print_data_on(outputStream* st) const;
 821 #endif
 822 };
 823 
 824 // Type entry used for return from a call. A single cell to record the
 825 // type.
 826 class ReturnTypeEntry : public TypeEntries {
 827 
 828 private:
 829   enum {
 830     cell_count = 1
 831   };
 832 
 833 public:
 834   ReturnTypeEntry(int base_off)
 835     : TypeEntries(base_off) {}
 836 
 837   void post_initialize() {
 838     set_type(type_none());
 839   }
 840 
 841   intptr_t type() const {
 842     return _pd->intptr_at(_base_off);
 843   }
 844 
 845   void set_type(intptr_t k) {
 846     _pd->set_intptr_at(_base_off, k);
 847   }
 848 
 849   static int static_cell_count() {
 850     return cell_count;
 851   }
 852 
 853   static ByteSize size() {
 854     return in_ByteSize(cell_count * DataLayout::cell_size);
 855   }
 856 
 857   ByteSize type_offset() {
 858     return DataLayout::cell_offset(_base_off);
 859   }
 860 
 861   // GC support
 862   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 863 
 864 #ifndef PRODUCT
 865   void print_data_on(outputStream* st) const;
 866 #endif
 867 };
 868 
 869 // Entries to collect type information at a call: contains arguments
 870 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 871 // number of cells. Because the number of cells for the return type is
 872 // smaller than the number of cells for the type of an arguments, the
 873 // number of cells is used to tell how many arguments are profiled and
 874 // whether a return value is profiled. See has_arguments() and
 875 // has_return().
 876 class TypeEntriesAtCall {
 877 private:
 878   static int stack_slot_local_offset(int i) {
 879     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 880   }
 881 
 882   static int argument_type_local_offset(int i) {
 883     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
 884   }
 885 
 886 public:
 887 
 888   static int header_cell_count() {
 889     return 1;
 890   }
 891 
 892   static int cell_count_local_offset() {
 893     return 0;
 894   }
 895 
 896   static int compute_cell_count(BytecodeStream* stream);
 897 
 898   static void initialize(DataLayout* dl, int base, int cell_count) {
 899     int off = base + cell_count_local_offset();
 900     dl->set_cell_at(off, cell_count - base - header_cell_count());
 901   }
 902 
 903   static bool arguments_profiling_enabled();
 904   static bool return_profiling_enabled();
 905 
 906   // Code generation support
 907   static ByteSize cell_count_offset() {
 908     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
 909   }
 910 
 911   static ByteSize args_data_offset() {
 912     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
 913   }
 914 
 915   static ByteSize stack_slot_offset(int i) {
 916     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
 917   }
 918 
 919   static ByteSize argument_type_offset(int i) {
 920     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
 921   }
 922 };
 923 
 924 // CallTypeData
 925 //
 926 // A CallTypeData is used to access profiling information about a non
 927 // virtual call for which we collect type information about arguments
 928 // and return value.
 929 class CallTypeData : public CounterData {
 930 private:
 931   // entries for arguments if any
 932   TypeStackSlotEntries _args;
 933   // entry for return type if any
 934   ReturnTypeEntry _ret;
 935 
 936   int cell_count_global_offset() const {
 937     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
 938   }
 939 
 940   // number of cells not counting the header
 941   int cell_count_no_header() const {
 942     return uint_at(cell_count_global_offset());
 943   }
 944 
 945   void check_number_of_arguments(int total) {
 946     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
 947   }
 948 
 949 protected:
 950   // An entry for a return value takes less space than an entry for an
 951   // argument so if the number of cells exceeds the number of cells
 952   // needed for an argument, this object contains type information for
 953   // at least one argument.
 954   bool has_arguments() const {
 955     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
 956     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
 957     return res;
 958   }
 959 
 960 public:
 961   CallTypeData(DataLayout* layout) :
 962     CounterData(layout),
 963     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
 964     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
 965   {
 966     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
 967     // Some compilers (VC++) don't want this passed in member initialization list
 968     _args.set_profile_data(this);
 969     _ret.set_profile_data(this);
 970   }
 971 
 972   const TypeStackSlotEntries* args() const {
 973     assert(has_arguments(), "no profiling of arguments");
 974     return &_args;
 975   }
 976 
 977   const ReturnTypeEntry* ret() const {
 978     assert(has_return(), "no profiling of return value");
 979     return &_ret;
 980   }
 981 
 982   virtual bool is_CallTypeData() const { return true; }
 983 
 984   static int static_cell_count() {
 985     return -1;
 986   }
 987 
 988   static int compute_cell_count(BytecodeStream* stream) {
 989     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
 990   }
 991 
 992   static void initialize(DataLayout* dl, int cell_count) {
 993     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
 994   }
 995 
 996   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
 997 
 998   virtual int cell_count() const {
 999     return CounterData::static_cell_count() +
1000       TypeEntriesAtCall::header_cell_count() +
1001       int_at_unchecked(cell_count_global_offset());
1002   }
1003 
1004   int number_of_arguments() const {
1005     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1006   }
1007 
1008   void set_argument_type(int i, Klass* k) {
1009     assert(has_arguments(), "no arguments!");
1010     intptr_t current = _args.type(i);
1011     _args.set_type(i, TypeEntries::with_status(k, current));
1012   }
1013 
1014   void set_return_type(Klass* k) {
1015     assert(has_return(), "no return!");
1016     intptr_t current = _ret.type();
1017     _ret.set_type(TypeEntries::with_status(k, current));
1018   }
1019 
1020   // An entry for a return value takes less space than an entry for an
1021   // argument, so if the remainder of the number of cells divided by
1022   // the number of cells for an argument is not null, a return value
1023   // is profiled in this object.
1024   bool has_return() const {
1025     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1026     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1027     return res;
1028   }
1029 
1030   // Code generation support
1031   static ByteSize args_data_offset() {
1032     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1033   }
1034 
1035   // GC support
1036   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1037     if (has_arguments()) {
1038       _args.clean_weak_klass_links(is_alive_closure);
1039     }
1040     if (has_return()) {
1041       _ret.clean_weak_klass_links(is_alive_closure);
1042     }
1043   }
1044 
1045 #ifndef PRODUCT
1046   virtual void print_data_on(outputStream* st) const;
1047 #endif
1048 };
1049 
1050 // ReceiverTypeData
1051 //
1052 // A ReceiverTypeData is used to access profiling information about a
1053 // dynamic type check.  It consists of a counter which counts the total times
1054 // that the check is reached, and a series of (Klass*, count) pairs
1055 // which are used to store a type profile for the receiver of the check.
1056 class ReceiverTypeData : public CounterData {
1057 protected:
1058   enum {
1059     receiver0_offset = counter_cell_count,
1060     count0_offset,
1061     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1062   };
1063 
1064 public:
1065   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1066     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1067            layout->tag() == DataLayout::virtual_call_data_tag ||
1068            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1069   }
1070 
1071   virtual bool is_ReceiverTypeData() const { return true; }
1072 
1073   static int static_cell_count() {
1074     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1075   }
1076 
1077   virtual int cell_count() const {
1078     return static_cell_count();
1079   }
1080 
1081   // Direct accessors
1082   static uint row_limit() {
1083     return TypeProfileWidth;
1084   }
1085   static int receiver_cell_index(uint row) {
1086     return receiver0_offset + row * receiver_type_row_cell_count;
1087   }
1088   static int receiver_count_cell_index(uint row) {
1089     return count0_offset + row * receiver_type_row_cell_count;
1090   }
1091 
1092   Klass* receiver(uint row) const {
1093     assert(row < row_limit(), "oob");
1094 
1095     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1096     assert(recv == NULL || recv->is_klass(), "wrong type");
1097     return recv;
1098   }
1099 
1100   void set_receiver(uint row, Klass* k) {
1101     assert((uint)row < row_limit(), "oob");
1102     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1103   }
1104 
1105   uint receiver_count(uint row) const {
1106     assert(row < row_limit(), "oob");
1107     return uint_at(receiver_count_cell_index(row));
1108   }
1109 
1110   void set_receiver_count(uint row, uint count) {
1111     assert(row < row_limit(), "oob");
1112     set_uint_at(receiver_count_cell_index(row), count);
1113   }
1114 
1115   void clear_row(uint row) {
1116     assert(row < row_limit(), "oob");
1117     // Clear total count - indicator of polymorphic call site.
1118     // The site may look like as monomorphic after that but
1119     // it allow to have more accurate profiling information because
1120     // there was execution phase change since klasses were unloaded.
1121     // If the site is still polymorphic then MDO will be updated
1122     // to reflect it. But it could be the case that the site becomes
1123     // only bimorphic. Then keeping total count not 0 will be wrong.
1124     // Even if we use monomorphic (when it is not) for compilation
1125     // we will only have trap, deoptimization and recompile again
1126     // with updated MDO after executing method in Interpreter.
1127     // An additional receiver will be recorded in the cleaned row
1128     // during next call execution.
1129     //
1130     // Note: our profiling logic works with empty rows in any slot.
1131     // We do sorting a profiling info (ciCallProfile) for compilation.
1132     //
1133     set_count(0);
1134     set_receiver(row, NULL);
1135     set_receiver_count(row, 0);
1136   }
1137 
1138   // Code generation support
1139   static ByteSize receiver_offset(uint row) {
1140     return cell_offset(receiver_cell_index(row));
1141   }
1142   static ByteSize receiver_count_offset(uint row) {
1143     return cell_offset(receiver_count_cell_index(row));
1144   }
1145   static ByteSize receiver_type_data_size() {
1146     return cell_offset(static_cell_count());
1147   }
1148 
1149   // GC support
1150   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1151 
1152 #ifndef PRODUCT
1153   void print_receiver_data_on(outputStream* st) const;
1154   void print_data_on(outputStream* st) const;
1155 #endif
1156 };
1157 
1158 // VirtualCallData
1159 //
1160 // A VirtualCallData is used to access profiling information about a
1161 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1162 class VirtualCallData : public ReceiverTypeData {
1163 public:
1164   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1165     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1166            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1167   }
1168 
1169   virtual bool is_VirtualCallData() const { return true; }
1170 
1171   static int static_cell_count() {
1172     // At this point we could add more profile state, e.g., for arguments.
1173     // But for now it's the same size as the base record type.
1174     return ReceiverTypeData::static_cell_count();
1175   }
1176 
1177   virtual int cell_count() const {
1178     return static_cell_count();
1179   }
1180 
1181   // Direct accessors
1182   static ByteSize virtual_call_data_size() {
1183     return cell_offset(static_cell_count());
1184   }
1185 
1186 #ifndef PRODUCT
1187   void print_data_on(outputStream* st) const;
1188 #endif
1189 };
1190 
1191 // VirtualCallTypeData
1192 //
1193 // A VirtualCallTypeData is used to access profiling information about
1194 // a virtual call for which we collect type information about
1195 // arguments and return value.
1196 class VirtualCallTypeData : public VirtualCallData {
1197 private:
1198   // entries for arguments if any
1199   TypeStackSlotEntries _args;
1200   // entry for return type if any
1201   ReturnTypeEntry _ret;
1202 
1203   int cell_count_global_offset() const {
1204     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1205   }
1206 
1207   // number of cells not counting the header
1208   int cell_count_no_header() const {
1209     return uint_at(cell_count_global_offset());
1210   }
1211 
1212   void check_number_of_arguments(int total) {
1213     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1214   }
1215 
1216 protected:
1217   // An entry for a return value takes less space than an entry for an
1218   // argument so if the number of cells exceeds the number of cells
1219   // needed for an argument, this object contains type information for
1220   // at least one argument.
1221   bool has_arguments() const {
1222     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1223     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1224     return res;
1225   }
1226 
1227 public:
1228   VirtualCallTypeData(DataLayout* layout) :
1229     VirtualCallData(layout),
1230     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1231     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1232   {
1233     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1234     // Some compilers (VC++) don't want this passed in member initialization list
1235     _args.set_profile_data(this);
1236     _ret.set_profile_data(this);
1237   }
1238 
1239   const TypeStackSlotEntries* args() const {
1240     assert(has_arguments(), "no profiling of arguments");
1241     return &_args;
1242   }
1243 
1244   const ReturnTypeEntry* ret() const {
1245     assert(has_return(), "no profiling of return value");
1246     return &_ret;
1247   }
1248 
1249   virtual bool is_VirtualCallTypeData() const { return true; }
1250 
1251   static int static_cell_count() {
1252     return -1;
1253   }
1254 
1255   static int compute_cell_count(BytecodeStream* stream) {
1256     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1257   }
1258 
1259   static void initialize(DataLayout* dl, int cell_count) {
1260     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1261   }
1262 
1263   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1264 
1265   virtual int cell_count() const {
1266     return VirtualCallData::static_cell_count() +
1267       TypeEntriesAtCall::header_cell_count() +
1268       int_at_unchecked(cell_count_global_offset());
1269   }
1270 
1271   int number_of_arguments() const {
1272     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1273   }
1274 
1275   void set_argument_type(int i, Klass* k) {
1276     assert(has_arguments(), "no arguments!");
1277     intptr_t current = _args.type(i);
1278     _args.set_type(i, TypeEntries::with_status(k, current));
1279   }
1280 
1281   void set_return_type(Klass* k) {
1282     assert(has_return(), "no return!");
1283     intptr_t current = _ret.type();
1284     _ret.set_type(TypeEntries::with_status(k, current));
1285   }
1286 
1287   // An entry for a return value takes less space than an entry for an
1288   // argument, so if the remainder of the number of cells divided by
1289   // the number of cells for an argument is not null, a return value
1290   // is profiled in this object.
1291   bool has_return() const {
1292     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1293     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1294     return res;
1295   }
1296 
1297   // Code generation support
1298   static ByteSize args_data_offset() {
1299     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1300   }
1301 
1302   // GC support
1303   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1304     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1305     if (has_arguments()) {
1306       _args.clean_weak_klass_links(is_alive_closure);
1307     }
1308     if (has_return()) {
1309       _ret.clean_weak_klass_links(is_alive_closure);
1310     }
1311   }
1312 
1313 #ifndef PRODUCT
1314   virtual void print_data_on(outputStream* st) const;
1315 #endif
1316 };
1317 
1318 // RetData
1319 //
1320 // A RetData is used to access profiling information for a ret bytecode.
1321 // It is composed of a count of the number of times that the ret has
1322 // been executed, followed by a series of triples of the form
1323 // (bci, count, di) which count the number of times that some bci was the
1324 // target of the ret and cache a corresponding data displacement.
1325 class RetData : public CounterData {
1326 protected:
1327   enum {
1328     bci0_offset = counter_cell_count,
1329     count0_offset,
1330     displacement0_offset,
1331     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1332   };
1333 
1334   void set_bci(uint row, int bci) {
1335     assert((uint)row < row_limit(), "oob");
1336     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1337   }
1338   void release_set_bci(uint row, int bci) {
1339     assert((uint)row < row_limit(), "oob");
1340     // 'release' when setting the bci acts as a valid flag for other
1341     // threads wrt bci_count and bci_displacement.
1342     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1343   }
1344   void set_bci_count(uint row, uint count) {
1345     assert((uint)row < row_limit(), "oob");
1346     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1347   }
1348   void set_bci_displacement(uint row, int disp) {
1349     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1350   }
1351 
1352 public:
1353   RetData(DataLayout* layout) : CounterData(layout) {
1354     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1355   }
1356 
1357   virtual bool is_RetData() const { return true; }
1358 
1359   enum {
1360     no_bci = -1 // value of bci when bci1/2 are not in use.
1361   };
1362 
1363   static int static_cell_count() {
1364     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1365   }
1366 
1367   virtual int cell_count() const {
1368     return static_cell_count();
1369   }
1370 
1371   static uint row_limit() {
1372     return BciProfileWidth;
1373   }
1374   static int bci_cell_index(uint row) {
1375     return bci0_offset + row * ret_row_cell_count;
1376   }
1377   static int bci_count_cell_index(uint row) {
1378     return count0_offset + row * ret_row_cell_count;
1379   }
1380   static int bci_displacement_cell_index(uint row) {
1381     return displacement0_offset + row * ret_row_cell_count;
1382   }
1383 
1384   // Direct accessors
1385   int bci(uint row) const {
1386     return int_at(bci_cell_index(row));
1387   }
1388   uint bci_count(uint row) const {
1389     return uint_at(bci_count_cell_index(row));
1390   }
1391   int bci_displacement(uint row) const {
1392     return int_at(bci_displacement_cell_index(row));
1393   }
1394 
1395   // Interpreter Runtime support
1396   address fixup_ret(int return_bci, MethodData* mdo);
1397 
1398   // Code generation support
1399   static ByteSize bci_offset(uint row) {
1400     return cell_offset(bci_cell_index(row));
1401   }
1402   static ByteSize bci_count_offset(uint row) {
1403     return cell_offset(bci_count_cell_index(row));
1404   }
1405   static ByteSize bci_displacement_offset(uint row) {
1406     return cell_offset(bci_displacement_cell_index(row));
1407   }
1408 
1409   // Specific initialization.
1410   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1411 
1412 #ifndef PRODUCT
1413   void print_data_on(outputStream* st) const;
1414 #endif
1415 };
1416 
1417 // BranchData
1418 //
1419 // A BranchData is used to access profiling data for a two-way branch.
1420 // It consists of taken and not_taken counts as well as a data displacement
1421 // for the taken case.
1422 class BranchData : public JumpData {
1423 protected:
1424   enum {
1425     not_taken_off_set = jump_cell_count,
1426     branch_cell_count
1427   };
1428 
1429   void set_displacement(int displacement) {
1430     set_int_at(displacement_off_set, displacement);
1431   }
1432 
1433 public:
1434   BranchData(DataLayout* layout) : JumpData(layout) {
1435     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1436   }
1437 
1438   virtual bool is_BranchData() const { return true; }
1439 
1440   static int static_cell_count() {
1441     return branch_cell_count;
1442   }
1443 
1444   virtual int cell_count() const {
1445     return static_cell_count();
1446   }
1447 
1448   // Direct accessor
1449   uint not_taken() const {
1450     return uint_at(not_taken_off_set);
1451   }
1452 
1453   void set_not_taken(uint cnt) {
1454     set_uint_at(not_taken_off_set, cnt);
1455   }
1456 
1457   uint inc_not_taken() {
1458     uint cnt = not_taken() + 1;
1459     // Did we wrap? Will compiler screw us??
1460     if (cnt == 0) cnt--;
1461     set_uint_at(not_taken_off_set, cnt);
1462     return cnt;
1463   }
1464 
1465   // Code generation support
1466   static ByteSize not_taken_offset() {
1467     return cell_offset(not_taken_off_set);
1468   }
1469   static ByteSize branch_data_size() {
1470     return cell_offset(branch_cell_count);
1471   }
1472 
1473   // Specific initialization.
1474   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1475 
1476 #ifndef PRODUCT
1477   void print_data_on(outputStream* st) const;
1478 #endif
1479 };
1480 
1481 // ArrayData
1482 //
1483 // A ArrayData is a base class for accessing profiling data which does
1484 // not have a statically known size.  It consists of an array length
1485 // and an array start.
1486 class ArrayData : public ProfileData {
1487 protected:
1488   friend class DataLayout;
1489 
1490   enum {
1491     array_len_off_set,
1492     array_start_off_set
1493   };
1494 
1495   uint array_uint_at(int index) const {
1496     int aindex = index + array_start_off_set;
1497     return uint_at(aindex);
1498   }
1499   int array_int_at(int index) const {
1500     int aindex = index + array_start_off_set;
1501     return int_at(aindex);
1502   }
1503   oop array_oop_at(int index) const {
1504     int aindex = index + array_start_off_set;
1505     return oop_at(aindex);
1506   }
1507   void array_set_int_at(int index, int value) {
1508     int aindex = index + array_start_off_set;
1509     set_int_at(aindex, value);
1510   }
1511 
1512   // Code generation support for subclasses.
1513   static ByteSize array_element_offset(int index) {
1514     return cell_offset(array_start_off_set + index);
1515   }
1516 
1517 public:
1518   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1519 
1520   virtual bool is_ArrayData() const { return true; }
1521 
1522   static int static_cell_count() {
1523     return -1;
1524   }
1525 
1526   int array_len() const {
1527     return int_at_unchecked(array_len_off_set);
1528   }
1529 
1530   virtual int cell_count() const {
1531     return array_len() + 1;
1532   }
1533 
1534   // Code generation support
1535   static ByteSize array_len_offset() {
1536     return cell_offset(array_len_off_set);
1537   }
1538   static ByteSize array_start_offset() {
1539     return cell_offset(array_start_off_set);
1540   }
1541 };
1542 
1543 // MultiBranchData
1544 //
1545 // A MultiBranchData is used to access profiling information for
1546 // a multi-way branch (*switch bytecodes).  It consists of a series
1547 // of (count, displacement) pairs, which count the number of times each
1548 // case was taken and specify the data displacment for each branch target.
1549 class MultiBranchData : public ArrayData {
1550 protected:
1551   enum {
1552     default_count_off_set,
1553     default_disaplacement_off_set,
1554     case_array_start
1555   };
1556   enum {
1557     relative_count_off_set,
1558     relative_displacement_off_set,
1559     per_case_cell_count
1560   };
1561 
1562   void set_default_displacement(int displacement) {
1563     array_set_int_at(default_disaplacement_off_set, displacement);
1564   }
1565   void set_displacement_at(int index, int displacement) {
1566     array_set_int_at(case_array_start +
1567                      index * per_case_cell_count +
1568                      relative_displacement_off_set,
1569                      displacement);
1570   }
1571 
1572 public:
1573   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1574     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1575   }
1576 
1577   virtual bool is_MultiBranchData() const { return true; }
1578 
1579   static int compute_cell_count(BytecodeStream* stream);
1580 
1581   int number_of_cases() const {
1582     int alen = array_len() - 2; // get rid of default case here.
1583     assert(alen % per_case_cell_count == 0, "must be even");
1584     return (alen / per_case_cell_count);
1585   }
1586 
1587   uint default_count() const {
1588     return array_uint_at(default_count_off_set);
1589   }
1590   int default_displacement() const {
1591     return array_int_at(default_disaplacement_off_set);
1592   }
1593 
1594   uint count_at(int index) const {
1595     return array_uint_at(case_array_start +
1596                          index * per_case_cell_count +
1597                          relative_count_off_set);
1598   }
1599   int displacement_at(int index) const {
1600     return array_int_at(case_array_start +
1601                         index * per_case_cell_count +
1602                         relative_displacement_off_set);
1603   }
1604 
1605   // Code generation support
1606   static ByteSize default_count_offset() {
1607     return array_element_offset(default_count_off_set);
1608   }
1609   static ByteSize default_displacement_offset() {
1610     return array_element_offset(default_disaplacement_off_set);
1611   }
1612   static ByteSize case_count_offset(int index) {
1613     return case_array_offset() +
1614            (per_case_size() * index) +
1615            relative_count_offset();
1616   }
1617   static ByteSize case_array_offset() {
1618     return array_element_offset(case_array_start);
1619   }
1620   static ByteSize per_case_size() {
1621     return in_ByteSize(per_case_cell_count) * cell_size;
1622   }
1623   static ByteSize relative_count_offset() {
1624     return in_ByteSize(relative_count_off_set) * cell_size;
1625   }
1626   static ByteSize relative_displacement_offset() {
1627     return in_ByteSize(relative_displacement_off_set) * cell_size;
1628   }
1629 
1630   // Specific initialization.
1631   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1632 
1633 #ifndef PRODUCT
1634   void print_data_on(outputStream* st) const;
1635 #endif
1636 };
1637 
1638 class ArgInfoData : public ArrayData {
1639 
1640 public:
1641   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1642     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1643   }
1644 
1645   virtual bool is_ArgInfoData() const { return true; }
1646 
1647 
1648   int number_of_args() const {
1649     return array_len();
1650   }
1651 
1652   uint arg_modified(int arg) const {
1653     return array_uint_at(arg);
1654   }
1655 
1656   void set_arg_modified(int arg, uint val) {
1657     array_set_int_at(arg, val);
1658   }
1659 
1660 #ifndef PRODUCT
1661   void print_data_on(outputStream* st) const;
1662 #endif
1663 };
1664 
1665 // MethodData*
1666 //
1667 // A MethodData* holds information which has been collected about
1668 // a method.  Its layout looks like this:
1669 //
1670 // -----------------------------
1671 // | header                    |
1672 // | klass                     |
1673 // -----------------------------
1674 // | method                    |
1675 // | size of the MethodData* |
1676 // -----------------------------
1677 // | Data entries...           |
1678 // |   (variable size)         |
1679 // |                           |
1680 // .                           .
1681 // .                           .
1682 // .                           .
1683 // |                           |
1684 // -----------------------------
1685 //
1686 // The data entry area is a heterogeneous array of DataLayouts. Each
1687 // DataLayout in the array corresponds to a specific bytecode in the
1688 // method.  The entries in the array are sorted by the corresponding
1689 // bytecode.  Access to the data is via resource-allocated ProfileData,
1690 // which point to the underlying blocks of DataLayout structures.
1691 //
1692 // During interpretation, if profiling in enabled, the interpreter
1693 // maintains a method data pointer (mdp), which points at the entry
1694 // in the array corresponding to the current bci.  In the course of
1695 // intepretation, when a bytecode is encountered that has profile data
1696 // associated with it, the entry pointed to by mdp is updated, then the
1697 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1698 // is NULL to begin with, the interpreter assumes that the current method
1699 // is not (yet) being profiled.
1700 //
1701 // In MethodData* parlance, "dp" is a "data pointer", the actual address
1702 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1703 // from the base of the data entry array.  A "displacement" is the byte offset
1704 // in certain ProfileData objects that indicate the amount the mdp must be
1705 // adjusted in the event of a change in control flow.
1706 //
1707 
1708 class MethodData : public Metadata {
1709   friend class VMStructs;
1710 private:
1711   friend class ProfileData;
1712 
1713   // Back pointer to the Method*
1714   Method* _method;
1715 
1716   // Size of this oop in bytes
1717   int _size;
1718 
1719   // Cached hint for bci_to_dp and bci_to_data
1720   int _hint_di;
1721 
1722   MethodData(methodHandle method, int size, TRAPS);
1723 public:
1724   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
1725   MethodData() {}; // For ciMethodData
1726 
1727   bool is_methodData() const volatile { return true; }
1728 
1729   // Whole-method sticky bits and flags
1730   enum {
1731     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
1732     _trap_hist_mask     = max_jubyte,
1733     _extra_data_count   = 4     // extra DataLayout headers, for trap history
1734   }; // Public flag values
1735 private:
1736   uint _nof_decompiles;             // count of all nmethod removals
1737   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
1738   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
1739   union {
1740     intptr_t _align;
1741     u1 _array[_trap_hist_limit];
1742   } _trap_hist;
1743 
1744   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1745   intx              _eflags;          // flags on escape information
1746   intx              _arg_local;       // bit set of non-escaping arguments
1747   intx              _arg_stack;       // bit set of stack-allocatable arguments
1748   intx              _arg_returned;    // bit set of returned arguments
1749 
1750   int _creation_mileage;              // method mileage at MDO creation
1751 
1752   // How many invocations has this MDO seen?
1753   // These counters are used to determine the exact age of MDO.
1754   // We need those because in tiered a method can be concurrently
1755   // executed at different levels.
1756   InvocationCounter _invocation_counter;
1757   // Same for backedges.
1758   InvocationCounter _backedge_counter;
1759   // Counter values at the time profiling started.
1760   int               _invocation_counter_start;
1761   int               _backedge_counter_start;
1762   // Number of loops and blocks is computed when compiling the first
1763   // time with C1. It is used to determine if method is trivial.
1764   short             _num_loops;
1765   short             _num_blocks;
1766   // Highest compile level this method has ever seen.
1767   u1                _highest_comp_level;
1768   // Same for OSR level
1769   u1                _highest_osr_comp_level;
1770   // Does this method contain anything worth profiling?
1771   bool              _would_profile;
1772 
1773   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
1774   int _data_size;
1775 
1776   // Beginning of the data entries
1777   intptr_t _data[1];
1778 
1779   // Helper for size computation
1780   static int compute_data_size(BytecodeStream* stream);
1781   static int bytecode_cell_count(Bytecodes::Code code);
1782   enum { no_profile_data = -1, variable_cell_count = -2 };
1783 
1784   // Helper for initialization
1785   DataLayout* data_layout_at(int data_index) const {
1786     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
1787     return (DataLayout*) (((address)_data) + data_index);
1788   }
1789 
1790   // Initialize an individual data segment.  Returns the size of
1791   // the segment in bytes.
1792   int initialize_data(BytecodeStream* stream, int data_index);
1793 
1794   // Helper for data_at
1795   DataLayout* limit_data_position() const {
1796     return (DataLayout*)((address)data_base() + _data_size);
1797   }
1798   bool out_of_bounds(int data_index) const {
1799     return data_index >= data_size();
1800   }
1801 
1802   // Give each of the data entries a chance to perform specific
1803   // data initialization.
1804   void post_initialize(BytecodeStream* stream);
1805 
1806   // hint accessors
1807   int      hint_di() const  { return _hint_di; }
1808   void set_hint_di(int di)  {
1809     assert(!out_of_bounds(di), "hint_di out of bounds");
1810     _hint_di = di;
1811   }
1812   ProfileData* data_before(int bci) {
1813     // avoid SEGV on this edge case
1814     if (data_size() == 0)
1815       return NULL;
1816     int hint = hint_di();
1817     if (data_layout_at(hint)->bci() <= bci)
1818       return data_at(hint);
1819     return first_data();
1820   }
1821 
1822   // What is the index of the first data entry?
1823   int first_di() const { return 0; }
1824 
1825   // Find or create an extra ProfileData:
1826   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
1827 
1828   // return the argument info cell
1829   ArgInfoData *arg_info();
1830 
1831   enum {
1832     no_type_profile = 0,
1833     type_profile_jsr292 = 1,
1834     type_profile_all = 2
1835   };
1836 
1837   static bool profile_jsr292(methodHandle m, int bci);
1838   static int profile_arguments_flag();
1839   static bool profile_arguments_jsr292_only();
1840   static bool profile_all_arguments();
1841   static bool profile_arguments_for_invoke(methodHandle m, int bci);
1842   static int profile_return_flag();
1843   static bool profile_all_return();
1844   static bool profile_return_for_invoke(methodHandle m, int bci);
1845 
1846 public:
1847   static int header_size() {
1848     return sizeof(MethodData)/wordSize;
1849   }
1850 
1851   // Compute the size of a MethodData* before it is created.
1852   static int compute_allocation_size_in_bytes(methodHandle method);
1853   static int compute_allocation_size_in_words(methodHandle method);
1854   static int compute_extra_data_count(int data_size, int empty_bc_count);
1855 
1856   // Determine if a given bytecode can have profile information.
1857   static bool bytecode_has_profile(Bytecodes::Code code) {
1858     return bytecode_cell_count(code) != no_profile_data;
1859   }
1860 
1861   // reset into original state
1862   void init();
1863 
1864   // My size
1865   int size_in_bytes() const { return _size; }
1866   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
1867 #if INCLUDE_SERVICES
1868   void collect_statistics(KlassSizeStats *sz) const;
1869 #endif
1870 
1871   int      creation_mileage() const  { return _creation_mileage; }
1872   void set_creation_mileage(int x)   { _creation_mileage = x; }
1873 
1874   int invocation_count() {
1875     if (invocation_counter()->carry()) {
1876       return InvocationCounter::count_limit;
1877     }
1878     return invocation_counter()->count();
1879   }
1880   int backedge_count() {
1881     if (backedge_counter()->carry()) {
1882       return InvocationCounter::count_limit;
1883     }
1884     return backedge_counter()->count();
1885   }
1886 
1887   int invocation_count_start() {
1888     if (invocation_counter()->carry()) {
1889       return 0;
1890     }
1891     return _invocation_counter_start;
1892   }
1893 
1894   int backedge_count_start() {
1895     if (backedge_counter()->carry()) {
1896       return 0;
1897     }
1898     return _backedge_counter_start;
1899   }
1900 
1901   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
1902   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
1903 
1904   void reset_start_counters() {
1905     _invocation_counter_start = invocation_count();
1906     _backedge_counter_start = backedge_count();
1907   }
1908 
1909   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
1910   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
1911 
1912   void set_would_profile(bool p)              { _would_profile = p;    }
1913   bool would_profile() const                  { return _would_profile; }
1914 
1915   int highest_comp_level() const              { return _highest_comp_level;      }
1916   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
1917   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
1918   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
1919 
1920   int num_loops() const                       { return _num_loops;  }
1921   void set_num_loops(int n)                   { _num_loops = n;     }
1922   int num_blocks() const                      { return _num_blocks; }
1923   void set_num_blocks(int n)                  { _num_blocks = n;    }
1924 
1925   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
1926   static int mileage_of(Method* m);
1927 
1928   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1929   enum EscapeFlag {
1930     estimated    = 1 << 0,
1931     return_local = 1 << 1,
1932     return_allocated = 1 << 2,
1933     allocated_escapes = 1 << 3,
1934     unknown_modified = 1 << 4
1935   };
1936 
1937   intx eflags()                                  { return _eflags; }
1938   intx arg_local()                               { return _arg_local; }
1939   intx arg_stack()                               { return _arg_stack; }
1940   intx arg_returned()                            { return _arg_returned; }
1941   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
1942                                                    assert(aid != NULL, "arg_info must be not null");
1943                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1944                                                    return aid->arg_modified(a); }
1945 
1946   void set_eflags(intx v)                        { _eflags = v; }
1947   void set_arg_local(intx v)                     { _arg_local = v; }
1948   void set_arg_stack(intx v)                     { _arg_stack = v; }
1949   void set_arg_returned(intx v)                  { _arg_returned = v; }
1950   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
1951                                                    assert(aid != NULL, "arg_info must be not null");
1952                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1953                                                    aid->set_arg_modified(a, v); }
1954 
1955   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
1956 
1957   // Location and size of data area
1958   address data_base() const {
1959     return (address) _data;
1960   }
1961   int data_size() const {
1962     return _data_size;
1963   }
1964 
1965   // Accessors
1966   Method* method() const { return _method; }
1967 
1968   // Get the data at an arbitrary (sort of) data index.
1969   ProfileData* data_at(int data_index) const;
1970 
1971   // Walk through the data in order.
1972   ProfileData* first_data() const { return data_at(first_di()); }
1973   ProfileData* next_data(ProfileData* current) const;
1974   bool is_valid(ProfileData* current) const { return current != NULL; }
1975 
1976   // Convert a dp (data pointer) to a di (data index).
1977   int dp_to_di(address dp) const {
1978     return dp - ((address)_data);
1979   }
1980 
1981   address di_to_dp(int di) {
1982     return (address)data_layout_at(di);
1983   }
1984 
1985   // bci to di/dp conversion.
1986   address bci_to_dp(int bci);
1987   int bci_to_di(int bci) {
1988     return dp_to_di(bci_to_dp(bci));
1989   }
1990 
1991   // Get the data at an arbitrary bci, or NULL if there is none.
1992   ProfileData* bci_to_data(int bci);
1993 
1994   // Same, but try to create an extra_data record if one is needed:
1995   ProfileData* allocate_bci_to_data(int bci) {
1996     ProfileData* data = bci_to_data(bci);
1997     return (data != NULL) ? data : bci_to_extra_data(bci, true);
1998   }
1999 
2000   // Add a handful of extra data records, for trap tracking.
2001   DataLayout* extra_data_base() const { return limit_data_position(); }
2002   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2003   int extra_data_size() const { return (address)extra_data_limit()
2004                                - (address)extra_data_base(); }
2005   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
2006 
2007   // Return (uint)-1 for overflow.
2008   uint trap_count(int reason) const {
2009     assert((uint)reason < _trap_hist_limit, "oob");
2010     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2011   }
2012   // For loops:
2013   static uint trap_reason_limit() { return _trap_hist_limit; }
2014   static uint trap_count_limit()  { return _trap_hist_mask; }
2015   uint inc_trap_count(int reason) {
2016     // Count another trap, anywhere in this method.
2017     assert(reason >= 0, "must be single trap");
2018     if ((uint)reason < _trap_hist_limit) {
2019       uint cnt1 = 1 + _trap_hist._array[reason];
2020       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2021         _trap_hist._array[reason] = cnt1;
2022         return cnt1;
2023       } else {
2024         return _trap_hist_mask + (++_nof_overflow_traps);
2025       }
2026     } else {
2027       // Could not represent the count in the histogram.
2028       return (++_nof_overflow_traps);
2029     }
2030   }
2031 
2032   uint overflow_trap_count() const {
2033     return _nof_overflow_traps;
2034   }
2035   uint overflow_recompile_count() const {
2036     return _nof_overflow_recompiles;
2037   }
2038   void inc_overflow_recompile_count() {
2039     _nof_overflow_recompiles += 1;
2040   }
2041   uint decompile_count() const {
2042     return _nof_decompiles;
2043   }
2044   void inc_decompile_count() {
2045     _nof_decompiles += 1;
2046     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2047       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2048     }
2049   }
2050 
2051   // Support for code generation
2052   static ByteSize data_offset() {
2053     return byte_offset_of(MethodData, _data[0]);
2054   }
2055 
2056   static ByteSize invocation_counter_offset() {
2057     return byte_offset_of(MethodData, _invocation_counter);
2058   }
2059   static ByteSize backedge_counter_offset() {
2060     return byte_offset_of(MethodData, _backedge_counter);
2061   }
2062 
2063   // Deallocation support - no pointer fields to deallocate
2064   void deallocate_contents(ClassLoaderData* loader_data) {}
2065 
2066   // GC support
2067   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2068 
2069   // Printing
2070 #ifndef PRODUCT
2071   void print_on      (outputStream* st) const;
2072 #endif
2073   void print_value_on(outputStream* st) const;
2074 
2075 #ifndef PRODUCT
2076   // printing support for method data
2077   void print_data_on(outputStream* st) const;
2078 #endif
2079 
2080   const char* internal_name() const { return "{method data}"; }
2081 
2082   // verification
2083   void verify_on(outputStream* st);
2084   void verify_data_on(outputStream* st);
2085 
2086   static bool profile_arguments();
2087   static bool profile_return();
2088   static bool profile_return_jsr292_only();
2089 };
2090 
2091 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP