/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_SPARC_VM_INTERP_MASM_SPARC_HPP #define CPU_SPARC_VM_INTERP_MASM_SPARC_HPP #include "asm/macroAssembler.inline.hpp" #include "interpreter/invocationCounter.hpp" // This file specializes the assember with interpreter-specific macros REGISTER_DECLARATION( Register, Otos_i , O0); // tos for ints, etc REGISTER_DECLARATION( Register, Otos_l , O0); // for longs REGISTER_DECLARATION( Register, Otos_l1, O0); // for 1st part of longs REGISTER_DECLARATION( Register, Otos_l2, O1); // for 2nd part of longs REGISTER_DECLARATION(FloatRegister, Ftos_f , F0); // for floats REGISTER_DECLARATION(FloatRegister, Ftos_d , F0); // for doubles REGISTER_DECLARATION(FloatRegister, Ftos_d1, F0); // for 1st part of double REGISTER_DECLARATION(FloatRegister, Ftos_d2, F1); // for 2nd part of double #ifndef DONT_USE_REGISTER_DEFINES #define Otos_i O0 #define Otos_l O0 #define Otos_l1 O0 #define Otos_l2 O1 #define Ftos_f F0 #define Ftos_d F0 #define Ftos_d1 F0 #define Ftos_d2 F1 #endif // DONT_USE_REGISTER_DEFINES class InterpreterMacroAssembler: public MacroAssembler { protected: #ifndef CC_INTERP // Interpreter specific version of call_VM_base virtual void call_VM_leaf_base( Register java_thread, address entry_point, int number_of_arguments ); virtual void call_VM_base( Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exception=true ); virtual void check_and_handle_popframe(Register java_thread); virtual void check_and_handle_earlyret(Register java_thread); // base routine for all dispatches void dispatch_base(TosState state, address* table); #endif /* CC_INTERP */ public: InterpreterMacroAssembler(CodeBuffer* c) : MacroAssembler(c) {} #ifndef CC_INTERP virtual void load_earlyret_value(TosState state); static const Address l_tmp ; static const Address d_tmp ; #endif /* CC_INTERP */ // helper routine for frame allocation/deallocation // compute the delta by which the caller's SP has to // be adjusted to accomodate for the non-argument // locals void compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta); #ifndef CC_INTERP // dispatch routines void dispatch_prolog(TosState state, int step = 0); void dispatch_epilog(TosState state, int step = 0); void dispatch_only(TosState state); void dispatch_normal(TosState state); void dispatch_next(TosState state, int step = 0); void dispatch_next_noverify_oop(TosState state, int step = 0); void dispatch_via (TosState state, address* table); // Removes the current activation (incl. unlocking of monitors). // Additionally this code is used for earlyReturn in which case we // want to skip throwing an exception and installing an exception. void remove_activation(TosState state, bool throw_monitor_exception = true, bool install_monitor_exception = true); protected: void dispatch_Lbyte_code(TosState state, address* table, int bcp_incr = 0, bool verify = true); #endif /* CC_INTERP */ public: // Super call_VM calls - correspond to MacroAssembler::call_VM(_leaf) calls void super_call_VM(Register thread_cache, Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exception = true); #ifndef CC_INTERP void super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2); // Generate a subtype check: branch to ok_is_subtype if sub_klass is // a subtype of super_klass. Blows registers tmp1, tmp2 and tmp3. void gen_subtype_check( Register sub_klass, Register super_klass, Register tmp1, Register tmp2, Register tmp3, Label &ok_is_subtype ); // helpers for tossing exceptions void throw_if_not_1_icc( Condition ok_condition, Label& ok ); void throw_if_not_1_xcc( Condition ok_condition, Label& ok ); void throw_if_not_1_x ( Condition ok_condition, Label& ok ); // chooses icc or xcc based on _LP64 void throw_if_not_2( address throw_entry_point, Register Rscratch, Label& ok); void throw_if_not_icc( Condition ok_condition, address throw_entry_point, Register Rscratch ); void throw_if_not_xcc( Condition ok_condition, address throw_entry_point, Register Rscratch ); void throw_if_not_x ( Condition ok_condition, address throw_entry_point, Register Rscratch ); // helpers for expression stack void pop_i( Register r = Otos_i); void pop_ptr( Register r = Otos_i, Register scratch = O4); void pop_l( Register r = Otos_l1); // G4_scratch and Lscratch are used at call sites!! void pop_f(FloatRegister f = Ftos_f, Register scratch = G1_scratch); void pop_d(FloatRegister f = Ftos_d1, Register scratch = G1_scratch); void push_i( Register r = Otos_i); void push_ptr( Register r = Otos_i); void push_l( Register r = Otos_l1); void push_f(FloatRegister f = Ftos_f); void push_d(FloatRegister f = Ftos_d1); void pop (TosState state); // transition vtos -> state void push(TosState state); // transition state -> vtos void empty_expression_stack(); // resets both Lesp and SP #ifdef ASSERT void verify_sp(Register Rsp, Register Rtemp); void verify_esp(Register Resp); // verify that Lesp points to a word in the temp stack #endif // ASSERT public: void if_cmp(Condition cc, bool ptr_compare); // Load values from bytecode stream: enum signedOrNot { Signed, Unsigned }; enum setCCOrNot { set_CC, dont_set_CC }; void get_2_byte_integer_at_bcp( int bcp_offset, Register Rtmp, Register Rdst, signedOrNot is_signed, setCCOrNot should_set_CC = dont_set_CC ); void get_4_byte_integer_at_bcp( int bcp_offset, Register Rtmp, Register Rdst, setCCOrNot should_set_CC = dont_set_CC ); // Note: "get_cache_and_index" really means "get the index, use it to get the cache entry, and throw away the index". void get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset, size_t index_size = sizeof(u2)); void get_cache_and_index_and_bytecode_at_bcp(Register cache, Register temp, Register bytecode, int byte_no, int bcp_offset, size_t index_size = sizeof(u2)); void get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset, size_t index_size = sizeof(u2)); // Note: This one does not fetch the cache. The first argument is a temp which may be killed. void get_cache_index_at_bcp(Register temp, Register index, int bcp_offset, size_t index_size = sizeof(u2)); // load cpool->resolved_references(index); void load_resolved_reference_at_index(Register result, Register index); // common code void field_offset_at(int n, Register tmp, Register dest, Register base); int field_offset_at(Register object, address bcp, int offset); void fast_iaaccess(int n, address bcp); void fast_iagetfield(address bcp); void fast_iaputfield(address bcp, bool do_store_check ); void index_check(Register array, Register index, int index_shift, Register tmp, Register res); void index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res); void get_const(Register Rdst); void get_constant_pool(Register Rdst); void get_constant_pool_cache(Register Rdst); void get_cpool_and_tags(Register Rcpool, Register Rtags); void is_a(Label& L); // Load compiled (i2c) or interpreter entry and call from interpreted void call_from_interpreter(Register target, Register scratch, Register Rret); // -------------------------------------------------- void unlock_if_synchronized_method(TosState state, bool throw_monitor_exception = true, bool install_monitor_exception = true); void add_monitor_to_stack( bool stack_is_empty, Register Rtemp, Register Rtemp2 ); // Load/store aligned in _LP64 but unaligned otherwise // These only apply to the Interpreter expression stack and locals! void load_unaligned_double(Register r1, int offset, FloatRegister d); void store_unaligned_double(FloatRegister d, Register r1, int offset ); // Load/store aligned in _LP64 but unaligned otherwise void load_unaligned_long(Register r1, int offset, Register d); void store_unaligned_long(Register d, Register r1, int offset ); void access_local_int( Register index, Register dst ); void access_local_ptr( Register index, Register dst ); void access_local_returnAddress( Register index, Register dst ); void access_local_long( Register index, Register dst ); void access_local_float( Register index, FloatRegister dst ); void access_local_double( Register index, FloatRegister dst ); #ifdef ASSERT void check_for_regarea_stomp( Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1); #endif // ASSERT void store_local_int( Register index, Register src ); void store_local_ptr( Register index, Register src ); void store_local_ptr( int n, Register src ); void store_local_long( Register index, Register src ); void store_local_float( Register index, FloatRegister src ); void store_local_double( Register index, FloatRegister src ); // Helpers for swap and dup void load_ptr(int n, Register val); void store_ptr(int n, Register val); // Helper for getting receiver in register. void load_receiver(Register param_count, Register recv); static int top_most_monitor_byte_offset(); // offset in bytes to top of monitor block Address top_most_monitor(); void compute_stack_base( Register Rdest ); #endif /* CC_INTERP */ void get_method_counters(Register method, Register Rcounters, Label& skip); void increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ); void increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ); #ifndef CC_INTERP void test_backedge_count_for_osr( Register backedge_count, Register branch_bcp, Register Rtmp ); #endif /* CC_INTERP */ // Object locking void lock_object (Register lock_reg, Register obj_reg); void unlock_object(Register lock_reg); #ifndef CC_INTERP // Interpreter profiling operations void set_method_data_pointer(); void set_method_data_pointer_for_bcp(); void test_method_data_pointer(Label& zero_continue); void verify_method_data_pointer(); void test_invocation_counter_for_mdp(Register invocation_count, Register Rtmp, Label &profile_continue); void set_mdp_data_at(int constant, Register value); void increment_mdp_data_at(Address counter, Register bumped_count, bool decrement = false); void increment_mdp_data_at(int constant, Register bumped_count, bool decrement = false); void increment_mdp_data_at(Register reg, int constant, Register bumped_count, Register scratch2, bool decrement = false); void increment_mask_and_jump(Address counter_addr, int increment, int mask, Register scratch1, Register scratch2, Condition cond, Label *where); void set_mdp_flag_at(int flag_constant, Register scratch); void test_mdp_data_at(int offset, Register value, Label& not_equal_continue, Register scratch); void record_klass_in_profile(Register receiver, Register scratch, bool is_virtual_call); void record_klass_in_profile_helper(Register receiver, Register scratch, int start_row, Label& done, bool is_virtual_call); void update_mdp_by_offset(int offset_of_disp, Register scratch); void update_mdp_by_offset(Register reg, int offset_of_disp, Register scratch); void update_mdp_by_constant(int constant); void update_mdp_for_ret(TosState state, Register return_bci); void profile_taken_branch(Register scratch, Register bumped_count); void profile_not_taken_branch(Register scratch); void profile_call(Register scratch); void profile_final_call(Register scratch); void profile_virtual_call(Register receiver, Register scratch, bool receiver_can_be_null = false); void profile_ret(TosState state, Register return_bci, Register scratch); void profile_null_seen(Register scratch); void profile_typecheck(Register klass, Register scratch); void profile_typecheck_failed(Register scratch); void profile_switch_default(Register scratch); void profile_switch_case(Register index, Register scratch1, Register scratch2, Register scratch3); void profile_obj_type(Register obj, const Address& mdo_addr, Register tmp); void profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual); void profile_return_type(Register ret, Register tmp1, Register tmp2); void profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4); // Debugging void interp_verify_oop(Register reg, TosState state, const char * file, int line); // only if +VerifyOops && state == atos void verify_oop_or_return_address(Register reg, Register rtmp); // for astore void verify_FPU(int stack_depth, TosState state = ftos); // only if +VerifyFPU && (state == ftos || state == dtos) #endif /* CC_INTERP */ // support for JVMTI/Dtrace typedef enum { NotifyJVMTI, SkipNotifyJVMTI } NotifyMethodExitMode; void notify_method_entry(); void notify_method_exit( bool save_result, TosState state, NotifyMethodExitMode mode); void save_return_value(TosState state, bool is_native_call); void restore_return_value(TosState state, bool is_native_call); }; #endif // CPU_SPARC_VM_INTERP_MASM_SPARC_HPP