1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76 
  77 private:
  78   // Every data layout begins with a header.  This header
  79   // contains a tag, which is used to indicate the size/layout
  80   // of the data, 4 bits of flags, which can be used in any way,
  81   // 4 bits of trap history (none/one reason/many reasons),
  82   // and a bci, which is used to tie this piece of data to a
  83   // specific bci in the bytecodes.
  84   union {
  85     intptr_t _bits;
  86     struct {
  87       u1 _tag;
  88       u1 _flags;
  89       u2 _bci;
  90     } _struct;
  91   } _header;
  92 
  93   // The data layout has an arbitrary number of cells, each sized
  94   // to accomodate a pointer or an integer.
  95   intptr_t _cells[1];
  96 
  97   // Some types of data layouts need a length field.
  98   static bool needs_array_len(u1 tag);
  99 
 100 public:
 101   enum {
 102     counter_increment = 1
 103   };
 104 
 105   enum {
 106     cell_size = sizeof(intptr_t)
 107   };
 108 
 109   // Tag values
 110   enum {
 111     no_tag,
 112     bit_data_tag,
 113     counter_data_tag,
 114     jump_data_tag,
 115     receiver_type_data_tag,
 116     virtual_call_data_tag,
 117     ret_data_tag,
 118     branch_data_tag,
 119     multi_branch_data_tag,
 120     arg_info_data_tag,
 121     call_type_data_tag,
 122     virtual_call_type_data_tag,
 123     parameters_type_data_tag,
 124     speculative_trap_data_tag
 125   };
 126 
 127   enum {
 128     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 129     // The trap state breaks down further as [recompile:1 | reason:3].
 130     // This further breakdown is defined in deoptimization.cpp.
 131     // See Deoptimization::trap_state_reason for an assert that
 132     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 133     //
 134     // The trap_state is collected only if ProfileTraps is true.
 135     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 136     trap_shift = BitsPerByte - trap_bits,
 137     trap_mask = right_n_bits(trap_bits),
 138     trap_mask_in_place = (trap_mask << trap_shift),
 139     flag_limit = trap_shift,
 140     flag_mask = right_n_bits(flag_limit),
 141     first_flag = 0
 142   };
 143 
 144   // Size computation
 145   static int header_size_in_bytes() {
 146     return cell_size;
 147   }
 148   static int header_size_in_cells() {
 149     return 1;
 150   }
 151 
 152   static int compute_size_in_bytes(int cell_count) {
 153     return header_size_in_bytes() + cell_count * cell_size;
 154   }
 155 
 156   // Initialization
 157   void initialize(u1 tag, u2 bci, int cell_count);
 158 
 159   // Accessors
 160   u1 tag() {
 161     return _header._struct._tag;
 162   }
 163 
 164   // Return a few bits of trap state.  Range is [0..trap_mask].
 165   // The state tells if traps with zero, one, or many reasons have occurred.
 166   // It also tells whether zero or many recompilations have occurred.
 167   // The associated trap histogram in the MDO itself tells whether
 168   // traps are common or not.  If a BCI shows that a trap X has
 169   // occurred, and the MDO shows N occurrences of X, we make the
 170   // simplifying assumption that all N occurrences can be blamed
 171   // on that BCI.
 172   int trap_state() const {
 173     return ((_header._struct._flags >> trap_shift) & trap_mask);
 174   }
 175 
 176   void set_trap_state(int new_state) {
 177     assert(ProfileTraps, "used only under +ProfileTraps");
 178     uint old_flags = (_header._struct._flags & flag_mask);
 179     _header._struct._flags = (new_state << trap_shift) | old_flags;
 180   }
 181 
 182   u1 flags() const {
 183     return _header._struct._flags;
 184   }
 185 
 186   u2 bci() const {
 187     return _header._struct._bci;
 188   }
 189 
 190   void set_header(intptr_t value) {
 191     _header._bits = value;
 192   }
 193   intptr_t header() {
 194     return _header._bits;
 195   }
 196   void set_cell_at(int index, intptr_t value) {
 197     _cells[index] = value;
 198   }
 199   void release_set_cell_at(int index, intptr_t value) {
 200     OrderAccess::release_store_ptr(&_cells[index], value);
 201   }
 202   intptr_t cell_at(int index) const {
 203     return _cells[index];
 204   }
 205 
 206   void set_flag_at(int flag_number) {
 207     assert(flag_number < flag_limit, "oob");
 208     _header._struct._flags |= (0x1 << flag_number);
 209   }
 210   bool flag_at(int flag_number) const {
 211     assert(flag_number < flag_limit, "oob");
 212     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 213   }
 214 
 215   // Low-level support for code generation.
 216   static ByteSize header_offset() {
 217     return byte_offset_of(DataLayout, _header);
 218   }
 219   static ByteSize tag_offset() {
 220     return byte_offset_of(DataLayout, _header._struct._tag);
 221   }
 222   static ByteSize flags_offset() {
 223     return byte_offset_of(DataLayout, _header._struct._flags);
 224   }
 225   static ByteSize bci_offset() {
 226     return byte_offset_of(DataLayout, _header._struct._bci);
 227   }
 228   static ByteSize cell_offset(int index) {
 229     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 230   }
 231 #ifdef CC_INTERP
 232   static int cell_offset_in_bytes(int index) {
 233     return (int)offset_of(DataLayout, _cells[index]);
 234   }
 235 #endif // CC_INTERP
 236   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 237   static int flag_number_to_byte_constant(int flag_number) {
 238     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 239     DataLayout temp; temp.set_header(0);
 240     temp.set_flag_at(flag_number);
 241     return temp._header._struct._flags;
 242   }
 243   // Return a value which, when or-ed as a word into _header, sets the flag.
 244   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 245     DataLayout temp; temp.set_header(0);
 246     temp._header._struct._flags = byte_constant;
 247     return temp._header._bits;
 248   }
 249 
 250   ProfileData* data_in();
 251 
 252   // GC support
 253   void clean_weak_klass_links(BoolObjectClosure* cl);
 254 };
 255 
 256 
 257 // ProfileData class hierarchy
 258 class ProfileData;
 259 class   BitData;
 260 class     CounterData;
 261 class       ReceiverTypeData;
 262 class         VirtualCallData;
 263 class           VirtualCallTypeData;
 264 class       RetData;
 265 class       CallTypeData;
 266 class   JumpData;
 267 class     BranchData;
 268 class   ArrayData;
 269 class     MultiBranchData;
 270 class     ArgInfoData;
 271 class     ParametersTypeData;
 272 class   SpeculativeTrapData;
 273 
 274 // ProfileData
 275 //
 276 // A ProfileData object is created to refer to a section of profiling
 277 // data in a structured way.
 278 class ProfileData : public ResourceObj {
 279   friend class TypeEntries;
 280   friend class ReturnTypeEntry;
 281   friend class TypeStackSlotEntries;
 282 private:
 283 #ifndef PRODUCT
 284   enum {
 285     tab_width_one = 16,
 286     tab_width_two = 36
 287   };
 288 #endif // !PRODUCT
 289 
 290   // This is a pointer to a section of profiling data.
 291   DataLayout* _data;
 292 
 293   char* print_data_on_helper(const MethodData* md) const;
 294 
 295 protected:
 296   DataLayout* data() { return _data; }
 297   const DataLayout* data() const { return _data; }
 298 
 299   enum {
 300     cell_size = DataLayout::cell_size
 301   };
 302 
 303 public:
 304   // How many cells are in this?
 305   virtual int cell_count() const {
 306     ShouldNotReachHere();
 307     return -1;
 308   }
 309 
 310   // Return the size of this data.
 311   int size_in_bytes() {
 312     return DataLayout::compute_size_in_bytes(cell_count());
 313   }
 314 
 315 protected:
 316   // Low-level accessors for underlying data
 317   void set_intptr_at(int index, intptr_t value) {
 318     assert(0 <= index && index < cell_count(), "oob");
 319     data()->set_cell_at(index, value);
 320   }
 321   void release_set_intptr_at(int index, intptr_t value) {
 322     assert(0 <= index && index < cell_count(), "oob");
 323     data()->release_set_cell_at(index, value);
 324   }
 325   intptr_t intptr_at(int index) const {
 326     assert(0 <= index && index < cell_count(), "oob");
 327     return data()->cell_at(index);
 328   }
 329   void set_uint_at(int index, uint value) {
 330     set_intptr_at(index, (intptr_t) value);
 331   }
 332   void release_set_uint_at(int index, uint value) {
 333     release_set_intptr_at(index, (intptr_t) value);
 334   }
 335   uint uint_at(int index) const {
 336     return (uint)intptr_at(index);
 337   }
 338   void set_int_at(int index, int value) {
 339     set_intptr_at(index, (intptr_t) value);
 340   }
 341   void release_set_int_at(int index, int value) {
 342     release_set_intptr_at(index, (intptr_t) value);
 343   }
 344   int int_at(int index) const {
 345     return (int)intptr_at(index);
 346   }
 347   int int_at_unchecked(int index) const {
 348     return (int)data()->cell_at(index);
 349   }
 350   void set_oop_at(int index, oop value) {
 351     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 352   }
 353   oop oop_at(int index) const {
 354     return cast_to_oop(intptr_at(index));
 355   }
 356 
 357   void set_flag_at(int flag_number) {
 358     data()->set_flag_at(flag_number);
 359   }
 360   bool flag_at(int flag_number) const {
 361     return data()->flag_at(flag_number);
 362   }
 363 
 364   // two convenient imports for use by subclasses:
 365   static ByteSize cell_offset(int index) {
 366     return DataLayout::cell_offset(index);
 367   }
 368   static int flag_number_to_byte_constant(int flag_number) {
 369     return DataLayout::flag_number_to_byte_constant(flag_number);
 370   }
 371 
 372   ProfileData(DataLayout* data) {
 373     _data = data;
 374   }
 375 
 376 #ifdef CC_INTERP
 377   // Static low level accessors for DataLayout with ProfileData's semantics.
 378 
 379   static int cell_offset_in_bytes(int index) {
 380     return DataLayout::cell_offset_in_bytes(index);
 381   }
 382 
 383   static void increment_uint_at_no_overflow(DataLayout* layout, int index,
 384                                             int inc = DataLayout::counter_increment) {
 385     uint count = ((uint)layout->cell_at(index)) + inc;
 386     if (count == 0) return;
 387     layout->set_cell_at(index, (intptr_t) count);
 388   }
 389 
 390   static int int_at(DataLayout* layout, int index) {
 391     return (int)layout->cell_at(index);
 392   }
 393 
 394   static int uint_at(DataLayout* layout, int index) {
 395     return (uint)layout->cell_at(index);
 396   }
 397 
 398   static oop oop_at(DataLayout* layout, int index) {
 399     return cast_to_oop(layout->cell_at(index));
 400   }
 401 
 402   static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
 403     layout->set_cell_at(index, (intptr_t) value);
 404   }
 405 
 406   static void set_flag_at(DataLayout* layout, int flag_number) {
 407     layout->set_flag_at(flag_number);
 408   }
 409 #endif // CC_INTERP
 410 
 411 public:
 412   // Constructor for invalid ProfileData.
 413   ProfileData();
 414 
 415   u2 bci() const {
 416     return data()->bci();
 417   }
 418 
 419   address dp() {
 420     return (address)_data;
 421   }
 422 
 423   int trap_state() const {
 424     return data()->trap_state();
 425   }
 426   void set_trap_state(int new_state) {
 427     data()->set_trap_state(new_state);
 428   }
 429 
 430   // Type checking
 431   virtual bool is_BitData()         const { return false; }
 432   virtual bool is_CounterData()     const { return false; }
 433   virtual bool is_JumpData()        const { return false; }
 434   virtual bool is_ReceiverTypeData()const { return false; }
 435   virtual bool is_VirtualCallData() const { return false; }
 436   virtual bool is_RetData()         const { return false; }
 437   virtual bool is_BranchData()      const { return false; }
 438   virtual bool is_ArrayData()       const { return false; }
 439   virtual bool is_MultiBranchData() const { return false; }
 440   virtual bool is_ArgInfoData()     const { return false; }
 441   virtual bool is_CallTypeData()    const { return false; }
 442   virtual bool is_VirtualCallTypeData()const { return false; }
 443   virtual bool is_ParametersTypeData() const { return false; }
 444   virtual bool is_SpeculativeTrapData()const { return false; }
 445 
 446 
 447   BitData* as_BitData() const {
 448     assert(is_BitData(), "wrong type");
 449     return is_BitData()         ? (BitData*)        this : NULL;
 450   }
 451   CounterData* as_CounterData() const {
 452     assert(is_CounterData(), "wrong type");
 453     return is_CounterData()     ? (CounterData*)    this : NULL;
 454   }
 455   JumpData* as_JumpData() const {
 456     assert(is_JumpData(), "wrong type");
 457     return is_JumpData()        ? (JumpData*)       this : NULL;
 458   }
 459   ReceiverTypeData* as_ReceiverTypeData() const {
 460     assert(is_ReceiverTypeData(), "wrong type");
 461     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 462   }
 463   VirtualCallData* as_VirtualCallData() const {
 464     assert(is_VirtualCallData(), "wrong type");
 465     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 466   }
 467   RetData* as_RetData() const {
 468     assert(is_RetData(), "wrong type");
 469     return is_RetData()         ? (RetData*)        this : NULL;
 470   }
 471   BranchData* as_BranchData() const {
 472     assert(is_BranchData(), "wrong type");
 473     return is_BranchData()      ? (BranchData*)     this : NULL;
 474   }
 475   ArrayData* as_ArrayData() const {
 476     assert(is_ArrayData(), "wrong type");
 477     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 478   }
 479   MultiBranchData* as_MultiBranchData() const {
 480     assert(is_MultiBranchData(), "wrong type");
 481     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 482   }
 483   ArgInfoData* as_ArgInfoData() const {
 484     assert(is_ArgInfoData(), "wrong type");
 485     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 486   }
 487   CallTypeData* as_CallTypeData() const {
 488     assert(is_CallTypeData(), "wrong type");
 489     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 490   }
 491   VirtualCallTypeData* as_VirtualCallTypeData() const {
 492     assert(is_VirtualCallTypeData(), "wrong type");
 493     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 494   }
 495   ParametersTypeData* as_ParametersTypeData() const {
 496     assert(is_ParametersTypeData(), "wrong type");
 497     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
 498   }
 499   SpeculativeTrapData* as_SpeculativeTrapData() const {
 500     assert(is_SpeculativeTrapData(), "wrong type");
 501     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
 502   }
 503 
 504 
 505   // Subclass specific initialization
 506   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 507 
 508   // GC support
 509   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 510 
 511   // CI translation: ProfileData can represent both MethodDataOop data
 512   // as well as CIMethodData data. This function is provided for translating
 513   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 514   // most ProfileData don't require any translation, so we provide the null
 515   // translation here, and the required translators are in the ci subclasses.
 516   virtual void translate_from(const ProfileData* data) {}
 517 
 518   virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
 519     ShouldNotReachHere();
 520   }
 521 
 522   void print_data_on(outputStream* st, const MethodData* md) const;
 523 
 524 #ifndef PRODUCT
 525   void print_shared(outputStream* st, const char* name, const char* extra) const;
 526   void tab(outputStream* st, bool first = false) const;
 527 #endif
 528 };
 529 
 530 // BitData
 531 //
 532 // A BitData holds a flag or two in its header.
 533 class BitData : public ProfileData {
 534 protected:
 535   enum {
 536     // null_seen:
 537     //  saw a null operand (cast/aastore/instanceof)
 538     null_seen_flag              = DataLayout::first_flag + 0
 539   };
 540   enum { bit_cell_count = 0 };  // no additional data fields needed.
 541 public:
 542   BitData(DataLayout* layout) : ProfileData(layout) {
 543   }
 544 
 545   virtual bool is_BitData() const { return true; }
 546 
 547   static int static_cell_count() {
 548     return bit_cell_count;
 549   }
 550 
 551   virtual int cell_count() const {
 552     return static_cell_count();
 553   }
 554 
 555   // Accessor
 556 
 557   // The null_seen flag bit is specially known to the interpreter.
 558   // Consulting it allows the compiler to avoid setting up null_check traps.
 559   bool null_seen()     { return flag_at(null_seen_flag); }
 560   void set_null_seen()    { set_flag_at(null_seen_flag); }
 561 
 562 
 563   // Code generation support
 564   static int null_seen_byte_constant() {
 565     return flag_number_to_byte_constant(null_seen_flag);
 566   }
 567 
 568   static ByteSize bit_data_size() {
 569     return cell_offset(bit_cell_count);
 570   }
 571 
 572 #ifdef CC_INTERP
 573   static int bit_data_size_in_bytes() {
 574     return cell_offset_in_bytes(bit_cell_count);
 575   }
 576 
 577   static void set_null_seen(DataLayout* layout) {
 578     set_flag_at(layout, null_seen_flag);
 579   }
 580 
 581   static DataLayout* advance(DataLayout* layout) {
 582     return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
 583   }
 584 #endif // CC_INTERP
 585 
 586 #ifndef PRODUCT
 587   void print_data_on(outputStream* st, const char* extra = NULL) const;
 588 #endif
 589 };
 590 
 591 // CounterData
 592 //
 593 // A CounterData corresponds to a simple counter.
 594 class CounterData : public BitData {
 595 protected:
 596   enum {
 597     count_off,
 598     counter_cell_count
 599   };
 600 public:
 601   CounterData(DataLayout* layout) : BitData(layout) {}
 602 
 603   virtual bool is_CounterData() const { return true; }
 604 
 605   static int static_cell_count() {
 606     return counter_cell_count;
 607   }
 608 
 609   virtual int cell_count() const {
 610     return static_cell_count();
 611   }
 612 
 613   // Direct accessor
 614   uint count() const {
 615     return uint_at(count_off);
 616   }
 617 
 618   // Code generation support
 619   static ByteSize count_offset() {
 620     return cell_offset(count_off);
 621   }
 622   static ByteSize counter_data_size() {
 623     return cell_offset(counter_cell_count);
 624   }
 625 
 626   void set_count(uint count) {
 627     set_uint_at(count_off, count);
 628   }
 629 
 630 #ifdef CC_INTERP
 631   static int counter_data_size_in_bytes() {
 632     return cell_offset_in_bytes(counter_cell_count);
 633   }
 634 
 635   static void increment_count_no_overflow(DataLayout* layout) {
 636     increment_uint_at_no_overflow(layout, count_off);
 637   }
 638 
 639   // Support counter decrementation at checkcast / subtype check failed.
 640   static void decrement_count(DataLayout* layout) {
 641     increment_uint_at_no_overflow(layout, count_off, -1);
 642   }
 643 
 644   static DataLayout* advance(DataLayout* layout) {
 645     return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
 646   }
 647 #endif // CC_INTERP
 648 
 649 #ifndef PRODUCT
 650   void print_data_on(outputStream* st, const char* extra = NULL) const;
 651 #endif
 652 };
 653 
 654 // JumpData
 655 //
 656 // A JumpData is used to access profiling information for a direct
 657 // branch.  It is a counter, used for counting the number of branches,
 658 // plus a data displacement, used for realigning the data pointer to
 659 // the corresponding target bci.
 660 class JumpData : public ProfileData {
 661 protected:
 662   enum {
 663     taken_off_set,
 664     displacement_off_set,
 665     jump_cell_count
 666   };
 667 
 668   void set_displacement(int displacement) {
 669     set_int_at(displacement_off_set, displacement);
 670   }
 671 
 672 public:
 673   JumpData(DataLayout* layout) : ProfileData(layout) {
 674     assert(layout->tag() == DataLayout::jump_data_tag ||
 675       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 676   }
 677 
 678   virtual bool is_JumpData() const { return true; }
 679 
 680   static int static_cell_count() {
 681     return jump_cell_count;
 682   }
 683 
 684   virtual int cell_count() const {
 685     return static_cell_count();
 686   }
 687 
 688   // Direct accessor
 689   uint taken() const {
 690     return uint_at(taken_off_set);
 691   }
 692 
 693   void set_taken(uint cnt) {
 694     set_uint_at(taken_off_set, cnt);
 695   }
 696 
 697   // Saturating counter
 698   uint inc_taken() {
 699     uint cnt = taken() + 1;
 700     // Did we wrap? Will compiler screw us??
 701     if (cnt == 0) cnt--;
 702     set_uint_at(taken_off_set, cnt);
 703     return cnt;
 704   }
 705 
 706   int displacement() const {
 707     return int_at(displacement_off_set);
 708   }
 709 
 710   // Code generation support
 711   static ByteSize taken_offset() {
 712     return cell_offset(taken_off_set);
 713   }
 714 
 715   static ByteSize displacement_offset() {
 716     return cell_offset(displacement_off_set);
 717   }
 718 
 719 #ifdef CC_INTERP
 720   static void increment_taken_count_no_overflow(DataLayout* layout) {
 721     increment_uint_at_no_overflow(layout, taken_off_set);
 722   }
 723 
 724   static DataLayout* advance_taken(DataLayout* layout) {
 725     return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
 726   }
 727 
 728   static uint taken_count(DataLayout* layout) {
 729     return (uint) uint_at(layout, taken_off_set);
 730   }
 731 #endif // CC_INTERP
 732 
 733   // Specific initialization.
 734   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 735 
 736 #ifndef PRODUCT
 737   void print_data_on(outputStream* st, const char* extra = NULL) const;
 738 #endif
 739 };
 740 
 741 // Entries in a ProfileData object to record types: it can either be
 742 // none (no profile), unknown (conflicting profile data) or a klass if
 743 // a single one is seen. Whether a null reference was seen is also
 744 // recorded. No counter is associated with the type and a single type
 745 // is tracked (unlike VirtualCallData).
 746 class TypeEntries {
 747 
 748 public:
 749 
 750   // A single cell is used to record information for a type:
 751   // - the cell is initialized to 0
 752   // - when a type is discovered it is stored in the cell
 753   // - bit zero of the cell is used to record whether a null reference
 754   // was encountered or not
 755   // - bit 1 is set to record a conflict in the type information
 756 
 757   enum {
 758     null_seen = 1,
 759     type_mask = ~null_seen,
 760     type_unknown = 2,
 761     status_bits = null_seen | type_unknown,
 762     type_klass_mask = ~status_bits
 763   };
 764 
 765   // what to initialize a cell to
 766   static intptr_t type_none() {
 767     return 0;
 768   }
 769 
 770   // null seen = bit 0 set?
 771   static bool was_null_seen(intptr_t v) {
 772     return (v & null_seen) != 0;
 773   }
 774 
 775   // conflicting type information = bit 1 set?
 776   static bool is_type_unknown(intptr_t v) {
 777     return (v & type_unknown) != 0;
 778   }
 779 
 780   // not type information yet = all bits cleared, ignoring bit 0?
 781   static bool is_type_none(intptr_t v) {
 782     return (v & type_mask) == 0;
 783   }
 784 
 785   // recorded type: cell without bit 0 and 1
 786   static intptr_t klass_part(intptr_t v) {
 787     intptr_t r = v & type_klass_mask;
 788     return r;
 789   }
 790 
 791   // type recorded
 792   static Klass* valid_klass(intptr_t k) {
 793     if (!is_type_none(k) &&
 794         !is_type_unknown(k)) {
 795       Klass* res = (Klass*)klass_part(k);
 796       assert(res != NULL, "invalid");
 797       return res;
 798     } else {
 799       return NULL;
 800     }
 801   }
 802 
 803   static intptr_t with_status(intptr_t k, intptr_t in) {
 804     return k | (in & status_bits);
 805   }
 806 
 807   static intptr_t with_status(Klass* k, intptr_t in) {
 808     return with_status((intptr_t)k, in);
 809   }
 810 
 811 #ifndef PRODUCT
 812   static void print_klass(outputStream* st, intptr_t k);
 813 #endif
 814 
 815   // GC support
 816   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 817 
 818 protected:
 819   // ProfileData object these entries are part of
 820   ProfileData* _pd;
 821   // offset within the ProfileData object where the entries start
 822   const int _base_off;
 823 
 824   TypeEntries(int base_off)
 825     : _base_off(base_off), _pd(NULL) {}
 826 
 827   void set_intptr_at(int index, intptr_t value) {
 828     _pd->set_intptr_at(index, value);
 829   }
 830 
 831   intptr_t intptr_at(int index) const {
 832     return _pd->intptr_at(index);
 833   }
 834 
 835 public:
 836   void set_profile_data(ProfileData* pd) {
 837     _pd = pd;
 838   }
 839 };
 840 
 841 // Type entries used for arguments passed at a call and parameters on
 842 // method entry. 2 cells per entry: one for the type encoded as in
 843 // TypeEntries and one initialized with the stack slot where the
 844 // profiled object is to be found so that the interpreter can locate
 845 // it quickly.
 846 class TypeStackSlotEntries : public TypeEntries {
 847 
 848 private:
 849   enum {
 850     stack_slot_entry,
 851     type_entry,
 852     per_arg_cell_count
 853   };
 854 
 855   // offset of cell for stack slot for entry i within ProfileData object
 856   int stack_slot_offset(int i) const {
 857     return _base_off + stack_slot_local_offset(i);
 858   }
 859 
 860   const int _number_of_entries;
 861 
 862   // offset of cell for type for entry i within ProfileData object
 863   int type_offset_in_cells(int i) const {
 864     return _base_off + type_local_offset(i);
 865   }
 866 
 867 public:
 868 
 869   TypeStackSlotEntries(int base_off, int nb_entries)
 870     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 871 
 872   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 873 
 874   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 875 
 876   int number_of_entries() const { return _number_of_entries; }
 877 
 878   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 879   static int stack_slot_local_offset(int i) {
 880     return i * per_arg_cell_count + stack_slot_entry;
 881   }
 882 
 883   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 884   static int type_local_offset(int i) {
 885     return i * per_arg_cell_count + type_entry;
 886   }
 887 
 888   // stack slot for entry i
 889   uint stack_slot(int i) const {
 890     assert(i >= 0 && i < _number_of_entries, "oob");
 891     return _pd->uint_at(stack_slot_offset(i));
 892   }
 893 
 894   // set stack slot for entry i
 895   void set_stack_slot(int i, uint num) {
 896     assert(i >= 0 && i < _number_of_entries, "oob");
 897     _pd->set_uint_at(stack_slot_offset(i), num);
 898   }
 899 
 900   // type for entry i
 901   intptr_t type(int i) const {
 902     assert(i >= 0 && i < _number_of_entries, "oob");
 903     return _pd->intptr_at(type_offset_in_cells(i));
 904   }
 905 
 906   // set type for entry i
 907   void set_type(int i, intptr_t k) {
 908     assert(i >= 0 && i < _number_of_entries, "oob");
 909     _pd->set_intptr_at(type_offset_in_cells(i), k);
 910   }
 911 
 912   static ByteSize per_arg_size() {
 913     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 914   }
 915 
 916   static int per_arg_count() {
 917     return per_arg_cell_count ;
 918   }
 919 
 920   ByteSize type_offset(int i) const {
 921     return DataLayout::cell_offset(type_offset_in_cells(i));
 922   }
 923 
 924   // GC support
 925   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 926 
 927 #ifndef PRODUCT
 928   void print_data_on(outputStream* st) const;
 929 #endif
 930 };
 931 
 932 // Type entry used for return from a call. A single cell to record the
 933 // type.
 934 class ReturnTypeEntry : public TypeEntries {
 935 
 936 private:
 937   enum {
 938     cell_count = 1
 939   };
 940 
 941 public:
 942   ReturnTypeEntry(int base_off)
 943     : TypeEntries(base_off) {}
 944 
 945   void post_initialize() {
 946     set_type(type_none());
 947   }
 948 
 949   intptr_t type() const {
 950     return _pd->intptr_at(_base_off);
 951   }
 952 
 953   void set_type(intptr_t k) {
 954     _pd->set_intptr_at(_base_off, k);
 955   }
 956 
 957   static int static_cell_count() {
 958     return cell_count;
 959   }
 960 
 961   static ByteSize size() {
 962     return in_ByteSize(cell_count * DataLayout::cell_size);
 963   }
 964 
 965   ByteSize type_offset() {
 966     return DataLayout::cell_offset(_base_off);
 967   }
 968 
 969   // GC support
 970   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 971 
 972 #ifndef PRODUCT
 973   void print_data_on(outputStream* st) const;
 974 #endif
 975 };
 976 
 977 // Entries to collect type information at a call: contains arguments
 978 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 979 // number of cells. Because the number of cells for the return type is
 980 // smaller than the number of cells for the type of an arguments, the
 981 // number of cells is used to tell how many arguments are profiled and
 982 // whether a return value is profiled. See has_arguments() and
 983 // has_return().
 984 class TypeEntriesAtCall {
 985 private:
 986   static int stack_slot_local_offset(int i) {
 987     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 988   }
 989 
 990   static int argument_type_local_offset(int i) {
 991     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
 992   }
 993 
 994 public:
 995 
 996   static int header_cell_count() {
 997     return 1;
 998   }
 999 
1000   static int cell_count_local_offset() {
1001     return 0;
1002   }
1003 
1004   static int compute_cell_count(BytecodeStream* stream);
1005 
1006   static void initialize(DataLayout* dl, int base, int cell_count) {
1007     int off = base + cell_count_local_offset();
1008     dl->set_cell_at(off, cell_count - base - header_cell_count());
1009   }
1010 
1011   static bool arguments_profiling_enabled();
1012   static bool return_profiling_enabled();
1013 
1014   // Code generation support
1015   static ByteSize cell_count_offset() {
1016     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1017   }
1018 
1019   static ByteSize args_data_offset() {
1020     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1021   }
1022 
1023   static ByteSize stack_slot_offset(int i) {
1024     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1025   }
1026 
1027   static ByteSize argument_type_offset(int i) {
1028     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1029   }
1030 };
1031 
1032 // CallTypeData
1033 //
1034 // A CallTypeData is used to access profiling information about a non
1035 // virtual call for which we collect type information about arguments
1036 // and return value.
1037 class CallTypeData : public CounterData {
1038 private:
1039   // entries for arguments if any
1040   TypeStackSlotEntries _args;
1041   // entry for return type if any
1042   ReturnTypeEntry _ret;
1043 
1044   int cell_count_global_offset() const {
1045     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1046   }
1047 
1048   // number of cells not counting the header
1049   int cell_count_no_header() const {
1050     return uint_at(cell_count_global_offset());
1051   }
1052 
1053   void check_number_of_arguments(int total) {
1054     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1055   }
1056 
1057 public:
1058   CallTypeData(DataLayout* layout) :
1059     CounterData(layout),
1060     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1061     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1062   {
1063     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1064     // Some compilers (VC++) don't want this passed in member initialization list
1065     _args.set_profile_data(this);
1066     _ret.set_profile_data(this);
1067   }
1068 
1069   const TypeStackSlotEntries* args() const {
1070     assert(has_arguments(), "no profiling of arguments");
1071     return &_args;
1072   }
1073 
1074   const ReturnTypeEntry* ret() const {
1075     assert(has_return(), "no profiling of return value");
1076     return &_ret;
1077   }
1078 
1079   virtual bool is_CallTypeData() const { return true; }
1080 
1081   static int static_cell_count() {
1082     return -1;
1083   }
1084 
1085   static int compute_cell_count(BytecodeStream* stream) {
1086     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1087   }
1088 
1089   static void initialize(DataLayout* dl, int cell_count) {
1090     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1091   }
1092 
1093   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1094 
1095   virtual int cell_count() const {
1096     return CounterData::static_cell_count() +
1097       TypeEntriesAtCall::header_cell_count() +
1098       int_at_unchecked(cell_count_global_offset());
1099   }
1100 
1101   int number_of_arguments() const {
1102     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1103   }
1104 
1105   void set_argument_type(int i, Klass* k) {
1106     assert(has_arguments(), "no arguments!");
1107     intptr_t current = _args.type(i);
1108     _args.set_type(i, TypeEntries::with_status(k, current));
1109   }
1110 
1111   void set_return_type(Klass* k) {
1112     assert(has_return(), "no return!");
1113     intptr_t current = _ret.type();
1114     _ret.set_type(TypeEntries::with_status(k, current));
1115   }
1116 
1117   // An entry for a return value takes less space than an entry for an
1118   // argument so if the number of cells exceeds the number of cells
1119   // needed for an argument, this object contains type information for
1120   // at least one argument.
1121   bool has_arguments() const {
1122     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1123     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1124     return res;
1125   }
1126 
1127   // An entry for a return value takes less space than an entry for an
1128   // argument, so if the remainder of the number of cells divided by
1129   // the number of cells for an argument is not null, a return value
1130   // is profiled in this object.
1131   bool has_return() const {
1132     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1133     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1134     return res;
1135   }
1136 
1137   // Code generation support
1138   static ByteSize args_data_offset() {
1139     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1140   }
1141 
1142   ByteSize argument_type_offset(int i) {
1143     return _args.type_offset(i);
1144   }
1145 
1146   ByteSize return_type_offset() {
1147     return _ret.type_offset();
1148   }
1149 
1150   // GC support
1151   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1152     if (has_arguments()) {
1153       _args.clean_weak_klass_links(is_alive_closure);
1154     }
1155     if (has_return()) {
1156       _ret.clean_weak_klass_links(is_alive_closure);
1157     }
1158   }
1159 
1160 #ifndef PRODUCT
1161   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1162 #endif
1163 };
1164 
1165 // ReceiverTypeData
1166 //
1167 // A ReceiverTypeData is used to access profiling information about a
1168 // dynamic type check.  It consists of a counter which counts the total times
1169 // that the check is reached, and a series of (Klass*, count) pairs
1170 // which are used to store a type profile for the receiver of the check.
1171 class ReceiverTypeData : public CounterData {
1172 protected:
1173   enum {
1174     receiver0_offset = counter_cell_count,
1175     count0_offset,
1176     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1177   };
1178 
1179 public:
1180   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1181     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1182            layout->tag() == DataLayout::virtual_call_data_tag ||
1183            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1184   }
1185 
1186   virtual bool is_ReceiverTypeData() const { return true; }
1187 
1188   static int static_cell_count() {
1189     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1190   }
1191 
1192   virtual int cell_count() const {
1193     return static_cell_count();
1194   }
1195 
1196   // Direct accessors
1197   static uint row_limit() {
1198     return TypeProfileWidth;
1199   }
1200   static int receiver_cell_index(uint row) {
1201     return receiver0_offset + row * receiver_type_row_cell_count;
1202   }
1203   static int receiver_count_cell_index(uint row) {
1204     return count0_offset + row * receiver_type_row_cell_count;
1205   }
1206 
1207   Klass* receiver(uint row) const {
1208     assert(row < row_limit(), "oob");
1209 
1210     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1211     assert(recv == NULL || recv->is_klass(), "wrong type");
1212     return recv;
1213   }
1214 
1215   void set_receiver(uint row, Klass* k) {
1216     assert((uint)row < row_limit(), "oob");
1217     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1218   }
1219 
1220   uint receiver_count(uint row) const {
1221     assert(row < row_limit(), "oob");
1222     return uint_at(receiver_count_cell_index(row));
1223   }
1224 
1225   void set_receiver_count(uint row, uint count) {
1226     assert(row < row_limit(), "oob");
1227     set_uint_at(receiver_count_cell_index(row), count);
1228   }
1229 
1230   void clear_row(uint row) {
1231     assert(row < row_limit(), "oob");
1232     // Clear total count - indicator of polymorphic call site.
1233     // The site may look like as monomorphic after that but
1234     // it allow to have more accurate profiling information because
1235     // there was execution phase change since klasses were unloaded.
1236     // If the site is still polymorphic then MDO will be updated
1237     // to reflect it. But it could be the case that the site becomes
1238     // only bimorphic. Then keeping total count not 0 will be wrong.
1239     // Even if we use monomorphic (when it is not) for compilation
1240     // we will only have trap, deoptimization and recompile again
1241     // with updated MDO after executing method in Interpreter.
1242     // An additional receiver will be recorded in the cleaned row
1243     // during next call execution.
1244     //
1245     // Note: our profiling logic works with empty rows in any slot.
1246     // We do sorting a profiling info (ciCallProfile) for compilation.
1247     //
1248     set_count(0);
1249     set_receiver(row, NULL);
1250     set_receiver_count(row, 0);
1251   }
1252 
1253   // Code generation support
1254   static ByteSize receiver_offset(uint row) {
1255     return cell_offset(receiver_cell_index(row));
1256   }
1257   static ByteSize receiver_count_offset(uint row) {
1258     return cell_offset(receiver_count_cell_index(row));
1259   }
1260   static ByteSize receiver_type_data_size() {
1261     return cell_offset(static_cell_count());
1262   }
1263 
1264   // GC support
1265   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1266 
1267 #ifdef CC_INTERP
1268   static int receiver_type_data_size_in_bytes() {
1269     return cell_offset_in_bytes(static_cell_count());
1270   }
1271 
1272   static Klass *receiver_unchecked(DataLayout* layout, uint row) {
1273     Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
1274     return recv;
1275   }
1276 
1277   static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
1278     const int num_rows = row_limit();
1279     // Receiver already exists?
1280     for (int row = 0; row < num_rows; row++) {
1281       if (receiver_unchecked(layout, row) == rcvr) {
1282         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1283         return;
1284       }
1285     }
1286     // New receiver, find a free slot.
1287     for (int row = 0; row < num_rows; row++) {
1288       if (receiver_unchecked(layout, row) == NULL) {
1289         set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
1290         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1291         return;
1292       }
1293     }
1294     // Receiver did not match any saved receiver and there is no empty row for it.
1295     // Increment total counter to indicate polymorphic case.
1296     increment_count_no_overflow(layout);
1297   }
1298 
1299   static DataLayout* advance(DataLayout* layout) {
1300     return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
1301   }
1302 #endif // CC_INTERP
1303 
1304 #ifndef PRODUCT
1305   void print_receiver_data_on(outputStream* st) const;
1306   void print_data_on(outputStream* st, const char* extra = NULL) const;
1307 #endif
1308 };
1309 
1310 // VirtualCallData
1311 //
1312 // A VirtualCallData is used to access profiling information about a
1313 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1314 class VirtualCallData : public ReceiverTypeData {
1315 public:
1316   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1317     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1318            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1319   }
1320 
1321   virtual bool is_VirtualCallData() const { return true; }
1322 
1323   static int static_cell_count() {
1324     // At this point we could add more profile state, e.g., for arguments.
1325     // But for now it's the same size as the base record type.
1326     return ReceiverTypeData::static_cell_count();
1327   }
1328 
1329   virtual int cell_count() const {
1330     return static_cell_count();
1331   }
1332 
1333   // Direct accessors
1334   static ByteSize virtual_call_data_size() {
1335     return cell_offset(static_cell_count());
1336   }
1337 
1338 #ifdef CC_INTERP
1339   static int virtual_call_data_size_in_bytes() {
1340     return cell_offset_in_bytes(static_cell_count());
1341   }
1342 
1343   static DataLayout* advance(DataLayout* layout) {
1344     return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
1345   }
1346 #endif // CC_INTERP
1347 
1348 #ifndef PRODUCT
1349   void print_data_on(outputStream* st, const char* extra = NULL) const;
1350 #endif
1351 };
1352 
1353 // VirtualCallTypeData
1354 //
1355 // A VirtualCallTypeData is used to access profiling information about
1356 // a virtual call for which we collect type information about
1357 // arguments and return value.
1358 class VirtualCallTypeData : public VirtualCallData {
1359 private:
1360   // entries for arguments if any
1361   TypeStackSlotEntries _args;
1362   // entry for return type if any
1363   ReturnTypeEntry _ret;
1364 
1365   int cell_count_global_offset() const {
1366     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1367   }
1368 
1369   // number of cells not counting the header
1370   int cell_count_no_header() const {
1371     return uint_at(cell_count_global_offset());
1372   }
1373 
1374   void check_number_of_arguments(int total) {
1375     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1376   }
1377 
1378 public:
1379   VirtualCallTypeData(DataLayout* layout) :
1380     VirtualCallData(layout),
1381     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1382     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1383   {
1384     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1385     // Some compilers (VC++) don't want this passed in member initialization list
1386     _args.set_profile_data(this);
1387     _ret.set_profile_data(this);
1388   }
1389 
1390   const TypeStackSlotEntries* args() const {
1391     assert(has_arguments(), "no profiling of arguments");
1392     return &_args;
1393   }
1394 
1395   const ReturnTypeEntry* ret() const {
1396     assert(has_return(), "no profiling of return value");
1397     return &_ret;
1398   }
1399 
1400   virtual bool is_VirtualCallTypeData() const { return true; }
1401 
1402   static int static_cell_count() {
1403     return -1;
1404   }
1405 
1406   static int compute_cell_count(BytecodeStream* stream) {
1407     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1408   }
1409 
1410   static void initialize(DataLayout* dl, int cell_count) {
1411     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1412   }
1413 
1414   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1415 
1416   virtual int cell_count() const {
1417     return VirtualCallData::static_cell_count() +
1418       TypeEntriesAtCall::header_cell_count() +
1419       int_at_unchecked(cell_count_global_offset());
1420   }
1421 
1422   int number_of_arguments() const {
1423     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1424   }
1425 
1426   void set_argument_type(int i, Klass* k) {
1427     assert(has_arguments(), "no arguments!");
1428     intptr_t current = _args.type(i);
1429     _args.set_type(i, TypeEntries::with_status(k, current));
1430   }
1431 
1432   void set_return_type(Klass* k) {
1433     assert(has_return(), "no return!");
1434     intptr_t current = _ret.type();
1435     _ret.set_type(TypeEntries::with_status(k, current));
1436   }
1437 
1438   // An entry for a return value takes less space than an entry for an
1439   // argument, so if the remainder of the number of cells divided by
1440   // the number of cells for an argument is not null, a return value
1441   // is profiled in this object.
1442   bool has_return() const {
1443     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1444     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1445     return res;
1446   }
1447 
1448   // An entry for a return value takes less space than an entry for an
1449   // argument so if the number of cells exceeds the number of cells
1450   // needed for an argument, this object contains type information for
1451   // at least one argument.
1452   bool has_arguments() const {
1453     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1454     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1455     return res;
1456   }
1457 
1458   // Code generation support
1459   static ByteSize args_data_offset() {
1460     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1461   }
1462 
1463   ByteSize argument_type_offset(int i) {
1464     return _args.type_offset(i);
1465   }
1466 
1467   ByteSize return_type_offset() {
1468     return _ret.type_offset();
1469   }
1470 
1471   // GC support
1472   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1473     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1474     if (has_arguments()) {
1475       _args.clean_weak_klass_links(is_alive_closure);
1476     }
1477     if (has_return()) {
1478       _ret.clean_weak_klass_links(is_alive_closure);
1479     }
1480   }
1481 
1482 #ifndef PRODUCT
1483   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1484 #endif
1485 };
1486 
1487 // RetData
1488 //
1489 // A RetData is used to access profiling information for a ret bytecode.
1490 // It is composed of a count of the number of times that the ret has
1491 // been executed, followed by a series of triples of the form
1492 // (bci, count, di) which count the number of times that some bci was the
1493 // target of the ret and cache a corresponding data displacement.
1494 class RetData : public CounterData {
1495 protected:
1496   enum {
1497     bci0_offset = counter_cell_count,
1498     count0_offset,
1499     displacement0_offset,
1500     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1501   };
1502 
1503   void set_bci(uint row, int bci) {
1504     assert((uint)row < row_limit(), "oob");
1505     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1506   }
1507   void release_set_bci(uint row, int bci) {
1508     assert((uint)row < row_limit(), "oob");
1509     // 'release' when setting the bci acts as a valid flag for other
1510     // threads wrt bci_count and bci_displacement.
1511     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1512   }
1513   void set_bci_count(uint row, uint count) {
1514     assert((uint)row < row_limit(), "oob");
1515     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1516   }
1517   void set_bci_displacement(uint row, int disp) {
1518     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1519   }
1520 
1521 public:
1522   RetData(DataLayout* layout) : CounterData(layout) {
1523     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1524   }
1525 
1526   virtual bool is_RetData() const { return true; }
1527 
1528   enum {
1529     no_bci = -1 // value of bci when bci1/2 are not in use.
1530   };
1531 
1532   static int static_cell_count() {
1533     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1534   }
1535 
1536   virtual int cell_count() const {
1537     return static_cell_count();
1538   }
1539 
1540   static uint row_limit() {
1541     return BciProfileWidth;
1542   }
1543   static int bci_cell_index(uint row) {
1544     return bci0_offset + row * ret_row_cell_count;
1545   }
1546   static int bci_count_cell_index(uint row) {
1547     return count0_offset + row * ret_row_cell_count;
1548   }
1549   static int bci_displacement_cell_index(uint row) {
1550     return displacement0_offset + row * ret_row_cell_count;
1551   }
1552 
1553   // Direct accessors
1554   int bci(uint row) const {
1555     return int_at(bci_cell_index(row));
1556   }
1557   uint bci_count(uint row) const {
1558     return uint_at(bci_count_cell_index(row));
1559   }
1560   int bci_displacement(uint row) const {
1561     return int_at(bci_displacement_cell_index(row));
1562   }
1563 
1564   // Interpreter Runtime support
1565   address fixup_ret(int return_bci, MethodData* mdo);
1566 
1567   // Code generation support
1568   static ByteSize bci_offset(uint row) {
1569     return cell_offset(bci_cell_index(row));
1570   }
1571   static ByteSize bci_count_offset(uint row) {
1572     return cell_offset(bci_count_cell_index(row));
1573   }
1574   static ByteSize bci_displacement_offset(uint row) {
1575     return cell_offset(bci_displacement_cell_index(row));
1576   }
1577 
1578 #ifdef CC_INTERP
1579   static DataLayout* advance(MethodData *md, int bci);
1580 #endif // CC_INTERP
1581 
1582   // Specific initialization.
1583   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1584 
1585 #ifndef PRODUCT
1586   void print_data_on(outputStream* st, const char* extra = NULL) const;
1587 #endif
1588 };
1589 
1590 // BranchData
1591 //
1592 // A BranchData is used to access profiling data for a two-way branch.
1593 // It consists of taken and not_taken counts as well as a data displacement
1594 // for the taken case.
1595 class BranchData : public JumpData {
1596 protected:
1597   enum {
1598     not_taken_off_set = jump_cell_count,
1599     branch_cell_count
1600   };
1601 
1602   void set_displacement(int displacement) {
1603     set_int_at(displacement_off_set, displacement);
1604   }
1605 
1606 public:
1607   BranchData(DataLayout* layout) : JumpData(layout) {
1608     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1609   }
1610 
1611   virtual bool is_BranchData() const { return true; }
1612 
1613   static int static_cell_count() {
1614     return branch_cell_count;
1615   }
1616 
1617   virtual int cell_count() const {
1618     return static_cell_count();
1619   }
1620 
1621   // Direct accessor
1622   uint not_taken() const {
1623     return uint_at(not_taken_off_set);
1624   }
1625 
1626   void set_not_taken(uint cnt) {
1627     set_uint_at(not_taken_off_set, cnt);
1628   }
1629 
1630   uint inc_not_taken() {
1631     uint cnt = not_taken() + 1;
1632     // Did we wrap? Will compiler screw us??
1633     if (cnt == 0) cnt--;
1634     set_uint_at(not_taken_off_set, cnt);
1635     return cnt;
1636   }
1637 
1638   // Code generation support
1639   static ByteSize not_taken_offset() {
1640     return cell_offset(not_taken_off_set);
1641   }
1642   static ByteSize branch_data_size() {
1643     return cell_offset(branch_cell_count);
1644   }
1645 
1646 #ifdef CC_INTERP
1647   static int branch_data_size_in_bytes() {
1648     return cell_offset_in_bytes(branch_cell_count);
1649   }
1650 
1651   static void increment_not_taken_count_no_overflow(DataLayout* layout) {
1652     increment_uint_at_no_overflow(layout, not_taken_off_set);
1653   }
1654 
1655   static DataLayout* advance_not_taken(DataLayout* layout) {
1656     return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
1657   }
1658 #endif // CC_INTERP
1659 
1660   // Specific initialization.
1661   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1662 
1663 #ifndef PRODUCT
1664   void print_data_on(outputStream* st, const char* extra = NULL) const;
1665 #endif
1666 };
1667 
1668 // ArrayData
1669 //
1670 // A ArrayData is a base class for accessing profiling data which does
1671 // not have a statically known size.  It consists of an array length
1672 // and an array start.
1673 class ArrayData : public ProfileData {
1674 protected:
1675   friend class DataLayout;
1676 
1677   enum {
1678     array_len_off_set,
1679     array_start_off_set
1680   };
1681 
1682   uint array_uint_at(int index) const {
1683     int aindex = index + array_start_off_set;
1684     return uint_at(aindex);
1685   }
1686   int array_int_at(int index) const {
1687     int aindex = index + array_start_off_set;
1688     return int_at(aindex);
1689   }
1690   oop array_oop_at(int index) const {
1691     int aindex = index + array_start_off_set;
1692     return oop_at(aindex);
1693   }
1694   void array_set_int_at(int index, int value) {
1695     int aindex = index + array_start_off_set;
1696     set_int_at(aindex, value);
1697   }
1698 
1699 #ifdef CC_INTERP
1700   // Static low level accessors for DataLayout with ArrayData's semantics.
1701 
1702   static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
1703     int aindex = index + array_start_off_set;
1704     increment_uint_at_no_overflow(layout, aindex);
1705   }
1706 
1707   static int array_int_at(DataLayout* layout, int index) {
1708     int aindex = index + array_start_off_set;
1709     return int_at(layout, aindex);
1710   }
1711 #endif // CC_INTERP
1712 
1713   // Code generation support for subclasses.
1714   static ByteSize array_element_offset(int index) {
1715     return cell_offset(array_start_off_set + index);
1716   }
1717 
1718 public:
1719   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1720 
1721   virtual bool is_ArrayData() const { return true; }
1722 
1723   static int static_cell_count() {
1724     return -1;
1725   }
1726 
1727   int array_len() const {
1728     return int_at_unchecked(array_len_off_set);
1729   }
1730 
1731   virtual int cell_count() const {
1732     return array_len() + 1;
1733   }
1734 
1735   // Code generation support
1736   static ByteSize array_len_offset() {
1737     return cell_offset(array_len_off_set);
1738   }
1739   static ByteSize array_start_offset() {
1740     return cell_offset(array_start_off_set);
1741   }
1742 };
1743 
1744 // MultiBranchData
1745 //
1746 // A MultiBranchData is used to access profiling information for
1747 // a multi-way branch (*switch bytecodes).  It consists of a series
1748 // of (count, displacement) pairs, which count the number of times each
1749 // case was taken and specify the data displacment for each branch target.
1750 class MultiBranchData : public ArrayData {
1751 protected:
1752   enum {
1753     default_count_off_set,
1754     default_disaplacement_off_set,
1755     case_array_start
1756   };
1757   enum {
1758     relative_count_off_set,
1759     relative_displacement_off_set,
1760     per_case_cell_count
1761   };
1762 
1763   void set_default_displacement(int displacement) {
1764     array_set_int_at(default_disaplacement_off_set, displacement);
1765   }
1766   void set_displacement_at(int index, int displacement) {
1767     array_set_int_at(case_array_start +
1768                      index * per_case_cell_count +
1769                      relative_displacement_off_set,
1770                      displacement);
1771   }
1772 
1773 public:
1774   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1775     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1776   }
1777 
1778   virtual bool is_MultiBranchData() const { return true; }
1779 
1780   static int compute_cell_count(BytecodeStream* stream);
1781 
1782   int number_of_cases() const {
1783     int alen = array_len() - 2; // get rid of default case here.
1784     assert(alen % per_case_cell_count == 0, "must be even");
1785     return (alen / per_case_cell_count);
1786   }
1787 
1788   uint default_count() const {
1789     return array_uint_at(default_count_off_set);
1790   }
1791   int default_displacement() const {
1792     return array_int_at(default_disaplacement_off_set);
1793   }
1794 
1795   uint count_at(int index) const {
1796     return array_uint_at(case_array_start +
1797                          index * per_case_cell_count +
1798                          relative_count_off_set);
1799   }
1800   int displacement_at(int index) const {
1801     return array_int_at(case_array_start +
1802                         index * per_case_cell_count +
1803                         relative_displacement_off_set);
1804   }
1805 
1806   // Code generation support
1807   static ByteSize default_count_offset() {
1808     return array_element_offset(default_count_off_set);
1809   }
1810   static ByteSize default_displacement_offset() {
1811     return array_element_offset(default_disaplacement_off_set);
1812   }
1813   static ByteSize case_count_offset(int index) {
1814     return case_array_offset() +
1815            (per_case_size() * index) +
1816            relative_count_offset();
1817   }
1818   static ByteSize case_array_offset() {
1819     return array_element_offset(case_array_start);
1820   }
1821   static ByteSize per_case_size() {
1822     return in_ByteSize(per_case_cell_count) * cell_size;
1823   }
1824   static ByteSize relative_count_offset() {
1825     return in_ByteSize(relative_count_off_set) * cell_size;
1826   }
1827   static ByteSize relative_displacement_offset() {
1828     return in_ByteSize(relative_displacement_off_set) * cell_size;
1829   }
1830 
1831 #ifdef CC_INTERP
1832   static void increment_count_no_overflow(DataLayout* layout, int index) {
1833     if (index == -1) {
1834       increment_array_uint_at_no_overflow(layout, default_count_off_set);
1835     } else {
1836       increment_array_uint_at_no_overflow(layout, case_array_start +
1837                                                   index * per_case_cell_count +
1838                                                   relative_count_off_set);
1839     }
1840   }
1841 
1842   static DataLayout* advance(DataLayout* layout, int index) {
1843     if (index == -1) {
1844       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
1845     } else {
1846       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
1847                                                                               index * per_case_cell_count +
1848                                                                               relative_displacement_off_set));
1849     }
1850   }
1851 #endif // CC_INTERP
1852 
1853   // Specific initialization.
1854   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1855 
1856 #ifndef PRODUCT
1857   void print_data_on(outputStream* st, const char* extra = NULL) const;
1858 #endif
1859 };
1860 
1861 class ArgInfoData : public ArrayData {
1862 
1863 public:
1864   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1865     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1866   }
1867 
1868   virtual bool is_ArgInfoData() const { return true; }
1869 
1870 
1871   int number_of_args() const {
1872     return array_len();
1873   }
1874 
1875   uint arg_modified(int arg) const {
1876     return array_uint_at(arg);
1877   }
1878 
1879   void set_arg_modified(int arg, uint val) {
1880     array_set_int_at(arg, val);
1881   }
1882 
1883 #ifndef PRODUCT
1884   void print_data_on(outputStream* st, const char* extra = NULL) const;
1885 #endif
1886 };
1887 
1888 // ParametersTypeData
1889 //
1890 // A ParametersTypeData is used to access profiling information about
1891 // types of parameters to a method
1892 class ParametersTypeData : public ArrayData {
1893 
1894 private:
1895   TypeStackSlotEntries _parameters;
1896 
1897   static int stack_slot_local_offset(int i) {
1898     assert_profiling_enabled();
1899     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1900   }
1901 
1902   static int type_local_offset(int i) {
1903     assert_profiling_enabled();
1904     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1905   }
1906 
1907   static bool profiling_enabled();
1908   static void assert_profiling_enabled() {
1909     assert(profiling_enabled(), "method parameters profiling should be on");
1910   }
1911 
1912 public:
1913   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1914     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1915     // Some compilers (VC++) don't want this passed in member initialization list
1916     _parameters.set_profile_data(this);
1917   }
1918 
1919   static int compute_cell_count(Method* m);
1920 
1921   virtual bool is_ParametersTypeData() const { return true; }
1922 
1923   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1924 
1925   int number_of_parameters() const {
1926     return array_len() / TypeStackSlotEntries::per_arg_count();
1927   }
1928 
1929   const TypeStackSlotEntries* parameters() const { return &_parameters; }
1930 
1931   uint stack_slot(int i) const {
1932     return _parameters.stack_slot(i);
1933   }
1934 
1935   void set_type(int i, Klass* k) {
1936     intptr_t current = _parameters.type(i);
1937     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1938   }
1939 
1940   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1941     _parameters.clean_weak_klass_links(is_alive_closure);
1942   }
1943 
1944 #ifndef PRODUCT
1945   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1946 #endif
1947 
1948   static ByteSize stack_slot_offset(int i) {
1949     return cell_offset(stack_slot_local_offset(i));
1950   }
1951 
1952   static ByteSize type_offset(int i) {
1953     return cell_offset(type_local_offset(i));
1954   }
1955 };
1956 
1957 // SpeculativeTrapData
1958 //
1959 // A SpeculativeTrapData is used to record traps due to type
1960 // speculation. It records the root of the compilation: that type
1961 // speculation is wrong in the context of one compilation (for
1962 // method1) doesn't mean it's wrong in the context of another one (for
1963 // method2). Type speculation could have more/different data in the
1964 // context of the compilation of method2 and it's worthwhile to try an
1965 // optimization that failed for compilation of method1 in the context
1966 // of compilation of method2.
1967 // Space for SpeculativeTrapData entries is allocated from the extra
1968 // data space in the MDO. If we run out of space, the trap data for
1969 // the ProfileData at that bci is updated.
1970 class SpeculativeTrapData : public ProfileData {
1971 protected:
1972   enum {
1973     speculative_trap_method,
1974     speculative_trap_cell_count
1975   };
1976 public:
1977   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1978     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1979   }
1980 
1981   virtual bool is_SpeculativeTrapData() const { return true; }
1982 
1983   static int static_cell_count() {
1984     return speculative_trap_cell_count;
1985   }
1986 
1987   virtual int cell_count() const {
1988     return static_cell_count();
1989   }
1990 
1991   // Direct accessor
1992   Method* method() const {
1993     return (Method*)intptr_at(speculative_trap_method);
1994   }
1995 
1996   void set_method(Method* m) {
1997     set_intptr_at(speculative_trap_method, (intptr_t)m);
1998   }
1999 
2000   static ByteSize method_offset() {
2001     return cell_offset(speculative_trap_method);
2002   }
2003 
2004 #ifndef PRODUCT
2005   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
2006 #endif
2007 };
2008 
2009 // MethodData*
2010 //
2011 // A MethodData* holds information which has been collected about
2012 // a method.  Its layout looks like this:
2013 //
2014 // -----------------------------
2015 // | header                    |
2016 // | klass                     |
2017 // -----------------------------
2018 // | method                    |
2019 // | size of the MethodData* |
2020 // -----------------------------
2021 // | Data entries...           |
2022 // |   (variable size)         |
2023 // |                           |
2024 // .                           .
2025 // .                           .
2026 // .                           .
2027 // |                           |
2028 // -----------------------------
2029 //
2030 // The data entry area is a heterogeneous array of DataLayouts. Each
2031 // DataLayout in the array corresponds to a specific bytecode in the
2032 // method.  The entries in the array are sorted by the corresponding
2033 // bytecode.  Access to the data is via resource-allocated ProfileData,
2034 // which point to the underlying blocks of DataLayout structures.
2035 //
2036 // During interpretation, if profiling in enabled, the interpreter
2037 // maintains a method data pointer (mdp), which points at the entry
2038 // in the array corresponding to the current bci.  In the course of
2039 // intepretation, when a bytecode is encountered that has profile data
2040 // associated with it, the entry pointed to by mdp is updated, then the
2041 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
2042 // is NULL to begin with, the interpreter assumes that the current method
2043 // is not (yet) being profiled.
2044 //
2045 // In MethodData* parlance, "dp" is a "data pointer", the actual address
2046 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
2047 // from the base of the data entry array.  A "displacement" is the byte offset
2048 // in certain ProfileData objects that indicate the amount the mdp must be
2049 // adjusted in the event of a change in control flow.
2050 //
2051 
2052 CC_INTERP_ONLY(class BytecodeInterpreter;)
2053 
2054 class MethodData : public Metadata {
2055   friend class VMStructs;
2056   CC_INTERP_ONLY(friend class BytecodeInterpreter;)
2057 private:
2058   friend class ProfileData;
2059 
2060   // Back pointer to the Method*
2061   Method* _method;
2062 
2063   // Size of this oop in bytes
2064   int _size;
2065 
2066   // Cached hint for bci_to_dp and bci_to_data
2067   int _hint_di;
2068 
2069   Mutex _extra_data_lock;
2070 
2071   MethodData(methodHandle method, int size, TRAPS);
2072 public:
2073   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
2074   MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
2075 
2076   bool is_methodData() const volatile { return true; }
2077 
2078   // Whole-method sticky bits and flags
2079   enum {
2080     _trap_hist_limit    = 18,   // decoupled from Deoptimization::Reason_LIMIT
2081     _trap_hist_mask     = max_jubyte,
2082     _extra_data_count   = 4     // extra DataLayout headers, for trap history
2083   }; // Public flag values
2084 private:
2085   uint _nof_decompiles;             // count of all nmethod removals
2086   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
2087   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
2088   union {
2089     intptr_t _align;
2090     u1 _array[_trap_hist_limit];
2091   } _trap_hist;
2092 
2093   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2094   intx              _eflags;          // flags on escape information
2095   intx              _arg_local;       // bit set of non-escaping arguments
2096   intx              _arg_stack;       // bit set of stack-allocatable arguments
2097   intx              _arg_returned;    // bit set of returned arguments
2098 
2099   int _creation_mileage;              // method mileage at MDO creation
2100 
2101   // How many invocations has this MDO seen?
2102   // These counters are used to determine the exact age of MDO.
2103   // We need those because in tiered a method can be concurrently
2104   // executed at different levels.
2105   InvocationCounter _invocation_counter;
2106   // Same for backedges.
2107   InvocationCounter _backedge_counter;
2108   // Counter values at the time profiling started.
2109   int               _invocation_counter_start;
2110   int               _backedge_counter_start;
2111   // Number of loops and blocks is computed when compiling the first
2112   // time with C1. It is used to determine if method is trivial.
2113   short             _num_loops;
2114   short             _num_blocks;
2115   // Highest compile level this method has ever seen.
2116   u1                _highest_comp_level;
2117   // Same for OSR level
2118   u1                _highest_osr_comp_level;
2119   // Does this method contain anything worth profiling?
2120   bool              _would_profile;
2121 
2122   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
2123   int _data_size;
2124 
2125   // data index for the area dedicated to parameters. -1 if no
2126   // parameter profiling.
2127   int _parameters_type_data_di;
2128 
2129   // Beginning of the data entries
2130   intptr_t _data[1];
2131 
2132   // Helper for size computation
2133   static int compute_data_size(BytecodeStream* stream);
2134   static int bytecode_cell_count(Bytecodes::Code code);
2135   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2136   enum { no_profile_data = -1, variable_cell_count = -2 };
2137 
2138   // Helper for initialization
2139   DataLayout* data_layout_at(int data_index) const {
2140     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2141     return (DataLayout*) (((address)_data) + data_index);
2142   }
2143 
2144   // Initialize an individual data segment.  Returns the size of
2145   // the segment in bytes.
2146   int initialize_data(BytecodeStream* stream, int data_index);
2147 
2148   // Helper for data_at
2149   DataLayout* limit_data_position() const {
2150     return (DataLayout*)((address)data_base() + _data_size);
2151   }
2152   bool out_of_bounds(int data_index) const {
2153     return data_index >= data_size();
2154   }
2155 
2156   // Give each of the data entries a chance to perform specific
2157   // data initialization.
2158   void post_initialize(BytecodeStream* stream);
2159 
2160   // hint accessors
2161   int      hint_di() const  { return _hint_di; }
2162   void set_hint_di(int di)  {
2163     assert(!out_of_bounds(di), "hint_di out of bounds");
2164     _hint_di = di;
2165   }
2166   ProfileData* data_before(int bci) {
2167     // avoid SEGV on this edge case
2168     if (data_size() == 0)
2169       return NULL;
2170     int hint = hint_di();
2171     if (data_layout_at(hint)->bci() <= bci)
2172       return data_at(hint);
2173     return first_data();
2174   }
2175 
2176   // What is the index of the first data entry?
2177   int first_di() const { return 0; }
2178 
2179   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2180   // Find or create an extra ProfileData:
2181   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2182 
2183   // return the argument info cell
2184   ArgInfoData *arg_info();
2185 
2186   enum {
2187     no_type_profile = 0,
2188     type_profile_jsr292 = 1,
2189     type_profile_all = 2
2190   };
2191 
2192   static bool profile_jsr292(methodHandle m, int bci);
2193   static int profile_arguments_flag();
2194   static bool profile_arguments_jsr292_only();
2195   static bool profile_all_arguments();
2196   static bool profile_arguments_for_invoke(methodHandle m, int bci);
2197   static int profile_return_flag();
2198   static bool profile_all_return();
2199   static bool profile_return_for_invoke(methodHandle m, int bci);
2200   static int profile_parameters_flag();
2201   static bool profile_parameters_jsr292_only();
2202   static bool profile_all_parameters();
2203 
2204   void clean_extra_data(BoolObjectClosure* is_alive);
2205   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2206   void verify_extra_data_clean(BoolObjectClosure* is_alive);
2207 
2208 public:
2209   static int header_size() {
2210     return sizeof(MethodData)/wordSize;
2211   }
2212 
2213   // Compute the size of a MethodData* before it is created.
2214   static int compute_allocation_size_in_bytes(methodHandle method);
2215   static int compute_allocation_size_in_words(methodHandle method);
2216   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2217 
2218   // Determine if a given bytecode can have profile information.
2219   static bool bytecode_has_profile(Bytecodes::Code code) {
2220     return bytecode_cell_count(code) != no_profile_data;
2221   }
2222 
2223   // reset into original state
2224   void init();
2225 
2226   // My size
2227   int size_in_bytes() const { return _size; }
2228   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2229 #if INCLUDE_SERVICES
2230   void collect_statistics(KlassSizeStats *sz) const;
2231 #endif
2232 
2233   int      creation_mileage() const  { return _creation_mileage; }
2234   void set_creation_mileage(int x)   { _creation_mileage = x; }
2235 
2236   int invocation_count() {
2237     if (invocation_counter()->carry()) {
2238       return InvocationCounter::count_limit;
2239     }
2240     return invocation_counter()->count();
2241   }
2242   int backedge_count() {
2243     if (backedge_counter()->carry()) {
2244       return InvocationCounter::count_limit;
2245     }
2246     return backedge_counter()->count();
2247   }
2248 
2249   int invocation_count_start() {
2250     if (invocation_counter()->carry()) {
2251       return 0;
2252     }
2253     return _invocation_counter_start;
2254   }
2255 
2256   int backedge_count_start() {
2257     if (backedge_counter()->carry()) {
2258       return 0;
2259     }
2260     return _backedge_counter_start;
2261   }
2262 
2263   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2264   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2265 
2266   void reset_start_counters() {
2267     _invocation_counter_start = invocation_count();
2268     _backedge_counter_start = backedge_count();
2269   }
2270 
2271   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2272   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2273 
2274   void set_would_profile(bool p)              { _would_profile = p;    }
2275   bool would_profile() const                  { return _would_profile; }
2276 
2277   int highest_comp_level() const              { return _highest_comp_level;      }
2278   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
2279   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
2280   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
2281 
2282   int num_loops() const                       { return _num_loops;  }
2283   void set_num_loops(int n)                   { _num_loops = n;     }
2284   int num_blocks() const                      { return _num_blocks; }
2285   void set_num_blocks(int n)                  { _num_blocks = n;    }
2286 
2287   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2288   static int mileage_of(Method* m);
2289 
2290   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2291   enum EscapeFlag {
2292     estimated    = 1 << 0,
2293     return_local = 1 << 1,
2294     return_allocated = 1 << 2,
2295     allocated_escapes = 1 << 3,
2296     unknown_modified = 1 << 4
2297   };
2298 
2299   intx eflags()                                  { return _eflags; }
2300   intx arg_local()                               { return _arg_local; }
2301   intx arg_stack()                               { return _arg_stack; }
2302   intx arg_returned()                            { return _arg_returned; }
2303   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2304                                                    assert(aid != NULL, "arg_info must be not null");
2305                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2306                                                    return aid->arg_modified(a); }
2307 
2308   void set_eflags(intx v)                        { _eflags = v; }
2309   void set_arg_local(intx v)                     { _arg_local = v; }
2310   void set_arg_stack(intx v)                     { _arg_stack = v; }
2311   void set_arg_returned(intx v)                  { _arg_returned = v; }
2312   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2313                                                    assert(aid != NULL, "arg_info must be not null");
2314                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2315                                                    aid->set_arg_modified(a, v); }
2316 
2317   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2318 
2319   // Location and size of data area
2320   address data_base() const {
2321     return (address) _data;
2322   }
2323   int data_size() const {
2324     return _data_size;
2325   }
2326 
2327   // Accessors
2328   Method* method() const { return _method; }
2329 
2330   // Get the data at an arbitrary (sort of) data index.
2331   ProfileData* data_at(int data_index) const;
2332 
2333   // Walk through the data in order.
2334   ProfileData* first_data() const { return data_at(first_di()); }
2335   ProfileData* next_data(ProfileData* current) const;
2336   bool is_valid(ProfileData* current) const { return current != NULL; }
2337 
2338   // Convert a dp (data pointer) to a di (data index).
2339   int dp_to_di(address dp) const {
2340     return dp - ((address)_data);
2341   }
2342 
2343   address di_to_dp(int di) {
2344     return (address)data_layout_at(di);
2345   }
2346 
2347   // bci to di/dp conversion.
2348   address bci_to_dp(int bci);
2349   int bci_to_di(int bci) {
2350     return dp_to_di(bci_to_dp(bci));
2351   }
2352 
2353   // Get the data at an arbitrary bci, or NULL if there is none.
2354   ProfileData* bci_to_data(int bci);
2355 
2356   // Same, but try to create an extra_data record if one is needed:
2357   ProfileData* allocate_bci_to_data(int bci, Method* m) {
2358     ProfileData* data = NULL;
2359     // If m not NULL, try to allocate a SpeculativeTrapData entry
2360     if (m == NULL) {
2361       data = bci_to_data(bci);
2362     }
2363     if (data != NULL) {
2364       return data;
2365     }
2366     data = bci_to_extra_data(bci, m, true);
2367     if (data != NULL) {
2368       return data;
2369     }
2370     // If SpeculativeTrapData allocation fails try to allocate a
2371     // regular entry
2372     data = bci_to_data(bci);
2373     if (data != NULL) {
2374       return data;
2375     }
2376     return bci_to_extra_data(bci, NULL, true);
2377   }
2378 
2379   // Add a handful of extra data records, for trap tracking.
2380   DataLayout* extra_data_base() const { return limit_data_position(); }
2381   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2382   int extra_data_size() const { return (address)extra_data_limit()
2383                                - (address)extra_data_base(); }
2384   static DataLayout* next_extra(DataLayout* dp);
2385 
2386   // Return (uint)-1 for overflow.
2387   uint trap_count(int reason) const {
2388     assert((uint)reason < _trap_hist_limit, "oob");
2389     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2390   }
2391   // For loops:
2392   static uint trap_reason_limit() { return _trap_hist_limit; }
2393   static uint trap_count_limit()  { return _trap_hist_mask; }
2394   uint inc_trap_count(int reason) {
2395     // Count another trap, anywhere in this method.
2396     assert(reason >= 0, "must be single trap");
2397     if ((uint)reason < _trap_hist_limit) {
2398       uint cnt1 = 1 + _trap_hist._array[reason];
2399       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2400         _trap_hist._array[reason] = cnt1;
2401         return cnt1;
2402       } else {
2403         return _trap_hist_mask + (++_nof_overflow_traps);
2404       }
2405     } else {
2406       // Could not represent the count in the histogram.
2407       return (++_nof_overflow_traps);
2408     }
2409   }
2410 
2411   uint overflow_trap_count() const {
2412     return _nof_overflow_traps;
2413   }
2414   uint overflow_recompile_count() const {
2415     return _nof_overflow_recompiles;
2416   }
2417   void inc_overflow_recompile_count() {
2418     _nof_overflow_recompiles += 1;
2419   }
2420   uint decompile_count() const {
2421     return _nof_decompiles;
2422   }
2423   void inc_decompile_count() {
2424     _nof_decompiles += 1;
2425     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2426       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2427     }
2428   }
2429 
2430   // Return pointer to area dedicated to parameters in MDO
2431   ParametersTypeData* parameters_type_data() const {
2432     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2433   }
2434 
2435   int parameters_type_data_di() const {
2436     assert(_parameters_type_data_di != -1, "no args type data");
2437     return _parameters_type_data_di;
2438   }
2439 
2440   // Support for code generation
2441   static ByteSize data_offset() {
2442     return byte_offset_of(MethodData, _data[0]);
2443   }
2444 
2445   static ByteSize invocation_counter_offset() {
2446     return byte_offset_of(MethodData, _invocation_counter);
2447   }
2448   static ByteSize backedge_counter_offset() {
2449     return byte_offset_of(MethodData, _backedge_counter);
2450   }
2451 
2452   static ByteSize parameters_type_data_di_offset() {
2453     return byte_offset_of(MethodData, _parameters_type_data_di);
2454   }
2455 
2456   // Deallocation support - no pointer fields to deallocate
2457   void deallocate_contents(ClassLoaderData* loader_data) {}
2458 
2459   // GC support
2460   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2461 
2462   // Printing
2463 #ifndef PRODUCT
2464   void print_on      (outputStream* st) const;
2465 #endif
2466   void print_value_on(outputStream* st) const;
2467 
2468 #ifndef PRODUCT
2469   // printing support for method data
2470   void print_data_on(outputStream* st) const;
2471 #endif
2472 
2473   const char* internal_name() const { return "{method data}"; }
2474 
2475   // verification
2476   void verify_on(outputStream* st);
2477   void verify_data_on(outputStream* st);
2478 
2479   static bool profile_parameters_for_method(methodHandle m);
2480   static bool profile_arguments();
2481   static bool profile_return();
2482   static bool profile_parameters();
2483   static bool profile_return_jsr292_only();
2484 
2485   void clean_method_data(BoolObjectClosure* is_alive);
2486 };
2487 
2488 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP