1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/type.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 // Optimization - Graph Style
  38 
  39 class Chaitin;
  40 class NamedCounter;
  41 class MultiNode;
  42 class  SafePointNode;
  43 class   CallNode;
  44 class     CallJavaNode;
  45 class       CallStaticJavaNode;
  46 class       CallDynamicJavaNode;
  47 class     CallRuntimeNode;
  48 class       CallLeafNode;
  49 class         CallLeafNoFPNode;
  50 class     AllocateNode;
  51 class       AllocateArrayNode;
  52 class     BoxLockNode;
  53 class     LockNode;
  54 class     UnlockNode;
  55 class JVMState;
  56 class OopMap;
  57 class State;
  58 class StartNode;
  59 class MachCallNode;
  60 class FastLockNode;
  61 
  62 //------------------------------StartNode--------------------------------------
  63 // The method start node
  64 class StartNode : public MultiNode {
  65   virtual uint cmp( const Node &n ) const;
  66   virtual uint size_of() const; // Size is bigger
  67 public:
  68   const TypeTuple *_domain;
  69   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  70     init_class_id(Class_Start);
  71     init_req(0,this);
  72     init_req(1,root);
  73   }
  74   virtual int Opcode() const;
  75   virtual bool pinned() const { return true; };
  76   virtual const Type *bottom_type() const;
  77   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  78   virtual const Type *Value( PhaseTransform *phase ) const;
  79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  80   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  81   virtual const RegMask &in_RegMask(uint) const;
  82   virtual Node *match( const ProjNode *proj, const Matcher *m );
  83   virtual uint ideal_reg() const { return 0; }
  84 #ifndef PRODUCT
  85   virtual void  dump_spec(outputStream *st) const;
  86 #endif
  87 };
  88 
  89 //------------------------------StartOSRNode-----------------------------------
  90 // The method start node for on stack replacement code
  91 class StartOSRNode : public StartNode {
  92 public:
  93   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  94   virtual int   Opcode() const;
  95   static  const TypeTuple *osr_domain();
  96 };
  97 
  98 
  99 //------------------------------ParmNode---------------------------------------
 100 // Incoming parameters
 101 class ParmNode : public ProjNode {
 102   static const char * const names[TypeFunc::Parms+1];
 103 public:
 104   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 105     init_class_id(Class_Parm);
 106   }
 107   virtual int Opcode() const;
 108   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 109   virtual uint ideal_reg() const;
 110 #ifndef PRODUCT
 111   virtual void dump_spec(outputStream *st) const;
 112 #endif
 113 };
 114 
 115 
 116 //------------------------------ReturnNode-------------------------------------
 117 // Return from subroutine node
 118 class ReturnNode : public Node {
 119 public:
 120   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 121   virtual int Opcode() const;
 122   virtual bool  is_CFG() const { return true; }
 123   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 124   virtual bool depends_only_on_test() const { return false; }
 125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 126   virtual const Type *Value( PhaseTransform *phase ) const;
 127   virtual uint ideal_reg() const { return NotAMachineReg; }
 128   virtual uint match_edge(uint idx) const;
 129 #ifndef PRODUCT
 130   virtual void dump_req(outputStream *st = tty) const;
 131 #endif
 132 };
 133 
 134 
 135 //------------------------------RethrowNode------------------------------------
 136 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 137 // ends the current basic block like a ReturnNode.  Restores registers and
 138 // unwinds stack.  Rethrow happens in the caller's method.
 139 class RethrowNode : public Node {
 140  public:
 141   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 142   virtual int Opcode() const;
 143   virtual bool  is_CFG() const { return true; }
 144   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 145   virtual bool depends_only_on_test() const { return false; }
 146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 147   virtual const Type *Value( PhaseTransform *phase ) const;
 148   virtual uint match_edge(uint idx) const;
 149   virtual uint ideal_reg() const { return NotAMachineReg; }
 150 #ifndef PRODUCT
 151   virtual void dump_req(outputStream *st = tty) const;
 152 #endif
 153 };
 154 
 155 
 156 //------------------------------TailCallNode-----------------------------------
 157 // Pop stack frame and jump indirect
 158 class TailCallNode : public ReturnNode {
 159 public:
 160   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 161     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 162     init_req(TypeFunc::Parms, target);
 163     init_req(TypeFunc::Parms+1, moop);
 164   }
 165 
 166   virtual int Opcode() const;
 167   virtual uint match_edge(uint idx) const;
 168 };
 169 
 170 //------------------------------TailJumpNode-----------------------------------
 171 // Pop stack frame and jump indirect
 172 class TailJumpNode : public ReturnNode {
 173 public:
 174   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 175     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 176     init_req(TypeFunc::Parms, target);
 177     init_req(TypeFunc::Parms+1, ex_oop);
 178   }
 179 
 180   virtual int Opcode() const;
 181   virtual uint match_edge(uint idx) const;
 182 };
 183 
 184 //-------------------------------JVMState-------------------------------------
 185 // A linked list of JVMState nodes captures the whole interpreter state,
 186 // plus GC roots, for all active calls at some call site in this compilation
 187 // unit.  (If there is no inlining, then the list has exactly one link.)
 188 // This provides a way to map the optimized program back into the interpreter,
 189 // or to let the GC mark the stack.
 190 class JVMState : public ResourceObj {
 191   friend class VMStructs;
 192 public:
 193   typedef enum {
 194     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 195     Reexecute_False     =  0, // false       -- do not reexecute
 196     Reexecute_True      =  1  // true        -- reexecute the bytecode
 197   } ReexecuteState; //Reexecute State
 198 
 199 private:
 200   JVMState*         _caller;    // List pointer for forming scope chains
 201   uint              _depth;     // One more than caller depth, or one.
 202   uint              _locoff;    // Offset to locals in input edge mapping
 203   uint              _stkoff;    // Offset to stack in input edge mapping
 204   uint              _monoff;    // Offset to monitors in input edge mapping
 205   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 206   uint              _endoff;    // Offset to end of input edge mapping
 207   uint              _sp;        // Jave Expression Stack Pointer for this state
 208   int               _bci;       // Byte Code Index of this JVM point
 209   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 210   ciMethod*         _method;    // Method Pointer
 211   SafePointNode*    _map;       // Map node associated with this scope
 212 public:
 213   friend class Compile;
 214   friend class PreserveReexecuteState;
 215 
 216   // Because JVMState objects live over the entire lifetime of the
 217   // Compile object, they are allocated into the comp_arena, which
 218   // does not get resource marked or reset during the compile process
 219   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 220   void operator delete( void * ) { } // fast deallocation
 221 
 222   // Create a new JVMState, ready for abstract interpretation.
 223   JVMState(ciMethod* method, JVMState* caller);
 224   JVMState(int stack_size);  // root state; has a null method
 225 
 226   // Access functions for the JVM
 227   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 228   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 229   uint              locoff() const { return _locoff; }
 230   uint              stkoff() const { return _stkoff; }
 231   uint              argoff() const { return _stkoff + _sp; }
 232   uint              monoff() const { return _monoff; }
 233   uint              scloff() const { return _scloff; }
 234   uint              endoff() const { return _endoff; }
 235   uint              oopoff() const { return debug_end(); }
 236 
 237   int            loc_size() const { return stkoff() - locoff(); }
 238   int            stk_size() const { return monoff() - stkoff(); }
 239   int            mon_size() const { return scloff() - monoff(); }
 240   int            scl_size() const { return endoff() - scloff(); }
 241 
 242   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 243   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 244   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 245   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 246 
 247   uint                      sp() const { return _sp; }
 248   int                      bci() const { return _bci; }
 249   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 250   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 251   bool              has_method() const { return _method != NULL; }
 252   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 253   JVMState*             caller() const { return _caller; }
 254   SafePointNode*           map() const { return _map; }
 255   uint                   depth() const { return _depth; }
 256   uint             debug_start() const; // returns locoff of root caller
 257   uint               debug_end() const; // returns endoff of self
 258   uint              debug_size() const {
 259     return loc_size() + sp() + mon_size() + scl_size();
 260   }
 261   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 262 
 263   // Returns the JVM state at the desired depth (1 == root).
 264   JVMState* of_depth(int d) const;
 265 
 266   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 267   bool same_calls_as(const JVMState* that) const;
 268 
 269   // Monitors (monitors are stored as (boxNode, objNode) pairs
 270   enum { logMonitorEdges = 1 };
 271   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 272   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 273   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 274   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 275   bool is_monitor_box(uint off)    const {
 276     assert(is_mon(off), "should be called only for monitor edge");
 277     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 278   }
 279   bool is_monitor_use(uint off)    const { return (is_mon(off)
 280                                                    && is_monitor_box(off))
 281                                              || (caller() && caller()->is_monitor_use(off)); }
 282 
 283   // Initialization functions for the JVM
 284   void              set_locoff(uint off) { _locoff = off; }
 285   void              set_stkoff(uint off) { _stkoff = off; }
 286   void              set_monoff(uint off) { _monoff = off; }
 287   void              set_scloff(uint off) { _scloff = off; }
 288   void              set_endoff(uint off) { _endoff = off; }
 289   void              set_offsets(uint off) {
 290     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 291   }
 292   void              set_map(SafePointNode *map) { _map = map; }
 293   void              set_sp(uint sp) { _sp = sp; }
 294                     // _reexecute is initialized to "undefined" for a new bci
 295   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 296   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 297 
 298   // Miscellaneous utility functions
 299   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 300   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 301   void      set_map_deep(SafePointNode *map);// reset map for all callers
 302   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 303   int       interpreter_frame_size() const;
 304 
 305 #ifndef PRODUCT
 306   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 307   void      dump_spec(outputStream *st) const;
 308   void      dump_on(outputStream* st) const;
 309   void      dump() const {
 310     dump_on(tty);
 311   }
 312 #endif
 313 };
 314 
 315 // During parsing, when a node is "improved",
 316 // GraphKit::replace_in_map() is called to update the current map so
 317 // that the improved node is used from that point
 318 // on. GraphKit::replace_in_map() doesn't operate on the callers maps
 319 // and so some optimization opportunities may be lost. The
 320 // ReplacedNodes class addresses that problem.
 321 //
 322 // A ReplacedNodes object is a list of pair of nodes. Every
 323 // SafePointNode carries a ReplacedNodes object. Every time
 324 // GraphKit::replace_in_map() is called, a new pair of nodes is pushed
 325 // on the list of replaced nodes. When control flow paths merge, their
 326 // replaced nodes are also merged. When parsing exits a method to
 327 // return to a caller, the replaced nodes on the exit path are used to
 328 // update the caller's map.
 329 class ReplacedNodes VALUE_OBJ_CLASS_SPEC {
 330  private:
 331   class ReplacedNode VALUE_OBJ_CLASS_SPEC {
 332   private:
 333     Node* _before;
 334     Node* _after;
 335   public:
 336     ReplacedNode() : _before(NULL), _after(NULL) {}
 337     ReplacedNode(Node* before, Node* after) : _before(before), _after(after) {}
 338     Node* before() const { return _before; }
 339     Node* after() const { return _after; }
 340 
 341     bool operator==(const ReplacedNode& other) {
 342       return _before == other._before && _after == other._after;
 343     }
 344   };
 345   GrowableArray<ReplacedNode>* _replaced_nodes;
 346 
 347   void allocate_if_necessary();
 348   bool has_node(ReplacedNode r) const;
 349   bool has_target_node(Node* n) const;
 350 
 351  public:
 352   ReplacedNodes()
 353     : _replaced_nodes(NULL) {}
 354   
 355   void clone();
 356   void record(Node* o, Node* n);
 357   void transfer_from(ReplacedNodes other, uint idx);
 358   void reset();
 359   void apply(Node* n);
 360   void merge_with(ReplacedNodes other);
 361   bool is_empty() const;
 362   void dump(outputStream *st) const;
 363   void apply(Compile* C, Node* ctl);
 364 };
 365 
 366 //------------------------------SafePointNode----------------------------------
 367 // A SafePointNode is a subclass of a MultiNode for convenience (and
 368 // potential code sharing) only - conceptually it is independent of
 369 // the Node semantics.
 370 class SafePointNode : public MultiNode {
 371   virtual uint           cmp( const Node &n ) const;
 372   virtual uint           size_of() const;       // Size is bigger
 373 
 374 public:
 375   SafePointNode(uint edges, JVMState* jvms,
 376                 // A plain safepoint advertises no memory effects (NULL):
 377                 const TypePtr* adr_type = NULL)
 378     : MultiNode( edges ),
 379       _jvms(jvms),
 380       _oop_map(NULL),
 381       _adr_type(adr_type)
 382   {
 383     init_class_id(Class_SafePoint);
 384   }
 385 
 386   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 387   JVMState* const _jvms;      // Pointer to list of JVM State objects
 388   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 389   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 390 
 391   // Many calls take *all* of memory as input,
 392   // but some produce a limited subset of that memory as output.
 393   // The adr_type reports the call's behavior as a store, not a load.
 394 
 395   virtual JVMState* jvms() const { return _jvms; }
 396   void set_jvms(JVMState* s) {
 397     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 398   }
 399   OopMap *oop_map() const { return _oop_map; }
 400   void set_oop_map(OopMap *om) { _oop_map = om; }
 401 
 402  private:
 403   void verify_input(JVMState* jvms, uint idx) const {
 404     assert(verify_jvms(jvms), "jvms must match");
 405     Node* n = in(idx);
 406     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 407            in(idx + 1)->is_top(), "2nd half of long/double");
 408   }
 409 
 410  public:
 411   // Functionality from old debug nodes which has changed
 412   Node *local(JVMState* jvms, uint idx) const {
 413     verify_input(jvms, jvms->locoff() + idx);
 414     return in(jvms->locoff() + idx);
 415   }
 416   Node *stack(JVMState* jvms, uint idx) const {
 417     verify_input(jvms, jvms->stkoff() + idx);
 418     return in(jvms->stkoff() + idx);
 419   }
 420   Node *argument(JVMState* jvms, uint idx) const {
 421     verify_input(jvms, jvms->argoff() + idx);
 422     return in(jvms->argoff() + idx);
 423   }
 424   Node *monitor_box(JVMState* jvms, uint idx) const {
 425     assert(verify_jvms(jvms), "jvms must match");
 426     return in(jvms->monitor_box_offset(idx));
 427   }
 428   Node *monitor_obj(JVMState* jvms, uint idx) const {
 429     assert(verify_jvms(jvms), "jvms must match");
 430     return in(jvms->monitor_obj_offset(idx));
 431   }
 432 
 433   void  set_local(JVMState* jvms, uint idx, Node *c);
 434 
 435   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 436     assert(verify_jvms(jvms), "jvms must match");
 437     set_req(jvms->stkoff() + idx, c);
 438   }
 439   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 440     assert(verify_jvms(jvms), "jvms must match");
 441     set_req(jvms->argoff() + idx, c);
 442   }
 443   void ensure_stack(JVMState* jvms, uint stk_size) {
 444     assert(verify_jvms(jvms), "jvms must match");
 445     int grow_by = (int)stk_size - (int)jvms->stk_size();
 446     if (grow_by > 0)  grow_stack(jvms, grow_by);
 447   }
 448   void grow_stack(JVMState* jvms, uint grow_by);
 449   // Handle monitor stack
 450   void push_monitor( const FastLockNode *lock );
 451   void pop_monitor ();
 452   Node *peek_monitor_box() const;
 453   Node *peek_monitor_obj() const;
 454 
 455   // Access functions for the JVM
 456   Node *control  () const { return in(TypeFunc::Control  ); }
 457   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 458   Node *memory   () const { return in(TypeFunc::Memory   ); }
 459   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 460   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 461 
 462   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 463   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 464   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 465 
 466   MergeMemNode* merged_memory() const {
 467     return in(TypeFunc::Memory)->as_MergeMem();
 468   }
 469 
 470   // The parser marks useless maps as dead when it's done with them:
 471   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 472 
 473   // Exception states bubbling out of subgraphs such as inlined calls
 474   // are recorded here.  (There might be more than one, hence the "next".)
 475   // This feature is used only for safepoints which serve as "maps"
 476   // for JVM states during parsing, intrinsic expansion, etc.
 477   SafePointNode*         next_exception() const;
 478   void               set_next_exception(SafePointNode* n);
 479   bool                   has_exceptions() const { return next_exception() != NULL; }
 480 
 481   // Helper methods to operate on replaced nodes
 482   void clone_replaced_nodes() {
 483     _replaced_nodes.clone();
 484   }
 485   void record_replaced_node(Node* o, Node* n) {
 486     _replaced_nodes.record(o, n);
 487   }
 488   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 489     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 490   }
 491   void delete_replaced_nodes() {
 492     _replaced_nodes.reset();
 493   }
 494   void apply_replaced_nodes() {
 495     _replaced_nodes.apply(this);
 496   }
 497   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 498     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 499   }
 500   bool has_replaced_nodes() const {
 501     return !_replaced_nodes.is_empty();
 502   }
 503 
 504   // Standard Node stuff
 505   virtual int            Opcode() const;
 506   virtual bool           pinned() const { return true; }
 507   virtual const Type    *Value( PhaseTransform *phase ) const;
 508   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 509   virtual const TypePtr *adr_type() const { return _adr_type; }
 510   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 511   virtual Node          *Identity( PhaseTransform *phase );
 512   virtual uint           ideal_reg() const { return 0; }
 513   virtual const RegMask &in_RegMask(uint) const;
 514   virtual const RegMask &out_RegMask() const;
 515   virtual uint           match_edge(uint idx) const;
 516 
 517   static  bool           needs_polling_address_input();
 518 
 519 #ifndef PRODUCT
 520   virtual void           dump_spec(outputStream *st) const;
 521 #endif
 522 };
 523 
 524 //------------------------------SafePointScalarObjectNode----------------------
 525 // A SafePointScalarObjectNode represents the state of a scalarized object
 526 // at a safepoint.
 527 
 528 class SafePointScalarObjectNode: public TypeNode {
 529   uint _first_index; // First input edge relative index of a SafePoint node where
 530                      // states of the scalarized object fields are collected.
 531                      // It is relative to the last (youngest) jvms->_scloff.
 532   uint _n_fields;    // Number of non-static fields of the scalarized object.
 533   DEBUG_ONLY(AllocateNode* _alloc;)
 534 
 535   virtual uint hash() const ; // { return NO_HASH; }
 536   virtual uint cmp( const Node &n ) const;
 537 
 538   uint first_index() const { return _first_index; }
 539 
 540 public:
 541   SafePointScalarObjectNode(const TypeOopPtr* tp,
 542 #ifdef ASSERT
 543                             AllocateNode* alloc,
 544 #endif
 545                             uint first_index, uint n_fields);
 546   virtual int Opcode() const;
 547   virtual uint           ideal_reg() const;
 548   virtual const RegMask &in_RegMask(uint) const;
 549   virtual const RegMask &out_RegMask() const;
 550   virtual uint           match_edge(uint idx) const;
 551 
 552   uint first_index(JVMState* jvms) const {
 553     assert(jvms != NULL, "missed JVMS");
 554     return jvms->scloff() + _first_index;
 555   }
 556   uint n_fields()    const { return _n_fields; }
 557 
 558 #ifdef ASSERT
 559   AllocateNode* alloc() const { return _alloc; }
 560 #endif
 561 
 562   virtual uint size_of() const { return sizeof(*this); }
 563 
 564   // Assumes that "this" is an argument to a safepoint node "s", and that
 565   // "new_call" is being created to correspond to "s".  But the difference
 566   // between the start index of the jvmstates of "new_call" and "s" is
 567   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 568   // corresponds appropriately to "this" in "new_call".  Assumes that
 569   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 570   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 571   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
 572 
 573 #ifndef PRODUCT
 574   virtual void              dump_spec(outputStream *st) const;
 575 #endif
 576 };
 577 
 578 
 579 // Simple container for the outgoing projections of a call.  Useful
 580 // for serious surgery on calls.
 581 class CallProjections : public StackObj {
 582 public:
 583   Node* fallthrough_proj;
 584   Node* fallthrough_catchproj;
 585   Node* fallthrough_memproj;
 586   Node* fallthrough_ioproj;
 587   Node* catchall_catchproj;
 588   Node* catchall_memproj;
 589   Node* catchall_ioproj;
 590   Node* resproj;
 591   Node* exobj;
 592 };
 593 
 594 class CallGenerator;
 595 
 596 //------------------------------CallNode---------------------------------------
 597 // Call nodes now subsume the function of debug nodes at callsites, so they
 598 // contain the functionality of a full scope chain of debug nodes.
 599 class CallNode : public SafePointNode {
 600   friend class VMStructs;
 601 public:
 602   const TypeFunc *_tf;        // Function type
 603   address      _entry_point;  // Address of method being called
 604   float        _cnt;          // Estimate of number of times called
 605   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 606 
 607   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 608     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 609       _tf(tf),
 610       _entry_point(addr),
 611       _cnt(COUNT_UNKNOWN),
 612       _generator(NULL)
 613   {
 614     init_class_id(Class_Call);
 615   }
 616 
 617   const TypeFunc* tf()         const { return _tf; }
 618   const address  entry_point() const { return _entry_point; }
 619   const float    cnt()         const { return _cnt; }
 620   CallGenerator* generator()   const { return _generator; }
 621 
 622   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 623   void set_entry_point(address p)       { _entry_point = p; }
 624   void set_cnt(float c)                 { _cnt = c; }
 625   void set_generator(CallGenerator* cg) { _generator = cg; }
 626 
 627   virtual const Type *bottom_type() const;
 628   virtual const Type *Value( PhaseTransform *phase ) const;
 629   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 630   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 631   virtual uint        cmp( const Node &n ) const;
 632   virtual uint        size_of() const = 0;
 633   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 634   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 635   virtual uint        ideal_reg() const { return NotAMachineReg; }
 636   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 637   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 638   virtual bool        guaranteed_safepoint()  { return true; }
 639   // For macro nodes, the JVMState gets modified during expansion. If calls
 640   // use MachConstantBase, it gets modified during matching. So when cloning
 641   // the node the JVMState must be cloned. Default is not to clone.
 642   virtual void clone_jvms(Compile* C) {
 643     if (C->needs_clone_jvms() && jvms() != NULL) {
 644       set_jvms(jvms()->clone_deep(C));
 645       jvms()->set_map_deep(this);
 646     }
 647   }
 648 
 649   // Returns true if the call may modify n
 650   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
 651   // Does this node have a use of n other than in debug information?
 652   bool                has_non_debug_use(Node *n);
 653   // Returns the unique CheckCastPP of a call
 654   // or result projection is there are several CheckCastPP
 655   // or returns NULL if there is no one.
 656   Node *result_cast();
 657   // Does this node returns pointer?
 658   bool returns_pointer() const {
 659     const TypeTuple *r = tf()->range();
 660     return (r->cnt() > TypeFunc::Parms &&
 661             r->field_at(TypeFunc::Parms)->isa_ptr());
 662   }
 663 
 664   // Collect all the interesting edges from a call for use in
 665   // replacing the call by something else.  Used by macro expansion
 666   // and the late inlining support.
 667   void extract_projections(CallProjections* projs, bool separate_io_proj);
 668 
 669   virtual uint match_edge(uint idx) const;
 670 
 671 #ifndef PRODUCT
 672   virtual void        dump_req(outputStream *st = tty) const;
 673   virtual void        dump_spec(outputStream *st) const;
 674 #endif
 675 };
 676 
 677 
 678 //------------------------------CallJavaNode-----------------------------------
 679 // Make a static or dynamic subroutine call node using Java calling
 680 // convention.  (The "Java" calling convention is the compiler's calling
 681 // convention, as opposed to the interpreter's or that of native C.)
 682 class CallJavaNode : public CallNode {
 683   friend class VMStructs;
 684 protected:
 685   virtual uint cmp( const Node &n ) const;
 686   virtual uint size_of() const; // Size is bigger
 687 
 688   bool    _optimized_virtual;
 689   bool    _method_handle_invoke;
 690   ciMethod* _method;            // Method being direct called
 691 public:
 692   const int       _bci;         // Byte Code Index of call byte code
 693   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 694     : CallNode(tf, addr, TypePtr::BOTTOM),
 695       _method(method), _bci(bci),
 696       _optimized_virtual(false),
 697       _method_handle_invoke(false)
 698   {
 699     init_class_id(Class_CallJava);
 700   }
 701 
 702   virtual int   Opcode() const;
 703   ciMethod* method() const                { return _method; }
 704   void  set_method(ciMethod *m)           { _method = m; }
 705   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 706   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 707   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 708   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 709 
 710 #ifndef PRODUCT
 711   virtual void  dump_spec(outputStream *st) const;
 712 #endif
 713 };
 714 
 715 //------------------------------CallStaticJavaNode-----------------------------
 716 // Make a direct subroutine call using Java calling convention (for static
 717 // calls and optimized virtual calls, plus calls to wrappers for run-time
 718 // routines); generates static stub.
 719 class CallStaticJavaNode : public CallJavaNode {
 720   virtual uint cmp( const Node &n ) const;
 721   virtual uint size_of() const; // Size is bigger
 722 public:
 723   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
 724     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 725     init_class_id(Class_CallStaticJava);
 726     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
 727       init_flags(Flag_is_macro);
 728       C->add_macro_node(this);
 729     }
 730     _is_scalar_replaceable = false;
 731     _is_non_escaping = false;
 732   }
 733   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 734                      const TypePtr* adr_type)
 735     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 736     init_class_id(Class_CallStaticJava);
 737     // This node calls a runtime stub, which often has narrow memory effects.
 738     _adr_type = adr_type;
 739     _is_scalar_replaceable = false;
 740     _is_non_escaping = false;
 741   }
 742   const char *_name;      // Runtime wrapper name
 743 
 744   // Result of Escape Analysis
 745   bool _is_scalar_replaceable;
 746   bool _is_non_escaping;
 747 
 748   // If this is an uncommon trap, return the request code, else zero.
 749   int uncommon_trap_request() const;
 750   static int extract_uncommon_trap_request(const Node* call);
 751 
 752   bool is_boxing_method() const {
 753     return is_macro() && (method() != NULL) && method()->is_boxing_method();
 754   }
 755   // Later inlining modifies the JVMState, so we need to clone it
 756   // when the call node is cloned (because it is macro node).
 757   virtual void  clone_jvms(Compile* C) {
 758     if ((jvms() != NULL) && is_boxing_method()) {
 759       set_jvms(jvms()->clone_deep(C));
 760       jvms()->set_map_deep(this);
 761     }
 762   }
 763 
 764   virtual int         Opcode() const;
 765 #ifndef PRODUCT
 766   virtual void        dump_spec(outputStream *st) const;
 767 #endif
 768 };
 769 
 770 //------------------------------CallDynamicJavaNode----------------------------
 771 // Make a dispatched call using Java calling convention.
 772 class CallDynamicJavaNode : public CallJavaNode {
 773   virtual uint cmp( const Node &n ) const;
 774   virtual uint size_of() const; // Size is bigger
 775 public:
 776   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 777     init_class_id(Class_CallDynamicJava);
 778   }
 779 
 780   int _vtable_index;
 781   virtual int   Opcode() const;
 782 #ifndef PRODUCT
 783   virtual void  dump_spec(outputStream *st) const;
 784 #endif
 785 };
 786 
 787 //------------------------------CallRuntimeNode--------------------------------
 788 // Make a direct subroutine call node into compiled C++ code.
 789 class CallRuntimeNode : public CallNode {
 790   virtual uint cmp( const Node &n ) const;
 791   virtual uint size_of() const; // Size is bigger
 792 public:
 793   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 794                   const TypePtr* adr_type)
 795     : CallNode(tf, addr, adr_type),
 796       _name(name)
 797   {
 798     init_class_id(Class_CallRuntime);
 799   }
 800 
 801   const char *_name;            // Printable name, if _method is NULL
 802   virtual int   Opcode() const;
 803   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 804 
 805 #ifndef PRODUCT
 806   virtual void  dump_spec(outputStream *st) const;
 807 #endif
 808 };
 809 
 810 //------------------------------CallLeafNode-----------------------------------
 811 // Make a direct subroutine call node into compiled C++ code, without
 812 // safepoints
 813 class CallLeafNode : public CallRuntimeNode {
 814 public:
 815   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 816                const TypePtr* adr_type)
 817     : CallRuntimeNode(tf, addr, name, adr_type)
 818   {
 819     init_class_id(Class_CallLeaf);
 820   }
 821   virtual int   Opcode() const;
 822   virtual bool        guaranteed_safepoint()  { return false; }
 823 #ifndef PRODUCT
 824   virtual void  dump_spec(outputStream *st) const;
 825 #endif
 826 };
 827 
 828 //------------------------------CallLeafNoFPNode-------------------------------
 829 // CallLeafNode, not using floating point or using it in the same manner as
 830 // the generated code
 831 class CallLeafNoFPNode : public CallLeafNode {
 832 public:
 833   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 834                    const TypePtr* adr_type)
 835     : CallLeafNode(tf, addr, name, adr_type)
 836   {
 837   }
 838   virtual int   Opcode() const;
 839 };
 840 
 841 
 842 //------------------------------Allocate---------------------------------------
 843 // High-level memory allocation
 844 //
 845 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 846 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 847 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 848 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 849 //  order to differentiate the uses of the projection on the normal control path from
 850 //  those on the exception return path.
 851 //
 852 class AllocateNode : public CallNode {
 853 public:
 854   enum {
 855     // Output:
 856     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 857     // Inputs:
 858     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 859     KlassNode,                        // type (maybe dynamic) of the obj.
 860     InitialTest,                      // slow-path test (may be constant)
 861     ALength,                          // array length (or TOP if none)
 862     ParmLimit
 863   };
 864 
 865   static const TypeFunc* alloc_type(const Type* t) {
 866     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 867     fields[AllocSize]   = TypeInt::POS;
 868     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 869     fields[InitialTest] = TypeInt::BOOL;
 870     fields[ALength]     = t;  // length (can be a bad length)
 871 
 872     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 873 
 874     // create result type (range)
 875     fields = TypeTuple::fields(1);
 876     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 877 
 878     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 879 
 880     return TypeFunc::make(domain, range);
 881   }
 882 
 883   // Result of Escape Analysis
 884   bool _is_scalar_replaceable;
 885   bool _is_non_escaping;
 886 
 887   virtual uint size_of() const; // Size is bigger
 888   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 889                Node *size, Node *klass_node, Node *initial_test);
 890   // Expansion modifies the JVMState, so we need to clone it
 891   virtual void  clone_jvms(Compile* C) {
 892     if (jvms() != NULL) {
 893       set_jvms(jvms()->clone_deep(C));
 894       jvms()->set_map_deep(this);
 895     }
 896   }
 897   virtual int Opcode() const;
 898   virtual uint ideal_reg() const { return Op_RegP; }
 899   virtual bool        guaranteed_safepoint()  { return false; }
 900 
 901   // allocations do not modify their arguments
 902   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
 903 
 904   // Pattern-match a possible usage of AllocateNode.
 905   // Return null if no allocation is recognized.
 906   // The operand is the pointer produced by the (possible) allocation.
 907   // It must be a projection of the Allocate or its subsequent CastPP.
 908   // (Note:  This function is defined in file graphKit.cpp, near
 909   // GraphKit::new_instance/new_array, whose output it recognizes.)
 910   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 911   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 912 
 913   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 914   // an offset, which is reported back to the caller.
 915   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 916   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 917                                         intptr_t& offset);
 918 
 919   // Dig the klass operand out of a (possible) allocation site.
 920   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 921     AllocateNode* allo = Ideal_allocation(ptr, phase);
 922     return (allo == NULL) ? NULL : allo->in(KlassNode);
 923   }
 924 
 925   // Conservatively small estimate of offset of first non-header byte.
 926   int minimum_header_size() {
 927     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 928                                 instanceOopDesc::base_offset_in_bytes();
 929   }
 930 
 931   // Return the corresponding initialization barrier (or null if none).
 932   // Walks out edges to find it...
 933   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 934   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 935   InitializeNode* initialization();
 936 
 937   // Convenience for initialization->maybe_set_complete(phase)
 938   bool maybe_set_complete(PhaseGVN* phase);
 939 };
 940 
 941 //------------------------------AllocateArray---------------------------------
 942 //
 943 // High-level array allocation
 944 //
 945 class AllocateArrayNode : public AllocateNode {
 946 public:
 947   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 948                     Node* size, Node* klass_node, Node* initial_test,
 949                     Node* count_val
 950                     )
 951     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 952                    initial_test)
 953   {
 954     init_class_id(Class_AllocateArray);
 955     set_req(AllocateNode::ALength,        count_val);
 956   }
 957   virtual int Opcode() const;
 958   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 959 
 960   // Dig the length operand out of a array allocation site.
 961   Node* Ideal_length() {
 962     return in(AllocateNode::ALength);
 963   }
 964 
 965   // Dig the length operand out of a array allocation site and narrow the
 966   // type with a CastII, if necesssary
 967   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 968 
 969   // Pattern-match a possible usage of AllocateArrayNode.
 970   // Return null if no allocation is recognized.
 971   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 972     AllocateNode* allo = Ideal_allocation(ptr, phase);
 973     return (allo == NULL || !allo->is_AllocateArray())
 974            ? NULL : allo->as_AllocateArray();
 975   }
 976 };
 977 
 978 //------------------------------AbstractLockNode-----------------------------------
 979 class AbstractLockNode: public CallNode {
 980 private:
 981   enum {
 982     Regular = 0,  // Normal lock
 983     NonEscObj,    // Lock is used for non escaping object
 984     Coarsened,    // Lock was coarsened
 985     Nested        // Nested lock
 986   } _kind;
 987 #ifndef PRODUCT
 988   NamedCounter* _counter;
 989 #endif
 990 
 991 protected:
 992   // helper functions for lock elimination
 993   //
 994 
 995   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 996                             GrowableArray<AbstractLockNode*> &lock_ops);
 997   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 998                                        GrowableArray<AbstractLockNode*> &lock_ops);
 999   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1000                                GrowableArray<AbstractLockNode*> &lock_ops);
1001   LockNode *find_matching_lock(UnlockNode* unlock);
1002 
1003   // Update the counter to indicate that this lock was eliminated.
1004   void set_eliminated_lock_counter() PRODUCT_RETURN;
1005 
1006 public:
1007   AbstractLockNode(const TypeFunc *tf)
1008     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
1009       _kind(Regular)
1010   {
1011 #ifndef PRODUCT
1012     _counter = NULL;
1013 #endif
1014   }
1015   virtual int Opcode() const = 0;
1016   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
1017   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
1018   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1019   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1020 
1021   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1022 
1023   virtual uint size_of() const { return sizeof(*this); }
1024 
1025   bool is_eliminated()  const { return (_kind != Regular); }
1026   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1027   bool is_coarsened()   const { return (_kind == Coarsened); }
1028   bool is_nested()      const { return (_kind == Nested); }
1029 
1030   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1031   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1032   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1033 
1034   // locking does not modify its arguments
1035   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
1036 
1037 #ifndef PRODUCT
1038   void create_lock_counter(JVMState* s);
1039   NamedCounter* counter() const { return _counter; }
1040 #endif
1041 };
1042 
1043 //------------------------------Lock---------------------------------------
1044 // High-level lock operation
1045 //
1046 // This is a subclass of CallNode because it is a macro node which gets expanded
1047 // into a code sequence containing a call.  This node takes 3 "parameters":
1048 //    0  -  object to lock
1049 //    1 -   a BoxLockNode
1050 //    2 -   a FastLockNode
1051 //
1052 class LockNode : public AbstractLockNode {
1053 public:
1054 
1055   static const TypeFunc *lock_type() {
1056     // create input type (domain)
1057     const Type **fields = TypeTuple::fields(3);
1058     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1059     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1060     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1061     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1062 
1063     // create result type (range)
1064     fields = TypeTuple::fields(0);
1065 
1066     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1067 
1068     return TypeFunc::make(domain,range);
1069   }
1070 
1071   virtual int Opcode() const;
1072   virtual uint size_of() const; // Size is bigger
1073   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1074     init_class_id(Class_Lock);
1075     init_flags(Flag_is_macro);
1076     C->add_macro_node(this);
1077   }
1078   virtual bool        guaranteed_safepoint()  { return false; }
1079 
1080   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1081   // Expansion modifies the JVMState, so we need to clone it
1082   virtual void  clone_jvms(Compile* C) {
1083     if (jvms() != NULL) {
1084       set_jvms(jvms()->clone_deep(C));
1085       jvms()->set_map_deep(this);
1086     }
1087   }
1088 
1089   bool is_nested_lock_region(); // Is this Lock nested?
1090 };
1091 
1092 //------------------------------Unlock---------------------------------------
1093 // High-level unlock operation
1094 class UnlockNode : public AbstractLockNode {
1095 public:
1096   virtual int Opcode() const;
1097   virtual uint size_of() const; // Size is bigger
1098   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1099     init_class_id(Class_Unlock);
1100     init_flags(Flag_is_macro);
1101     C->add_macro_node(this);
1102   }
1103   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1104   // unlock is never a safepoint
1105   virtual bool        guaranteed_safepoint()  { return false; }
1106 };
1107 
1108 #endif // SHARE_VM_OPTO_CALLNODE_HPP