1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/loopnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/node.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/regmask.hpp"
  36 #include "opto/type.hpp"
  37 #include "utilities/copy.hpp"
  38 
  39 class RegMask;
  40 // #include "phase.hpp"
  41 class PhaseTransform;
  42 class PhaseGVN;
  43 
  44 // Arena we are currently building Nodes in
  45 const uint Node::NotAMachineReg = 0xffff0000;
  46 
  47 #ifndef PRODUCT
  48 extern int nodes_created;
  49 #endif
  50 
  51 #ifdef ASSERT
  52 
  53 //-------------------------- construct_node------------------------------------
  54 // Set a breakpoint here to identify where a particular node index is built.
  55 void Node::verify_construction() {
  56   _debug_orig = NULL;
  57   int old_debug_idx = Compile::debug_idx();
  58   int new_debug_idx = old_debug_idx+1;
  59   if (new_debug_idx > 0) {
  60     // Arrange that the lowest five decimal digits of _debug_idx
  61     // will repeat those of _idx. In case this is somehow pathological,
  62     // we continue to assign negative numbers (!) consecutively.
  63     const int mod = 100000;
  64     int bump = (int)(_idx - new_debug_idx) % mod;
  65     if (bump < 0)  bump += mod;
  66     assert(bump >= 0 && bump < mod, "");
  67     new_debug_idx += bump;
  68   }
  69   Compile::set_debug_idx(new_debug_idx);
  70   set_debug_idx( new_debug_idx );
  71   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  72   assert(Compile::current()->live_nodes() < (uint)MaxNodeLimit, "Live Node limit exceeded limit");
  73   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  74     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  75     BREAKPOINT;
  76   }
  77 #if OPTO_DU_ITERATOR_ASSERT
  78   _last_del = NULL;
  79   _del_tick = 0;
  80 #endif
  81   _hash_lock = 0;
  82 }
  83 
  84 
  85 // #ifdef ASSERT ...
  86 
  87 #if OPTO_DU_ITERATOR_ASSERT
  88 void DUIterator_Common::sample(const Node* node) {
  89   _vdui     = VerifyDUIterators;
  90   _node     = node;
  91   _outcnt   = node->_outcnt;
  92   _del_tick = node->_del_tick;
  93   _last     = NULL;
  94 }
  95 
  96 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  97   assert(_node     == node, "consistent iterator source");
  98   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
  99 }
 100 
 101 void DUIterator_Common::verify_resync() {
 102   // Ensure that the loop body has just deleted the last guy produced.
 103   const Node* node = _node;
 104   // Ensure that at least one copy of the last-seen edge was deleted.
 105   // Note:  It is OK to delete multiple copies of the last-seen edge.
 106   // Unfortunately, we have no way to verify that all the deletions delete
 107   // that same edge.  On this point we must use the Honor System.
 108   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 109   assert(node->_last_del == _last, "must have deleted the edge just produced");
 110   // We liked this deletion, so accept the resulting outcnt and tick.
 111   _outcnt   = node->_outcnt;
 112   _del_tick = node->_del_tick;
 113 }
 114 
 115 void DUIterator_Common::reset(const DUIterator_Common& that) {
 116   if (this == &that)  return;  // ignore assignment to self
 117   if (!_vdui) {
 118     // We need to initialize everything, overwriting garbage values.
 119     _last = that._last;
 120     _vdui = that._vdui;
 121   }
 122   // Note:  It is legal (though odd) for an iterator over some node x
 123   // to be reassigned to iterate over another node y.  Some doubly-nested
 124   // progress loops depend on being able to do this.
 125   const Node* node = that._node;
 126   // Re-initialize everything, except _last.
 127   _node     = node;
 128   _outcnt   = node->_outcnt;
 129   _del_tick = node->_del_tick;
 130 }
 131 
 132 void DUIterator::sample(const Node* node) {
 133   DUIterator_Common::sample(node);      // Initialize the assertion data.
 134   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 135 }
 136 
 137 void DUIterator::verify(const Node* node, bool at_end_ok) {
 138   DUIterator_Common::verify(node, at_end_ok);
 139   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 140 }
 141 
 142 void DUIterator::verify_increment() {
 143   if (_refresh_tick & 1) {
 144     // We have refreshed the index during this loop.
 145     // Fix up _idx to meet asserts.
 146     if (_idx > _outcnt)  _idx = _outcnt;
 147   }
 148   verify(_node, true);
 149 }
 150 
 151 void DUIterator::verify_resync() {
 152   // Note:  We do not assert on _outcnt, because insertions are OK here.
 153   DUIterator_Common::verify_resync();
 154   // Make sure we are still in sync, possibly with no more out-edges:
 155   verify(_node, true);
 156 }
 157 
 158 void DUIterator::reset(const DUIterator& that) {
 159   if (this == &that)  return;  // self assignment is always a no-op
 160   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 161   assert(that._idx          == 0, "assign only the result of Node::outs()");
 162   assert(_idx               == that._idx, "already assigned _idx");
 163   if (!_vdui) {
 164     // We need to initialize everything, overwriting garbage values.
 165     sample(that._node);
 166   } else {
 167     DUIterator_Common::reset(that);
 168     if (_refresh_tick & 1) {
 169       _refresh_tick++;                  // Clear the "was refreshed" flag.
 170     }
 171     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 172   }
 173 }
 174 
 175 void DUIterator::refresh() {
 176   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 177   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 178 }
 179 
 180 void DUIterator::verify_finish() {
 181   // If the loop has killed the node, do not require it to re-run.
 182   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 183   // If this assert triggers, it means that a loop used refresh_out_pos
 184   // to re-synch an iteration index, but the loop did not correctly
 185   // re-run itself, using a "while (progress)" construct.
 186   // This iterator enforces the rule that you must keep trying the loop
 187   // until it "runs clean" without any need for refreshing.
 188   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 189 }
 190 
 191 
 192 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 193   DUIterator_Common::verify(node, at_end_ok);
 194   Node** out    = node->_out;
 195   uint   cnt    = node->_outcnt;
 196   assert(cnt == _outcnt, "no insertions allowed");
 197   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 198   // This last check is carefully designed to work for NO_OUT_ARRAY.
 199 }
 200 
 201 void DUIterator_Fast::verify_limit() {
 202   const Node* node = _node;
 203   verify(node, true);
 204   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 205 }
 206 
 207 void DUIterator_Fast::verify_resync() {
 208   const Node* node = _node;
 209   if (_outp == node->_out + _outcnt) {
 210     // Note that the limit imax, not the pointer i, gets updated with the
 211     // exact count of deletions.  (For the pointer it's always "--i".)
 212     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 213     // This is a limit pointer, with a name like "imax".
 214     // Fudge the _last field so that the common assert will be happy.
 215     _last = (Node*) node->_last_del;
 216     DUIterator_Common::verify_resync();
 217   } else {
 218     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 219     // A normal internal pointer.
 220     DUIterator_Common::verify_resync();
 221     // Make sure we are still in sync, possibly with no more out-edges:
 222     verify(node, true);
 223   }
 224 }
 225 
 226 void DUIterator_Fast::verify_relimit(uint n) {
 227   const Node* node = _node;
 228   assert((int)n > 0, "use imax -= n only with a positive count");
 229   // This must be a limit pointer, with a name like "imax".
 230   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 231   // The reported number of deletions must match what the node saw.
 232   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 233   // Fudge the _last field so that the common assert will be happy.
 234   _last = (Node*) node->_last_del;
 235   DUIterator_Common::verify_resync();
 236 }
 237 
 238 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 239   assert(_outp              == that._outp, "already assigned _outp");
 240   DUIterator_Common::reset(that);
 241 }
 242 
 243 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 244   // at_end_ok means the _outp is allowed to underflow by 1
 245   _outp += at_end_ok;
 246   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 247   _outp -= at_end_ok;
 248   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 249 }
 250 
 251 void DUIterator_Last::verify_limit() {
 252   // Do not require the limit address to be resynched.
 253   //verify(node, true);
 254   assert(_outp == _node->_out, "limit still correct");
 255 }
 256 
 257 void DUIterator_Last::verify_step(uint num_edges) {
 258   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 259   _outcnt   -= num_edges;
 260   _del_tick += num_edges;
 261   // Make sure we are still in sync, possibly with no more out-edges:
 262   const Node* node = _node;
 263   verify(node, true);
 264   assert(node->_last_del == _last, "must have deleted the edge just produced");
 265 }
 266 
 267 #endif //OPTO_DU_ITERATOR_ASSERT
 268 
 269 
 270 #endif //ASSERT
 271 
 272 
 273 // This constant used to initialize _out may be any non-null value.
 274 // The value NULL is reserved for the top node only.
 275 #define NO_OUT_ARRAY ((Node**)-1)
 276 
 277 // This funny expression handshakes with Node::operator new
 278 // to pull Compile::current out of the new node's _out field,
 279 // and then calls a subroutine which manages most field
 280 // initializations.  The only one which is tricky is the
 281 // _idx field, which is const, and so must be initialized
 282 // by a return value, not an assignment.
 283 //
 284 // (Aren't you thankful that Java finals don't require so many tricks?)
 285 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 286 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 287 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 288 #endif
 289 #ifdef __clang__
 290 #pragma clang diagnostic push
 291 #pragma GCC diagnostic ignored "-Wuninitialized"
 292 #endif
 293 
 294 // Out-of-line code from node constructors.
 295 // Executed only when extra debug info. is being passed around.
 296 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 297   C->set_node_notes_at(idx, nn);
 298 }
 299 
 300 // Shared initialization code.
 301 inline int Node::Init(int req, Compile* C) {
 302   assert(Compile::current() == C, "must use operator new(Compile*)");
 303   int idx = C->next_unique();
 304 
 305   // Allocate memory for the necessary number of edges.
 306   if (req > 0) {
 307     // Allocate space for _in array to have double alignment.
 308     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 309 #ifdef ASSERT
 310     _in[req-1] = this; // magic cookie for assertion check
 311 #endif
 312   }
 313   // If there are default notes floating around, capture them:
 314   Node_Notes* nn = C->default_node_notes();
 315   if (nn != NULL)  init_node_notes(C, idx, nn);
 316 
 317   // Note:  At this point, C is dead,
 318   // and we begin to initialize the new Node.
 319 
 320   _cnt = _max = req;
 321   _outcnt = _outmax = 0;
 322   _class_id = Class_Node;
 323   _flags = 0;
 324   _out = NO_OUT_ARRAY;
 325   return idx;
 326 }
 327 
 328 //------------------------------Node-------------------------------------------
 329 // Create a Node, with a given number of required edges.
 330 Node::Node(uint req)
 331   : _idx(IDX_INIT(req))
 332 {
 333   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
 334   debug_only( verify_construction() );
 335   NOT_PRODUCT(nodes_created++);
 336   if (req == 0) {
 337     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 338     _in = NULL;
 339   } else {
 340     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 341     Node** to = _in;
 342     for(uint i = 0; i < req; i++) {
 343       to[i] = NULL;
 344     }
 345   }
 346 }
 347 
 348 //------------------------------Node-------------------------------------------
 349 Node::Node(Node *n0)
 350   : _idx(IDX_INIT(1))
 351 {
 352   debug_only( verify_construction() );
 353   NOT_PRODUCT(nodes_created++);
 354   // Assert we allocated space for input array already
 355   assert( _in[0] == this, "Must pass arg count to 'new'" );
 356   assert( is_not_dead(n0), "can not use dead node");
 357   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 358 }
 359 
 360 //------------------------------Node-------------------------------------------
 361 Node::Node(Node *n0, Node *n1)
 362   : _idx(IDX_INIT(2))
 363 {
 364   debug_only( verify_construction() );
 365   NOT_PRODUCT(nodes_created++);
 366   // Assert we allocated space for input array already
 367   assert( _in[1] == this, "Must pass arg count to 'new'" );
 368   assert( is_not_dead(n0), "can not use dead node");
 369   assert( is_not_dead(n1), "can not use dead node");
 370   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 371   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 372 }
 373 
 374 //------------------------------Node-------------------------------------------
 375 Node::Node(Node *n0, Node *n1, Node *n2)
 376   : _idx(IDX_INIT(3))
 377 {
 378   debug_only( verify_construction() );
 379   NOT_PRODUCT(nodes_created++);
 380   // Assert we allocated space for input array already
 381   assert( _in[2] == this, "Must pass arg count to 'new'" );
 382   assert( is_not_dead(n0), "can not use dead node");
 383   assert( is_not_dead(n1), "can not use dead node");
 384   assert( is_not_dead(n2), "can not use dead node");
 385   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 386   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 387   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 388 }
 389 
 390 //------------------------------Node-------------------------------------------
 391 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 392   : _idx(IDX_INIT(4))
 393 {
 394   debug_only( verify_construction() );
 395   NOT_PRODUCT(nodes_created++);
 396   // Assert we allocated space for input array already
 397   assert( _in[3] == this, "Must pass arg count to 'new'" );
 398   assert( is_not_dead(n0), "can not use dead node");
 399   assert( is_not_dead(n1), "can not use dead node");
 400   assert( is_not_dead(n2), "can not use dead node");
 401   assert( is_not_dead(n3), "can not use dead node");
 402   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 403   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 404   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 405   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 406 }
 407 
 408 //------------------------------Node-------------------------------------------
 409 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 410   : _idx(IDX_INIT(5))
 411 {
 412   debug_only( verify_construction() );
 413   NOT_PRODUCT(nodes_created++);
 414   // Assert we allocated space for input array already
 415   assert( _in[4] == this, "Must pass arg count to 'new'" );
 416   assert( is_not_dead(n0), "can not use dead node");
 417   assert( is_not_dead(n1), "can not use dead node");
 418   assert( is_not_dead(n2), "can not use dead node");
 419   assert( is_not_dead(n3), "can not use dead node");
 420   assert( is_not_dead(n4), "can not use dead node");
 421   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 422   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 423   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 424   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 425   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 426 }
 427 
 428 //------------------------------Node-------------------------------------------
 429 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 430                      Node *n4, Node *n5)
 431   : _idx(IDX_INIT(6))
 432 {
 433   debug_only( verify_construction() );
 434   NOT_PRODUCT(nodes_created++);
 435   // Assert we allocated space for input array already
 436   assert( _in[5] == this, "Must pass arg count to 'new'" );
 437   assert( is_not_dead(n0), "can not use dead node");
 438   assert( is_not_dead(n1), "can not use dead node");
 439   assert( is_not_dead(n2), "can not use dead node");
 440   assert( is_not_dead(n3), "can not use dead node");
 441   assert( is_not_dead(n4), "can not use dead node");
 442   assert( is_not_dead(n5), "can not use dead node");
 443   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 444   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 445   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 446   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 447   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 448   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 449 }
 450 
 451 //------------------------------Node-------------------------------------------
 452 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 453                      Node *n4, Node *n5, Node *n6)
 454   : _idx(IDX_INIT(7))
 455 {
 456   debug_only( verify_construction() );
 457   NOT_PRODUCT(nodes_created++);
 458   // Assert we allocated space for input array already
 459   assert( _in[6] == this, "Must pass arg count to 'new'" );
 460   assert( is_not_dead(n0), "can not use dead node");
 461   assert( is_not_dead(n1), "can not use dead node");
 462   assert( is_not_dead(n2), "can not use dead node");
 463   assert( is_not_dead(n3), "can not use dead node");
 464   assert( is_not_dead(n4), "can not use dead node");
 465   assert( is_not_dead(n5), "can not use dead node");
 466   assert( is_not_dead(n6), "can not use dead node");
 467   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 468   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 469   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 470   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 471   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 472   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 473   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 474 }
 475 
 476 #ifdef __clang__
 477 #pragma clang diagnostic pop
 478 #endif
 479 
 480 
 481 //------------------------------clone------------------------------------------
 482 // Clone a Node.
 483 Node *Node::clone() const {
 484   Compile* C = Compile::current();
 485   uint s = size_of();           // Size of inherited Node
 486   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 487   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 488   // Set the new input pointer array
 489   n->_in = (Node**)(((char*)n)+s);
 490   // Cannot share the old output pointer array, so kill it
 491   n->_out = NO_OUT_ARRAY;
 492   // And reset the counters to 0
 493   n->_outcnt = 0;
 494   n->_outmax = 0;
 495   // Unlock this guy, since he is not in any hash table.
 496   debug_only(n->_hash_lock = 0);
 497   // Walk the old node's input list to duplicate its edges
 498   uint i;
 499   for( i = 0; i < len(); i++ ) {
 500     Node *x = in(i);
 501     n->_in[i] = x;
 502     if (x != NULL) x->add_out(n);
 503   }
 504   if (is_macro())
 505     C->add_macro_node(n);
 506   if (is_expensive())
 507     C->add_expensive_node(n);
 508 
 509   n->set_idx(C->next_unique()); // Get new unique index as well
 510   debug_only( n->verify_construction() );
 511   NOT_PRODUCT(nodes_created++);
 512   // Do not patch over the debug_idx of a clone, because it makes it
 513   // impossible to break on the clone's moment of creation.
 514   //debug_only( n->set_debug_idx( debug_idx() ) );
 515 
 516   C->copy_node_notes_to(n, (Node*) this);
 517 
 518   // MachNode clone
 519   uint nopnds;
 520   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 521     MachNode *mach  = n->as_Mach();
 522     MachNode *mthis = this->as_Mach();
 523     // Get address of _opnd_array.
 524     // It should be the same offset since it is the clone of this node.
 525     MachOper **from = mthis->_opnds;
 526     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 527                     pointer_delta((const void*)from,
 528                                   (const void*)(&mthis->_opnds), 1));
 529     mach->_opnds = to;
 530     for ( uint i = 0; i < nopnds; ++i ) {
 531       to[i] = from[i]->clone(C);
 532     }
 533   }
 534   // cloning CallNode may need to clone JVMState
 535   if (n->is_Call()) {
 536     n->as_Call()->clone_jvms(C);
 537   }
 538   if (n->is_SafePoint()) {
 539     n->as_SafePoint()->clone_replaced_nodes();
 540   }
 541   return n;                     // Return the clone
 542 }
 543 
 544 //---------------------------setup_is_top--------------------------------------
 545 // Call this when changing the top node, to reassert the invariants
 546 // required by Node::is_top.  See Compile::set_cached_top_node.
 547 void Node::setup_is_top() {
 548   if (this == (Node*)Compile::current()->top()) {
 549     // This node has just become top.  Kill its out array.
 550     _outcnt = _outmax = 0;
 551     _out = NULL;                           // marker value for top
 552     assert(is_top(), "must be top");
 553   } else {
 554     if (_out == NULL)  _out = NO_OUT_ARRAY;
 555     assert(!is_top(), "must not be top");
 556   }
 557 }
 558 
 559 
 560 //------------------------------~Node------------------------------------------
 561 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 562 extern int reclaim_idx ;
 563 extern int reclaim_in  ;
 564 extern int reclaim_node;
 565 void Node::destruct() {
 566   // Eagerly reclaim unique Node numberings
 567   Compile* compile = Compile::current();
 568   if ((uint)_idx+1 == compile->unique()) {
 569     compile->set_unique(compile->unique()-1);
 570 #ifdef ASSERT
 571     reclaim_idx++;
 572 #endif
 573   }
 574   // Clear debug info:
 575   Node_Notes* nn = compile->node_notes_at(_idx);
 576   if (nn != NULL)  nn->clear();
 577   // Walk the input array, freeing the corresponding output edges
 578   _cnt = _max;  // forget req/prec distinction
 579   uint i;
 580   for( i = 0; i < _max; i++ ) {
 581     set_req(i, NULL);
 582     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 583   }
 584   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 585   // See if the input array was allocated just prior to the object
 586   int edge_size = _max*sizeof(void*);
 587   int out_edge_size = _outmax*sizeof(void*);
 588   char *edge_end = ((char*)_in) + edge_size;
 589   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 590   char *out_edge_end = out_array + out_edge_size;
 591   int node_size = size_of();
 592 
 593   // Free the output edge array
 594   if (out_edge_size > 0) {
 595 #ifdef ASSERT
 596     if( out_edge_end == compile->node_arena()->hwm() )
 597       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 598 #endif
 599     compile->node_arena()->Afree(out_array, out_edge_size);
 600   }
 601 
 602   // Free the input edge array and the node itself
 603   if( edge_end == (char*)this ) {
 604 #ifdef ASSERT
 605     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 606       reclaim_in  += edge_size;
 607       reclaim_node+= node_size;
 608     }
 609 #else
 610     // It was; free the input array and object all in one hit
 611     compile->node_arena()->Afree(_in,edge_size+node_size);
 612 #endif
 613   } else {
 614 
 615     // Free just the input array
 616 #ifdef ASSERT
 617     if( edge_end == compile->node_arena()->hwm() )
 618       reclaim_in  += edge_size;
 619 #endif
 620     compile->node_arena()->Afree(_in,edge_size);
 621 
 622     // Free just the object
 623 #ifdef ASSERT
 624     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 625       reclaim_node+= node_size;
 626 #else
 627     compile->node_arena()->Afree(this,node_size);
 628 #endif
 629   }
 630   if (is_macro()) {
 631     compile->remove_macro_node(this);
 632   }
 633   if (is_expensive()) {
 634     compile->remove_expensive_node(this);
 635   }
 636 #ifdef ASSERT
 637   // We will not actually delete the storage, but we'll make the node unusable.
 638   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 639   _in = _out = (Node**) badAddress;
 640   _max = _cnt = _outmax = _outcnt = 0;
 641 #endif
 642 }
 643 
 644 //------------------------------grow-------------------------------------------
 645 // Grow the input array, making space for more edges
 646 void Node::grow( uint len ) {
 647   Arena* arena = Compile::current()->node_arena();
 648   uint new_max = _max;
 649   if( new_max == 0 ) {
 650     _max = 4;
 651     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 652     Node** to = _in;
 653     to[0] = NULL;
 654     to[1] = NULL;
 655     to[2] = NULL;
 656     to[3] = NULL;
 657     return;
 658   }
 659   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 660   // Trimming to limit allows a uint8 to handle up to 255 edges.
 661   // Previously I was using only powers-of-2 which peaked at 128 edges.
 662   //if( new_max >= limit ) new_max = limit-1;
 663   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 664   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 665   _max = new_max;               // Record new max length
 666   // This assertion makes sure that Node::_max is wide enough to
 667   // represent the numerical value of new_max.
 668   assert(_max == new_max && _max > len, "int width of _max is too small");
 669 }
 670 
 671 //-----------------------------out_grow----------------------------------------
 672 // Grow the input array, making space for more edges
 673 void Node::out_grow( uint len ) {
 674   assert(!is_top(), "cannot grow a top node's out array");
 675   Arena* arena = Compile::current()->node_arena();
 676   uint new_max = _outmax;
 677   if( new_max == 0 ) {
 678     _outmax = 4;
 679     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 680     return;
 681   }
 682   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 683   // Trimming to limit allows a uint8 to handle up to 255 edges.
 684   // Previously I was using only powers-of-2 which peaked at 128 edges.
 685   //if( new_max >= limit ) new_max = limit-1;
 686   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 687   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 688   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 689   _outmax = new_max;               // Record new max length
 690   // This assertion makes sure that Node::_max is wide enough to
 691   // represent the numerical value of new_max.
 692   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 693 }
 694 
 695 #ifdef ASSERT
 696 //------------------------------is_dead----------------------------------------
 697 bool Node::is_dead() const {
 698   // Mach and pinch point nodes may look like dead.
 699   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 700     return false;
 701   for( uint i = 0; i < _max; i++ )
 702     if( _in[i] != NULL )
 703       return false;
 704   dump();
 705   return true;
 706 }
 707 #endif
 708 
 709 
 710 //------------------------------is_unreachable---------------------------------
 711 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 712   assert(!is_Mach(), "doesn't work with MachNodes");
 713   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 714 }
 715 
 716 //------------------------------add_req----------------------------------------
 717 // Add a new required input at the end
 718 void Node::add_req( Node *n ) {
 719   assert( is_not_dead(n), "can not use dead node");
 720 
 721   // Look to see if I can move precedence down one without reallocating
 722   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 723     grow( _max+1 );
 724 
 725   // Find a precedence edge to move
 726   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 727     uint i;
 728     for( i=_cnt; i<_max; i++ )
 729       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 730         break;                  // There must be one, since we grew the array
 731     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 732   }
 733   _in[_cnt++] = n;            // Stuff over old prec edge
 734   if (n != NULL) n->add_out((Node *)this);
 735 }
 736 
 737 //---------------------------add_req_batch-------------------------------------
 738 // Add a new required input at the end
 739 void Node::add_req_batch( Node *n, uint m ) {
 740   assert( is_not_dead(n), "can not use dead node");
 741   // check various edge cases
 742   if ((int)m <= 1) {
 743     assert((int)m >= 0, "oob");
 744     if (m != 0)  add_req(n);
 745     return;
 746   }
 747 
 748   // Look to see if I can move precedence down one without reallocating
 749   if( (_cnt+m) > _max || _in[_max-m] )
 750     grow( _max+m );
 751 
 752   // Find a precedence edge to move
 753   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 754     uint i;
 755     for( i=_cnt; i<_max; i++ )
 756       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 757         break;                  // There must be one, since we grew the array
 758     // Slide all the precs over by m positions (assume #prec << m).
 759     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 760   }
 761 
 762   // Stuff over the old prec edges
 763   for(uint i=0; i<m; i++ ) {
 764     _in[_cnt++] = n;
 765   }
 766 
 767   // Insert multiple out edges on the node.
 768   if (n != NULL && !n->is_top()) {
 769     for(uint i=0; i<m; i++ ) {
 770       n->add_out((Node *)this);
 771     }
 772   }
 773 }
 774 
 775 //------------------------------del_req----------------------------------------
 776 // Delete the required edge and compact the edge array
 777 void Node::del_req( uint idx ) {
 778   assert( idx < _cnt, "oob");
 779   assert( !VerifyHashTableKeys || _hash_lock == 0,
 780           "remove node from hash table before modifying it");
 781   // First remove corresponding def-use edge
 782   Node *n = in(idx);
 783   if (n != NULL) n->del_out((Node *)this);
 784   _in[idx] = in(--_cnt);  // Compact the array
 785   _in[_cnt] = NULL;       // NULL out emptied slot
 786 }
 787 
 788 //------------------------------del_req_ordered--------------------------------
 789 // Delete the required edge and compact the edge array with preserved order
 790 void Node::del_req_ordered( uint idx ) {
 791   assert( idx < _cnt, "oob");
 792   assert( !VerifyHashTableKeys || _hash_lock == 0,
 793           "remove node from hash table before modifying it");
 794   // First remove corresponding def-use edge
 795   Node *n = in(idx);
 796   if (n != NULL) n->del_out((Node *)this);
 797   if (idx < _cnt - 1) { // Not last edge ?
 798     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
 799   }
 800   _in[--_cnt] = NULL;   // NULL out emptied slot
 801 }
 802 
 803 //------------------------------ins_req----------------------------------------
 804 // Insert a new required input at the end
 805 void Node::ins_req( uint idx, Node *n ) {
 806   assert( is_not_dead(n), "can not use dead node");
 807   add_req(NULL);                // Make space
 808   assert( idx < _max, "Must have allocated enough space");
 809   // Slide over
 810   if(_cnt-idx-1 > 0) {
 811     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 812   }
 813   _in[idx] = n;                            // Stuff over old required edge
 814   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 815 }
 816 
 817 //-----------------------------find_edge---------------------------------------
 818 int Node::find_edge(Node* n) {
 819   for (uint i = 0; i < len(); i++) {
 820     if (_in[i] == n)  return i;
 821   }
 822   return -1;
 823 }
 824 
 825 //----------------------------replace_edge-------------------------------------
 826 int Node::replace_edge(Node* old, Node* neww) {
 827   if (old == neww)  return 0;  // nothing to do
 828   uint nrep = 0;
 829   for (uint i = 0; i < len(); i++) {
 830     if (in(i) == old) {
 831       if (i < req())
 832         set_req(i, neww);
 833       else
 834         set_prec(i, neww);
 835       nrep++;
 836     }
 837   }
 838   return nrep;
 839 }
 840 
 841 /**
 842  * Replace input edges in the range pointing to 'old' node.
 843  */
 844 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 845   if (old == neww)  return 0;  // nothing to do
 846   uint nrep = 0;
 847   for (int i = start; i < end; i++) {
 848     if (in(i) == old) {
 849       set_req(i, neww);
 850       nrep++;
 851     }
 852   }
 853   return nrep;
 854 }
 855 
 856 //-------------------------disconnect_inputs-----------------------------------
 857 // NULL out all inputs to eliminate incoming Def-Use edges.
 858 // Return the number of edges between 'n' and 'this'
 859 int Node::disconnect_inputs(Node *n, Compile* C) {
 860   int edges_to_n = 0;
 861 
 862   uint cnt = req();
 863   for( uint i = 0; i < cnt; ++i ) {
 864     if( in(i) == 0 ) continue;
 865     if( in(i) == n ) ++edges_to_n;
 866     set_req(i, NULL);
 867   }
 868   // Remove precedence edges if any exist
 869   // Note: Safepoints may have precedence edges, even during parsing
 870   if( (req() != len()) && (in(req()) != NULL) ) {
 871     uint max = len();
 872     for( uint i = 0; i < max; ++i ) {
 873       if( in(i) == 0 ) continue;
 874       if( in(i) == n ) ++edges_to_n;
 875       set_prec(i, NULL);
 876     }
 877   }
 878 
 879   // Node::destruct requires all out edges be deleted first
 880   // debug_only(destruct();)   // no reuse benefit expected
 881   if (edges_to_n == 0) {
 882     C->record_dead_node(_idx);
 883   }
 884   return edges_to_n;
 885 }
 886 
 887 //-----------------------------uncast---------------------------------------
 888 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 889 // Strip away casting.  (It is depth-limited.)
 890 Node* Node::uncast() const {
 891   // Should be inline:
 892   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 893   if (is_ConstraintCast() || is_CheckCastPP())
 894     return uncast_helper(this);
 895   else
 896     return (Node*) this;
 897 }
 898 
 899 //---------------------------uncast_helper-------------------------------------
 900 Node* Node::uncast_helper(const Node* p) {
 901 #ifdef ASSERT
 902   uint depth_count = 0;
 903   const Node* orig_p = p;
 904 #endif
 905 
 906   while (true) {
 907 #ifdef ASSERT
 908     if (depth_count >= K) {
 909       orig_p->dump(4);
 910       if (p != orig_p)
 911         p->dump(1);
 912     }
 913     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 914 #endif
 915     if (p == NULL || p->req() != 2) {
 916       break;
 917     } else if (p->is_ConstraintCast()) {
 918       p = p->in(1);
 919     } else if (p->is_CheckCastPP()) {
 920       p = p->in(1);
 921     } else {
 922       break;
 923     }
 924   }
 925   return (Node*) p;
 926 }
 927 
 928 //------------------------------add_prec---------------------------------------
 929 // Add a new precedence input.  Precedence inputs are unordered, with
 930 // duplicates removed and NULLs packed down at the end.
 931 void Node::add_prec( Node *n ) {
 932   assert( is_not_dead(n), "can not use dead node");
 933 
 934   // Check for NULL at end
 935   if( _cnt >= _max || in(_max-1) )
 936     grow( _max+1 );
 937 
 938   // Find a precedence edge to move
 939   uint i = _cnt;
 940   while( in(i) != NULL ) i++;
 941   _in[i] = n;                                // Stuff prec edge over NULL
 942   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 943 }
 944 
 945 //------------------------------rm_prec----------------------------------------
 946 // Remove a precedence input.  Precedence inputs are unordered, with
 947 // duplicates removed and NULLs packed down at the end.
 948 void Node::rm_prec( uint j ) {
 949 
 950   // Find end of precedence list to pack NULLs
 951   uint i;
 952   for( i=j; i<_max; i++ )
 953     if( !_in[i] )               // Find the NULL at end of prec edge list
 954       break;
 955   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
 956   _in[j] = _in[--i];            // Move last element over removed guy
 957   _in[i] = NULL;                // NULL out last element
 958 }
 959 
 960 //------------------------------size_of----------------------------------------
 961 uint Node::size_of() const { return sizeof(*this); }
 962 
 963 //------------------------------ideal_reg--------------------------------------
 964 uint Node::ideal_reg() const { return 0; }
 965 
 966 //------------------------------jvms-------------------------------------------
 967 JVMState* Node::jvms() const { return NULL; }
 968 
 969 #ifdef ASSERT
 970 //------------------------------jvms-------------------------------------------
 971 bool Node::verify_jvms(const JVMState* using_jvms) const {
 972   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 973     if (jvms == using_jvms)  return true;
 974   }
 975   return false;
 976 }
 977 
 978 //------------------------------init_NodeProperty------------------------------
 979 void Node::init_NodeProperty() {
 980   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
 981   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
 982 }
 983 #endif
 984 
 985 //------------------------------format-----------------------------------------
 986 // Print as assembly
 987 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
 988 //------------------------------emit-------------------------------------------
 989 // Emit bytes starting at parameter 'ptr'.
 990 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
 991 //------------------------------size-------------------------------------------
 992 // Size of instruction in bytes
 993 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
 994 
 995 //------------------------------CFG Construction-------------------------------
 996 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
 997 // Goto and Return.
 998 const Node *Node::is_block_proj() const { return 0; }
 999 
1000 // Minimum guaranteed type
1001 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1002 
1003 
1004 //------------------------------raise_bottom_type------------------------------
1005 // Get the worst-case Type output for this Node.
1006 void Node::raise_bottom_type(const Type* new_type) {
1007   if (is_Type()) {
1008     TypeNode *n = this->as_Type();
1009     if (VerifyAliases) {
1010       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1011     }
1012     n->set_type(new_type);
1013   } else if (is_Load()) {
1014     LoadNode *n = this->as_Load();
1015     if (VerifyAliases) {
1016       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1017     }
1018     n->set_type(new_type);
1019   }
1020 }
1021 
1022 //------------------------------Identity---------------------------------------
1023 // Return a node that the given node is equivalent to.
1024 Node *Node::Identity( PhaseTransform * ) {
1025   return this;                  // Default to no identities
1026 }
1027 
1028 //------------------------------Value------------------------------------------
1029 // Compute a new Type for a node using the Type of the inputs.
1030 const Type *Node::Value( PhaseTransform * ) const {
1031   return bottom_type();         // Default to worst-case Type
1032 }
1033 
1034 //------------------------------Ideal------------------------------------------
1035 //
1036 // 'Idealize' the graph rooted at this Node.
1037 //
1038 // In order to be efficient and flexible there are some subtle invariants
1039 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1040 // these invariants, although its too slow to have on by default.  If you are
1041 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1042 //
1043 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1044 // pointer.  If ANY change is made, it must return the root of the reshaped
1045 // graph - even if the root is the same Node.  Example: swapping the inputs
1046 // to an AddINode gives the same answer and same root, but you still have to
1047 // return the 'this' pointer instead of NULL.
1048 //
1049 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1050 // Identity call to return an old Node; basically if Identity can find
1051 // another Node have the Ideal call make no change and return NULL.
1052 // Example: AddINode::Ideal must check for add of zero; in this case it
1053 // returns NULL instead of doing any graph reshaping.
1054 //
1055 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1056 // sharing there may be other users of the old Nodes relying on their current
1057 // semantics.  Modifying them will break the other users.
1058 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1059 // "X+3" unchanged in case it is shared.
1060 //
1061 // If you modify the 'this' pointer's inputs, you should use
1062 // 'set_req'.  If you are making a new Node (either as the new root or
1063 // some new internal piece) you may use 'init_req' to set the initial
1064 // value.  You can make a new Node with either 'new' or 'clone'.  In
1065 // either case, def-use info is correctly maintained.
1066 //
1067 // Example: reshape "(X+3)+4" into "X+7":
1068 //    set_req(1, in(1)->in(1));
1069 //    set_req(2, phase->intcon(7));
1070 //    return this;
1071 // Example: reshape "X*4" into "X<<2"
1072 //    return new (C) LShiftINode(in(1), phase->intcon(2));
1073 //
1074 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1075 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1076 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
1077 //    return new (C) AddINode(shift, in(1));
1078 //
1079 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1080 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
1081 // The Right Thing with def-use info.
1082 //
1083 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1084 // graph uses the 'this' Node it must be the root.  If you want a Node with
1085 // the same Opcode as the 'this' pointer use 'clone'.
1086 //
1087 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1088   return NULL;                  // Default to being Ideal already
1089 }
1090 
1091 // Some nodes have specific Ideal subgraph transformations only if they are
1092 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1093 // for the transformations to happen.
1094 bool Node::has_special_unique_user() const {
1095   assert(outcnt() == 1, "match only for unique out");
1096   Node* n = unique_out();
1097   int op  = Opcode();
1098   if( this->is_Store() ) {
1099     // Condition for back-to-back stores folding.
1100     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1101   } else if( op == Op_AddL ) {
1102     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1103     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1104   } else if( op == Op_SubI || op == Op_SubL ) {
1105     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1106     return n->Opcode() == op && n->in(2) == this;
1107   }
1108   return false;
1109 };
1110 
1111 //--------------------------find_exact_control---------------------------------
1112 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1113 Node* Node::find_exact_control(Node* ctrl) {
1114   if (ctrl == NULL && this->is_Region())
1115     ctrl = this->as_Region()->is_copy();
1116 
1117   if (ctrl != NULL && ctrl->is_CatchProj()) {
1118     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1119       ctrl = ctrl->in(0);
1120     if (ctrl != NULL && !ctrl->is_top())
1121       ctrl = ctrl->in(0);
1122   }
1123 
1124   if (ctrl != NULL && ctrl->is_Proj())
1125     ctrl = ctrl->in(0);
1126 
1127   return ctrl;
1128 }
1129 
1130 //--------------------------dominates------------------------------------------
1131 // Helper function for MemNode::all_controls_dominate().
1132 // Check if 'this' control node dominates or equal to 'sub' control node.
1133 // We already know that if any path back to Root or Start reaches 'this',
1134 // then all paths so, so this is a simple search for one example,
1135 // not an exhaustive search for a counterexample.
1136 bool Node::dominates(Node* sub, Node_List &nlist) {
1137   assert(this->is_CFG(), "expecting control");
1138   assert(sub != NULL && sub->is_CFG(), "expecting control");
1139 
1140   // detect dead cycle without regions
1141   int iterations_without_region_limit = DominatorSearchLimit;
1142 
1143   Node* orig_sub = sub;
1144   Node* dom      = this;
1145   bool  met_dom  = false;
1146   nlist.clear();
1147 
1148   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1149   // After seeing 'dom', continue up to Root or Start.
1150   // If we hit a region (backward split point), it may be a loop head.
1151   // Keep going through one of the region's inputs.  If we reach the
1152   // same region again, go through a different input.  Eventually we
1153   // will either exit through the loop head, or give up.
1154   // (If we get confused, break out and return a conservative 'false'.)
1155   while (sub != NULL) {
1156     if (sub->is_top())  break; // Conservative answer for dead code.
1157     if (sub == dom) {
1158       if (nlist.size() == 0) {
1159         // No Region nodes except loops were visited before and the EntryControl
1160         // path was taken for loops: it did not walk in a cycle.
1161         return true;
1162       } else if (met_dom) {
1163         break;          // already met before: walk in a cycle
1164       } else {
1165         // Region nodes were visited. Continue walk up to Start or Root
1166         // to make sure that it did not walk in a cycle.
1167         met_dom = true; // first time meet
1168         iterations_without_region_limit = DominatorSearchLimit; // Reset
1169      }
1170     }
1171     if (sub->is_Start() || sub->is_Root()) {
1172       // Success if we met 'dom' along a path to Start or Root.
1173       // We assume there are no alternative paths that avoid 'dom'.
1174       // (This assumption is up to the caller to ensure!)
1175       return met_dom;
1176     }
1177     Node* up = sub->in(0);
1178     // Normalize simple pass-through regions and projections:
1179     up = sub->find_exact_control(up);
1180     // If sub == up, we found a self-loop.  Try to push past it.
1181     if (sub == up && sub->is_Loop()) {
1182       // Take loop entry path on the way up to 'dom'.
1183       up = sub->in(1); // in(LoopNode::EntryControl);
1184     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1185       // Always take in(1) path on the way up to 'dom' for clone regions
1186       // (with only one input) or regions which merge > 2 paths
1187       // (usually used to merge fast/slow paths).
1188       up = sub->in(1);
1189     } else if (sub == up && sub->is_Region()) {
1190       // Try both paths for Regions with 2 input paths (it may be a loop head).
1191       // It could give conservative 'false' answer without information
1192       // which region's input is the entry path.
1193       iterations_without_region_limit = DominatorSearchLimit; // Reset
1194 
1195       bool region_was_visited_before = false;
1196       // Was this Region node visited before?
1197       // If so, we have reached it because we accidentally took a
1198       // loop-back edge from 'sub' back into the body of the loop,
1199       // and worked our way up again to the loop header 'sub'.
1200       // So, take the first unexplored path on the way up to 'dom'.
1201       for (int j = nlist.size() - 1; j >= 0; j--) {
1202         intptr_t ni = (intptr_t)nlist.at(j);
1203         Node* visited = (Node*)(ni & ~1);
1204         bool  visited_twice_already = ((ni & 1) != 0);
1205         if (visited == sub) {
1206           if (visited_twice_already) {
1207             // Visited 2 paths, but still stuck in loop body.  Give up.
1208             return false;
1209           }
1210           // The Region node was visited before only once.
1211           // (We will repush with the low bit set, below.)
1212           nlist.remove(j);
1213           // We will find a new edge and re-insert.
1214           region_was_visited_before = true;
1215           break;
1216         }
1217       }
1218 
1219       // Find an incoming edge which has not been seen yet; walk through it.
1220       assert(up == sub, "");
1221       uint skip = region_was_visited_before ? 1 : 0;
1222       for (uint i = 1; i < sub->req(); i++) {
1223         Node* in = sub->in(i);
1224         if (in != NULL && !in->is_top() && in != sub) {
1225           if (skip == 0) {
1226             up = in;
1227             break;
1228           }
1229           --skip;               // skip this nontrivial input
1230         }
1231       }
1232 
1233       // Set 0 bit to indicate that both paths were taken.
1234       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1235     }
1236 
1237     if (up == sub) {
1238       break;    // some kind of tight cycle
1239     }
1240     if (up == orig_sub && met_dom) {
1241       // returned back after visiting 'dom'
1242       break;    // some kind of cycle
1243     }
1244     if (--iterations_without_region_limit < 0) {
1245       break;    // dead cycle
1246     }
1247     sub = up;
1248   }
1249 
1250   // Did not meet Root or Start node in pred. chain.
1251   // Conservative answer for dead code.
1252   return false;
1253 }
1254 
1255 //------------------------------remove_dead_region-----------------------------
1256 // This control node is dead.  Follow the subgraph below it making everything
1257 // using it dead as well.  This will happen normally via the usual IterGVN
1258 // worklist but this call is more efficient.  Do not update use-def info
1259 // inside the dead region, just at the borders.
1260 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1261   // Con's are a popular node to re-hit in the hash table again.
1262   if( dead->is_Con() ) return;
1263 
1264   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1265   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1266   Node_List  nstack(Thread::current()->resource_area());
1267 
1268   Node *top = igvn->C->top();
1269   nstack.push(dead);
1270   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1271 
1272   while (nstack.size() > 0) {
1273     dead = nstack.pop();
1274     if (dead->outcnt() > 0) {
1275       // Keep dead node on stack until all uses are processed.
1276       nstack.push(dead);
1277       // For all Users of the Dead...    ;-)
1278       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1279         Node* use = dead->last_out(k);
1280         igvn->hash_delete(use);       // Yank from hash table prior to mod
1281         if (use->in(0) == dead) {     // Found another dead node
1282           assert (!use->is_Con(), "Control for Con node should be Root node.");
1283           use->set_req(0, top);       // Cut dead edge to prevent processing
1284           nstack.push(use);           // the dead node again.
1285         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1286                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1287                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1288           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1289           use->set_req(0, top);       // Cut self edge
1290           nstack.push(use);
1291         } else {                      // Else found a not-dead user
1292           // Dead if all inputs are top or null
1293           bool dead_use = !use->is_Root(); // Keep empty graph alive
1294           for (uint j = 1; j < use->req(); j++) {
1295             Node* in = use->in(j);
1296             if (in == dead) {         // Turn all dead inputs into TOP
1297               use->set_req(j, top);
1298             } else if (in != NULL && !in->is_top()) {
1299               dead_use = false;
1300             }
1301           }
1302           if (dead_use) {
1303             if (use->is_Region()) {
1304               use->set_req(0, top);   // Cut self edge
1305             }
1306             nstack.push(use);
1307           } else {
1308             igvn->_worklist.push(use);
1309           }
1310         }
1311         // Refresh the iterator, since any number of kills might have happened.
1312         k = dead->last_outs(kmin);
1313       }
1314     } else { // (dead->outcnt() == 0)
1315       // Done with outputs.
1316       igvn->hash_delete(dead);
1317       igvn->_worklist.remove(dead);
1318       igvn->set_type(dead, Type::TOP);
1319       if (dead->is_macro()) {
1320         igvn->C->remove_macro_node(dead);
1321       }
1322       if (dead->is_expensive()) {
1323         igvn->C->remove_expensive_node(dead);
1324       }
1325       igvn->C->record_dead_node(dead->_idx);
1326       // Kill all inputs to the dead guy
1327       for (uint i=0; i < dead->req(); i++) {
1328         Node *n = dead->in(i);      // Get input to dead guy
1329         if (n != NULL && !n->is_top()) { // Input is valid?
1330           dead->set_req(i, top);    // Smash input away
1331           if (n->outcnt() == 0) {   // Input also goes dead?
1332             if (!n->is_Con())
1333               nstack.push(n);       // Clear it out as well
1334           } else if (n->outcnt() == 1 &&
1335                      n->has_special_unique_user()) {
1336             igvn->add_users_to_worklist( n );
1337           } else if (n->outcnt() <= 2 && n->is_Store()) {
1338             // Push store's uses on worklist to enable folding optimization for
1339             // store/store and store/load to the same address.
1340             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1341             // and remove_globally_dead_node().
1342             igvn->add_users_to_worklist( n );
1343           }
1344         }
1345       }
1346     } // (dead->outcnt() == 0)
1347   }   // while (nstack.size() > 0) for outputs
1348   return;
1349 }
1350 
1351 //------------------------------remove_dead_region-----------------------------
1352 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1353   Node *n = in(0);
1354   if( !n ) return false;
1355   // Lost control into this guy?  I.e., it became unreachable?
1356   // Aggressively kill all unreachable code.
1357   if (can_reshape && n->is_top()) {
1358     kill_dead_code(this, phase->is_IterGVN());
1359     return false; // Node is dead.
1360   }
1361 
1362   if( n->is_Region() && n->as_Region()->is_copy() ) {
1363     Node *m = n->nonnull_req();
1364     set_req(0, m);
1365     return true;
1366   }
1367   return false;
1368 }
1369 
1370 //------------------------------Ideal_DU_postCCP-------------------------------
1371 // Idealize graph, using DU info.  Must clone result into new-space
1372 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1373   return NULL;                 // Default to no change
1374 }
1375 
1376 //------------------------------hash-------------------------------------------
1377 // Hash function over Nodes.
1378 uint Node::hash() const {
1379   uint sum = 0;
1380   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1381     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1382   return (sum>>2) + _cnt + Opcode();
1383 }
1384 
1385 //------------------------------cmp--------------------------------------------
1386 // Compare special parts of simple Nodes
1387 uint Node::cmp( const Node &n ) const {
1388   return 1;                     // Must be same
1389 }
1390 
1391 //------------------------------rematerialize-----------------------------------
1392 // Should we clone rather than spill this instruction?
1393 bool Node::rematerialize() const {
1394   if ( is_Mach() )
1395     return this->as_Mach()->rematerialize();
1396   else
1397     return (_flags & Flag_rematerialize) != 0;
1398 }
1399 
1400 //------------------------------needs_anti_dependence_check---------------------
1401 // Nodes which use memory without consuming it, hence need antidependences.
1402 bool Node::needs_anti_dependence_check() const {
1403   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1404     return false;
1405   else
1406     return in(1)->bottom_type()->has_memory();
1407 }
1408 
1409 
1410 // Get an integer constant from a ConNode (or CastIINode).
1411 // Return a default value if there is no apparent constant here.
1412 const TypeInt* Node::find_int_type() const {
1413   if (this->is_Type()) {
1414     return this->as_Type()->type()->isa_int();
1415   } else if (this->is_Con()) {
1416     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1417     return this->bottom_type()->isa_int();
1418   }
1419   return NULL;
1420 }
1421 
1422 // Get a pointer constant from a ConstNode.
1423 // Returns the constant if it is a pointer ConstNode
1424 intptr_t Node::get_ptr() const {
1425   assert( Opcode() == Op_ConP, "" );
1426   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1427 }
1428 
1429 // Get a narrow oop constant from a ConNNode.
1430 intptr_t Node::get_narrowcon() const {
1431   assert( Opcode() == Op_ConN, "" );
1432   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1433 }
1434 
1435 // Get a long constant from a ConNode.
1436 // Return a default value if there is no apparent constant here.
1437 const TypeLong* Node::find_long_type() const {
1438   if (this->is_Type()) {
1439     return this->as_Type()->type()->isa_long();
1440   } else if (this->is_Con()) {
1441     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1442     return this->bottom_type()->isa_long();
1443   }
1444   return NULL;
1445 }
1446 
1447 
1448 /**
1449  * Return a ptr type for nodes which should have it.
1450  */
1451 const TypePtr* Node::get_ptr_type() const {
1452   const TypePtr* tp = this->bottom_type()->make_ptr();
1453 #ifdef ASSERT
1454   if (tp == NULL) {
1455     this->dump(1);
1456     assert((tp != NULL), "unexpected node type");
1457   }
1458 #endif
1459   return tp;
1460 }
1461 
1462 // Get a double constant from a ConstNode.
1463 // Returns the constant if it is a double ConstNode
1464 jdouble Node::getd() const {
1465   assert( Opcode() == Op_ConD, "" );
1466   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1467 }
1468 
1469 // Get a float constant from a ConstNode.
1470 // Returns the constant if it is a float ConstNode
1471 jfloat Node::getf() const {
1472   assert( Opcode() == Op_ConF, "" );
1473   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1474 }
1475 
1476 #ifndef PRODUCT
1477 
1478 //----------------------------NotANode----------------------------------------
1479 // Used in debugging code to avoid walking across dead or uninitialized edges.
1480 static inline bool NotANode(const Node* n) {
1481   if (n == NULL)                   return true;
1482   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1483   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1484   return false;
1485 }
1486 
1487 
1488 //------------------------------find------------------------------------------
1489 // Find a neighbor of this Node with the given _idx
1490 // If idx is negative, find its absolute value, following both _in and _out.
1491 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1492                         VectorSet* old_space, VectorSet* new_space ) {
1493   int node_idx = (idx >= 0) ? idx : -idx;
1494   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1495   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1496   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1497   if( v->test(n->_idx) ) return;
1498   if( (int)n->_idx == node_idx
1499       debug_only(|| n->debug_idx() == node_idx) ) {
1500     if (result != NULL)
1501       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1502                  (uintptr_t)result, (uintptr_t)n, node_idx);
1503     result = n;
1504   }
1505   v->set(n->_idx);
1506   for( uint i=0; i<n->len(); i++ ) {
1507     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1508     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1509   }
1510   // Search along forward edges also:
1511   if (idx < 0 && !only_ctrl) {
1512     for( uint j=0; j<n->outcnt(); j++ ) {
1513       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1514     }
1515   }
1516 #ifdef ASSERT
1517   // Search along debug_orig edges last, checking for cycles
1518   Node* orig = n->debug_orig();
1519   if (orig != NULL) {
1520     do {
1521       if (NotANode(orig))  break;
1522       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1523       orig = orig->debug_orig();
1524     } while (orig != NULL && orig != n->debug_orig());
1525   }
1526 #endif //ASSERT
1527 }
1528 
1529 // call this from debugger:
1530 Node* find_node(Node* n, int idx) {
1531   return n->find(idx);
1532 }
1533 
1534 //------------------------------find-------------------------------------------
1535 Node* Node::find(int idx) const {
1536   ResourceArea *area = Thread::current()->resource_area();
1537   VectorSet old_space(area), new_space(area);
1538   Node* result = NULL;
1539   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1540   return result;
1541 }
1542 
1543 //------------------------------find_ctrl--------------------------------------
1544 // Find an ancestor to this node in the control history with given _idx
1545 Node* Node::find_ctrl(int idx) const {
1546   ResourceArea *area = Thread::current()->resource_area();
1547   VectorSet old_space(area), new_space(area);
1548   Node* result = NULL;
1549   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1550   return result;
1551 }
1552 #endif
1553 
1554 
1555 
1556 #ifndef PRODUCT
1557 
1558 // -----------------------------Name-------------------------------------------
1559 extern const char *NodeClassNames[];
1560 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1561 
1562 static bool is_disconnected(const Node* n) {
1563   for (uint i = 0; i < n->req(); i++) {
1564     if (n->in(i) != NULL)  return false;
1565   }
1566   return true;
1567 }
1568 
1569 #ifdef ASSERT
1570 static void dump_orig(Node* orig, outputStream *st) {
1571   Compile* C = Compile::current();
1572   if (NotANode(orig)) orig = NULL;
1573   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1574   if (orig == NULL) return;
1575   st->print(" !orig=");
1576   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1577   if (NotANode(fast)) fast = NULL;
1578   while (orig != NULL) {
1579     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1580     if (discon) st->print("[");
1581     if (!Compile::current()->node_arena()->contains(orig))
1582       st->print("o");
1583     st->print("%d", orig->_idx);
1584     if (discon) st->print("]");
1585     orig = orig->debug_orig();
1586     if (NotANode(orig)) orig = NULL;
1587     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1588     if (orig != NULL) st->print(",");
1589     if (fast != NULL) {
1590       // Step fast twice for each single step of orig:
1591       fast = fast->debug_orig();
1592       if (NotANode(fast)) fast = NULL;
1593       if (fast != NULL && fast != orig) {
1594         fast = fast->debug_orig();
1595         if (NotANode(fast)) fast = NULL;
1596       }
1597       if (fast == orig) {
1598         st->print("...");
1599         break;
1600       }
1601     }
1602   }
1603 }
1604 
1605 void Node::set_debug_orig(Node* orig) {
1606   _debug_orig = orig;
1607   if (BreakAtNode == 0)  return;
1608   if (NotANode(orig))  orig = NULL;
1609   int trip = 10;
1610   while (orig != NULL) {
1611     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1612       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1613                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1614       BREAKPOINT;
1615     }
1616     orig = orig->debug_orig();
1617     if (NotANode(orig))  orig = NULL;
1618     if (trip-- <= 0)  break;
1619   }
1620 }
1621 #endif //ASSERT
1622 
1623 //------------------------------dump------------------------------------------
1624 // Dump a Node
1625 void Node::dump(const char* suffix, outputStream *st) const {
1626   Compile* C = Compile::current();
1627   bool is_new = C->node_arena()->contains(this);
1628   C->_in_dump_cnt++;
1629   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
1630 
1631   // Dump the required and precedence inputs
1632   dump_req(st);
1633   dump_prec(st);
1634   // Dump the outputs
1635   dump_out(st);
1636 
1637   if (is_disconnected(this)) {
1638 #ifdef ASSERT
1639     st->print("  [%d]",debug_idx());
1640     dump_orig(debug_orig(), st);
1641 #endif
1642     st->cr();
1643     C->_in_dump_cnt--;
1644     return;                     // don't process dead nodes
1645   }
1646 
1647   // Dump node-specific info
1648   dump_spec(st);
1649 #ifdef ASSERT
1650   // Dump the non-reset _debug_idx
1651   if (Verbose && WizardMode) {
1652     st->print("  [%d]",debug_idx());
1653   }
1654 #endif
1655 
1656   const Type *t = bottom_type();
1657 
1658   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1659     const TypeInstPtr  *toop = t->isa_instptr();
1660     const TypeKlassPtr *tkls = t->isa_klassptr();
1661     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1662     if (klass && klass->is_loaded() && klass->is_interface()) {
1663       st->print("  Interface:");
1664     } else if (toop) {
1665       st->print("  Oop:");
1666     } else if (tkls) {
1667       st->print("  Klass:");
1668     }
1669     t->dump_on(st);
1670   } else if (t == Type::MEMORY) {
1671     st->print("  Memory:");
1672     MemNode::dump_adr_type(this, adr_type(), st);
1673   } else if (Verbose || WizardMode) {
1674     st->print("  Type:");
1675     if (t) {
1676       t->dump_on(st);
1677     } else {
1678       st->print("no type");
1679     }
1680   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1681     // Dump MachSpillcopy vector type.
1682     t->dump_on(st);
1683   }
1684   if (is_new) {
1685     debug_only(dump_orig(debug_orig(), st));
1686     Node_Notes* nn = C->node_notes_at(_idx);
1687     if (nn != NULL && !nn->is_clear()) {
1688       if (nn->jvms() != NULL) {
1689         st->print(" !jvms:");
1690         nn->jvms()->dump_spec(st);
1691       }
1692     }
1693   }
1694   if (suffix) st->print("%s", suffix);
1695   C->_in_dump_cnt--;
1696 }
1697 
1698 //------------------------------dump_req--------------------------------------
1699 void Node::dump_req(outputStream *st) const {
1700   // Dump the required input edges
1701   for (uint i = 0; i < req(); i++) {    // For all required inputs
1702     Node* d = in(i);
1703     if (d == NULL) {
1704       st->print("_ ");
1705     } else if (NotANode(d)) {
1706       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1707     } else {
1708       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1709     }
1710   }
1711 }
1712 
1713 
1714 //------------------------------dump_prec-------------------------------------
1715 void Node::dump_prec(outputStream *st) const {
1716   // Dump the precedence edges
1717   int any_prec = 0;
1718   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1719     Node* p = in(i);
1720     if (p != NULL) {
1721       if (!any_prec++) st->print(" |");
1722       if (NotANode(p)) { st->print("NotANode "); continue; }
1723       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1724     }
1725   }
1726 }
1727 
1728 //------------------------------dump_out--------------------------------------
1729 void Node::dump_out(outputStream *st) const {
1730   // Delimit the output edges
1731   st->print(" [[");
1732   // Dump the output edges
1733   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1734     Node* u = _out[i];
1735     if (u == NULL) {
1736       st->print("_ ");
1737     } else if (NotANode(u)) {
1738       st->print("NotANode ");
1739     } else {
1740       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1741     }
1742   }
1743   st->print("]] ");
1744 }
1745 
1746 //------------------------------dump_nodes-------------------------------------
1747 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1748   Node* s = (Node*)start; // remove const
1749   if (NotANode(s)) return;
1750 
1751   uint depth = (uint)ABS(d);
1752   int direction = d;
1753   Compile* C = Compile::current();
1754   GrowableArray <Node *> nstack(C->unique());
1755 
1756   nstack.append(s);
1757   int begin = 0;
1758   int end = 0;
1759   for(uint i = 0; i < depth; i++) {
1760     end = nstack.length();
1761     for(int j = begin; j < end; j++) {
1762       Node* tp  = nstack.at(j);
1763       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1764       for(uint k = 0; k < limit; k++) {
1765         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1766 
1767         if (NotANode(n))  continue;
1768         // do not recurse through top or the root (would reach unrelated stuff)
1769         if (n->is_Root() || n->is_top())  continue;
1770         if (only_ctrl && !n->is_CFG()) continue;
1771 
1772         bool on_stack = nstack.contains(n);
1773         if (!on_stack) {
1774           nstack.append(n);
1775         }
1776       }
1777     }
1778     begin = end;
1779   }
1780   end = nstack.length();
1781   if (direction > 0) {
1782     for(int j = end-1; j >= 0; j--) {
1783       nstack.at(j)->dump();
1784     }
1785   } else {
1786     for(int j = 0; j < end; j++) {
1787       nstack.at(j)->dump();
1788     }
1789   }
1790 }
1791 
1792 //------------------------------dump-------------------------------------------
1793 void Node::dump(int d) const {
1794   dump_nodes(this, d, false);
1795 }
1796 
1797 //------------------------------dump_ctrl--------------------------------------
1798 // Dump a Node's control history to depth
1799 void Node::dump_ctrl(int d) const {
1800   dump_nodes(this, d, true);
1801 }
1802 
1803 // VERIFICATION CODE
1804 // For each input edge to a node (ie - for each Use-Def edge), verify that
1805 // there is a corresponding Def-Use edge.
1806 //------------------------------verify_edges-----------------------------------
1807 void Node::verify_edges(Unique_Node_List &visited) {
1808   uint i, j, idx;
1809   int  cnt;
1810   Node *n;
1811 
1812   // Recursive termination test
1813   if (visited.member(this))  return;
1814   visited.push(this);
1815 
1816   // Walk over all input edges, checking for correspondence
1817   for( i = 0; i < len(); i++ ) {
1818     n = in(i);
1819     if (n != NULL && !n->is_top()) {
1820       // Count instances of (Node *)this
1821       cnt = 0;
1822       for (idx = 0; idx < n->_outcnt; idx++ ) {
1823         if (n->_out[idx] == (Node *)this)  cnt++;
1824       }
1825       assert( cnt > 0,"Failed to find Def-Use edge." );
1826       // Check for duplicate edges
1827       // walk the input array downcounting the input edges to n
1828       for( j = 0; j < len(); j++ ) {
1829         if( in(j) == n ) cnt--;
1830       }
1831       assert( cnt == 0,"Mismatched edge count.");
1832     } else if (n == NULL) {
1833       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1834     } else {
1835       assert(n->is_top(), "sanity");
1836       // Nothing to check.
1837     }
1838   }
1839   // Recursive walk over all input edges
1840   for( i = 0; i < len(); i++ ) {
1841     n = in(i);
1842     if( n != NULL )
1843       in(i)->verify_edges(visited);
1844   }
1845 }
1846 
1847 //------------------------------verify_recur-----------------------------------
1848 static const Node *unique_top = NULL;
1849 
1850 void Node::verify_recur(const Node *n, int verify_depth,
1851                         VectorSet &old_space, VectorSet &new_space) {
1852   if ( verify_depth == 0 )  return;
1853   if (verify_depth > 0)  --verify_depth;
1854 
1855   Compile* C = Compile::current();
1856 
1857   // Contained in new_space or old_space?
1858   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1859   // Check for visited in the proper space.  Numberings are not unique
1860   // across spaces so we need a separate VectorSet for each space.
1861   if( v->test_set(n->_idx) ) return;
1862 
1863   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1864     if (C->cached_top_node() == NULL)
1865       C->set_cached_top_node((Node*)n);
1866     assert(C->cached_top_node() == n, "TOP node must be unique");
1867   }
1868 
1869   for( uint i = 0; i < n->len(); i++ ) {
1870     Node *x = n->in(i);
1871     if (!x || x->is_top()) continue;
1872 
1873     // Verify my input has a def-use edge to me
1874     if (true /*VerifyDefUse*/) {
1875       // Count use-def edges from n to x
1876       int cnt = 0;
1877       for( uint j = 0; j < n->len(); j++ )
1878         if( n->in(j) == x )
1879           cnt++;
1880       // Count def-use edges from x to n
1881       uint max = x->_outcnt;
1882       for( uint k = 0; k < max; k++ )
1883         if (x->_out[k] == n)
1884           cnt--;
1885       assert( cnt == 0, "mismatched def-use edge counts" );
1886     }
1887 
1888     verify_recur(x, verify_depth, old_space, new_space);
1889   }
1890 
1891 }
1892 
1893 //------------------------------verify-----------------------------------------
1894 // Check Def-Use info for my subgraph
1895 void Node::verify() const {
1896   Compile* C = Compile::current();
1897   Node* old_top = C->cached_top_node();
1898   ResourceMark rm;
1899   ResourceArea *area = Thread::current()->resource_area();
1900   VectorSet old_space(area), new_space(area);
1901   verify_recur(this, -1, old_space, new_space);
1902   C->set_cached_top_node(old_top);
1903 }
1904 #endif
1905 
1906 
1907 //------------------------------walk-------------------------------------------
1908 // Graph walk, with both pre-order and post-order functions
1909 void Node::walk(NFunc pre, NFunc post, void *env) {
1910   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1911   walk_(pre, post, env, visited);
1912 }
1913 
1914 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1915   if( visited.test_set(_idx) ) return;
1916   pre(*this,env);               // Call the pre-order walk function
1917   for( uint i=0; i<_max; i++ )
1918     if( in(i) )                 // Input exists and is not walked?
1919       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1920   post(*this,env);              // Call the post-order walk function
1921 }
1922 
1923 void Node::nop(Node &, void*) {}
1924 
1925 //------------------------------Registers--------------------------------------
1926 // Do we Match on this edge index or not?  Generally false for Control
1927 // and true for everything else.  Weird for calls & returns.
1928 uint Node::match_edge(uint idx) const {
1929   return idx;                   // True for other than index 0 (control)
1930 }
1931 
1932 static RegMask _not_used_at_all;
1933 // Register classes are defined for specific machines
1934 const RegMask &Node::out_RegMask() const {
1935   ShouldNotCallThis();
1936   return _not_used_at_all;
1937 }
1938 
1939 const RegMask &Node::in_RegMask(uint) const {
1940   ShouldNotCallThis();
1941   return _not_used_at_all;
1942 }
1943 
1944 //=============================================================================
1945 //-----------------------------------------------------------------------------
1946 void Node_Array::reset( Arena *new_arena ) {
1947   _a->Afree(_nodes,_max*sizeof(Node*));
1948   _max   = 0;
1949   _nodes = NULL;
1950   _a     = new_arena;
1951 }
1952 
1953 //------------------------------clear------------------------------------------
1954 // Clear all entries in _nodes to NULL but keep storage
1955 void Node_Array::clear() {
1956   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1957 }
1958 
1959 //-----------------------------------------------------------------------------
1960 void Node_Array::grow( uint i ) {
1961   if( !_max ) {
1962     _max = 1;
1963     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1964     _nodes[0] = NULL;
1965   }
1966   uint old = _max;
1967   while( i >= _max ) _max <<= 1;        // Double to fit
1968   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1969   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1970 }
1971 
1972 //-----------------------------------------------------------------------------
1973 void Node_Array::insert( uint i, Node *n ) {
1974   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1975   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1976   _nodes[i] = n;
1977 }
1978 
1979 //-----------------------------------------------------------------------------
1980 void Node_Array::remove( uint i ) {
1981   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1982   _nodes[_max-1] = NULL;
1983 }
1984 
1985 //-----------------------------------------------------------------------------
1986 void Node_Array::sort( C_sort_func_t func) {
1987   qsort( _nodes, _max, sizeof( Node* ), func );
1988 }
1989 
1990 //-----------------------------------------------------------------------------
1991 void Node_Array::dump() const {
1992 #ifndef PRODUCT
1993   for( uint i = 0; i < _max; i++ ) {
1994     Node *nn = _nodes[i];
1995     if( nn != NULL ) {
1996       tty->print("%5d--> ",i); nn->dump();
1997     }
1998   }
1999 #endif
2000 }
2001 
2002 //--------------------------is_iteratively_computed------------------------------
2003 // Operation appears to be iteratively computed (such as an induction variable)
2004 // It is possible for this operation to return false for a loop-varying
2005 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2006 bool Node::is_iteratively_computed() {
2007   if (ideal_reg()) { // does operation have a result register?
2008     for (uint i = 1; i < req(); i++) {
2009       Node* n = in(i);
2010       if (n != NULL && n->is_Phi()) {
2011         for (uint j = 1; j < n->req(); j++) {
2012           if (n->in(j) == this) {
2013             return true;
2014           }
2015         }
2016       }
2017     }
2018   }
2019   return false;
2020 }
2021 
2022 //--------------------------find_similar------------------------------
2023 // Return a node with opcode "opc" and same inputs as "this" if one can
2024 // be found; Otherwise return NULL;
2025 Node* Node::find_similar(int opc) {
2026   if (req() >= 2) {
2027     Node* def = in(1);
2028     if (def && def->outcnt() >= 2) {
2029       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2030         Node* use = def->fast_out(i);
2031         if (use->Opcode() == opc &&
2032             use->req() == req()) {
2033           uint j;
2034           for (j = 0; j < use->req(); j++) {
2035             if (use->in(j) != in(j)) {
2036               break;
2037             }
2038           }
2039           if (j == use->req()) {
2040             return use;
2041           }
2042         }
2043       }
2044     }
2045   }
2046   return NULL;
2047 }
2048 
2049 
2050 //--------------------------unique_ctrl_out------------------------------
2051 // Return the unique control out if only one. Null if none or more than one.
2052 Node* Node::unique_ctrl_out() {
2053   Node* found = NULL;
2054   for (uint i = 0; i < outcnt(); i++) {
2055     Node* use = raw_out(i);
2056     if (use->is_CFG() && use != this) {
2057       if (found != NULL) return NULL;
2058       found = use;
2059     }
2060   }
2061   return found;
2062 }
2063 
2064 //=============================================================================
2065 //------------------------------yank-------------------------------------------
2066 // Find and remove
2067 void Node_List::yank( Node *n ) {
2068   uint i;
2069   for( i = 0; i < _cnt; i++ )
2070     if( _nodes[i] == n )
2071       break;
2072 
2073   if( i < _cnt )
2074     _nodes[i] = _nodes[--_cnt];
2075 }
2076 
2077 //------------------------------dump-------------------------------------------
2078 void Node_List::dump() const {
2079 #ifndef PRODUCT
2080   for( uint i = 0; i < _cnt; i++ )
2081     if( _nodes[i] ) {
2082       tty->print("%5d--> ",i);
2083       _nodes[i]->dump();
2084     }
2085 #endif
2086 }
2087 
2088 //=============================================================================
2089 //------------------------------remove-----------------------------------------
2090 void Unique_Node_List::remove( Node *n ) {
2091   if( _in_worklist[n->_idx] ) {
2092     for( uint i = 0; i < size(); i++ )
2093       if( _nodes[i] == n ) {
2094         map(i,Node_List::pop());
2095         _in_worklist >>= n->_idx;
2096         return;
2097       }
2098     ShouldNotReachHere();
2099   }
2100 }
2101 
2102 //-----------------------remove_useless_nodes----------------------------------
2103 // Remove useless nodes from worklist
2104 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2105 
2106   for( uint i = 0; i < size(); ++i ) {
2107     Node *n = at(i);
2108     assert( n != NULL, "Did not expect null entries in worklist");
2109     if( ! useful.test(n->_idx) ) {
2110       _in_worklist >>= n->_idx;
2111       map(i,Node_List::pop());
2112       // Node *replacement = Node_List::pop();
2113       // if( i != size() ) { // Check if removing last entry
2114       //   _nodes[i] = replacement;
2115       // }
2116       --i;  // Visit popped node
2117       // If it was last entry, loop terminates since size() was also reduced
2118     }
2119   }
2120 }
2121 
2122 //=============================================================================
2123 void Node_Stack::grow() {
2124   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2125   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2126   size_t max = old_max << 1;             // max * 2
2127   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2128   _inode_max = _inodes + max;
2129   _inode_top = _inodes + old_top;        // restore _top
2130 }
2131 
2132 // Node_Stack is used to map nodes.
2133 Node* Node_Stack::find(uint idx) const {
2134   uint sz = size();
2135   for (uint i=0; i < sz; i++) {
2136     if (idx == index_at(i) )
2137       return node_at(i);
2138   }
2139   return NULL;
2140 }
2141 
2142 //=============================================================================
2143 uint TypeNode::size_of() const { return sizeof(*this); }
2144 #ifndef PRODUCT
2145 void TypeNode::dump_spec(outputStream *st) const {
2146   if( !Verbose && !WizardMode ) {
2147     // standard dump does this in Verbose and WizardMode
2148     st->print(" #"); _type->dump_on(st);
2149   }
2150 }
2151 #endif
2152 uint TypeNode::hash() const {
2153   return Node::hash() + _type->hash();
2154 }
2155 uint TypeNode::cmp( const Node &n ) const
2156 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2157 const Type *TypeNode::bottom_type() const { return _type; }
2158 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2159 
2160 //------------------------------ideal_reg--------------------------------------
2161 uint TypeNode::ideal_reg() const {
2162   return _type->ideal_reg();
2163 }