1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/locknode.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/opaquenode.hpp"
  35 #include "opto/parse.hpp"
  36 #include "opto/rootnode.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "utilities/copy.hpp"
  42 
  43 // Static array so we can figure out which bytecodes stop us from compiling
  44 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  45 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  46 
  47 int nodes_created              = 0;
  48 int methods_parsed             = 0;
  49 int methods_seen               = 0;
  50 int blocks_parsed              = 0;
  51 int blocks_seen                = 0;
  52 
  53 int explicit_null_checks_inserted = 0;
  54 int explicit_null_checks_elided   = 0;
  55 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  56 int implicit_null_throws          = 0;
  57 
  58 int reclaim_idx  = 0;
  59 int reclaim_in   = 0;
  60 int reclaim_node = 0;
  61 
  62 #ifndef PRODUCT
  63 bool Parse::BytecodeParseHistogram::_initialized = false;
  64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  67 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  68 #endif
  69 
  70 //------------------------------print_statistics-------------------------------
  71 #ifndef PRODUCT
  72 void Parse::print_statistics() {
  73   tty->print_cr("--- Compiler Statistics ---");
  74   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  75   tty->print("  Nodes created: %d", nodes_created);
  76   tty->cr();
  77   if (methods_seen != methods_parsed)
  78     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  79   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  80 
  81   if( explicit_null_checks_inserted )
  82     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  83   if( all_null_checks_found )
  84     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  85                   (100*implicit_null_checks)/all_null_checks_found);
  86   if( implicit_null_throws )
  87     tty->print_cr("%d implicit null exceptions at runtime",
  88                   implicit_null_throws);
  89 
  90   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  91     BytecodeParseHistogram::print();
  92   }
  93 }
  94 #endif
  95 
  96 //------------------------------ON STACK REPLACEMENT---------------------------
  97 
  98 // Construct a node which can be used to get incoming state for
  99 // on stack replacement.
 100 Node *Parse::fetch_interpreter_state(int index,
 101                                      BasicType bt,
 102                                      Node *local_addrs,
 103                                      Node *local_addrs_base) {
 104   Node *mem = memory(Compile::AliasIdxRaw);
 105   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 106   Node *ctl = control();
 107 
 108   // Very similar to LoadNode::make, except we handle un-aligned longs and
 109   // doubles on Sparc.  Intel can handle them just fine directly.
 110   Node *l;
 111   switch (bt) {                // Signature is flattened
 112   case T_INT:     l = new (C) LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 113   case T_FLOAT:   l = new (C) LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 114   case T_ADDRESS: l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 115   case T_OBJECT:  l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 116   case T_LONG:
 117   case T_DOUBLE: {
 118     // Since arguments are in reverse order, the argument address 'adr'
 119     // refers to the back half of the long/double.  Recompute adr.
 120     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 121     if (Matcher::misaligned_doubles_ok) {
 122       l = (bt == T_DOUBLE)
 123         ? (Node*)new (C) LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 124         : (Node*)new (C) LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 125     } else {
 126       l = (bt == T_DOUBLE)
 127         ? (Node*)new (C) LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 128         : (Node*)new (C) LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 129     }
 130     break;
 131   }
 132   default: ShouldNotReachHere();
 133   }
 134   return _gvn.transform(l);
 135 }
 136 
 137 // Helper routine to prevent the interpreter from handing
 138 // unexpected typestate to an OSR method.
 139 // The Node l is a value newly dug out of the interpreter frame.
 140 // The type is the type predicted by ciTypeFlow.  Note that it is
 141 // not a general type, but can only come from Type::get_typeflow_type.
 142 // The safepoint is a map which will feed an uncommon trap.
 143 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 144                                     SafePointNode* &bad_type_exit) {
 145 
 146   const TypeOopPtr* tp = type->isa_oopptr();
 147 
 148   // TypeFlow may assert null-ness if a type appears unloaded.
 149   if (type == TypePtr::NULL_PTR ||
 150       (tp != NULL && !tp->klass()->is_loaded())) {
 151     // Value must be null, not a real oop.
 152     Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) );
 153     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 154     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 155     set_control(_gvn.transform( new (C) IfTrueNode(iff) ));
 156     Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) );
 157     bad_type_exit->control()->add_req(bad_type);
 158     l = null();
 159   }
 160 
 161   // Typeflow can also cut off paths from the CFG, based on
 162   // types which appear unloaded, or call sites which appear unlinked.
 163   // When paths are cut off, values at later merge points can rise
 164   // toward more specific classes.  Make sure these specific classes
 165   // are still in effect.
 166   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 167     // TypeFlow asserted a specific object type.  Value must have that type.
 168     Node* bad_type_ctrl = NULL;
 169     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 170     bad_type_exit->control()->add_req(bad_type_ctrl);
 171   }
 172 
 173   BasicType bt_l = _gvn.type(l)->basic_type();
 174   BasicType bt_t = type->basic_type();
 175   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 176   return l;
 177 }
 178 
 179 // Helper routine which sets up elements of the initial parser map when
 180 // performing a parse for on stack replacement.  Add values into map.
 181 // The only parameter contains the address of a interpreter arguments.
 182 void Parse::load_interpreter_state(Node* osr_buf) {
 183   int index;
 184   int max_locals = jvms()->loc_size();
 185   int max_stack  = jvms()->stk_size();
 186 
 187 
 188   // Mismatch between method and jvms can occur since map briefly held
 189   // an OSR entry state (which takes up one RawPtr word).
 190   assert(max_locals == method()->max_locals(), "sanity");
 191   assert(max_stack  >= method()->max_stack(),  "sanity");
 192   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 193   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 194 
 195   // Find the start block.
 196   Block* osr_block = start_block();
 197   assert(osr_block->start() == osr_bci(), "sanity");
 198 
 199   // Set initial BCI.
 200   set_parse_bci(osr_block->start());
 201 
 202   // Set initial stack depth.
 203   set_sp(osr_block->start_sp());
 204 
 205   // Check bailouts.  We currently do not perform on stack replacement
 206   // of loops in catch blocks or loops which branch with a non-empty stack.
 207   if (sp() != 0) {
 208     C->record_method_not_compilable("OSR starts with non-empty stack");
 209     return;
 210   }
 211   // Do not OSR inside finally clauses:
 212   if (osr_block->has_trap_at(osr_block->start())) {
 213     C->record_method_not_compilable("OSR starts with an immediate trap");
 214     return;
 215   }
 216 
 217   // Commute monitors from interpreter frame to compiler frame.
 218   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 219   int mcnt = osr_block->flow()->monitor_count();
 220   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 221   for (index = 0; index < mcnt; index++) {
 222     // Make a BoxLockNode for the monitor.
 223     Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
 224 
 225 
 226     // Displaced headers and locked objects are interleaved in the
 227     // temp OSR buffer.  We only copy the locked objects out here.
 228     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 229     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 230     // Try and copy the displaced header to the BoxNode
 231     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 232 
 233 
 234     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 235 
 236     // Build a bogus FastLockNode (no code will be generated) and push the
 237     // monitor into our debug info.
 238     const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock();
 239     map()->push_monitor(flock);
 240 
 241     // If the lock is our method synchronization lock, tuck it away in
 242     // _sync_lock for return and rethrow exit paths.
 243     if (index == 0 && method()->is_synchronized()) {
 244       _synch_lock = flock;
 245     }
 246   }
 247 
 248   // Use the raw liveness computation to make sure that unexpected
 249   // values don't propagate into the OSR frame.
 250   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 251   if (!live_locals.is_valid()) {
 252     // Degenerate or breakpointed method.
 253     C->record_method_not_compilable("OSR in empty or breakpointed method");
 254     return;
 255   }
 256 
 257   // Extract the needed locals from the interpreter frame.
 258   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 259 
 260   // find all the locals that the interpreter thinks contain live oops
 261   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 262   for (index = 0; index < max_locals; index++) {
 263 
 264     if (!live_locals.at(index)) {
 265       continue;
 266     }
 267 
 268     const Type *type = osr_block->local_type_at(index);
 269 
 270     if (type->isa_oopptr() != NULL) {
 271 
 272       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 273       // else we might load a stale oop if the MethodLiveness disagrees with the
 274       // result of the interpreter. If the interpreter says it is dead we agree
 275       // by making the value go to top.
 276       //
 277 
 278       if (!live_oops.at(index)) {
 279         if (C->log() != NULL) {
 280           C->log()->elem("OSR_mismatch local_index='%d'",index);
 281         }
 282         set_local(index, null());
 283         // and ignore it for the loads
 284         continue;
 285       }
 286     }
 287 
 288     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 289     if (type == Type::TOP || type == Type::HALF) {
 290       continue;
 291     }
 292     // If the type falls to bottom, then this must be a local that
 293     // is mixing ints and oops or some such.  Forcing it to top
 294     // makes it go dead.
 295     if (type == Type::BOTTOM) {
 296       continue;
 297     }
 298     // Construct code to access the appropriate local.
 299     BasicType bt = type->basic_type();
 300     if (type == TypePtr::NULL_PTR) {
 301       // Ptr types are mixed together with T_ADDRESS but NULL is
 302       // really for T_OBJECT types so correct it.
 303       bt = T_OBJECT;
 304     }
 305     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 306     set_local(index, value);
 307   }
 308 
 309   // Extract the needed stack entries from the interpreter frame.
 310   for (index = 0; index < sp(); index++) {
 311     const Type *type = osr_block->stack_type_at(index);
 312     if (type != Type::TOP) {
 313       // Currently the compiler bails out when attempting to on stack replace
 314       // at a bci with a non-empty stack.  We should not reach here.
 315       ShouldNotReachHere();
 316     }
 317   }
 318 
 319   // End the OSR migration
 320   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 321                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 322                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 323                     osr_buf);
 324 
 325   // Now that the interpreter state is loaded, make sure it will match
 326   // at execution time what the compiler is expecting now:
 327   SafePointNode* bad_type_exit = clone_map();
 328   bad_type_exit->set_control(new (C) RegionNode(1));
 329 
 330   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 331   for (index = 0; index < max_locals; index++) {
 332     if (stopped())  break;
 333     Node* l = local(index);
 334     if (l->is_top())  continue;  // nothing here
 335     const Type *type = osr_block->local_type_at(index);
 336     if (type->isa_oopptr() != NULL) {
 337       if (!live_oops.at(index)) {
 338         // skip type check for dead oops
 339         continue;
 340       }
 341     }
 342     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 343       // In our current system it's illegal for jsr addresses to be
 344       // live into an OSR entry point because the compiler performs
 345       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 346       // case and aborts the compile if addresses are live into an OSR
 347       // entry point.  Because of that we can assume that any address
 348       // locals at the OSR entry point are dead.  Method liveness
 349       // isn't precise enought to figure out that they are dead in all
 350       // cases so simply skip checking address locals all
 351       // together. Any type check is guaranteed to fail since the
 352       // interpreter type is the result of a load which might have any
 353       // value and the expected type is a constant.
 354       continue;
 355     }
 356     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 357   }
 358 
 359   for (index = 0; index < sp(); index++) {
 360     if (stopped())  break;
 361     Node* l = stack(index);
 362     if (l->is_top())  continue;  // nothing here
 363     const Type *type = osr_block->stack_type_at(index);
 364     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 365   }
 366 
 367   if (bad_type_exit->control()->req() > 1) {
 368     // Build an uncommon trap here, if any inputs can be unexpected.
 369     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 370     record_for_igvn(bad_type_exit->control());
 371     SafePointNode* types_are_good = map();
 372     set_map(bad_type_exit);
 373     // The unexpected type happens because a new edge is active
 374     // in the CFG, which typeflow had previously ignored.
 375     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 376     // This x will be typed as Integer if notReached is not yet linked.
 377     // It could also happen due to a problem in ciTypeFlow analysis.
 378     uncommon_trap(Deoptimization::Reason_constraint,
 379                   Deoptimization::Action_reinterpret);
 380     set_map(types_are_good);
 381   }
 382 }
 383 
 384 //------------------------------Parse------------------------------------------
 385 // Main parser constructor.
 386 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses, Parse* parent)
 387   : _exits(caller), _parent(parent)
 388 {
 389   // Init some variables
 390   _caller = caller;
 391   _method = parse_method;
 392   _expected_uses = expected_uses;
 393   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 394   _wrote_final = false;
 395   _wrote_volatile = false;
 396   _wrote_stable = false;
 397   _wrote_fields = false;
 398   _alloc_with_final = NULL;
 399   _entry_bci = InvocationEntryBci;
 400   _tf = NULL;
 401   _block = NULL;
 402   debug_only(_block_count = -1);
 403   debug_only(_blocks = (Block*)-1);
 404 #ifndef PRODUCT
 405   if (PrintCompilation || PrintOpto) {
 406     // Make sure I have an inline tree, so I can print messages about it.
 407     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 408     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 409   }
 410   _max_switch_depth = 0;
 411   _est_switch_depth = 0;
 412 #endif
 413 
 414   _tf = TypeFunc::make(method());
 415   _iter.reset_to_method(method());
 416   _flow = method()->get_flow_analysis();
 417   if (_flow->failing()) {
 418     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 419   }
 420 
 421 #ifndef PRODUCT
 422   if (_flow->has_irreducible_entry()) {
 423     C->set_parsed_irreducible_loop(true);
 424   }
 425 #endif
 426 
 427   if (_expected_uses <= 0) {
 428     _prof_factor = 1;
 429   } else {
 430     float prof_total = parse_method->interpreter_invocation_count();
 431     if (prof_total <= _expected_uses) {
 432       _prof_factor = 1;
 433     } else {
 434       _prof_factor = _expected_uses / prof_total;
 435     }
 436   }
 437 
 438   CompileLog* log = C->log();
 439   if (log != NULL) {
 440     log->begin_head("parse method='%d' uses='%g'",
 441                     log->identify(parse_method), expected_uses);
 442     if (depth() == 1 && C->is_osr_compilation()) {
 443       log->print(" osr_bci='%d'", C->entry_bci());
 444     }
 445     log->stamp();
 446     log->end_head();
 447   }
 448 
 449   // Accumulate deoptimization counts.
 450   // (The range_check and store_check counts are checked elsewhere.)
 451   ciMethodData* md = method()->method_data();
 452   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 453     uint md_count = md->trap_count(reason);
 454     if (md_count != 0) {
 455       if (md_count == md->trap_count_limit())
 456         md_count += md->overflow_trap_count();
 457       uint total_count = C->trap_count(reason);
 458       uint old_count   = total_count;
 459       total_count += md_count;
 460       // Saturate the add if it overflows.
 461       if (total_count < old_count || total_count < md_count)
 462         total_count = (uint)-1;
 463       C->set_trap_count(reason, total_count);
 464       if (log != NULL)
 465         log->elem("observe trap='%s' count='%d' total='%d'",
 466                   Deoptimization::trap_reason_name(reason),
 467                   md_count, total_count);
 468     }
 469   }
 470   // Accumulate total sum of decompilations, also.
 471   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 472 
 473   _count_invocations = C->do_count_invocations();
 474   _method_data_update = C->do_method_data_update();
 475 
 476   if (log != NULL && method()->has_exception_handlers()) {
 477     log->elem("observe that='has_exception_handlers'");
 478   }
 479 
 480   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 481   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 482 
 483   // Always register dependence if JVMTI is enabled, because
 484   // either breakpoint setting or hotswapping of methods may
 485   // cause deoptimization.
 486   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 487     C->dependencies()->assert_evol_method(method());
 488   }
 489 
 490   methods_seen++;
 491 
 492   // Do some special top-level things.
 493   if (depth() == 1 && C->is_osr_compilation()) {
 494     _entry_bci = C->entry_bci();
 495     _flow = method()->get_osr_flow_analysis(osr_bci());
 496     if (_flow->failing()) {
 497       C->record_method_not_compilable(_flow->failure_reason());
 498 #ifndef PRODUCT
 499       if (PrintOpto && (Verbose || WizardMode)) {
 500         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 501         if (Verbose) {
 502           method()->print();
 503           method()->print_codes();
 504           _flow->print();
 505         }
 506       }
 507 #endif
 508     }
 509     _tf = C->tf();     // the OSR entry type is different
 510   }
 511 
 512 #ifdef ASSERT
 513   if (depth() == 1) {
 514     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 515     if (C->tf() != tf()) {
 516       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 517       assert(C->env()->system_dictionary_modification_counter_changed(),
 518              "Must invalidate if TypeFuncs differ");
 519     }
 520   } else {
 521     assert(!this->is_osr_parse(), "no recursive OSR");
 522   }
 523 #endif
 524 
 525   methods_parsed++;
 526 #ifndef PRODUCT
 527   // add method size here to guarantee that inlined methods are added too
 528   if (TimeCompiler)
 529     _total_bytes_compiled += method()->code_size();
 530 
 531   show_parse_info();
 532 #endif
 533 
 534   if (failing()) {
 535     if (log)  log->done("parse");
 536     return;
 537   }
 538 
 539   gvn().set_type(root(), root()->bottom_type());
 540   gvn().transform(top());
 541 
 542   // Import the results of the ciTypeFlow.
 543   init_blocks();
 544 
 545   // Merge point for all normal exits
 546   build_exits();
 547 
 548   // Setup the initial JVM state map.
 549   SafePointNode* entry_map = create_entry_map();
 550 
 551   // Check for bailouts during map initialization
 552   if (failing() || entry_map == NULL) {
 553     if (log)  log->done("parse");
 554     return;
 555   }
 556 
 557   Node_Notes* caller_nn = C->default_node_notes();
 558   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 559   if (DebugInlinedCalls || depth() == 1) {
 560     C->set_default_node_notes(make_node_notes(caller_nn));
 561   }
 562 
 563   if (is_osr_parse()) {
 564     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 565     entry_map->set_req(TypeFunc::Parms+0, top());
 566     set_map(entry_map);
 567     load_interpreter_state(osr_buf);
 568   } else {
 569     set_map(entry_map);
 570     do_method_entry();
 571     if (depth() == 1 && C->age_code()) {
 572       decrement_age();
 573     }
 574   }
 575   if (depth() == 1) {
 576     // Add check to deoptimize the nmethod if RTM state was changed
 577     rtm_deopt();
 578   }
 579 
 580   // Check for bailouts during method entry.
 581   if (failing()) {
 582     if (log)  log->done("parse");
 583     C->set_default_node_notes(caller_nn);
 584     return;
 585   }
 586 
 587   entry_map = map();  // capture any changes performed by method setup code
 588   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 589 
 590   // We begin parsing as if we have just encountered a jump to the
 591   // method entry.
 592   Block* entry_block = start_block();
 593   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 594   set_map_clone(entry_map);
 595   merge_common(entry_block, entry_block->next_path_num());
 596 
 597 #ifndef PRODUCT
 598   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 599   set_parse_histogram( parse_histogram_obj );
 600 #endif
 601 
 602   // Parse all the basic blocks.
 603   do_all_blocks();
 604 
 605   C->set_default_node_notes(caller_nn);
 606 
 607   // Check for bailouts during conversion to graph
 608   if (failing()) {
 609     if (log)  log->done("parse");
 610     return;
 611   }
 612 
 613   // Fix up all exiting control flow.
 614   set_map(entry_map);
 615   do_exits();
 616 
 617   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
 618                       C->unique(), C->live_nodes(), C->node_arena()->used());
 619 }
 620 
 621 //---------------------------do_all_blocks-------------------------------------
 622 void Parse::do_all_blocks() {
 623   bool has_irreducible = flow()->has_irreducible_entry();
 624 
 625   // Walk over all blocks in Reverse Post-Order.
 626   while (true) {
 627     bool progress = false;
 628     for (int rpo = 0; rpo < block_count(); rpo++) {
 629       Block* block = rpo_at(rpo);
 630 
 631       if (block->is_parsed()) continue;
 632 
 633       if (!block->is_merged()) {
 634         // Dead block, no state reaches this block
 635         continue;
 636       }
 637 
 638       // Prepare to parse this block.
 639       load_state_from(block);
 640 
 641       if (stopped()) {
 642         // Block is dead.
 643         continue;
 644       }
 645 
 646       blocks_parsed++;
 647 
 648       progress = true;
 649       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 650         // Not all preds have been parsed.  We must build phis everywhere.
 651         // (Note that dead locals do not get phis built, ever.)
 652         ensure_phis_everywhere();
 653 
 654         if (block->is_SEL_head() &&
 655             (UseLoopPredicate || LoopLimitCheck)) {
 656           // Add predicate to single entry (not irreducible) loop head.
 657           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 658           // Need correct bci for predicate.
 659           // It is fine to set it here since do_one_block() will set it anyway.
 660           set_parse_bci(block->start());
 661           add_predicate();
 662           // Add new region for back branches.
 663           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 664           RegionNode *r = new (C) RegionNode(edges+1);
 665           _gvn.set_type(r, Type::CONTROL);
 666           record_for_igvn(r);
 667           r->init_req(edges, control());
 668           set_control(r);
 669           // Add new phis.
 670           ensure_phis_everywhere();
 671         }
 672 
 673         // Leave behind an undisturbed copy of the map, for future merges.
 674         set_map(clone_map());
 675       }
 676 
 677       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 678         // In the absence of irreducible loops, the Region and Phis
 679         // associated with a merge that doesn't involve a backedge can
 680         // be simplified now since the RPO parsing order guarantees
 681         // that any path which was supposed to reach here has already
 682         // been parsed or must be dead.
 683         Node* c = control();
 684         Node* result = _gvn.transform_no_reclaim(control());
 685         if (c != result && TraceOptoParse) {
 686           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 687         }
 688         if (result != top()) {
 689           record_for_igvn(result);
 690         }
 691       }
 692 
 693       // Parse the block.
 694       do_one_block();
 695 
 696       // Check for bailouts.
 697       if (failing())  return;
 698     }
 699 
 700     // with irreducible loops multiple passes might be necessary to parse everything
 701     if (!has_irreducible || !progress) {
 702       break;
 703     }
 704   }
 705 
 706   blocks_seen += block_count();
 707 
 708 #ifndef PRODUCT
 709   // Make sure there are no half-processed blocks remaining.
 710   // Every remaining unprocessed block is dead and may be ignored now.
 711   for (int rpo = 0; rpo < block_count(); rpo++) {
 712     Block* block = rpo_at(rpo);
 713     if (!block->is_parsed()) {
 714       if (TraceOptoParse) {
 715         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 716       }
 717       assert(!block->is_merged(), "no half-processed blocks");
 718     }
 719   }
 720 #endif
 721 }
 722 
 723 //-------------------------------build_exits----------------------------------
 724 // Build normal and exceptional exit merge points.
 725 void Parse::build_exits() {
 726   // make a clone of caller to prevent sharing of side-effects
 727   _exits.set_map(_exits.clone_map());
 728   _exits.clean_stack(_exits.sp());
 729   _exits.sync_jvms();
 730 
 731   RegionNode* region = new (C) RegionNode(1);
 732   record_for_igvn(region);
 733   gvn().set_type_bottom(region);
 734   _exits.set_control(region);
 735 
 736   // Note:  iophi and memphi are not transformed until do_exits.
 737   Node* iophi  = new (C) PhiNode(region, Type::ABIO);
 738   Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 739   gvn().set_type_bottom(iophi);
 740   gvn().set_type_bottom(memphi);
 741   _exits.set_i_o(iophi);
 742   _exits.set_all_memory(memphi);
 743 
 744   // Add a return value to the exit state.  (Do not push it yet.)
 745   if (tf()->range()->cnt() > TypeFunc::Parms) {
 746     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 747     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 748     // becomes loaded during the subsequent parsing, the loaded and unloaded
 749     // types will not join when we transform and push in do_exits().
 750     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 751     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 752       ret_type = TypeOopPtr::BOTTOM;
 753     }
 754     int         ret_size = type2size[ret_type->basic_type()];
 755     Node*       ret_phi  = new (C) PhiNode(region, ret_type);
 756     gvn().set_type_bottom(ret_phi);
 757     _exits.ensure_stack(ret_size);
 758     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 759     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 760     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 761     // Note:  ret_phi is not yet pushed, until do_exits.
 762   }
 763 }
 764 
 765 
 766 //----------------------------build_start_state-------------------------------
 767 // Construct a state which contains only the incoming arguments from an
 768 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 769 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 770   int        arg_size = tf->domain()->cnt();
 771   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 772   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 773   SafePointNode* map  = new (this) SafePointNode(max_size, NULL);
 774   record_for_igvn(map);
 775   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 776   Node_Notes* old_nn = default_node_notes();
 777   if (old_nn != NULL && has_method()) {
 778     Node_Notes* entry_nn = old_nn->clone(this);
 779     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 780     entry_jvms->set_offsets(0);
 781     entry_jvms->set_bci(entry_bci());
 782     entry_nn->set_jvms(entry_jvms);
 783     set_default_node_notes(entry_nn);
 784   }
 785   uint i;
 786   for (i = 0; i < (uint)arg_size; i++) {
 787     Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i));
 788     map->init_req(i, parm);
 789     // Record all these guys for later GVN.
 790     record_for_igvn(parm);
 791   }
 792   for (; i < map->req(); i++) {
 793     map->init_req(i, top());
 794   }
 795   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 796   set_default_node_notes(old_nn);
 797   map->set_jvms(jvms);
 798   jvms->set_map(map);
 799   return jvms;
 800 }
 801 
 802 //-----------------------------make_node_notes---------------------------------
 803 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 804   if (caller_nn == NULL)  return NULL;
 805   Node_Notes* nn = caller_nn->clone(C);
 806   JVMState* caller_jvms = nn->jvms();
 807   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 808   jvms->set_offsets(0);
 809   jvms->set_bci(_entry_bci);
 810   nn->set_jvms(jvms);
 811   return nn;
 812 }
 813 
 814 
 815 //--------------------------return_values--------------------------------------
 816 void Compile::return_values(JVMState* jvms) {
 817   GraphKit kit(jvms);
 818   Node* ret = new (this) ReturnNode(TypeFunc::Parms,
 819                              kit.control(),
 820                              kit.i_o(),
 821                              kit.reset_memory(),
 822                              kit.frameptr(),
 823                              kit.returnadr());
 824   // Add zero or 1 return values
 825   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 826   if (ret_size > 0) {
 827     kit.inc_sp(-ret_size);  // pop the return value(s)
 828     kit.sync_jvms();
 829     ret->add_req(kit.argument(0));
 830     // Note:  The second dummy edge is not needed by a ReturnNode.
 831   }
 832   // bind it to root
 833   root()->add_req(ret);
 834   record_for_igvn(ret);
 835   initial_gvn()->transform_no_reclaim(ret);
 836 }
 837 
 838 //------------------------rethrow_exceptions-----------------------------------
 839 // Bind all exception states in the list into a single RethrowNode.
 840 void Compile::rethrow_exceptions(JVMState* jvms) {
 841   GraphKit kit(jvms);
 842   if (!kit.has_exceptions())  return;  // nothing to generate
 843   // Load my combined exception state into the kit, with all phis transformed:
 844   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 845   Node* ex_oop = kit.use_exception_state(ex_map);
 846   RethrowNode* exit = new (this) RethrowNode(kit.control(),
 847                                       kit.i_o(), kit.reset_memory(),
 848                                       kit.frameptr(), kit.returnadr(),
 849                                       // like a return but with exception input
 850                                       ex_oop);
 851   // bind to root
 852   root()->add_req(exit);
 853   record_for_igvn(exit);
 854   initial_gvn()->transform_no_reclaim(exit);
 855 }
 856 
 857 //---------------------------do_exceptions-------------------------------------
 858 // Process exceptions arising from the current bytecode.
 859 // Send caught exceptions to the proper handler within this method.
 860 // Unhandled exceptions feed into _exit.
 861 void Parse::do_exceptions() {
 862   if (!has_exceptions())  return;
 863 
 864   if (failing()) {
 865     // Pop them all off and throw them away.
 866     while (pop_exception_state() != NULL) ;
 867     return;
 868   }
 869 
 870   PreserveJVMState pjvms(this, false);
 871 
 872   SafePointNode* ex_map;
 873   while ((ex_map = pop_exception_state()) != NULL) {
 874     if (!method()->has_exception_handlers()) {
 875       // Common case:  Transfer control outward.
 876       // Doing it this early allows the exceptions to common up
 877       // even between adjacent method calls.
 878       throw_to_exit(ex_map);
 879     } else {
 880       // Have to look at the exception first.
 881       assert(stopped(), "catch_inline_exceptions trashes the map");
 882       catch_inline_exceptions(ex_map);
 883       stop_and_kill_map();      // we used up this exception state; kill it
 884     }
 885   }
 886 
 887   // We now return to our regularly scheduled program:
 888 }
 889 
 890 //---------------------------throw_to_exit-------------------------------------
 891 // Merge the given map into an exception exit from this method.
 892 // The exception exit will handle any unlocking of receiver.
 893 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 894 void Parse::throw_to_exit(SafePointNode* ex_map) {
 895   // Pop the JVMS to (a copy of) the caller.
 896   GraphKit caller;
 897   caller.set_map_clone(_caller->map());
 898   caller.set_bci(_caller->bci());
 899   caller.set_sp(_caller->sp());
 900   // Copy out the standard machine state:
 901   for (uint i = 0; i < TypeFunc::Parms; i++) {
 902     caller.map()->set_req(i, ex_map->in(i));
 903   }
 904   // ...and the exception:
 905   Node*          ex_oop        = saved_ex_oop(ex_map);
 906   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 907   // Finally, collect the new exception state in my exits:
 908   _exits.add_exception_state(caller_ex_map);
 909 }
 910 
 911 //------------------------------do_exits---------------------------------------
 912 void Parse::do_exits() {
 913   set_parse_bci(InvocationEntryBci);
 914 
 915   // Now peephole on the return bits
 916   Node* region = _exits.control();
 917   _exits.set_control(gvn().transform(region));
 918 
 919   Node* iophi = _exits.i_o();
 920   _exits.set_i_o(gvn().transform(iophi));
 921 
 922   // Figure out if we need to emit the trailing barrier. The barrier is only
 923   // needed in the constructors, and only in three cases:
 924   //
 925   // 1. The constructor wrote a final. The effects of all initializations
 926   //    must be committed to memory before any code after the constructor
 927   //    publishes the reference to the newly constructed object. Rather
 928   //    than wait for the publication, we simply block the writes here.
 929   //    Rather than put a barrier on only those writes which are required
 930   //    to complete, we force all writes to complete.
 931   //
 932   // 2. On PPC64, also add MemBarRelease for constructors which write
 933   //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
 934   //    is set on PPC64, no sync instruction is issued after volatile
 935   //    stores. We want to guarantee the same behavior as on platforms
 936   //    with total store order, although this is not required by the Java
 937   //    memory model. So as with finals, we add a barrier here.
 938   //
 939   // 3. Experimental VM option is used to force the barrier if any field
 940   //    was written out in the constructor.
 941   //
 942   // "All bets are off" unless the first publication occurs after a
 943   // normal return from the constructor.  We do not attempt to detect
 944   // such unusual early publications.  But no barrier is needed on
 945   // exceptional returns, since they cannot publish normally.
 946   //
 947   if (method()->is_initializer() &&
 948         (wrote_final() ||
 949            PPC64_ONLY(wrote_volatile() ||)
 950            (AlwaysSafeConstructors && wrote_fields()))) {
 951     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 952 #ifndef PRODUCT
 953     if (PrintOpto && (Verbose || WizardMode)) {
 954       method()->print_name();
 955       tty->print_cr(" writes finals and needs a memory barrier");
 956     }
 957 #endif
 958   }
 959 
 960   // Any method can write a @Stable field; insert memory barriers after
 961   // those also. If there is a predecessor allocation node, bind the
 962   // barrier there.
 963   if (wrote_stable()) {
 964     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 965 #ifndef PRODUCT
 966     if (PrintOpto && (Verbose || WizardMode)) {
 967       method()->print_name();
 968       tty->print_cr(" writes @Stable and needs a memory barrier");
 969     }
 970 #endif
 971   }
 972 
 973   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 974     // transform each slice of the original memphi:
 975     mms.set_memory(_gvn.transform(mms.memory()));
 976   }
 977 
 978   if (tf()->range()->cnt() > TypeFunc::Parms) {
 979     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 980     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 981     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 982     _exits.push_node(ret_type->basic_type(), ret_phi);
 983   }
 984 
 985   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 986 
 987   // Unlock along the exceptional paths.
 988   // This is done late so that we can common up equivalent exceptions
 989   // (e.g., null checks) arising from multiple points within this method.
 990   // See GraphKit::add_exception_state, which performs the commoning.
 991   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 992 
 993   // record exit from a method if compiled while Dtrace is turned on.
 994   if (do_synch || C->env()->dtrace_method_probes()) {
 995     // First move the exception list out of _exits:
 996     GraphKit kit(_exits.transfer_exceptions_into_jvms());
 997     SafePointNode* normal_map = kit.map();  // keep this guy safe
 998     // Now re-collect the exceptions into _exits:
 999     SafePointNode* ex_map;
1000     while ((ex_map = kit.pop_exception_state()) != NULL) {
1001       Node* ex_oop = kit.use_exception_state(ex_map);
1002       // Force the exiting JVM state to have this method at InvocationEntryBci.
1003       // The exiting JVM state is otherwise a copy of the calling JVMS.
1004       JVMState* caller = kit.jvms();
1005       JVMState* ex_jvms = caller->clone_shallow(C);
1006       ex_jvms->set_map(kit.clone_map());
1007       ex_jvms->map()->set_jvms(ex_jvms);
1008       ex_jvms->set_bci(   InvocationEntryBci);
1009       kit.set_jvms(ex_jvms);
1010       if (do_synch) {
1011         // Add on the synchronized-method box/object combo
1012         kit.map()->push_monitor(_synch_lock);
1013         // Unlock!
1014         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1015       }
1016       if (C->env()->dtrace_method_probes()) {
1017         kit.make_dtrace_method_exit(method());
1018       }
1019       // Done with exception-path processing.
1020       ex_map = kit.make_exception_state(ex_oop);
1021       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1022       // Pop the last vestige of this method:
1023       ex_map->set_jvms(caller->clone_shallow(C));
1024       ex_map->jvms()->set_map(ex_map);
1025       _exits.push_exception_state(ex_map);
1026     }
1027     assert(_exits.map() == normal_map, "keep the same return state");
1028   }
1029 
1030   {
1031     // Capture very early exceptions (receiver null checks) from caller JVMS
1032     GraphKit caller(_caller);
1033     SafePointNode* ex_map;
1034     while ((ex_map = caller.pop_exception_state()) != NULL) {
1035       _exits.add_exception_state(ex_map);
1036     }
1037   }
1038 }
1039 
1040 //-----------------------------create_entry_map-------------------------------
1041 // Initialize our parser map to contain the types at method entry.
1042 // For OSR, the map contains a single RawPtr parameter.
1043 // Initial monitor locking for sync. methods is performed by do_method_entry.
1044 SafePointNode* Parse::create_entry_map() {
1045   // Check for really stupid bail-out cases.
1046   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1047   if (len >= 32760) {
1048     C->record_method_not_compilable_all_tiers("too many local variables");
1049     return NULL;
1050   }
1051 
1052   // If this is an inlined method, we may have to do a receiver null check.
1053   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1054     GraphKit kit(_caller);
1055     kit.null_check_receiver_before_call(method());
1056     _caller = kit.transfer_exceptions_into_jvms();
1057     if (kit.stopped()) {
1058       _exits.add_exception_states_from(_caller);
1059       _exits.set_jvms(_caller);
1060       return NULL;
1061     }
1062   }
1063 
1064   assert(method() != NULL, "parser must have a method");
1065 
1066   // Create an initial safepoint to hold JVM state during parsing
1067   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1068   set_map(new (C) SafePointNode(len, jvms));
1069   jvms->set_map(map());
1070   record_for_igvn(map());
1071   assert(jvms->endoff() == len, "correct jvms sizing");
1072 
1073   SafePointNode* inmap = _caller->map();
1074   assert(inmap != NULL, "must have inmap");
1075 
1076   uint i;
1077 
1078   // Pass thru the predefined input parameters.
1079   for (i = 0; i < TypeFunc::Parms; i++) {
1080     map()->init_req(i, inmap->in(i));
1081   }
1082 
1083   if (depth() == 1) {
1084     assert(map()->memory()->Opcode() == Op_Parm, "");
1085     // Insert the memory aliasing node
1086     set_all_memory(reset_memory());
1087   }
1088   assert(merged_memory(), "");
1089 
1090   // Now add the locals which are initially bound to arguments:
1091   uint arg_size = tf()->domain()->cnt();
1092   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1093   for (i = TypeFunc::Parms; i < arg_size; i++) {
1094     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1095   }
1096 
1097   // Clear out the rest of the map (locals and stack)
1098   for (i = arg_size; i < len; i++) {
1099     map()->init_req(i, top());
1100   }
1101 
1102   SafePointNode* entry_map = stop();
1103   return entry_map;
1104 }
1105 
1106 //-----------------------------do_method_entry--------------------------------
1107 // Emit any code needed in the pseudo-block before BCI zero.
1108 // The main thing to do is lock the receiver of a synchronized method.
1109 void Parse::do_method_entry() {
1110   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1111   set_sp(0);                      // Java Stack Pointer
1112 
1113   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1114 
1115   if (C->env()->dtrace_method_probes()) {
1116     make_dtrace_method_entry(method());
1117   }
1118 
1119   // If the method is synchronized, we need to construct a lock node, attach
1120   // it to the Start node, and pin it there.
1121   if (method()->is_synchronized()) {
1122     // Insert a FastLockNode right after the Start which takes as arguments
1123     // the current thread pointer, the "this" pointer & the address of the
1124     // stack slot pair used for the lock.  The "this" pointer is a projection
1125     // off the start node, but the locking spot has to be constructed by
1126     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1127     // becomes the second argument to the FastLockNode call.  The
1128     // FastLockNode becomes the new control parent to pin it to the start.
1129 
1130     // Setup Object Pointer
1131     Node *lock_obj = NULL;
1132     if(method()->is_static()) {
1133       ciInstance* mirror = _method->holder()->java_mirror();
1134       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1135       lock_obj = makecon(t_lock);
1136     } else {                  // Else pass the "this" pointer,
1137       lock_obj = local(0);    // which is Parm0 from StartNode
1138     }
1139     // Clear out dead values from the debug info.
1140     kill_dead_locals();
1141     // Build the FastLockNode
1142     _synch_lock = shared_lock(lock_obj);
1143   }
1144 
1145   // Feed profiling data for parameters to the type system so it can
1146   // propagate it as speculative types
1147   record_profiled_parameters_for_speculation();
1148 
1149   if (depth() == 1) {
1150     increment_and_test_invocation_counter(Tier2CompileThreshold);
1151   }
1152 }
1153 
1154 //------------------------------init_blocks------------------------------------
1155 // Initialize our parser map to contain the types/monitors at method entry.
1156 void Parse::init_blocks() {
1157   // Create the blocks.
1158   _block_count = flow()->block_count();
1159   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1160   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1161 
1162   int rpo;
1163 
1164   // Initialize the structs.
1165   for (rpo = 0; rpo < block_count(); rpo++) {
1166     Block* block = rpo_at(rpo);
1167     block->init_node(this, rpo);
1168   }
1169 
1170   // Collect predecessor and successor information.
1171   for (rpo = 0; rpo < block_count(); rpo++) {
1172     Block* block = rpo_at(rpo);
1173     block->init_graph(this);
1174   }
1175 }
1176 
1177 //-------------------------------init_node-------------------------------------
1178 void Parse::Block::init_node(Parse* outer, int rpo) {
1179   _flow = outer->flow()->rpo_at(rpo);
1180   _pred_count = 0;
1181   _preds_parsed = 0;
1182   _count = 0;
1183   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1184   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1185   assert(_live_locals.size() == 0, "sanity");
1186 
1187   // entry point has additional predecessor
1188   if (flow()->is_start())  _pred_count++;
1189   assert(flow()->is_start() == (this == outer->start_block()), "");
1190 }
1191 
1192 //-------------------------------init_graph------------------------------------
1193 void Parse::Block::init_graph(Parse* outer) {
1194   // Create the successor list for this parser block.
1195   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1196   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1197   int ns = tfs->length();
1198   int ne = tfe->length();
1199   _num_successors = ns;
1200   _all_successors = ns+ne;
1201   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1202   int p = 0;
1203   for (int i = 0; i < ns+ne; i++) {
1204     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1205     Block* block2 = outer->rpo_at(tf2->rpo());
1206     _successors[i] = block2;
1207 
1208     // Accumulate pred info for the other block, too.
1209     if (i < ns) {
1210       block2->_pred_count++;
1211     } else {
1212       block2->_is_handler = true;
1213     }
1214 
1215     #ifdef ASSERT
1216     // A block's successors must be distinguishable by BCI.
1217     // That is, no bytecode is allowed to branch to two different
1218     // clones of the same code location.
1219     for (int j = 0; j < i; j++) {
1220       Block* block1 = _successors[j];
1221       if (block1 == block2)  continue;  // duplicates are OK
1222       assert(block1->start() != block2->start(), "successors have unique bcis");
1223     }
1224     #endif
1225   }
1226 
1227   // Note: We never call next_path_num along exception paths, so they
1228   // never get processed as "ready".  Also, the input phis of exception
1229   // handlers get specially processed, so that
1230 }
1231 
1232 //---------------------------successor_for_bci---------------------------------
1233 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1234   for (int i = 0; i < all_successors(); i++) {
1235     Block* block2 = successor_at(i);
1236     if (block2->start() == bci)  return block2;
1237   }
1238   // We can actually reach here if ciTypeFlow traps out a block
1239   // due to an unloaded class, and concurrently with compilation the
1240   // class is then loaded, so that a later phase of the parser is
1241   // able to see more of the bytecode CFG.  Or, the flow pass and
1242   // the parser can have a minor difference of opinion about executability
1243   // of bytecodes.  For example, "obj.field = null" is executable even
1244   // if the field's type is an unloaded class; the flow pass used to
1245   // make a trap for such code.
1246   return NULL;
1247 }
1248 
1249 
1250 //-----------------------------stack_type_at-----------------------------------
1251 const Type* Parse::Block::stack_type_at(int i) const {
1252   return get_type(flow()->stack_type_at(i));
1253 }
1254 
1255 
1256 //-----------------------------local_type_at-----------------------------------
1257 const Type* Parse::Block::local_type_at(int i) const {
1258   // Make dead locals fall to bottom.
1259   if (_live_locals.size() == 0) {
1260     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1261     // This bitmap can be zero length if we saw a breakpoint.
1262     // In such cases, pretend they are all live.
1263     ((Block*)this)->_live_locals = live_locals;
1264   }
1265   if (_live_locals.size() > 0 && !_live_locals.at(i))
1266     return Type::BOTTOM;
1267 
1268   return get_type(flow()->local_type_at(i));
1269 }
1270 
1271 
1272 #ifndef PRODUCT
1273 
1274 //----------------------------name_for_bc--------------------------------------
1275 // helper method for BytecodeParseHistogram
1276 static const char* name_for_bc(int i) {
1277   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1278 }
1279 
1280 //----------------------------BytecodeParseHistogram------------------------------------
1281 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1282   _parser   = p;
1283   _compiler = c;
1284   if( ! _initialized ) { _initialized = true; reset(); }
1285 }
1286 
1287 //----------------------------current_count------------------------------------
1288 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1289   switch( bph_type ) {
1290   case BPH_transforms: { return _parser->gvn().made_progress(); }
1291   case BPH_values:     { return _parser->gvn().made_new_values(); }
1292   default: { ShouldNotReachHere(); return 0; }
1293   }
1294 }
1295 
1296 //----------------------------initialized--------------------------------------
1297 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1298 
1299 //----------------------------reset--------------------------------------------
1300 void Parse::BytecodeParseHistogram::reset() {
1301   int i = Bytecodes::number_of_codes;
1302   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1303 }
1304 
1305 //----------------------------set_initial_state--------------------------------
1306 // Record info when starting to parse one bytecode
1307 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1308   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1309     _initial_bytecode    = bc;
1310     _initial_node_count  = _compiler->unique();
1311     _initial_transforms  = current_count(BPH_transforms);
1312     _initial_values      = current_count(BPH_values);
1313   }
1314 }
1315 
1316 //----------------------------record_change--------------------------------
1317 // Record results of parsing one bytecode
1318 void Parse::BytecodeParseHistogram::record_change() {
1319   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1320     ++_bytecodes_parsed[_initial_bytecode];
1321     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1322     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1323     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1324   }
1325 }
1326 
1327 
1328 //----------------------------print--------------------------------------------
1329 void Parse::BytecodeParseHistogram::print(float cutoff) {
1330   ResourceMark rm;
1331   // print profile
1332   int total  = 0;
1333   int i      = 0;
1334   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1335   int abs_sum = 0;
1336   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1337   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1338   if( total == 0 ) { return; }
1339   tty->cr();
1340   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1341   tty->print_cr("relative:  percentage contribution to compiled nodes");
1342   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1343   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1344   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1345   tty->print_cr("values  :  Average number of node values improved per bytecode");
1346   tty->print_cr("name    :  Bytecode name");
1347   tty->cr();
1348   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1349   tty->print_cr("----------------------------------------------------------------------");
1350   while (--i > 0) {
1351     int       abs = _bytecodes_parsed[i];
1352     float     rel = abs * 100.0F / total;
1353     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1354     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1355     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1356     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1357     if (cutoff <= rel) {
1358       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1359       abs_sum += abs;
1360     }
1361   }
1362   tty->print_cr("----------------------------------------------------------------------");
1363   float rel_sum = abs_sum * 100.0F / total;
1364   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1365   tty->print_cr("----------------------------------------------------------------------");
1366   tty->cr();
1367 }
1368 #endif
1369 
1370 //----------------------------load_state_from----------------------------------
1371 // Load block/map/sp.  But not do not touch iter/bci.
1372 void Parse::load_state_from(Block* block) {
1373   set_block(block);
1374   // load the block's JVM state:
1375   set_map(block->start_map());
1376   set_sp( block->start_sp());
1377 }
1378 
1379 
1380 //-----------------------------record_state------------------------------------
1381 void Parse::Block::record_state(Parse* p) {
1382   assert(!is_merged(), "can only record state once, on 1st inflow");
1383   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1384   set_start_map(p->stop());
1385 }
1386 
1387 
1388 //------------------------------do_one_block-----------------------------------
1389 void Parse::do_one_block() {
1390   if (TraceOptoParse) {
1391     Block *b = block();
1392     int ns = b->num_successors();
1393     int nt = b->all_successors();
1394 
1395     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1396                   block()->rpo(), block()->start(), block()->limit());
1397     for (int i = 0; i < nt; i++) {
1398       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1399     }
1400     if (b->is_loop_head()) tty->print("  lphd");
1401     tty->cr();
1402   }
1403 
1404   assert(block()->is_merged(), "must be merged before being parsed");
1405   block()->mark_parsed();
1406   ++_blocks_parsed;
1407 
1408   // Set iterator to start of block.
1409   iter().reset_to_bci(block()->start());
1410 
1411   CompileLog* log = C->log();
1412 
1413   // Parse bytecodes
1414   while (!stopped() && !failing()) {
1415     iter().next();
1416 
1417     // Learn the current bci from the iterator:
1418     set_parse_bci(iter().cur_bci());
1419 
1420     if (bci() == block()->limit()) {
1421       // Do not walk into the next block until directed by do_all_blocks.
1422       merge(bci());
1423       break;
1424     }
1425     assert(bci() < block()->limit(), "bci still in block");
1426 
1427     if (log != NULL) {
1428       // Output an optional context marker, to help place actions
1429       // that occur during parsing of this BC.  If there is no log
1430       // output until the next context string, this context string
1431       // will be silently ignored.
1432       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1433     }
1434 
1435     if (block()->has_trap_at(bci())) {
1436       // We must respect the flow pass's traps, because it will refuse
1437       // to produce successors for trapping blocks.
1438       int trap_index = block()->flow()->trap_index();
1439       assert(trap_index != 0, "trap index must be valid");
1440       uncommon_trap(trap_index);
1441       break;
1442     }
1443 
1444     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1445 
1446 #ifdef ASSERT
1447     int pre_bc_sp = sp();
1448     int inputs, depth;
1449     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1450     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
1451 #endif //ASSERT
1452 
1453     do_one_bytecode();
1454 
1455     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1456            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
1457 
1458     do_exceptions();
1459 
1460     NOT_PRODUCT( parse_histogram()->record_change(); );
1461 
1462     if (log != NULL)
1463       log->clear_context();  // skip marker if nothing was printed
1464 
1465     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1466     // successor which is typically made ready by visiting this bytecode.
1467     // If the successor has several predecessors, then it is a merge
1468     // point, starts a new basic block, and is handled like other basic blocks.
1469   }
1470 }
1471 
1472 
1473 //------------------------------merge------------------------------------------
1474 void Parse::set_parse_bci(int bci) {
1475   set_bci(bci);
1476   Node_Notes* nn = C->default_node_notes();
1477   if (nn == NULL)  return;
1478 
1479   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1480   if (!DebugInlinedCalls && depth() > 1) {
1481     return;
1482   }
1483 
1484   // Update the JVMS annotation, if present.
1485   JVMState* jvms = nn->jvms();
1486   if (jvms != NULL && jvms->bci() != bci) {
1487     // Update the JVMS.
1488     jvms = jvms->clone_shallow(C);
1489     jvms->set_bci(bci);
1490     nn->set_jvms(jvms);
1491   }
1492 }
1493 
1494 //------------------------------merge------------------------------------------
1495 // Merge the current mapping into the basic block starting at bci
1496 void Parse::merge(int target_bci) {
1497   Block* target = successor_for_bci(target_bci);
1498   if (target == NULL) { handle_missing_successor(target_bci); return; }
1499   assert(!target->is_ready(), "our arrival must be expected");
1500   int pnum = target->next_path_num();
1501   merge_common(target, pnum);
1502 }
1503 
1504 //-------------------------merge_new_path--------------------------------------
1505 // Merge the current mapping into the basic block, using a new path
1506 void Parse::merge_new_path(int target_bci) {
1507   Block* target = successor_for_bci(target_bci);
1508   if (target == NULL) { handle_missing_successor(target_bci); return; }
1509   assert(!target->is_ready(), "new path into frozen graph");
1510   int pnum = target->add_new_path();
1511   merge_common(target, pnum);
1512 }
1513 
1514 //-------------------------merge_exception-------------------------------------
1515 // Merge the current mapping into the basic block starting at bci
1516 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1517 void Parse::merge_exception(int target_bci) {
1518   assert(sp() == 1, "must have only the throw exception on the stack");
1519   Block* target = successor_for_bci(target_bci);
1520   if (target == NULL) { handle_missing_successor(target_bci); return; }
1521   assert(target->is_handler(), "exceptions are handled by special blocks");
1522   int pnum = target->add_new_path();
1523   merge_common(target, pnum);
1524 }
1525 
1526 //--------------------handle_missing_successor---------------------------------
1527 void Parse::handle_missing_successor(int target_bci) {
1528 #ifndef PRODUCT
1529   Block* b = block();
1530   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1531   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1532 #endif
1533   ShouldNotReachHere();
1534 }
1535 
1536 //--------------------------merge_common---------------------------------------
1537 void Parse::merge_common(Parse::Block* target, int pnum) {
1538   if (TraceOptoParse) {
1539     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1540   }
1541 
1542   // Zap extra stack slots to top
1543   assert(sp() == target->start_sp(), "");
1544   clean_stack(sp());
1545 
1546   if (!target->is_merged()) {   // No prior mapping at this bci
1547     if (TraceOptoParse) { tty->print(" with empty state");  }
1548 
1549     // If this path is dead, do not bother capturing it as a merge.
1550     // It is "as if" we had 1 fewer predecessors from the beginning.
1551     if (stopped()) {
1552       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1553       return;
1554     }
1555 
1556     // Record that a new block has been merged.
1557     ++_blocks_merged;
1558 
1559     // Make a region if we know there are multiple or unpredictable inputs.
1560     // (Also, if this is a plain fall-through, we might see another region,
1561     // which must not be allowed into this block's map.)
1562     if (pnum > PhiNode::Input         // Known multiple inputs.
1563         || target->is_handler()       // These have unpredictable inputs.
1564         || target->is_loop_head()     // Known multiple inputs
1565         || control()->is_Region()) {  // We must hide this guy.
1566 
1567       int current_bci = bci();
1568       set_parse_bci(target->start()); // Set target bci
1569       if (target->is_SEL_head()) {
1570         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1571         if (target->start() == 0) {
1572           // Add loop predicate for the special case when
1573           // there are backbranches to the method entry.
1574           add_predicate();
1575         }
1576       }
1577       // Add a Region to start the new basic block.  Phis will be added
1578       // later lazily.
1579       int edges = target->pred_count();
1580       if (edges < pnum)  edges = pnum;  // might be a new path!
1581       RegionNode *r = new (C) RegionNode(edges+1);
1582       gvn().set_type(r, Type::CONTROL);
1583       record_for_igvn(r);
1584       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1585       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1586       r->init_req(pnum, control());
1587       set_control(r);
1588       set_parse_bci(current_bci); // Restore bci
1589     }
1590 
1591     // Convert the existing Parser mapping into a mapping at this bci.
1592     store_state_to(target);
1593     assert(target->is_merged(), "do not come here twice");
1594 
1595   } else {                      // Prior mapping at this bci
1596     if (TraceOptoParse) {  tty->print(" with previous state"); }
1597 #ifdef ASSERT
1598     if (target->is_SEL_head()) {
1599       target->mark_merged_backedge(block());
1600     }
1601 #endif
1602     // We must not manufacture more phis if the target is already parsed.
1603     bool nophi = target->is_parsed();
1604 
1605     SafePointNode* newin = map();// Hang on to incoming mapping
1606     Block* save_block = block(); // Hang on to incoming block;
1607     load_state_from(target);    // Get prior mapping
1608 
1609     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1610     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1611     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1612     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1613 
1614     // Iterate over my current mapping and the old mapping.
1615     // Where different, insert Phi functions.
1616     // Use any existing Phi functions.
1617     assert(control()->is_Region(), "must be merging to a region");
1618     RegionNode* r = control()->as_Region();
1619 
1620     // Compute where to merge into
1621     // Merge incoming control path
1622     r->init_req(pnum, newin->control());
1623 
1624     if (pnum == 1) {            // Last merge for this Region?
1625       if (!block()->flow()->is_irreducible_entry()) {
1626         Node* result = _gvn.transform_no_reclaim(r);
1627         if (r != result && TraceOptoParse) {
1628           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1629         }
1630       }
1631       record_for_igvn(r);
1632     }
1633 
1634     // Update all the non-control inputs to map:
1635     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1636     bool check_elide_phi = target->is_SEL_backedge(save_block);
1637     for (uint j = 1; j < newin->req(); j++) {
1638       Node* m = map()->in(j);   // Current state of target.
1639       Node* n = newin->in(j);   // Incoming change to target state.
1640       PhiNode* phi;
1641       if (m->is_Phi() && m->as_Phi()->region() == r)
1642         phi = m->as_Phi();
1643       else
1644         phi = NULL;
1645       if (m != n) {             // Different; must merge
1646         switch (j) {
1647         // Frame pointer and Return Address never changes
1648         case TypeFunc::FramePtr:// Drop m, use the original value
1649         case TypeFunc::ReturnAdr:
1650           break;
1651         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1652           assert(phi == NULL, "the merge contains phis, not vice versa");
1653           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1654           continue;
1655         default:                // All normal stuff
1656           if (phi == NULL) {
1657             const JVMState* jvms = map()->jvms();
1658             if (EliminateNestedLocks &&
1659                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1660               // BoxLock nodes are not commoning.
1661               // Use old BoxLock node as merged box.
1662               assert(newin->jvms()->is_monitor_box(j), "sanity");
1663               // This assert also tests that nodes are BoxLock.
1664               assert(BoxLockNode::same_slot(n, m), "sanity");
1665               C->gvn_replace_by(n, m);
1666             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1667               phi = ensure_phi(j, nophi);
1668             }
1669           }
1670           break;
1671         }
1672       }
1673       // At this point, n might be top if:
1674       //  - there is no phi (because TypeFlow detected a conflict), or
1675       //  - the corresponding control edges is top (a dead incoming path)
1676       // It is a bug if we create a phi which sees a garbage value on a live path.
1677 
1678       if (phi != NULL) {
1679         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1680         assert(phi->region() == r, "");
1681         phi->set_req(pnum, n);  // Then add 'n' to the merge
1682         if (pnum == PhiNode::Input) {
1683           // Last merge for this Phi.
1684           // So far, Phis have had a reasonable type from ciTypeFlow.
1685           // Now _gvn will join that with the meet of current inputs.
1686           // BOTTOM is never permissible here, 'cause pessimistically
1687           // Phis of pointers cannot lose the basic pointer type.
1688           debug_only(const Type* bt1 = phi->bottom_type());
1689           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1690           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1691           debug_only(const Type* bt2 = phi->bottom_type());
1692           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1693           record_for_igvn(phi);
1694         }
1695       }
1696     } // End of for all values to be merged
1697 
1698     if (pnum == PhiNode::Input &&
1699         !r->in(0)) {         // The occasional useless Region
1700       assert(control() == r, "");
1701       set_control(r->nonnull_req());
1702     }
1703 
1704     // newin has been subsumed into the lazy merge, and is now dead.
1705     set_block(save_block);
1706 
1707     stop();                     // done with this guy, for now
1708   }
1709 
1710   if (TraceOptoParse) {
1711     tty->print_cr(" on path %d", pnum);
1712   }
1713 
1714   // Done with this parser state.
1715   assert(stopped(), "");
1716 }
1717 
1718 
1719 //--------------------------merge_memory_edges---------------------------------
1720 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1721   // (nophi means we must not create phis, because we already parsed here)
1722   assert(n != NULL, "");
1723   // Merge the inputs to the MergeMems
1724   MergeMemNode* m = merged_memory();
1725 
1726   assert(control()->is_Region(), "must be merging to a region");
1727   RegionNode* r = control()->as_Region();
1728 
1729   PhiNode* base = NULL;
1730   MergeMemNode* remerge = NULL;
1731   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1732     Node *p = mms.force_memory();
1733     Node *q = mms.memory2();
1734     if (mms.is_empty() && nophi) {
1735       // Trouble:  No new splits allowed after a loop body is parsed.
1736       // Instead, wire the new split into a MergeMem on the backedge.
1737       // The optimizer will sort it out, slicing the phi.
1738       if (remerge == NULL) {
1739         assert(base != NULL, "");
1740         assert(base->in(0) != NULL, "should not be xformed away");
1741         remerge = MergeMemNode::make(C, base->in(pnum));
1742         gvn().set_type(remerge, Type::MEMORY);
1743         base->set_req(pnum, remerge);
1744       }
1745       remerge->set_memory_at(mms.alias_idx(), q);
1746       continue;
1747     }
1748     assert(!q->is_MergeMem(), "");
1749     PhiNode* phi;
1750     if (p != q) {
1751       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1752     } else {
1753       if (p->is_Phi() && p->as_Phi()->region() == r)
1754         phi = p->as_Phi();
1755       else
1756         phi = NULL;
1757     }
1758     // Insert q into local phi
1759     if (phi != NULL) {
1760       assert(phi->region() == r, "");
1761       p = phi;
1762       phi->set_req(pnum, q);
1763       if (mms.at_base_memory()) {
1764         base = phi;  // delay transforming it
1765       } else if (pnum == 1) {
1766         record_for_igvn(phi);
1767         p = _gvn.transform_no_reclaim(phi);
1768       }
1769       mms.set_memory(p);// store back through the iterator
1770     }
1771   }
1772   // Transform base last, in case we must fiddle with remerging.
1773   if (base != NULL && pnum == 1) {
1774     record_for_igvn(base);
1775     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1776   }
1777 }
1778 
1779 
1780 //------------------------ensure_phis_everywhere-------------------------------
1781 void Parse::ensure_phis_everywhere() {
1782   ensure_phi(TypeFunc::I_O);
1783 
1784   // Ensure a phi on all currently known memories.
1785   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1786     ensure_memory_phi(mms.alias_idx());
1787     debug_only(mms.set_memory());  // keep the iterator happy
1788   }
1789 
1790   // Note:  This is our only chance to create phis for memory slices.
1791   // If we miss a slice that crops up later, it will have to be
1792   // merged into the base-memory phi that we are building here.
1793   // Later, the optimizer will comb out the knot, and build separate
1794   // phi-loops for each memory slice that matters.
1795 
1796   // Monitors must nest nicely and not get confused amongst themselves.
1797   // Phi-ify everything up to the monitors, though.
1798   uint monoff = map()->jvms()->monoff();
1799   uint nof_monitors = map()->jvms()->nof_monitors();
1800 
1801   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1802   bool check_elide_phi = block()->is_SEL_head();
1803   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1804     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1805       ensure_phi(i);
1806     }
1807   }
1808 
1809   // Even monitors need Phis, though they are well-structured.
1810   // This is true for OSR methods, and also for the rare cases where
1811   // a monitor object is the subject of a replace_in_map operation.
1812   // See bugs 4426707 and 5043395.
1813   for (uint m = 0; m < nof_monitors; m++) {
1814     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1815   }
1816 }
1817 
1818 
1819 //-----------------------------add_new_path------------------------------------
1820 // Add a previously unaccounted predecessor to this block.
1821 int Parse::Block::add_new_path() {
1822   // If there is no map, return the lowest unused path number.
1823   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1824 
1825   SafePointNode* map = start_map();
1826   if (!map->control()->is_Region())
1827     return pred_count()+1;  // there may be a region some day
1828   RegionNode* r = map->control()->as_Region();
1829 
1830   // Add new path to the region.
1831   uint pnum = r->req();
1832   r->add_req(NULL);
1833 
1834   for (uint i = 1; i < map->req(); i++) {
1835     Node* n = map->in(i);
1836     if (i == TypeFunc::Memory) {
1837       // Ensure a phi on all currently known memories.
1838       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1839         Node* phi = mms.memory();
1840         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1841           assert(phi->req() == pnum, "must be same size as region");
1842           phi->add_req(NULL);
1843         }
1844       }
1845     } else {
1846       if (n->is_Phi() && n->as_Phi()->region() == r) {
1847         assert(n->req() == pnum, "must be same size as region");
1848         n->add_req(NULL);
1849       }
1850     }
1851   }
1852 
1853   return pnum;
1854 }
1855 
1856 //------------------------------ensure_phi-------------------------------------
1857 // Turn the idx'th entry of the current map into a Phi
1858 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1859   SafePointNode* map = this->map();
1860   Node* region = map->control();
1861   assert(region->is_Region(), "");
1862 
1863   Node* o = map->in(idx);
1864   assert(o != NULL, "");
1865 
1866   if (o == top())  return NULL; // TOP always merges into TOP
1867 
1868   if (o->is_Phi() && o->as_Phi()->region() == region) {
1869     return o->as_Phi();
1870   }
1871 
1872   // Now use a Phi here for merging
1873   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1874   const JVMState* jvms = map->jvms();
1875   const Type* t;
1876   if (jvms->is_loc(idx)) {
1877     t = block()->local_type_at(idx - jvms->locoff());
1878   } else if (jvms->is_stk(idx)) {
1879     t = block()->stack_type_at(idx - jvms->stkoff());
1880   } else if (jvms->is_mon(idx)) {
1881     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1882     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1883   } else if ((uint)idx < TypeFunc::Parms) {
1884     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1885   } else {
1886     assert(false, "no type information for this phi");
1887   }
1888 
1889   // If the type falls to bottom, then this must be a local that
1890   // is mixing ints and oops or some such.  Forcing it to top
1891   // makes it go dead.
1892   if (t == Type::BOTTOM) {
1893     map->set_req(idx, top());
1894     return NULL;
1895   }
1896 
1897   // Do not create phis for top either.
1898   // A top on a non-null control flow must be an unused even after the.phi.
1899   if (t == Type::TOP || t == Type::HALF) {
1900     map->set_req(idx, top());
1901     return NULL;
1902   }
1903 
1904   PhiNode* phi = PhiNode::make(region, o, t);
1905   gvn().set_type(phi, t);
1906   if (C->do_escape_analysis()) record_for_igvn(phi);
1907   map->set_req(idx, phi);
1908   return phi;
1909 }
1910 
1911 //--------------------------ensure_memory_phi----------------------------------
1912 // Turn the idx'th slice of the current memory into a Phi
1913 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1914   MergeMemNode* mem = merged_memory();
1915   Node* region = control();
1916   assert(region->is_Region(), "");
1917 
1918   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1919   assert(o != NULL && o != top(), "");
1920 
1921   PhiNode* phi;
1922   if (o->is_Phi() && o->as_Phi()->region() == region) {
1923     phi = o->as_Phi();
1924     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1925       // clone the shared base memory phi to make a new memory split
1926       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1927       const Type* t = phi->bottom_type();
1928       const TypePtr* adr_type = C->get_adr_type(idx);
1929       phi = phi->slice_memory(adr_type);
1930       gvn().set_type(phi, t);
1931     }
1932     return phi;
1933   }
1934 
1935   // Now use a Phi here for merging
1936   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1937   const Type* t = o->bottom_type();
1938   const TypePtr* adr_type = C->get_adr_type(idx);
1939   phi = PhiNode::make(region, o, t, adr_type);
1940   gvn().set_type(phi, t);
1941   if (idx == Compile::AliasIdxBot)
1942     mem->set_base_memory(phi);
1943   else
1944     mem->set_memory_at(idx, phi);
1945   return phi;
1946 }
1947 
1948 //------------------------------call_register_finalizer-----------------------
1949 // Check the klass of the receiver and call register_finalizer if the
1950 // class need finalization.
1951 void Parse::call_register_finalizer() {
1952   Node* receiver = local(0);
1953   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1954          "must have non-null instance type");
1955 
1956   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1957   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1958     // The type isn't known exactly so see if CHA tells us anything.
1959     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1960     if (!Dependencies::has_finalizable_subclass(ik)) {
1961       // No finalizable subclasses so skip the dynamic check.
1962       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1963       return;
1964     }
1965   }
1966 
1967   // Insert a dynamic test for whether the instance needs
1968   // finalization.  In general this will fold up since the concrete
1969   // class is often visible so the access flags are constant.
1970   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1971   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1972 
1973   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
1974   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
1975 
1976   Node* mask  = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1977   Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0)));
1978   Node* test  = _gvn.transform(new (C) BoolNode(check, BoolTest::ne));
1979 
1980   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1981 
1982   RegionNode* result_rgn = new (C) RegionNode(3);
1983   record_for_igvn(result_rgn);
1984 
1985   Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff));
1986   result_rgn->init_req(1, skip_register);
1987 
1988   Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff));
1989   set_control(needs_register);
1990   if (stopped()) {
1991     // There is no slow path.
1992     result_rgn->init_req(2, top());
1993   } else {
1994     Node *call = make_runtime_call(RC_NO_LEAF,
1995                                    OptoRuntime::register_finalizer_Type(),
1996                                    OptoRuntime::register_finalizer_Java(),
1997                                    NULL, TypePtr::BOTTOM,
1998                                    receiver);
1999     make_slow_call_ex(call, env()->Throwable_klass(), true);
2000 
2001     Node* fast_io  = call->in(TypeFunc::I_O);
2002     Node* fast_mem = call->in(TypeFunc::Memory);
2003     // These two phis are pre-filled with copies of of the fast IO and Memory
2004     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2005     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2006 
2007     result_rgn->init_req(2, control());
2008     io_phi    ->init_req(2, i_o());
2009     mem_phi   ->init_req(2, reset_memory());
2010 
2011     set_all_memory( _gvn.transform(mem_phi) );
2012     set_i_o(        _gvn.transform(io_phi) );
2013   }
2014 
2015   set_control( _gvn.transform(result_rgn) );
2016 }
2017 
2018 // Add check to deoptimize if RTM state is not ProfileRTM
2019 void Parse::rtm_deopt() {
2020 #if INCLUDE_RTM_OPT
2021   if (C->profile_rtm()) {
2022     assert(C->method() != NULL, "only for normal compilations");
2023     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2024     assert(depth() == 1, "generate check only for main compiled method");
2025 
2026     // Set starting bci for uncommon trap.
2027     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2028 
2029     // Load the rtm_state from the MethodData.
2030     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2031     Node* mdo = makecon(adr_type);
2032     int offset = MethodData::rtm_state_offset_in_bytes();
2033     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2034     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2035 
2036     // Separate Load from Cmp by Opaque.
2037     // In expand_macro_nodes() it will be replaced either
2038     // with this load when there are locks in the code
2039     // or with ProfileRTM (cmp->in(2)) otherwise so that
2040     // the check will fold.
2041     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2042     Node* opq   = _gvn.transform( new (C) Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2043     Node* chk   = _gvn.transform( new (C) CmpINode(opq, profile_state) );
2044     Node* tst   = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
2045     // Branch to failure if state was changed
2046     { BuildCutout unless(this, tst, PROB_ALWAYS);
2047       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2048                     Deoptimization::Action_make_not_entrant);
2049     }
2050   }
2051 #endif
2052 }
2053 
2054 void Parse::decrement_age() {
2055   MethodCounters* mc = method()->ensure_method_counters();
2056   if (mc == NULL) {
2057     C->record_failure("Must have MCs");
2058     return;
2059   }
2060   assert(!is_osr_parse(), "Not doing this for OSRs");
2061 
2062   // Set starting bci for uncommon trap.
2063   set_parse_bci(0);
2064 
2065   const TypePtr* adr_type = TypeRawPtr::make((address)mc);
2066   Node* mc_adr = makecon(adr_type);
2067   Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset()));
2068   Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2069   Node* decr = _gvn.transform(new (C) SubINode(cnt, makecon(TypeInt::ONE)));
2070   store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2071   Node *chk   = _gvn.transform(new (C) CmpINode(decr, makecon(TypeInt::ZERO)));
2072   Node* tst   = _gvn.transform(new (C) BoolNode(chk, BoolTest::gt));
2073   { BuildCutout unless(this, tst, PROB_ALWAYS);
2074     uncommon_trap(Deoptimization::Reason_tenured,
2075                   Deoptimization::Action_make_not_entrant);
2076   }
2077 }
2078 
2079 //------------------------------return_current---------------------------------
2080 // Append current _map to _exit_return
2081 void Parse::return_current(Node* value) {
2082   if (RegisterFinalizersAtInit &&
2083       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2084     call_register_finalizer();
2085   }
2086 
2087   // Do not set_parse_bci, so that return goo is credited to the return insn.
2088   set_bci(InvocationEntryBci);
2089   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2090     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2091   }
2092   if (C->env()->dtrace_method_probes()) {
2093     make_dtrace_method_exit(method());
2094   }
2095   SafePointNode* exit_return = _exits.map();
2096   exit_return->in( TypeFunc::Control  )->add_req( control() );
2097   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2098   Node *mem = exit_return->in( TypeFunc::Memory   );
2099   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2100     if (mms.is_empty()) {
2101       // get a copy of the base memory, and patch just this one input
2102       const TypePtr* adr_type = mms.adr_type(C);
2103       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2104       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2105       gvn().set_type_bottom(phi);
2106       phi->del_req(phi->req()-1);  // prepare to re-patch
2107       mms.set_memory(phi);
2108     }
2109     mms.memory()->add_req(mms.memory2());
2110   }
2111 
2112   // frame pointer is always same, already captured
2113   if (value != NULL) {
2114     // If returning oops to an interface-return, there is a silent free
2115     // cast from oop to interface allowed by the Verifier.  Make it explicit
2116     // here.
2117     Node* phi = _exits.argument(0);
2118     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2119     if( tr && tr->klass()->is_loaded() &&
2120         tr->klass()->is_interface() ) {
2121       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2122       if (tp && tp->klass()->is_loaded() &&
2123           !tp->klass()->is_interface()) {
2124         // sharpen the type eagerly; this eases certain assert checking
2125         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2126           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2127         value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr));
2128       }
2129     }
2130     phi->add_req(value);
2131   }
2132 
2133   stop_and_kill_map();          // This CFG path dies here
2134 }
2135 
2136 
2137 //------------------------------add_safepoint----------------------------------
2138 void Parse::add_safepoint() {
2139   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2140   // after a Call (except Leaf Call) or another SafePoint.
2141   Node *proj = control();
2142   bool add_poll_param = SafePointNode::needs_polling_address_input();
2143   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2144   if( proj->is_Proj() ) {
2145     Node *n0 = proj->in(0);
2146     if( n0->is_Catch() ) {
2147       n0 = n0->in(0)->in(0);
2148       assert( n0->is_Call(), "expect a call here" );
2149     }
2150     if( n0->is_Call() ) {
2151       if( n0->as_Call()->guaranteed_safepoint() )
2152         return;
2153     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2154       return;
2155     }
2156   }
2157 
2158   // Clear out dead values from the debug info.
2159   kill_dead_locals();
2160 
2161   // Clone the JVM State
2162   SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL);
2163 
2164   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2165   // SafePoint we need our GC state to be safe; i.e. we need all our current
2166   // write barriers (card marks) to not float down after the SafePoint so we
2167   // must read raw memory.  Likewise we need all oop stores to match the card
2168   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2169   // state on a deopt).
2170 
2171   // We do not need to WRITE the memory state after a SafePoint.  The control
2172   // edge will keep card-marks and oop-stores from floating up from below a
2173   // SafePoint and our true dependency added here will keep them from floating
2174   // down below a SafePoint.
2175 
2176   // Clone the current memory state
2177   Node* mem = MergeMemNode::make(C, map()->memory());
2178 
2179   mem = _gvn.transform(mem);
2180 
2181   // Pass control through the safepoint
2182   sfpnt->init_req(TypeFunc::Control  , control());
2183   // Fix edges normally used by a call
2184   sfpnt->init_req(TypeFunc::I_O      , top() );
2185   sfpnt->init_req(TypeFunc::Memory   , mem   );
2186   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2187   sfpnt->init_req(TypeFunc::FramePtr , top() );
2188 
2189   // Create a node for the polling address
2190   if( add_poll_param ) {
2191     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2192     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2193   }
2194 
2195   // Fix up the JVM State edges
2196   add_safepoint_edges(sfpnt);
2197   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2198   set_control(transformed_sfpnt);
2199 
2200   // Provide an edge from root to safepoint.  This makes the safepoint
2201   // appear useful until the parse has completed.
2202   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2203     assert(C->root() != NULL, "Expect parse is still valid");
2204     C->root()->add_prec(transformed_sfpnt);
2205   }
2206 }
2207 
2208 #ifndef PRODUCT
2209 //------------------------show_parse_info--------------------------------------
2210 void Parse::show_parse_info() {
2211   InlineTree* ilt = NULL;
2212   if (C->ilt() != NULL) {
2213     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2214     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2215   }
2216   if (PrintCompilation && Verbose) {
2217     if (depth() == 1) {
2218       if( ilt->count_inlines() ) {
2219         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2220                      ilt->count_inline_bcs());
2221         tty->cr();
2222       }
2223     } else {
2224       if (method()->is_synchronized())         tty->print("s");
2225       if (method()->has_exception_handlers())  tty->print("!");
2226       // Check this is not the final compiled version
2227       if (C->trap_can_recompile()) {
2228         tty->print("-");
2229       } else {
2230         tty->print(" ");
2231       }
2232       method()->print_short_name();
2233       if (is_osr_parse()) {
2234         tty->print(" @ %d", osr_bci());
2235       }
2236       tty->print(" (%d bytes)",method()->code_size());
2237       if (ilt->count_inlines()) {
2238         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2239                    ilt->count_inline_bcs());
2240       }
2241       tty->cr();
2242     }
2243   }
2244   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2245     // Print that we succeeded; suppress this message on the first osr parse.
2246 
2247     if (method()->is_synchronized())         tty->print("s");
2248     if (method()->has_exception_handlers())  tty->print("!");
2249     // Check this is not the final compiled version
2250     if (C->trap_can_recompile() && depth() == 1) {
2251       tty->print("-");
2252     } else {
2253       tty->print(" ");
2254     }
2255     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2256     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2257     method()->print_short_name();
2258     if (is_osr_parse()) {
2259       tty->print(" @ %d", osr_bci());
2260     }
2261     if (ilt->caller_bci() != -1) {
2262       tty->print(" @ %d", ilt->caller_bci());
2263     }
2264     tty->print(" (%d bytes)",method()->code_size());
2265     if (ilt->count_inlines()) {
2266       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2267                  ilt->count_inline_bcs());
2268     }
2269     tty->cr();
2270   }
2271 }
2272 
2273 
2274 //------------------------------dump-------------------------------------------
2275 // Dump information associated with the bytecodes of current _method
2276 void Parse::dump() {
2277   if( method() != NULL ) {
2278     // Iterate over bytecodes
2279     ciBytecodeStream iter(method());
2280     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2281       dump_bci( iter.cur_bci() );
2282       tty->cr();
2283     }
2284   }
2285 }
2286 
2287 // Dump information associated with a byte code index, 'bci'
2288 void Parse::dump_bci(int bci) {
2289   // Output info on merge-points, cloning, and within _jsr..._ret
2290   // NYI
2291   tty->print(" bci:%d", bci);
2292 }
2293 
2294 #endif