1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/type.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 // Optimization - Graph Style
  38 
  39 class Chaitin;
  40 class NamedCounter;
  41 class MultiNode;
  42 class  SafePointNode;
  43 class   CallNode;
  44 class     CallJavaNode;
  45 class       CallStaticJavaNode;
  46 class       CallDynamicJavaNode;
  47 class     CallRuntimeNode;
  48 class       CallLeafNode;
  49 class         CallLeafNoFPNode;
  50 class     AllocateNode;
  51 class       AllocateArrayNode;
  52 class     BoxLockNode;
  53 class     LockNode;
  54 class     UnlockNode;
  55 class JVMState;
  56 class OopMap;
  57 class State;
  58 class StartNode;
  59 class MachCallNode;
  60 class FastLockNode;
  61 
  62 //------------------------------StartNode--------------------------------------
  63 // The method start node
  64 class StartNode : public MultiNode {
  65   virtual uint cmp( const Node &n ) const;
  66   virtual uint size_of() const; // Size is bigger
  67 public:
  68   const TypeTuple *_domain;
  69   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  70     init_class_id(Class_Start);
  71     init_req(0,this);
  72     init_req(1,root);
  73   }
  74   virtual int Opcode() const;
  75   virtual bool pinned() const { return true; };
  76   virtual const Type *bottom_type() const;
  77   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  78   virtual const Type *Value( PhaseTransform *phase ) const;
  79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  80   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  81   virtual const RegMask &in_RegMask(uint) const;
  82   virtual Node *match( const ProjNode *proj, const Matcher *m );
  83   virtual uint ideal_reg() const { return 0; }
  84 #ifndef PRODUCT
  85   virtual void  dump_spec(outputStream *st) const;
  86 #endif
  87 };
  88 
  89 //------------------------------StartOSRNode-----------------------------------
  90 // The method start node for on stack replacement code
  91 class StartOSRNode : public StartNode {
  92 public:
  93   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  94   virtual int   Opcode() const;
  95   static  const TypeTuple *osr_domain();
  96 };
  97 
  98 
  99 //------------------------------ParmNode---------------------------------------
 100 // Incoming parameters
 101 class ParmNode : public ProjNode {
 102   static const char * const names[TypeFunc::Parms+1];
 103 public:
 104   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 105     init_class_id(Class_Parm);
 106   }
 107   virtual int Opcode() const;
 108   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 109   virtual uint ideal_reg() const;
 110 #ifndef PRODUCT
 111   virtual void dump_spec(outputStream *st) const;
 112 #endif
 113 };
 114 
 115 
 116 //------------------------------ReturnNode-------------------------------------
 117 // Return from subroutine node
 118 class ReturnNode : public Node {
 119 public:
 120   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 121   virtual int Opcode() const;
 122   virtual bool  is_CFG() const { return true; }
 123   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 124   virtual bool depends_only_on_test() const { return false; }
 125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 126   virtual const Type *Value( PhaseTransform *phase ) const;
 127   virtual uint ideal_reg() const { return NotAMachineReg; }
 128   virtual uint match_edge(uint idx) const;
 129 #ifndef PRODUCT
 130   virtual void dump_req(outputStream *st = tty) const;
 131 #endif
 132 };
 133 
 134 
 135 //------------------------------RethrowNode------------------------------------
 136 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 137 // ends the current basic block like a ReturnNode.  Restores registers and
 138 // unwinds stack.  Rethrow happens in the caller's method.
 139 class RethrowNode : public Node {
 140  public:
 141   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 142   virtual int Opcode() const;
 143   virtual bool  is_CFG() const { return true; }
 144   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 145   virtual bool depends_only_on_test() const { return false; }
 146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 147   virtual const Type *Value( PhaseTransform *phase ) const;
 148   virtual uint match_edge(uint idx) const;
 149   virtual uint ideal_reg() const { return NotAMachineReg; }
 150 #ifndef PRODUCT
 151   virtual void dump_req(outputStream *st = tty) const;
 152 #endif
 153 };
 154 
 155 
 156 //------------------------------TailCallNode-----------------------------------
 157 // Pop stack frame and jump indirect
 158 class TailCallNode : public ReturnNode {
 159 public:
 160   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 161     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 162     init_req(TypeFunc::Parms, target);
 163     init_req(TypeFunc::Parms+1, moop);
 164   }
 165 
 166   virtual int Opcode() const;
 167   virtual uint match_edge(uint idx) const;
 168 };
 169 
 170 //------------------------------TailJumpNode-----------------------------------
 171 // Pop stack frame and jump indirect
 172 class TailJumpNode : public ReturnNode {
 173 public:
 174   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 175     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 176     init_req(TypeFunc::Parms, target);
 177     init_req(TypeFunc::Parms+1, ex_oop);
 178   }
 179 
 180   virtual int Opcode() const;
 181   virtual uint match_edge(uint idx) const;
 182 };
 183 
 184 //-------------------------------JVMState-------------------------------------
 185 // A linked list of JVMState nodes captures the whole interpreter state,
 186 // plus GC roots, for all active calls at some call site in this compilation
 187 // unit.  (If there is no inlining, then the list has exactly one link.)
 188 // This provides a way to map the optimized program back into the interpreter,
 189 // or to let the GC mark the stack.
 190 class JVMState : public ResourceObj {
 191   friend class VMStructs;
 192 public:
 193   typedef enum {
 194     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 195     Reexecute_False     =  0, // false       -- do not reexecute
 196     Reexecute_True      =  1  // true        -- reexecute the bytecode
 197   } ReexecuteState; //Reexecute State
 198 
 199 private:
 200   JVMState*         _caller;    // List pointer for forming scope chains
 201   uint              _depth;     // One more than caller depth, or one.
 202   uint              _locoff;    // Offset to locals in input edge mapping
 203   uint              _stkoff;    // Offset to stack in input edge mapping
 204   uint              _monoff;    // Offset to monitors in input edge mapping
 205   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 206   uint              _endoff;    // Offset to end of input edge mapping
 207   uint              _sp;        // Jave Expression Stack Pointer for this state
 208   int               _bci;       // Byte Code Index of this JVM point
 209   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 210   ciMethod*         _method;    // Method Pointer
 211   SafePointNode*    _map;       // Map node associated with this scope
 212 public:
 213   friend class Compile;
 214   friend class PreserveReexecuteState;
 215 
 216   // Because JVMState objects live over the entire lifetime of the
 217   // Compile object, they are allocated into the comp_arena, which
 218   // does not get resource marked or reset during the compile process
 219   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 220   void operator delete( void * ) { } // fast deallocation
 221 
 222   // Create a new JVMState, ready for abstract interpretation.
 223   JVMState(ciMethod* method, JVMState* caller);
 224   JVMState(int stack_size);  // root state; has a null method
 225 
 226   // Access functions for the JVM
 227   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 228   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 229   uint              locoff() const { return _locoff; }
 230   uint              stkoff() const { return _stkoff; }
 231   uint              argoff() const { return _stkoff + _sp; }
 232   uint              monoff() const { return _monoff; }
 233   uint              scloff() const { return _scloff; }
 234   uint              endoff() const { return _endoff; }
 235   uint              oopoff() const { return debug_end(); }
 236 
 237   int            loc_size() const { return stkoff() - locoff(); }
 238   int            stk_size() const { return monoff() - stkoff(); }
 239   int            mon_size() const { return scloff() - monoff(); }
 240   int            scl_size() const { return endoff() - scloff(); }
 241 
 242   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 243   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 244   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 245   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 246 
 247   uint                      sp() const { return _sp; }
 248   int                      bci() const { return _bci; }
 249   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 250   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 251   bool              has_method() const { return _method != NULL; }
 252   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 253   JVMState*             caller() const { return _caller; }
 254   SafePointNode*           map() const { return _map; }
 255   uint                   depth() const { return _depth; }
 256   uint             debug_start() const; // returns locoff of root caller
 257   uint               debug_end() const; // returns endoff of self
 258   uint              debug_size() const {
 259     return loc_size() + sp() + mon_size() + scl_size();
 260   }
 261   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 262 
 263   // Returns the JVM state at the desired depth (1 == root).
 264   JVMState* of_depth(int d) const;
 265 
 266   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 267   bool same_calls_as(const JVMState* that) const;
 268 
 269   // Monitors (monitors are stored as (boxNode, objNode) pairs
 270   enum { logMonitorEdges = 1 };
 271   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 272   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 273   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 274   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 275   bool is_monitor_box(uint off)    const {
 276     assert(is_mon(off), "should be called only for monitor edge");
 277     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 278   }
 279   bool is_monitor_use(uint off)    const { return (is_mon(off)
 280                                                    && is_monitor_box(off))
 281                                              || (caller() && caller()->is_monitor_use(off)); }
 282 
 283   // Initialization functions for the JVM
 284   void              set_locoff(uint off) { _locoff = off; }
 285   void              set_stkoff(uint off) { _stkoff = off; }
 286   void              set_monoff(uint off) { _monoff = off; }
 287   void              set_scloff(uint off) { _scloff = off; }
 288   void              set_endoff(uint off) { _endoff = off; }
 289   void              set_offsets(uint off) {
 290     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 291   }
 292   void              set_map(SafePointNode *map) { _map = map; }
 293   void              set_sp(uint sp) { _sp = sp; }
 294                     // _reexecute is initialized to "undefined" for a new bci
 295   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 296   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 297 
 298   // Miscellaneous utility functions
 299   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 300   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 301   void      set_map_deep(SafePointNode *map);// reset map for all callers
 302   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 303   int       interpreter_frame_size() const;
 304 
 305 #ifndef PRODUCT
 306   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 307   void      dump_spec(outputStream *st) const;
 308   void      dump_on(outputStream* st) const;
 309   void      dump() const {
 310     dump_on(tty);
 311   }
 312 #endif
 313 };
 314 
 315 // During parsing, when a node is "improved",
 316 // GraphKit::replace_in_map() is called to update the current map so
 317 // that the improved node is used from that point
 318 // on. GraphKit::replace_in_map() doesn't operate on the callers maps
 319 // and so some optimization opportunities may be lost. The
 320 // ReplacedNodes class addresses that problem.
 321 //
 322 // A ReplacedNodes object is a list of pair of nodes. Every
 323 // SafePointNode carries a ReplacedNodes object. Every time
 324 // GraphKit::replace_in_map() is called, a new pair of nodes is pushed
 325 // on the list of replaced nodes. When control flow paths merge, their
 326 // replaced nodes are also merged. When parsing exits a method to
 327 // return to a caller, the replaced nodes on the exit path are used to
 328 // update the caller's map.
 329 class ReplacedNodes VALUE_OBJ_CLASS_SPEC {
 330  private:
 331   class ReplacedNode VALUE_OBJ_CLASS_SPEC {
 332   private:
 333     Node* _initial;
 334     Node* _improved;
 335   public:
 336     ReplacedNode() : _initial(NULL), _improved(NULL) {}
 337     ReplacedNode(Node* initial, Node* improved) : _initial(initial), _improved(improved) {}
 338     Node* initial() const  { return _initial; }
 339     Node* improved() const { return _improved; }
 340 
 341     bool operator==(const ReplacedNode& other) {
 342       return _initial == other._initial && _improved == other._improved;
 343     }
 344   };
 345   GrowableArray<ReplacedNode>* _replaced_nodes;
 346 
 347   void allocate_if_necessary();
 348   bool has_node(ReplacedNode r) const;
 349   bool has_target_node(Node* n) const;
 350 
 351  public:
 352   ReplacedNodes()
 353     : _replaced_nodes(NULL) {}
 354   
 355   void clone();
 356   void record(Node* initial, Node* improved);
 357   void transfer_from(ReplacedNodes other, uint idx);
 358   void reset();
 359   void apply(Node* n);
 360   void merge_with(ReplacedNodes other);
 361   bool is_empty() const;
 362   void dump(outputStream *st) const;
 363   void apply(Compile* C, Node* ctl);
 364 };
 365 
 366 //------------------------------SafePointNode----------------------------------
 367 // A SafePointNode is a subclass of a MultiNode for convenience (and
 368 // potential code sharing) only - conceptually it is independent of
 369 // the Node semantics.
 370 class SafePointNode : public MultiNode {
 371   virtual uint           cmp( const Node &n ) const;
 372   virtual uint           size_of() const;       // Size is bigger
 373 
 374 public:
 375   SafePointNode(uint edges, JVMState* jvms,
 376                 // A plain safepoint advertises no memory effects (NULL):
 377                 const TypePtr* adr_type = NULL)
 378     : MultiNode( edges ),
 379       _jvms(jvms),
 380       _oop_map(NULL),
 381       _adr_type(adr_type)
 382   {
 383     init_class_id(Class_SafePoint);
 384   }
 385 
 386   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 387   JVMState* const _jvms;      // Pointer to list of JVM State objects
 388   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 389   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 390 
 391   // Many calls take *all* of memory as input,
 392   // but some produce a limited subset of that memory as output.
 393   // The adr_type reports the call's behavior as a store, not a load.
 394 
 395   virtual JVMState* jvms() const { return _jvms; }
 396   void set_jvms(JVMState* s) {
 397     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 398   }
 399   OopMap *oop_map() const { return _oop_map; }
 400   void set_oop_map(OopMap *om) { _oop_map = om; }
 401 
 402  private:
 403   void verify_input(JVMState* jvms, uint idx) const {
 404     assert(verify_jvms(jvms), "jvms must match");
 405     Node* n = in(idx);
 406     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 407            in(idx + 1)->is_top(), "2nd half of long/double");
 408   }
 409 
 410  public:
 411   // Functionality from old debug nodes which has changed
 412   Node *local(JVMState* jvms, uint idx) const {
 413     verify_input(jvms, jvms->locoff() + idx);
 414     return in(jvms->locoff() + idx);
 415   }
 416   Node *stack(JVMState* jvms, uint idx) const {
 417     verify_input(jvms, jvms->stkoff() + idx);
 418     return in(jvms->stkoff() + idx);
 419   }
 420   Node *argument(JVMState* jvms, uint idx) const {
 421     verify_input(jvms, jvms->argoff() + idx);
 422     return in(jvms->argoff() + idx);
 423   }
 424   Node *monitor_box(JVMState* jvms, uint idx) const {
 425     assert(verify_jvms(jvms), "jvms must match");
 426     return in(jvms->monitor_box_offset(idx));
 427   }
 428   Node *monitor_obj(JVMState* jvms, uint idx) const {
 429     assert(verify_jvms(jvms), "jvms must match");
 430     return in(jvms->monitor_obj_offset(idx));
 431   }
 432 
 433   void  set_local(JVMState* jvms, uint idx, Node *c);
 434 
 435   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 436     assert(verify_jvms(jvms), "jvms must match");
 437     set_req(jvms->stkoff() + idx, c);
 438   }
 439   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 440     assert(verify_jvms(jvms), "jvms must match");
 441     set_req(jvms->argoff() + idx, c);
 442   }
 443   void ensure_stack(JVMState* jvms, uint stk_size) {
 444     assert(verify_jvms(jvms), "jvms must match");
 445     int grow_by = (int)stk_size - (int)jvms->stk_size();
 446     if (grow_by > 0)  grow_stack(jvms, grow_by);
 447   }
 448   void grow_stack(JVMState* jvms, uint grow_by);
 449   // Handle monitor stack
 450   void push_monitor( const FastLockNode *lock );
 451   void pop_monitor ();
 452   Node *peek_monitor_box() const;
 453   Node *peek_monitor_obj() const;
 454 
 455   // Access functions for the JVM
 456   Node *control  () const { return in(TypeFunc::Control  ); }
 457   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 458   Node *memory   () const { return in(TypeFunc::Memory   ); }
 459   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 460   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 461 
 462   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 463   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 464   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 465 
 466   MergeMemNode* merged_memory() const {
 467     return in(TypeFunc::Memory)->as_MergeMem();
 468   }
 469 
 470   // The parser marks useless maps as dead when it's done with them:
 471   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 472 
 473   // Exception states bubbling out of subgraphs such as inlined calls
 474   // are recorded here.  (There might be more than one, hence the "next".)
 475   // This feature is used only for safepoints which serve as "maps"
 476   // for JVM states during parsing, intrinsic expansion, etc.
 477   SafePointNode*         next_exception() const;
 478   void               set_next_exception(SafePointNode* n);
 479   bool                   has_exceptions() const { return next_exception() != NULL; }
 480 
 481   // Helper methods to operate on replaced nodes
 482   ReplacedNodes replaced_nodes() const {
 483     return _replaced_nodes;
 484   }
 485 
 486   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 487     _replaced_nodes = replaced_nodes;
 488   }
 489 
 490   void clone_replaced_nodes() {
 491     _replaced_nodes.clone();
 492   }
 493   void record_replaced_node(Node* initial, Node* improved) {
 494     _replaced_nodes.record(initial, improved);
 495   }
 496   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 497     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 498   }
 499   void delete_replaced_nodes() {
 500     _replaced_nodes.reset();
 501   }
 502   void apply_replaced_nodes() {
 503     _replaced_nodes.apply(this);
 504   }
 505   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 506     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 507   }
 508   bool has_replaced_nodes() const {
 509     return !_replaced_nodes.is_empty();
 510   }
 511 
 512   // Standard Node stuff
 513   virtual int            Opcode() const;
 514   virtual bool           pinned() const { return true; }
 515   virtual const Type    *Value( PhaseTransform *phase ) const;
 516   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 517   virtual const TypePtr *adr_type() const { return _adr_type; }
 518   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 519   virtual Node          *Identity( PhaseTransform *phase );
 520   virtual uint           ideal_reg() const { return 0; }
 521   virtual const RegMask &in_RegMask(uint) const;
 522   virtual const RegMask &out_RegMask() const;
 523   virtual uint           match_edge(uint idx) const;
 524 
 525   static  bool           needs_polling_address_input();
 526 
 527 #ifndef PRODUCT
 528   virtual void           dump_spec(outputStream *st) const;
 529 #endif
 530 };
 531 
 532 //------------------------------SafePointScalarObjectNode----------------------
 533 // A SafePointScalarObjectNode represents the state of a scalarized object
 534 // at a safepoint.
 535 
 536 class SafePointScalarObjectNode: public TypeNode {
 537   uint _first_index; // First input edge relative index of a SafePoint node where
 538                      // states of the scalarized object fields are collected.
 539                      // It is relative to the last (youngest) jvms->_scloff.
 540   uint _n_fields;    // Number of non-static fields of the scalarized object.
 541   DEBUG_ONLY(AllocateNode* _alloc;)
 542 
 543   virtual uint hash() const ; // { return NO_HASH; }
 544   virtual uint cmp( const Node &n ) const;
 545 
 546   uint first_index() const { return _first_index; }
 547 
 548 public:
 549   SafePointScalarObjectNode(const TypeOopPtr* tp,
 550 #ifdef ASSERT
 551                             AllocateNode* alloc,
 552 #endif
 553                             uint first_index, uint n_fields);
 554   virtual int Opcode() const;
 555   virtual uint           ideal_reg() const;
 556   virtual const RegMask &in_RegMask(uint) const;
 557   virtual const RegMask &out_RegMask() const;
 558   virtual uint           match_edge(uint idx) const;
 559 
 560   uint first_index(JVMState* jvms) const {
 561     assert(jvms != NULL, "missed JVMS");
 562     return jvms->scloff() + _first_index;
 563   }
 564   uint n_fields()    const { return _n_fields; }
 565 
 566 #ifdef ASSERT
 567   AllocateNode* alloc() const { return _alloc; }
 568 #endif
 569 
 570   virtual uint size_of() const { return sizeof(*this); }
 571 
 572   // Assumes that "this" is an argument to a safepoint node "s", and that
 573   // "new_call" is being created to correspond to "s".  But the difference
 574   // between the start index of the jvmstates of "new_call" and "s" is
 575   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 576   // corresponds appropriately to "this" in "new_call".  Assumes that
 577   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 578   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 579   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
 580 
 581 #ifndef PRODUCT
 582   virtual void              dump_spec(outputStream *st) const;
 583 #endif
 584 };
 585 
 586 
 587 // Simple container for the outgoing projections of a call.  Useful
 588 // for serious surgery on calls.
 589 class CallProjections : public StackObj {
 590 public:
 591   Node* fallthrough_proj;
 592   Node* fallthrough_catchproj;
 593   Node* fallthrough_memproj;
 594   Node* fallthrough_ioproj;
 595   Node* catchall_catchproj;
 596   Node* catchall_memproj;
 597   Node* catchall_ioproj;
 598   Node* resproj;
 599   Node* exobj;
 600 };
 601 
 602 class CallGenerator;
 603 
 604 //------------------------------CallNode---------------------------------------
 605 // Call nodes now subsume the function of debug nodes at callsites, so they
 606 // contain the functionality of a full scope chain of debug nodes.
 607 class CallNode : public SafePointNode {
 608   friend class VMStructs;
 609 public:
 610   const TypeFunc *_tf;        // Function type
 611   address      _entry_point;  // Address of method being called
 612   float        _cnt;          // Estimate of number of times called
 613   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 614 
 615   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 616     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 617       _tf(tf),
 618       _entry_point(addr),
 619       _cnt(COUNT_UNKNOWN),
 620       _generator(NULL)
 621   {
 622     init_class_id(Class_Call);
 623   }
 624 
 625   const TypeFunc* tf()         const { return _tf; }
 626   const address  entry_point() const { return _entry_point; }
 627   const float    cnt()         const { return _cnt; }
 628   CallGenerator* generator()   const { return _generator; }
 629 
 630   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 631   void set_entry_point(address p)       { _entry_point = p; }
 632   void set_cnt(float c)                 { _cnt = c; }
 633   void set_generator(CallGenerator* cg) { _generator = cg; }
 634 
 635   virtual const Type *bottom_type() const;
 636   virtual const Type *Value( PhaseTransform *phase ) const;
 637   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 638   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 639   virtual uint        cmp( const Node &n ) const;
 640   virtual uint        size_of() const = 0;
 641   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 642   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 643   virtual uint        ideal_reg() const { return NotAMachineReg; }
 644   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 645   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 646   virtual bool        guaranteed_safepoint()  { return true; }
 647   // For macro nodes, the JVMState gets modified during expansion. If calls
 648   // use MachConstantBase, it gets modified during matching. So when cloning
 649   // the node the JVMState must be cloned. Default is not to clone.
 650   virtual void clone_jvms(Compile* C) {
 651     if (C->needs_clone_jvms() && jvms() != NULL) {
 652       set_jvms(jvms()->clone_deep(C));
 653       jvms()->set_map_deep(this);
 654     }
 655   }
 656 
 657   // Returns true if the call may modify n
 658   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
 659   // Does this node have a use of n other than in debug information?
 660   bool                has_non_debug_use(Node *n);
 661   // Returns the unique CheckCastPP of a call
 662   // or result projection is there are several CheckCastPP
 663   // or returns NULL if there is no one.
 664   Node *result_cast();
 665   // Does this node returns pointer?
 666   bool returns_pointer() const {
 667     const TypeTuple *r = tf()->range();
 668     return (r->cnt() > TypeFunc::Parms &&
 669             r->field_at(TypeFunc::Parms)->isa_ptr());
 670   }
 671 
 672   // Collect all the interesting edges from a call for use in
 673   // replacing the call by something else.  Used by macro expansion
 674   // and the late inlining support.
 675   void extract_projections(CallProjections* projs, bool separate_io_proj);
 676 
 677   virtual uint match_edge(uint idx) const;
 678 
 679 #ifndef PRODUCT
 680   virtual void        dump_req(outputStream *st = tty) const;
 681   virtual void        dump_spec(outputStream *st) const;
 682 #endif
 683 };
 684 
 685 
 686 //------------------------------CallJavaNode-----------------------------------
 687 // Make a static or dynamic subroutine call node using Java calling
 688 // convention.  (The "Java" calling convention is the compiler's calling
 689 // convention, as opposed to the interpreter's or that of native C.)
 690 class CallJavaNode : public CallNode {
 691   friend class VMStructs;
 692 protected:
 693   virtual uint cmp( const Node &n ) const;
 694   virtual uint size_of() const; // Size is bigger
 695 
 696   bool    _optimized_virtual;
 697   bool    _method_handle_invoke;
 698   ciMethod* _method;            // Method being direct called
 699 public:
 700   const int       _bci;         // Byte Code Index of call byte code
 701   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 702     : CallNode(tf, addr, TypePtr::BOTTOM),
 703       _method(method), _bci(bci),
 704       _optimized_virtual(false),
 705       _method_handle_invoke(false)
 706   {
 707     init_class_id(Class_CallJava);
 708   }
 709 
 710   virtual int   Opcode() const;
 711   ciMethod* method() const                { return _method; }
 712   void  set_method(ciMethod *m)           { _method = m; }
 713   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 714   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 715   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 716   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 717 
 718 #ifndef PRODUCT
 719   virtual void  dump_spec(outputStream *st) const;
 720 #endif
 721 };
 722 
 723 //------------------------------CallStaticJavaNode-----------------------------
 724 // Make a direct subroutine call using Java calling convention (for static
 725 // calls and optimized virtual calls, plus calls to wrappers for run-time
 726 // routines); generates static stub.
 727 class CallStaticJavaNode : public CallJavaNode {
 728   virtual uint cmp( const Node &n ) const;
 729   virtual uint size_of() const; // Size is bigger
 730 public:
 731   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
 732     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 733     init_class_id(Class_CallStaticJava);
 734     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
 735       init_flags(Flag_is_macro);
 736       C->add_macro_node(this);
 737     }
 738     _is_scalar_replaceable = false;
 739     _is_non_escaping = false;
 740   }
 741   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 742                      const TypePtr* adr_type)
 743     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 744     init_class_id(Class_CallStaticJava);
 745     // This node calls a runtime stub, which often has narrow memory effects.
 746     _adr_type = adr_type;
 747     _is_scalar_replaceable = false;
 748     _is_non_escaping = false;
 749   }
 750   const char *_name;      // Runtime wrapper name
 751 
 752   // Result of Escape Analysis
 753   bool _is_scalar_replaceable;
 754   bool _is_non_escaping;
 755 
 756   // If this is an uncommon trap, return the request code, else zero.
 757   int uncommon_trap_request() const;
 758   static int extract_uncommon_trap_request(const Node* call);
 759 
 760   bool is_boxing_method() const {
 761     return is_macro() && (method() != NULL) && method()->is_boxing_method();
 762   }
 763   // Later inlining modifies the JVMState, so we need to clone it
 764   // when the call node is cloned (because it is macro node).
 765   virtual void  clone_jvms(Compile* C) {
 766     if ((jvms() != NULL) && is_boxing_method()) {
 767       set_jvms(jvms()->clone_deep(C));
 768       jvms()->set_map_deep(this);
 769     }
 770   }
 771 
 772   virtual int         Opcode() const;
 773 #ifndef PRODUCT
 774   virtual void        dump_spec(outputStream *st) const;
 775 #endif
 776 };
 777 
 778 //------------------------------CallDynamicJavaNode----------------------------
 779 // Make a dispatched call using Java calling convention.
 780 class CallDynamicJavaNode : public CallJavaNode {
 781   virtual uint cmp( const Node &n ) const;
 782   virtual uint size_of() const; // Size is bigger
 783 public:
 784   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 785     init_class_id(Class_CallDynamicJava);
 786   }
 787 
 788   int _vtable_index;
 789   virtual int   Opcode() const;
 790 #ifndef PRODUCT
 791   virtual void  dump_spec(outputStream *st) const;
 792 #endif
 793 };
 794 
 795 //------------------------------CallRuntimeNode--------------------------------
 796 // Make a direct subroutine call node into compiled C++ code.
 797 class CallRuntimeNode : public CallNode {
 798   virtual uint cmp( const Node &n ) const;
 799   virtual uint size_of() const; // Size is bigger
 800 public:
 801   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 802                   const TypePtr* adr_type)
 803     : CallNode(tf, addr, adr_type),
 804       _name(name)
 805   {
 806     init_class_id(Class_CallRuntime);
 807   }
 808 
 809   const char *_name;            // Printable name, if _method is NULL
 810   virtual int   Opcode() const;
 811   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 812 
 813 #ifndef PRODUCT
 814   virtual void  dump_spec(outputStream *st) const;
 815 #endif
 816 };
 817 
 818 //------------------------------CallLeafNode-----------------------------------
 819 // Make a direct subroutine call node into compiled C++ code, without
 820 // safepoints
 821 class CallLeafNode : public CallRuntimeNode {
 822 public:
 823   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 824                const TypePtr* adr_type)
 825     : CallRuntimeNode(tf, addr, name, adr_type)
 826   {
 827     init_class_id(Class_CallLeaf);
 828   }
 829   virtual int   Opcode() const;
 830   virtual bool        guaranteed_safepoint()  { return false; }
 831 #ifndef PRODUCT
 832   virtual void  dump_spec(outputStream *st) const;
 833 #endif
 834 };
 835 
 836 //------------------------------CallLeafNoFPNode-------------------------------
 837 // CallLeafNode, not using floating point or using it in the same manner as
 838 // the generated code
 839 class CallLeafNoFPNode : public CallLeafNode {
 840 public:
 841   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 842                    const TypePtr* adr_type)
 843     : CallLeafNode(tf, addr, name, adr_type)
 844   {
 845   }
 846   virtual int   Opcode() const;
 847 };
 848 
 849 
 850 //------------------------------Allocate---------------------------------------
 851 // High-level memory allocation
 852 //
 853 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 854 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 855 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 856 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 857 //  order to differentiate the uses of the projection on the normal control path from
 858 //  those on the exception return path.
 859 //
 860 class AllocateNode : public CallNode {
 861 public:
 862   enum {
 863     // Output:
 864     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 865     // Inputs:
 866     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 867     KlassNode,                        // type (maybe dynamic) of the obj.
 868     InitialTest,                      // slow-path test (may be constant)
 869     ALength,                          // array length (or TOP if none)
 870     ParmLimit
 871   };
 872 
 873   static const TypeFunc* alloc_type(const Type* t) {
 874     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 875     fields[AllocSize]   = TypeInt::POS;
 876     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 877     fields[InitialTest] = TypeInt::BOOL;
 878     fields[ALength]     = t;  // length (can be a bad length)
 879 
 880     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 881 
 882     // create result type (range)
 883     fields = TypeTuple::fields(1);
 884     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 885 
 886     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 887 
 888     return TypeFunc::make(domain, range);
 889   }
 890 
 891   // Result of Escape Analysis
 892   bool _is_scalar_replaceable;
 893   bool _is_non_escaping;
 894 
 895   virtual uint size_of() const; // Size is bigger
 896   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 897                Node *size, Node *klass_node, Node *initial_test);
 898   // Expansion modifies the JVMState, so we need to clone it
 899   virtual void  clone_jvms(Compile* C) {
 900     if (jvms() != NULL) {
 901       set_jvms(jvms()->clone_deep(C));
 902       jvms()->set_map_deep(this);
 903     }
 904   }
 905   virtual int Opcode() const;
 906   virtual uint ideal_reg() const { return Op_RegP; }
 907   virtual bool        guaranteed_safepoint()  { return false; }
 908 
 909   // allocations do not modify their arguments
 910   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
 911 
 912   // Pattern-match a possible usage of AllocateNode.
 913   // Return null if no allocation is recognized.
 914   // The operand is the pointer produced by the (possible) allocation.
 915   // It must be a projection of the Allocate or its subsequent CastPP.
 916   // (Note:  This function is defined in file graphKit.cpp, near
 917   // GraphKit::new_instance/new_array, whose output it recognizes.)
 918   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 919   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 920 
 921   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 922   // an offset, which is reported back to the caller.
 923   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 924   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 925                                         intptr_t& offset);
 926 
 927   // Dig the klass operand out of a (possible) allocation site.
 928   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 929     AllocateNode* allo = Ideal_allocation(ptr, phase);
 930     return (allo == NULL) ? NULL : allo->in(KlassNode);
 931   }
 932 
 933   // Conservatively small estimate of offset of first non-header byte.
 934   int minimum_header_size() {
 935     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 936                                 instanceOopDesc::base_offset_in_bytes();
 937   }
 938 
 939   // Return the corresponding initialization barrier (or null if none).
 940   // Walks out edges to find it...
 941   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 942   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 943   InitializeNode* initialization();
 944 
 945   // Convenience for initialization->maybe_set_complete(phase)
 946   bool maybe_set_complete(PhaseGVN* phase);
 947 };
 948 
 949 //------------------------------AllocateArray---------------------------------
 950 //
 951 // High-level array allocation
 952 //
 953 class AllocateArrayNode : public AllocateNode {
 954 public:
 955   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 956                     Node* size, Node* klass_node, Node* initial_test,
 957                     Node* count_val
 958                     )
 959     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 960                    initial_test)
 961   {
 962     init_class_id(Class_AllocateArray);
 963     set_req(AllocateNode::ALength,        count_val);
 964   }
 965   virtual int Opcode() const;
 966   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 967 
 968   // Dig the length operand out of a array allocation site.
 969   Node* Ideal_length() {
 970     return in(AllocateNode::ALength);
 971   }
 972 
 973   // Dig the length operand out of a array allocation site and narrow the
 974   // type with a CastII, if necesssary
 975   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 976 
 977   // Pattern-match a possible usage of AllocateArrayNode.
 978   // Return null if no allocation is recognized.
 979   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 980     AllocateNode* allo = Ideal_allocation(ptr, phase);
 981     return (allo == NULL || !allo->is_AllocateArray())
 982            ? NULL : allo->as_AllocateArray();
 983   }
 984 };
 985 
 986 //------------------------------AbstractLockNode-----------------------------------
 987 class AbstractLockNode: public CallNode {
 988 private:
 989   enum {
 990     Regular = 0,  // Normal lock
 991     NonEscObj,    // Lock is used for non escaping object
 992     Coarsened,    // Lock was coarsened
 993     Nested        // Nested lock
 994   } _kind;
 995 #ifndef PRODUCT
 996   NamedCounter* _counter;
 997 #endif
 998 
 999 protected:
1000   // helper functions for lock elimination
1001   //
1002 
1003   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
1004                             GrowableArray<AbstractLockNode*> &lock_ops);
1005   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1006                                        GrowableArray<AbstractLockNode*> &lock_ops);
1007   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1008                                GrowableArray<AbstractLockNode*> &lock_ops);
1009   LockNode *find_matching_lock(UnlockNode* unlock);
1010 
1011   // Update the counter to indicate that this lock was eliminated.
1012   void set_eliminated_lock_counter() PRODUCT_RETURN;
1013 
1014 public:
1015   AbstractLockNode(const TypeFunc *tf)
1016     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
1017       _kind(Regular)
1018   {
1019 #ifndef PRODUCT
1020     _counter = NULL;
1021 #endif
1022   }
1023   virtual int Opcode() const = 0;
1024   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
1025   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
1026   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1027   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1028 
1029   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1030 
1031   virtual uint size_of() const { return sizeof(*this); }
1032 
1033   bool is_eliminated()  const { return (_kind != Regular); }
1034   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1035   bool is_coarsened()   const { return (_kind == Coarsened); }
1036   bool is_nested()      const { return (_kind == Nested); }
1037 
1038   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1039   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1040   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1041 
1042   // locking does not modify its arguments
1043   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
1044 
1045 #ifndef PRODUCT
1046   void create_lock_counter(JVMState* s);
1047   NamedCounter* counter() const { return _counter; }
1048 #endif
1049 };
1050 
1051 //------------------------------Lock---------------------------------------
1052 // High-level lock operation
1053 //
1054 // This is a subclass of CallNode because it is a macro node which gets expanded
1055 // into a code sequence containing a call.  This node takes 3 "parameters":
1056 //    0  -  object to lock
1057 //    1 -   a BoxLockNode
1058 //    2 -   a FastLockNode
1059 //
1060 class LockNode : public AbstractLockNode {
1061 public:
1062 
1063   static const TypeFunc *lock_type() {
1064     // create input type (domain)
1065     const Type **fields = TypeTuple::fields(3);
1066     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1067     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1068     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1069     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1070 
1071     // create result type (range)
1072     fields = TypeTuple::fields(0);
1073 
1074     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1075 
1076     return TypeFunc::make(domain,range);
1077   }
1078 
1079   virtual int Opcode() const;
1080   virtual uint size_of() const; // Size is bigger
1081   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1082     init_class_id(Class_Lock);
1083     init_flags(Flag_is_macro);
1084     C->add_macro_node(this);
1085   }
1086   virtual bool        guaranteed_safepoint()  { return false; }
1087 
1088   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1089   // Expansion modifies the JVMState, so we need to clone it
1090   virtual void  clone_jvms(Compile* C) {
1091     if (jvms() != NULL) {
1092       set_jvms(jvms()->clone_deep(C));
1093       jvms()->set_map_deep(this);
1094     }
1095   }
1096 
1097   bool is_nested_lock_region(); // Is this Lock nested?
1098 };
1099 
1100 //------------------------------Unlock---------------------------------------
1101 // High-level unlock operation
1102 class UnlockNode : public AbstractLockNode {
1103 public:
1104   virtual int Opcode() const;
1105   virtual uint size_of() const; // Size is bigger
1106   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1107     init_class_id(Class_Unlock);
1108     init_flags(Flag_is_macro);
1109     C->add_macro_node(this);
1110   }
1111   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1112   // unlock is never a safepoint
1113   virtual bool        guaranteed_safepoint()  { return false; }
1114 };
1115 
1116 #endif // SHARE_VM_OPTO_CALLNODE_HPP