1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifndef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  69 #else
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74 #endif // IA32 || AMD64
  75   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  76   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  77   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  78   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  79   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  80   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  81   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  82   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  83   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  84   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  85   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  86   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  87   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  88   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  89   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  90   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  91   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  92   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
  93 };
  94 
  95 // Map ideal registers (machine types) to ideal types
  96 const Type *Type::mreg2type[_last_machine_leaf];
  97 
  98 // Map basic types to canonical Type* pointers.
  99 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 100 
 101 // Map basic types to constant-zero Types.
 102 const Type* Type::            _zero_type[T_CONFLICT+1];
 103 
 104 // Map basic types to array-body alias types.
 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 106 
 107 //=============================================================================
 108 // Convenience common pre-built types.
 109 const Type *Type::ABIO;         // State-of-machine only
 110 const Type *Type::BOTTOM;       // All values
 111 const Type *Type::CONTROL;      // Control only
 112 const Type *Type::DOUBLE;       // All doubles
 113 const Type *Type::FLOAT;        // All floats
 114 const Type *Type::HALF;         // Placeholder half of doublewide type
 115 const Type *Type::MEMORY;       // Abstract store only
 116 const Type *Type::RETURN_ADDRESS;
 117 const Type *Type::TOP;          // No values in set
 118 
 119 //------------------------------get_const_type---------------------------
 120 const Type* Type::get_const_type(ciType* type) {
 121   if (type == NULL) {
 122     return NULL;
 123   } else if (type->is_primitive_type()) {
 124     return get_const_basic_type(type->basic_type());
 125   } else {
 126     return TypeOopPtr::make_from_klass(type->as_klass());
 127   }
 128 }
 129 
 130 //---------------------------array_element_basic_type---------------------------------
 131 // Mapping to the array element's basic type.
 132 BasicType Type::array_element_basic_type() const {
 133   BasicType bt = basic_type();
 134   if (bt == T_INT) {
 135     if (this == TypeInt::INT)   return T_INT;
 136     if (this == TypeInt::CHAR)  return T_CHAR;
 137     if (this == TypeInt::BYTE)  return T_BYTE;
 138     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 139     if (this == TypeInt::SHORT) return T_SHORT;
 140     return T_VOID;
 141   }
 142   return bt;
 143 }
 144 
 145 //---------------------------get_typeflow_type---------------------------------
 146 // Import a type produced by ciTypeFlow.
 147 const Type* Type::get_typeflow_type(ciType* type) {
 148   switch (type->basic_type()) {
 149 
 150   case ciTypeFlow::StateVector::T_BOTTOM:
 151     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 152     return Type::BOTTOM;
 153 
 154   case ciTypeFlow::StateVector::T_TOP:
 155     assert(type == ciTypeFlow::StateVector::top_type(), "");
 156     return Type::TOP;
 157 
 158   case ciTypeFlow::StateVector::T_NULL:
 159     assert(type == ciTypeFlow::StateVector::null_type(), "");
 160     return TypePtr::NULL_PTR;
 161 
 162   case ciTypeFlow::StateVector::T_LONG2:
 163     // The ciTypeFlow pass pushes a long, then the half.
 164     // We do the same.
 165     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 166     return TypeInt::TOP;
 167 
 168   case ciTypeFlow::StateVector::T_DOUBLE2:
 169     // The ciTypeFlow pass pushes double, then the half.
 170     // Our convention is the same.
 171     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 172     return Type::TOP;
 173 
 174   case T_ADDRESS:
 175     assert(type->is_return_address(), "");
 176     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 177 
 178   default:
 179     // make sure we did not mix up the cases:
 180     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 181     assert(type != ciTypeFlow::StateVector::top_type(), "");
 182     assert(type != ciTypeFlow::StateVector::null_type(), "");
 183     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 184     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 185     assert(!type->is_return_address(), "");
 186 
 187     return Type::get_const_type(type);
 188   }
 189 }
 190 
 191 
 192 //-----------------------make_from_constant------------------------------------
 193 const Type* Type::make_from_constant(ciConstant constant,
 194                                      bool require_constant, bool is_autobox_cache) {
 195   switch (constant.basic_type()) {
 196   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 197   case T_CHAR:     return TypeInt::make(constant.as_char());
 198   case T_BYTE:     return TypeInt::make(constant.as_byte());
 199   case T_SHORT:    return TypeInt::make(constant.as_short());
 200   case T_INT:      return TypeInt::make(constant.as_int());
 201   case T_LONG:     return TypeLong::make(constant.as_long());
 202   case T_FLOAT:    return TypeF::make(constant.as_float());
 203   case T_DOUBLE:   return TypeD::make(constant.as_double());
 204   case T_ARRAY:
 205   case T_OBJECT:
 206     {
 207       // cases:
 208       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 209       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 210       // An oop is not scavengable if it is in the perm gen.
 211       ciObject* oop_constant = constant.as_object();
 212       if (oop_constant->is_null_object()) {
 213         return Type::get_zero_type(T_OBJECT);
 214       } else if (require_constant || oop_constant->should_be_constant()) {
 215         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 216       }
 217     }
 218   }
 219   // Fall through to failure
 220   return NULL;
 221 }
 222 
 223 
 224 //------------------------------make-------------------------------------------
 225 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 226 // and look for an existing copy in the type dictionary.
 227 const Type *Type::make( enum TYPES t ) {
 228   return (new Type(t))->hashcons();
 229 }
 230 
 231 //------------------------------cmp--------------------------------------------
 232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 233   if( t1->_base != t2->_base )
 234     return 1;                   // Missed badly
 235   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 236   return !t1->eq(t2);           // Return ZERO if equal
 237 }
 238 
 239 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 240   if (!include_speculative) {
 241     return remove_speculative();
 242   }
 243   return this;
 244 }
 245 
 246 //------------------------------hash-------------------------------------------
 247 int Type::uhash( const Type *const t ) {
 248   return t->hash();
 249 }
 250 
 251 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 252 
 253 //--------------------------Initialize_shared----------------------------------
 254 void Type::Initialize_shared(Compile* current) {
 255   // This method does not need to be locked because the first system
 256   // compilations (stub compilations) occur serially.  If they are
 257   // changed to proceed in parallel, then this section will need
 258   // locking.
 259 
 260   Arena* save = current->type_arena();
 261   Arena* shared_type_arena = new (mtCompiler)Arena();
 262 
 263   current->set_type_arena(shared_type_arena);
 264   _shared_type_dict =
 265     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 266                                   shared_type_arena, 128 );
 267   current->set_type_dict(_shared_type_dict);
 268 
 269   // Make shared pre-built types.
 270   CONTROL = make(Control);      // Control only
 271   TOP     = make(Top);          // No values in set
 272   MEMORY  = make(Memory);       // Abstract store only
 273   ABIO    = make(Abio);         // State-of-machine only
 274   RETURN_ADDRESS=make(Return_Address);
 275   FLOAT   = make(FloatBot);     // All floats
 276   DOUBLE  = make(DoubleBot);    // All doubles
 277   BOTTOM  = make(Bottom);       // Everything
 278   HALF    = make(Half);         // Placeholder half of doublewide type
 279 
 280   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 281   TypeF::ONE  = TypeF::make(1.0); // Float 1
 282 
 283   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 284   TypeD::ONE  = TypeD::make(1.0); // Double 1
 285 
 286   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 287   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 288   TypeInt::ONE     = TypeInt::make( 1);  //  1
 289   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 290   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 291   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 292   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 293   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 294   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 295   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 296   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 297   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 298   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 299   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 300   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 301   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 302   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 303   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 304   // CmpL is overloaded both as the bytecode computation returning
 305   // a trinary (-1,0,+1) integer result AND as an efficient long
 306   // compare returning optimizer ideal-type flags.
 307   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 308   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 309   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 310   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 311   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 312 
 313   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 314   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 315   TypeLong::ONE     = TypeLong::make( 1);        //  1
 316   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 317   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 318   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 319   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 320 
 321   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 322   fboth[0] = Type::CONTROL;
 323   fboth[1] = Type::CONTROL;
 324   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 325 
 326   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 327   ffalse[0] = Type::CONTROL;
 328   ffalse[1] = Type::TOP;
 329   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 330 
 331   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 332   fneither[0] = Type::TOP;
 333   fneither[1] = Type::TOP;
 334   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 335 
 336   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 337   ftrue[0] = Type::TOP;
 338   ftrue[1] = Type::CONTROL;
 339   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 340 
 341   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 342   floop[0] = Type::CONTROL;
 343   floop[1] = TypeInt::INT;
 344   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 345 
 346   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 347   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 348   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 349 
 350   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 351   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 352 
 353   const Type **fmembar = TypeTuple::fields(0);
 354   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 355 
 356   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 357   fsc[0] = TypeInt::CC;
 358   fsc[1] = Type::MEMORY;
 359   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 360 
 361   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 362   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 363   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 364   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 365                                            false, 0, oopDesc::mark_offset_in_bytes());
 366   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 367                                            false, 0, oopDesc::klass_offset_in_bytes());
 368   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
 369 
 370   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 371 
 372   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 373   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 374 
 375   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 376 
 377   mreg2type[Op_Node] = Type::BOTTOM;
 378   mreg2type[Op_Set ] = 0;
 379   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 380   mreg2type[Op_RegI] = TypeInt::INT;
 381   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 382   mreg2type[Op_RegF] = Type::FLOAT;
 383   mreg2type[Op_RegD] = Type::DOUBLE;
 384   mreg2type[Op_RegL] = TypeLong::LONG;
 385   mreg2type[Op_RegFlags] = TypeInt::CC;
 386 
 387   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 388 
 389   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 390 
 391 #ifdef _LP64
 392   if (UseCompressedOops) {
 393     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 394     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 395   } else
 396 #endif
 397   {
 398     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 399     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 400   }
 401   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 402   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 403   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 404   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 405   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 406   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 407   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 408 
 409   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 410   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 411   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 412   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 413   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 414   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 415   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 416   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 417   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 418   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 419   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 420   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 421 
 422   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 423   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 424 
 425   const Type **fi2c = TypeTuple::fields(2);
 426   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 427   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 428   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 429 
 430   const Type **intpair = TypeTuple::fields(2);
 431   intpair[0] = TypeInt::INT;
 432   intpair[1] = TypeInt::INT;
 433   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 434 
 435   const Type **longpair = TypeTuple::fields(2);
 436   longpair[0] = TypeLong::LONG;
 437   longpair[1] = TypeLong::LONG;
 438   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 439 
 440   const Type **intccpair = TypeTuple::fields(2);
 441   intccpair[0] = TypeInt::INT;
 442   intccpair[1] = TypeInt::CC;
 443   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 444 
 445   const Type **longccpair = TypeTuple::fields(2);
 446   longccpair[0] = TypeLong::LONG;
 447   longccpair[1] = TypeInt::CC;
 448   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 449 
 450   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 451   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 452   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 453   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 454   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 455   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 456   _const_basic_type[T_INT]         = TypeInt::INT;
 457   _const_basic_type[T_LONG]        = TypeLong::LONG;
 458   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 459   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 460   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 461   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 462   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 463   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 464   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 465 
 466   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 467   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 468   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 469   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 470   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 471   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 472   _zero_type[T_INT]         = TypeInt::ZERO;
 473   _zero_type[T_LONG]        = TypeLong::ZERO;
 474   _zero_type[T_FLOAT]       = TypeF::ZERO;
 475   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 476   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 477   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 478   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 479   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 480 
 481   // get_zero_type() should not happen for T_CONFLICT
 482   _zero_type[T_CONFLICT]= NULL;
 483 
 484   // Vector predefined types, it needs initialized _const_basic_type[].
 485   if (Matcher::vector_size_supported(T_BYTE,4)) {
 486     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 487   }
 488   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 489     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 490   }
 491   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 492     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 493   }
 494   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 495     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 496   }
 497   mreg2type[Op_VecS] = TypeVect::VECTS;
 498   mreg2type[Op_VecD] = TypeVect::VECTD;
 499   mreg2type[Op_VecX] = TypeVect::VECTX;
 500   mreg2type[Op_VecY] = TypeVect::VECTY;
 501 
 502   // Restore working type arena.
 503   current->set_type_arena(save);
 504   current->set_type_dict(NULL);
 505 }
 506 
 507 //------------------------------Initialize-------------------------------------
 508 void Type::Initialize(Compile* current) {
 509   assert(current->type_arena() != NULL, "must have created type arena");
 510 
 511   if (_shared_type_dict == NULL) {
 512     Initialize_shared(current);
 513   }
 514 
 515   Arena* type_arena = current->type_arena();
 516 
 517   // Create the hash-cons'ing dictionary with top-level storage allocation
 518   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 519   current->set_type_dict(tdic);
 520 
 521   // Transfer the shared types.
 522   DictI i(_shared_type_dict);
 523   for( ; i.test(); ++i ) {
 524     Type* t = (Type*)i._value;
 525     tdic->Insert(t,t);  // New Type, insert into Type table
 526   }
 527 }
 528 
 529 //------------------------------hashcons---------------------------------------
 530 // Do the hash-cons trick.  If the Type already exists in the type table,
 531 // delete the current Type and return the existing Type.  Otherwise stick the
 532 // current Type in the Type table.
 533 const Type *Type::hashcons(void) {
 534   debug_only(base());           // Check the assertion in Type::base().
 535   // Look up the Type in the Type dictionary
 536   Dict *tdic = type_dict();
 537   Type* old = (Type*)(tdic->Insert(this, this, false));
 538   if( old ) {                   // Pre-existing Type?
 539     if( old != this )           // Yes, this guy is not the pre-existing?
 540       delete this;              // Yes, Nuke this guy
 541     assert( old->_dual, "" );
 542     return old;                 // Return pre-existing
 543   }
 544 
 545   // Every type has a dual (to make my lattice symmetric).
 546   // Since we just discovered a new Type, compute its dual right now.
 547   assert( !_dual, "" );         // No dual yet
 548   _dual = xdual();              // Compute the dual
 549   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 550     _dual = this;
 551     return this;
 552   }
 553   assert( !_dual->_dual, "" );  // No reverse dual yet
 554   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 555   // New Type, insert into Type table
 556   tdic->Insert((void*)_dual,(void*)_dual);
 557   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 558 #ifdef ASSERT
 559   Type *dual_dual = (Type*)_dual->xdual();
 560   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 561   delete dual_dual;
 562 #endif
 563   return this;                  // Return new Type
 564 }
 565 
 566 //------------------------------eq---------------------------------------------
 567 // Structural equality check for Type representations
 568 bool Type::eq( const Type * ) const {
 569   return true;                  // Nothing else can go wrong
 570 }
 571 
 572 //------------------------------hash-------------------------------------------
 573 // Type-specific hashing function.
 574 int Type::hash(void) const {
 575   return _base;
 576 }
 577 
 578 //------------------------------is_finite--------------------------------------
 579 // Has a finite value
 580 bool Type::is_finite() const {
 581   return false;
 582 }
 583 
 584 //------------------------------is_nan-----------------------------------------
 585 // Is not a number (NaN)
 586 bool Type::is_nan()    const {
 587   return false;
 588 }
 589 
 590 //----------------------interface_vs_oop---------------------------------------
 591 #ifdef ASSERT
 592 bool Type::interface_vs_oop_helper(const Type *t) const {
 593   bool result = false;
 594 
 595   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 596   const TypePtr*    t_ptr =    t->make_ptr();
 597   if( this_ptr == NULL || t_ptr == NULL )
 598     return result;
 599 
 600   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 601   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 602   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 603     bool this_interface = this_inst->klass()->is_interface();
 604     bool    t_interface =    t_inst->klass()->is_interface();
 605     result = this_interface ^ t_interface;
 606   }
 607 
 608   return result;
 609 }
 610 
 611 bool Type::interface_vs_oop(const Type *t) const {
 612   if (interface_vs_oop_helper(t)) {
 613     return true;
 614   }
 615   // Now check the speculative parts as well
 616   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
 617   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
 618   if (this_spec != NULL && t_spec != NULL) {
 619     if (this_spec->interface_vs_oop_helper(t_spec)) {
 620       return true;
 621     }
 622     return false;
 623   }
 624   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 625     return true;
 626   }
 627   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 628     return true;
 629   }
 630   return false;
 631 }
 632 
 633 #endif
 634 
 635 //------------------------------meet-------------------------------------------
 636 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 637 // commutative and the lattice is symmetric.
 638 const Type *Type::meet(const Type *t, bool include_speculative) const {
 639   if (isa_narrowoop() && t->isa_narrowoop()) {
 640     const Type* result = make_ptr()->meet(t->make_ptr(), include_speculative);
 641     return result->make_narrowoop();
 642   }
 643   if (isa_narrowklass() && t->isa_narrowklass()) {
 644     const Type* result = make_ptr()->meet(t->make_ptr(), include_speculative);
 645     return result->make_narrowklass();
 646   }
 647 
 648   const Type *this_t = maybe_remove_speculative(include_speculative);
 649   t = t->maybe_remove_speculative(include_speculative);
 650 
 651   const Type *mt = this_t->xmeet(t);
 652   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 653   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 654 #ifdef ASSERT
 655   assert(mt == t->xmeet(this_t), "meet not commutative");
 656   const Type* dual_join = mt->_dual;
 657   const Type *t2t    = dual_join->xmeet(t->_dual);
 658   const Type *t2this = dual_join->xmeet(this_t->_dual);
 659 
 660   // Interface meet Oop is Not Symmetric:
 661   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 662   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 663 
 664   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 665     tty->print_cr("=== Meet Not Symmetric ===");
 666     tty->print("t   =                   ");         t->dump(); tty->cr();
 667     tty->print("this=                   ");         this_t->dump(); tty->cr();
 668     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
 669 
 670     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
 671     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 672     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
 673 
 674     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
 675     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
 676 
 677     fatal("meet not symmetric" );
 678   }
 679 #endif
 680   return mt;
 681 }
 682 
 683 //------------------------------xmeet------------------------------------------
 684 // Compute the MEET of two types.  It returns a new Type object.
 685 const Type *Type::xmeet( const Type *t ) const {
 686   // Perform a fast test for common case; meeting the same types together.
 687   if( this == t ) return this;  // Meeting same type-rep?
 688 
 689   // Meeting TOP with anything?
 690   if( _base == Top ) return t;
 691 
 692   // Meeting BOTTOM with anything?
 693   if( _base == Bottom ) return BOTTOM;
 694 
 695   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 696   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 697   switch (t->base()) {  // Switch on original type
 698 
 699   // Cut in half the number of cases I must handle.  Only need cases for when
 700   // the given enum "t->type" is less than or equal to the local enum "type".
 701   case FloatCon:
 702   case DoubleCon:
 703   case Int:
 704   case Long:
 705     return t->xmeet(this);
 706 
 707   case OopPtr:
 708     return t->xmeet(this);
 709 
 710   case InstPtr:
 711     return t->xmeet(this);
 712 
 713   case MetadataPtr:
 714   case KlassPtr:
 715     return t->xmeet(this);
 716 
 717   case AryPtr:
 718     return t->xmeet(this);
 719 
 720   case NarrowOop:
 721     return t->xmeet(this);
 722 
 723   case NarrowKlass:
 724     return t->xmeet(this);
 725 
 726   case Bad:                     // Type check
 727   default:                      // Bogus type not in lattice
 728     typerr(t);
 729     return Type::BOTTOM;
 730 
 731   case Bottom:                  // Ye Olde Default
 732     return t;
 733 
 734   case FloatTop:
 735     if( _base == FloatTop ) return this;
 736   case FloatBot:                // Float
 737     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 738     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 739     typerr(t);
 740     return Type::BOTTOM;
 741 
 742   case DoubleTop:
 743     if( _base == DoubleTop ) return this;
 744   case DoubleBot:               // Double
 745     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 746     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 747     typerr(t);
 748     return Type::BOTTOM;
 749 
 750   // These next few cases must match exactly or it is a compile-time error.
 751   case Control:                 // Control of code
 752   case Abio:                    // State of world outside of program
 753   case Memory:
 754     if( _base == t->_base )  return this;
 755     typerr(t);
 756     return Type::BOTTOM;
 757 
 758   case Top:                     // Top of the lattice
 759     return this;
 760   }
 761 
 762   // The type is unchanged
 763   return this;
 764 }
 765 
 766 //-----------------------------filter------------------------------------------
 767 const Type *Type::filter(const Type *kills, bool include_speculative) const {
 768   const Type* ft = join(kills, include_speculative);
 769   if (ft->empty())
 770     return Type::TOP;           // Canonical empty value
 771   return ft;
 772 }
 773 
 774 //------------------------------xdual------------------------------------------
 775 // Compute dual right now.
 776 const Type::TYPES Type::dual_type[Type::lastype] = {
 777   Bad,          // Bad
 778   Control,      // Control
 779   Bottom,       // Top
 780   Bad,          // Int - handled in v-call
 781   Bad,          // Long - handled in v-call
 782   Half,         // Half
 783   Bad,          // NarrowOop - handled in v-call
 784   Bad,          // NarrowKlass - handled in v-call
 785 
 786   Bad,          // Tuple - handled in v-call
 787   Bad,          // Array - handled in v-call
 788   Bad,          // VectorS - handled in v-call
 789   Bad,          // VectorD - handled in v-call
 790   Bad,          // VectorX - handled in v-call
 791   Bad,          // VectorY - handled in v-call
 792 
 793   Bad,          // AnyPtr - handled in v-call
 794   Bad,          // RawPtr - handled in v-call
 795   Bad,          // OopPtr - handled in v-call
 796   Bad,          // InstPtr - handled in v-call
 797   Bad,          // AryPtr - handled in v-call
 798 
 799   Bad,          //  MetadataPtr - handled in v-call
 800   Bad,          // KlassPtr - handled in v-call
 801 
 802   Bad,          // Function - handled in v-call
 803   Abio,         // Abio
 804   Return_Address,// Return_Address
 805   Memory,       // Memory
 806   FloatBot,     // FloatTop
 807   FloatCon,     // FloatCon
 808   FloatTop,     // FloatBot
 809   DoubleBot,    // DoubleTop
 810   DoubleCon,    // DoubleCon
 811   DoubleTop,    // DoubleBot
 812   Top           // Bottom
 813 };
 814 
 815 const Type *Type::xdual() const {
 816   // Note: the base() accessor asserts the sanity of _base.
 817   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 818   return new Type(_type_info[_base].dual_type);
 819 }
 820 
 821 //------------------------------has_memory-------------------------------------
 822 bool Type::has_memory() const {
 823   Type::TYPES tx = base();
 824   if (tx == Memory) return true;
 825   if (tx == Tuple) {
 826     const TypeTuple *t = is_tuple();
 827     for (uint i=0; i < t->cnt(); i++) {
 828       tx = t->field_at(i)->base();
 829       if (tx == Memory)  return true;
 830     }
 831   }
 832   return false;
 833 }
 834 
 835 #ifndef PRODUCT
 836 //------------------------------dump2------------------------------------------
 837 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 838   st->print(_type_info[_base].msg);
 839 }
 840 
 841 //------------------------------dump-------------------------------------------
 842 void Type::dump_on(outputStream *st) const {
 843   ResourceMark rm;
 844   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 845   dump2(d,1, st);
 846   if (is_ptr_to_narrowoop()) {
 847     st->print(" [narrow]");
 848   } else if (is_ptr_to_narrowklass()) {
 849     st->print(" [narrowklass]");
 850   }
 851 }
 852 #endif
 853 
 854 //------------------------------singleton--------------------------------------
 855 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 856 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 857 bool Type::singleton(void) const {
 858   return _base == Top || _base == Half;
 859 }
 860 
 861 //------------------------------empty------------------------------------------
 862 // TRUE if Type is a type with no values, FALSE otherwise.
 863 bool Type::empty(void) const {
 864   switch (_base) {
 865   case DoubleTop:
 866   case FloatTop:
 867   case Top:
 868     return true;
 869 
 870   case Half:
 871   case Abio:
 872   case Return_Address:
 873   case Memory:
 874   case Bottom:
 875   case FloatBot:
 876   case DoubleBot:
 877     return false;  // never a singleton, therefore never empty
 878   }
 879 
 880   ShouldNotReachHere();
 881   return false;
 882 }
 883 
 884 //------------------------------dump_stats-------------------------------------
 885 // Dump collected statistics to stderr
 886 #ifndef PRODUCT
 887 void Type::dump_stats() {
 888   tty->print("Types made: %d\n", type_dict()->Size());
 889 }
 890 #endif
 891 
 892 //------------------------------typerr-----------------------------------------
 893 void Type::typerr( const Type *t ) const {
 894 #ifndef PRODUCT
 895   tty->print("\nError mixing types: ");
 896   dump();
 897   tty->print(" and ");
 898   t->dump();
 899   tty->print("\n");
 900 #endif
 901   ShouldNotReachHere();
 902 }
 903 
 904 
 905 //=============================================================================
 906 // Convenience common pre-built types.
 907 const TypeF *TypeF::ZERO;       // Floating point zero
 908 const TypeF *TypeF::ONE;        // Floating point one
 909 
 910 //------------------------------make-------------------------------------------
 911 // Create a float constant
 912 const TypeF *TypeF::make(float f) {
 913   return (TypeF*)(new TypeF(f))->hashcons();
 914 }
 915 
 916 //------------------------------meet-------------------------------------------
 917 // Compute the MEET of two types.  It returns a new Type object.
 918 const Type *TypeF::xmeet( const Type *t ) const {
 919   // Perform a fast test for common case; meeting the same types together.
 920   if( this == t ) return this;  // Meeting same type-rep?
 921 
 922   // Current "this->_base" is FloatCon
 923   switch (t->base()) {          // Switch on original type
 924   case AnyPtr:                  // Mixing with oops happens when javac
 925   case RawPtr:                  // reuses local variables
 926   case OopPtr:
 927   case InstPtr:
 928   case AryPtr:
 929   case MetadataPtr:
 930   case KlassPtr:
 931   case NarrowOop:
 932   case NarrowKlass:
 933   case Int:
 934   case Long:
 935   case DoubleTop:
 936   case DoubleCon:
 937   case DoubleBot:
 938   case Bottom:                  // Ye Olde Default
 939     return Type::BOTTOM;
 940 
 941   case FloatBot:
 942     return t;
 943 
 944   default:                      // All else is a mistake
 945     typerr(t);
 946 
 947   case FloatCon:                // Float-constant vs Float-constant?
 948     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 949                                 // must compare bitwise as positive zero, negative zero and NaN have
 950                                 // all the same representation in C++
 951       return FLOAT;             // Return generic float
 952                                 // Equal constants
 953   case Top:
 954   case FloatTop:
 955     break;                      // Return the float constant
 956   }
 957   return this;                  // Return the float constant
 958 }
 959 
 960 //------------------------------xdual------------------------------------------
 961 // Dual: symmetric
 962 const Type *TypeF::xdual() const {
 963   return this;
 964 }
 965 
 966 //------------------------------eq---------------------------------------------
 967 // Structural equality check for Type representations
 968 bool TypeF::eq( const Type *t ) const {
 969   if( g_isnan(_f) ||
 970       g_isnan(t->getf()) ) {
 971     // One or both are NANs.  If both are NANs return true, else false.
 972     return (g_isnan(_f) && g_isnan(t->getf()));
 973   }
 974   if (_f == t->getf()) {
 975     // (NaN is impossible at this point, since it is not equal even to itself)
 976     if (_f == 0.0) {
 977       // difference between positive and negative zero
 978       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 979     }
 980     return true;
 981   }
 982   return false;
 983 }
 984 
 985 //------------------------------hash-------------------------------------------
 986 // Type-specific hashing function.
 987 int TypeF::hash(void) const {
 988   return *(int*)(&_f);
 989 }
 990 
 991 //------------------------------is_finite--------------------------------------
 992 // Has a finite value
 993 bool TypeF::is_finite() const {
 994   return g_isfinite(getf()) != 0;
 995 }
 996 
 997 //------------------------------is_nan-----------------------------------------
 998 // Is not a number (NaN)
 999 bool TypeF::is_nan()    const {
1000   return g_isnan(getf()) != 0;
1001 }
1002 
1003 //------------------------------dump2------------------------------------------
1004 // Dump float constant Type
1005 #ifndef PRODUCT
1006 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1007   Type::dump2(d,depth, st);
1008   st->print("%f", _f);
1009 }
1010 #endif
1011 
1012 //------------------------------singleton--------------------------------------
1013 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1014 // constants (Ldi nodes).  Singletons are integer, float or double constants
1015 // or a single symbol.
1016 bool TypeF::singleton(void) const {
1017   return true;                  // Always a singleton
1018 }
1019 
1020 bool TypeF::empty(void) const {
1021   return false;                 // always exactly a singleton
1022 }
1023 
1024 //=============================================================================
1025 // Convenience common pre-built types.
1026 const TypeD *TypeD::ZERO;       // Floating point zero
1027 const TypeD *TypeD::ONE;        // Floating point one
1028 
1029 //------------------------------make-------------------------------------------
1030 const TypeD *TypeD::make(double d) {
1031   return (TypeD*)(new TypeD(d))->hashcons();
1032 }
1033 
1034 //------------------------------meet-------------------------------------------
1035 // Compute the MEET of two types.  It returns a new Type object.
1036 const Type *TypeD::xmeet( const Type *t ) const {
1037   // Perform a fast test for common case; meeting the same types together.
1038   if( this == t ) return this;  // Meeting same type-rep?
1039 
1040   // Current "this->_base" is DoubleCon
1041   switch (t->base()) {          // Switch on original type
1042   case AnyPtr:                  // Mixing with oops happens when javac
1043   case RawPtr:                  // reuses local variables
1044   case OopPtr:
1045   case InstPtr:
1046   case AryPtr:
1047   case MetadataPtr:
1048   case KlassPtr:
1049   case NarrowOop:
1050   case NarrowKlass:
1051   case Int:
1052   case Long:
1053   case FloatTop:
1054   case FloatCon:
1055   case FloatBot:
1056   case Bottom:                  // Ye Olde Default
1057     return Type::BOTTOM;
1058 
1059   case DoubleBot:
1060     return t;
1061 
1062   default:                      // All else is a mistake
1063     typerr(t);
1064 
1065   case DoubleCon:               // Double-constant vs Double-constant?
1066     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1067       return DOUBLE;            // Return generic double
1068   case Top:
1069   case DoubleTop:
1070     break;
1071   }
1072   return this;                  // Return the double constant
1073 }
1074 
1075 //------------------------------xdual------------------------------------------
1076 // Dual: symmetric
1077 const Type *TypeD::xdual() const {
1078   return this;
1079 }
1080 
1081 //------------------------------eq---------------------------------------------
1082 // Structural equality check for Type representations
1083 bool TypeD::eq( const Type *t ) const {
1084   if( g_isnan(_d) ||
1085       g_isnan(t->getd()) ) {
1086     // One or both are NANs.  If both are NANs return true, else false.
1087     return (g_isnan(_d) && g_isnan(t->getd()));
1088   }
1089   if (_d == t->getd()) {
1090     // (NaN is impossible at this point, since it is not equal even to itself)
1091     if (_d == 0.0) {
1092       // difference between positive and negative zero
1093       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1094     }
1095     return true;
1096   }
1097   return false;
1098 }
1099 
1100 //------------------------------hash-------------------------------------------
1101 // Type-specific hashing function.
1102 int TypeD::hash(void) const {
1103   return *(int*)(&_d);
1104 }
1105 
1106 //------------------------------is_finite--------------------------------------
1107 // Has a finite value
1108 bool TypeD::is_finite() const {
1109   return g_isfinite(getd()) != 0;
1110 }
1111 
1112 //------------------------------is_nan-----------------------------------------
1113 // Is not a number (NaN)
1114 bool TypeD::is_nan()    const {
1115   return g_isnan(getd()) != 0;
1116 }
1117 
1118 //------------------------------dump2------------------------------------------
1119 // Dump double constant Type
1120 #ifndef PRODUCT
1121 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1122   Type::dump2(d,depth,st);
1123   st->print("%f", _d);
1124 }
1125 #endif
1126 
1127 //------------------------------singleton--------------------------------------
1128 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1129 // constants (Ldi nodes).  Singletons are integer, float or double constants
1130 // or a single symbol.
1131 bool TypeD::singleton(void) const {
1132   return true;                  // Always a singleton
1133 }
1134 
1135 bool TypeD::empty(void) const {
1136   return false;                 // always exactly a singleton
1137 }
1138 
1139 //=============================================================================
1140 // Convience common pre-built types.
1141 const TypeInt *TypeInt::MINUS_1;// -1
1142 const TypeInt *TypeInt::ZERO;   // 0
1143 const TypeInt *TypeInt::ONE;    // 1
1144 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1145 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1146 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1147 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1148 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1149 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1150 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1151 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1152 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1153 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1154 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1155 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1156 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1157 const TypeInt *TypeInt::INT;    // 32-bit integers
1158 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1159 
1160 //------------------------------TypeInt----------------------------------------
1161 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1162 }
1163 
1164 //------------------------------make-------------------------------------------
1165 const TypeInt *TypeInt::make( jint lo ) {
1166   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1167 }
1168 
1169 static int normalize_int_widen( jint lo, jint hi, int w ) {
1170   // Certain normalizations keep us sane when comparing types.
1171   // The 'SMALLINT' covers constants and also CC and its relatives.
1172   if (lo <= hi) {
1173     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1174     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1175   } else {
1176     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1177     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1178   }
1179   return w;
1180 }
1181 
1182 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1183   w = normalize_int_widen(lo, hi, w);
1184   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1185 }
1186 
1187 //------------------------------meet-------------------------------------------
1188 // Compute the MEET of two types.  It returns a new Type representation object
1189 // with reference count equal to the number of Types pointing at it.
1190 // Caller should wrap a Types around it.
1191 const Type *TypeInt::xmeet( const Type *t ) const {
1192   // Perform a fast test for common case; meeting the same types together.
1193   if( this == t ) return this;  // Meeting same type?
1194 
1195   // Currently "this->_base" is a TypeInt
1196   switch (t->base()) {          // Switch on original type
1197   case AnyPtr:                  // Mixing with oops happens when javac
1198   case RawPtr:                  // reuses local variables
1199   case OopPtr:
1200   case InstPtr:
1201   case AryPtr:
1202   case MetadataPtr:
1203   case KlassPtr:
1204   case NarrowOop:
1205   case NarrowKlass:
1206   case Long:
1207   case FloatTop:
1208   case FloatCon:
1209   case FloatBot:
1210   case DoubleTop:
1211   case DoubleCon:
1212   case DoubleBot:
1213   case Bottom:                  // Ye Olde Default
1214     return Type::BOTTOM;
1215   default:                      // All else is a mistake
1216     typerr(t);
1217   case Top:                     // No change
1218     return this;
1219   case Int:                     // Int vs Int?
1220     break;
1221   }
1222 
1223   // Expand covered set
1224   const TypeInt *r = t->is_int();
1225   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1226 }
1227 
1228 //------------------------------xdual------------------------------------------
1229 // Dual: reverse hi & lo; flip widen
1230 const Type *TypeInt::xdual() const {
1231   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1232   return new TypeInt(_hi,_lo,w);
1233 }
1234 
1235 //------------------------------widen------------------------------------------
1236 // Only happens for optimistic top-down optimizations.
1237 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1238   // Coming from TOP or such; no widening
1239   if( old->base() != Int ) return this;
1240   const TypeInt *ot = old->is_int();
1241 
1242   // If new guy is equal to old guy, no widening
1243   if( _lo == ot->_lo && _hi == ot->_hi )
1244     return old;
1245 
1246   // If new guy contains old, then we widened
1247   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1248     // New contains old
1249     // If new guy is already wider than old, no widening
1250     if( _widen > ot->_widen ) return this;
1251     // If old guy was a constant, do not bother
1252     if (ot->_lo == ot->_hi)  return this;
1253     // Now widen new guy.
1254     // Check for widening too far
1255     if (_widen == WidenMax) {
1256       int max = max_jint;
1257       int min = min_jint;
1258       if (limit->isa_int()) {
1259         max = limit->is_int()->_hi;
1260         min = limit->is_int()->_lo;
1261       }
1262       if (min < _lo && _hi < max) {
1263         // If neither endpoint is extremal yet, push out the endpoint
1264         // which is closer to its respective limit.
1265         if (_lo >= 0 ||                 // easy common case
1266             (juint)(_lo - min) >= (juint)(max - _hi)) {
1267           // Try to widen to an unsigned range type of 31 bits:
1268           return make(_lo, max, WidenMax);
1269         } else {
1270           return make(min, _hi, WidenMax);
1271         }
1272       }
1273       return TypeInt::INT;
1274     }
1275     // Returned widened new guy
1276     return make(_lo,_hi,_widen+1);
1277   }
1278 
1279   // If old guy contains new, then we probably widened too far & dropped to
1280   // bottom.  Return the wider fellow.
1281   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1282     return old;
1283 
1284   //fatal("Integer value range is not subset");
1285   //return this;
1286   return TypeInt::INT;
1287 }
1288 
1289 //------------------------------narrow---------------------------------------
1290 // Only happens for pessimistic optimizations.
1291 const Type *TypeInt::narrow( const Type *old ) const {
1292   if (_lo >= _hi)  return this;   // already narrow enough
1293   if (old == NULL)  return this;
1294   const TypeInt* ot = old->isa_int();
1295   if (ot == NULL)  return this;
1296   jint olo = ot->_lo;
1297   jint ohi = ot->_hi;
1298 
1299   // If new guy is equal to old guy, no narrowing
1300   if (_lo == olo && _hi == ohi)  return old;
1301 
1302   // If old guy was maximum range, allow the narrowing
1303   if (olo == min_jint && ohi == max_jint)  return this;
1304 
1305   if (_lo < olo || _hi > ohi)
1306     return this;                // doesn't narrow; pretty wierd
1307 
1308   // The new type narrows the old type, so look for a "death march".
1309   // See comments on PhaseTransform::saturate.
1310   juint nrange = _hi - _lo;
1311   juint orange = ohi - olo;
1312   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1313     // Use the new type only if the range shrinks a lot.
1314     // We do not want the optimizer computing 2^31 point by point.
1315     return old;
1316   }
1317 
1318   return this;
1319 }
1320 
1321 //-----------------------------filter------------------------------------------
1322 const Type *TypeInt::filter(const Type *kills, bool include_speculative) const {
1323   const TypeInt* ft = join(kills, include_speculative)->isa_int();
1324   if (ft == NULL || ft->empty())
1325     return Type::TOP;           // Canonical empty value
1326   if (ft->_widen < this->_widen) {
1327     // Do not allow the value of kill->_widen to affect the outcome.
1328     // The widen bits must be allowed to run freely through the graph.
1329     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1330   }
1331   return ft;
1332 }
1333 
1334 //------------------------------eq---------------------------------------------
1335 // Structural equality check for Type representations
1336 bool TypeInt::eq( const Type *t ) const {
1337   const TypeInt *r = t->is_int(); // Handy access
1338   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1339 }
1340 
1341 //------------------------------hash-------------------------------------------
1342 // Type-specific hashing function.
1343 int TypeInt::hash(void) const {
1344   return _lo+_hi+_widen+(int)Type::Int;
1345 }
1346 
1347 //------------------------------is_finite--------------------------------------
1348 // Has a finite value
1349 bool TypeInt::is_finite() const {
1350   return true;
1351 }
1352 
1353 //------------------------------dump2------------------------------------------
1354 // Dump TypeInt
1355 #ifndef PRODUCT
1356 static const char* intname(char* buf, jint n) {
1357   if (n == min_jint)
1358     return "min";
1359   else if (n < min_jint + 10000)
1360     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1361   else if (n == max_jint)
1362     return "max";
1363   else if (n > max_jint - 10000)
1364     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1365   else
1366     sprintf(buf, INT32_FORMAT, n);
1367   return buf;
1368 }
1369 
1370 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1371   char buf[40], buf2[40];
1372   if (_lo == min_jint && _hi == max_jint)
1373     st->print("int");
1374   else if (is_con())
1375     st->print("int:%s", intname(buf, get_con()));
1376   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1377     st->print("bool");
1378   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1379     st->print("byte");
1380   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1381     st->print("char");
1382   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1383     st->print("short");
1384   else if (_hi == max_jint)
1385     st->print("int:>=%s", intname(buf, _lo));
1386   else if (_lo == min_jint)
1387     st->print("int:<=%s", intname(buf, _hi));
1388   else
1389     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1390 
1391   if (_widen != 0 && this != TypeInt::INT)
1392     st->print(":%.*s", _widen, "wwww");
1393 }
1394 #endif
1395 
1396 //------------------------------singleton--------------------------------------
1397 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1398 // constants.
1399 bool TypeInt::singleton(void) const {
1400   return _lo >= _hi;
1401 }
1402 
1403 bool TypeInt::empty(void) const {
1404   return _lo > _hi;
1405 }
1406 
1407 //=============================================================================
1408 // Convenience common pre-built types.
1409 const TypeLong *TypeLong::MINUS_1;// -1
1410 const TypeLong *TypeLong::ZERO; // 0
1411 const TypeLong *TypeLong::ONE;  // 1
1412 const TypeLong *TypeLong::POS;  // >=0
1413 const TypeLong *TypeLong::LONG; // 64-bit integers
1414 const TypeLong *TypeLong::INT;  // 32-bit subrange
1415 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1416 
1417 //------------------------------TypeLong---------------------------------------
1418 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1419 }
1420 
1421 //------------------------------make-------------------------------------------
1422 const TypeLong *TypeLong::make( jlong lo ) {
1423   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1424 }
1425 
1426 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1427   // Certain normalizations keep us sane when comparing types.
1428   // The 'SMALLINT' covers constants.
1429   if (lo <= hi) {
1430     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1431     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1432   } else {
1433     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1434     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1435   }
1436   return w;
1437 }
1438 
1439 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1440   w = normalize_long_widen(lo, hi, w);
1441   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1442 }
1443 
1444 
1445 //------------------------------meet-------------------------------------------
1446 // Compute the MEET of two types.  It returns a new Type representation object
1447 // with reference count equal to the number of Types pointing at it.
1448 // Caller should wrap a Types around it.
1449 const Type *TypeLong::xmeet( const Type *t ) const {
1450   // Perform a fast test for common case; meeting the same types together.
1451   if( this == t ) return this;  // Meeting same type?
1452 
1453   // Currently "this->_base" is a TypeLong
1454   switch (t->base()) {          // Switch on original type
1455   case AnyPtr:                  // Mixing with oops happens when javac
1456   case RawPtr:                  // reuses local variables
1457   case OopPtr:
1458   case InstPtr:
1459   case AryPtr:
1460   case MetadataPtr:
1461   case KlassPtr:
1462   case NarrowOop:
1463   case NarrowKlass:
1464   case Int:
1465   case FloatTop:
1466   case FloatCon:
1467   case FloatBot:
1468   case DoubleTop:
1469   case DoubleCon:
1470   case DoubleBot:
1471   case Bottom:                  // Ye Olde Default
1472     return Type::BOTTOM;
1473   default:                      // All else is a mistake
1474     typerr(t);
1475   case Top:                     // No change
1476     return this;
1477   case Long:                    // Long vs Long?
1478     break;
1479   }
1480 
1481   // Expand covered set
1482   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1483   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1484 }
1485 
1486 //------------------------------xdual------------------------------------------
1487 // Dual: reverse hi & lo; flip widen
1488 const Type *TypeLong::xdual() const {
1489   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1490   return new TypeLong(_hi,_lo,w);
1491 }
1492 
1493 //------------------------------widen------------------------------------------
1494 // Only happens for optimistic top-down optimizations.
1495 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1496   // Coming from TOP or such; no widening
1497   if( old->base() != Long ) return this;
1498   const TypeLong *ot = old->is_long();
1499 
1500   // If new guy is equal to old guy, no widening
1501   if( _lo == ot->_lo && _hi == ot->_hi )
1502     return old;
1503 
1504   // If new guy contains old, then we widened
1505   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1506     // New contains old
1507     // If new guy is already wider than old, no widening
1508     if( _widen > ot->_widen ) return this;
1509     // If old guy was a constant, do not bother
1510     if (ot->_lo == ot->_hi)  return this;
1511     // Now widen new guy.
1512     // Check for widening too far
1513     if (_widen == WidenMax) {
1514       jlong max = max_jlong;
1515       jlong min = min_jlong;
1516       if (limit->isa_long()) {
1517         max = limit->is_long()->_hi;
1518         min = limit->is_long()->_lo;
1519       }
1520       if (min < _lo && _hi < max) {
1521         // If neither endpoint is extremal yet, push out the endpoint
1522         // which is closer to its respective limit.
1523         if (_lo >= 0 ||                 // easy common case
1524             (julong)(_lo - min) >= (julong)(max - _hi)) {
1525           // Try to widen to an unsigned range type of 32/63 bits:
1526           if (max >= max_juint && _hi < max_juint)
1527             return make(_lo, max_juint, WidenMax);
1528           else
1529             return make(_lo, max, WidenMax);
1530         } else {
1531           return make(min, _hi, WidenMax);
1532         }
1533       }
1534       return TypeLong::LONG;
1535     }
1536     // Returned widened new guy
1537     return make(_lo,_hi,_widen+1);
1538   }
1539 
1540   // If old guy contains new, then we probably widened too far & dropped to
1541   // bottom.  Return the wider fellow.
1542   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1543     return old;
1544 
1545   //  fatal("Long value range is not subset");
1546   // return this;
1547   return TypeLong::LONG;
1548 }
1549 
1550 //------------------------------narrow----------------------------------------
1551 // Only happens for pessimistic optimizations.
1552 const Type *TypeLong::narrow( const Type *old ) const {
1553   if (_lo >= _hi)  return this;   // already narrow enough
1554   if (old == NULL)  return this;
1555   const TypeLong* ot = old->isa_long();
1556   if (ot == NULL)  return this;
1557   jlong olo = ot->_lo;
1558   jlong ohi = ot->_hi;
1559 
1560   // If new guy is equal to old guy, no narrowing
1561   if (_lo == olo && _hi == ohi)  return old;
1562 
1563   // If old guy was maximum range, allow the narrowing
1564   if (olo == min_jlong && ohi == max_jlong)  return this;
1565 
1566   if (_lo < olo || _hi > ohi)
1567     return this;                // doesn't narrow; pretty wierd
1568 
1569   // The new type narrows the old type, so look for a "death march".
1570   // See comments on PhaseTransform::saturate.
1571   julong nrange = _hi - _lo;
1572   julong orange = ohi - olo;
1573   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1574     // Use the new type only if the range shrinks a lot.
1575     // We do not want the optimizer computing 2^31 point by point.
1576     return old;
1577   }
1578 
1579   return this;
1580 }
1581 
1582 //-----------------------------filter------------------------------------------
1583 const Type *TypeLong::filter(const Type *kills, bool include_speculative) const {
1584   const TypeLong* ft = join(kills, include_speculative)->isa_long();
1585   if (ft == NULL || ft->empty())
1586     return Type::TOP;           // Canonical empty value
1587   if (ft->_widen < this->_widen) {
1588     // Do not allow the value of kill->_widen to affect the outcome.
1589     // The widen bits must be allowed to run freely through the graph.
1590     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1591   }
1592   return ft;
1593 }
1594 
1595 //------------------------------eq---------------------------------------------
1596 // Structural equality check for Type representations
1597 bool TypeLong::eq( const Type *t ) const {
1598   const TypeLong *r = t->is_long(); // Handy access
1599   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1600 }
1601 
1602 //------------------------------hash-------------------------------------------
1603 // Type-specific hashing function.
1604 int TypeLong::hash(void) const {
1605   return (int)(_lo+_hi+_widen+(int)Type::Long);
1606 }
1607 
1608 //------------------------------is_finite--------------------------------------
1609 // Has a finite value
1610 bool TypeLong::is_finite() const {
1611   return true;
1612 }
1613 
1614 //------------------------------dump2------------------------------------------
1615 // Dump TypeLong
1616 #ifndef PRODUCT
1617 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1618   if (n > x) {
1619     if (n >= x + 10000)  return NULL;
1620     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1621   } else if (n < x) {
1622     if (n <= x - 10000)  return NULL;
1623     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1624   } else {
1625     return xname;
1626   }
1627   return buf;
1628 }
1629 
1630 static const char* longname(char* buf, jlong n) {
1631   const char* str;
1632   if (n == min_jlong)
1633     return "min";
1634   else if (n < min_jlong + 10000)
1635     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1636   else if (n == max_jlong)
1637     return "max";
1638   else if (n > max_jlong - 10000)
1639     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1640   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1641     return str;
1642   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1643     return str;
1644   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1645     return str;
1646   else
1647     sprintf(buf, JLONG_FORMAT, n);
1648   return buf;
1649 }
1650 
1651 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1652   char buf[80], buf2[80];
1653   if (_lo == min_jlong && _hi == max_jlong)
1654     st->print("long");
1655   else if (is_con())
1656     st->print("long:%s", longname(buf, get_con()));
1657   else if (_hi == max_jlong)
1658     st->print("long:>=%s", longname(buf, _lo));
1659   else if (_lo == min_jlong)
1660     st->print("long:<=%s", longname(buf, _hi));
1661   else
1662     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1663 
1664   if (_widen != 0 && this != TypeLong::LONG)
1665     st->print(":%.*s", _widen, "wwww");
1666 }
1667 #endif
1668 
1669 //------------------------------singleton--------------------------------------
1670 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1671 // constants
1672 bool TypeLong::singleton(void) const {
1673   return _lo >= _hi;
1674 }
1675 
1676 bool TypeLong::empty(void) const {
1677   return _lo > _hi;
1678 }
1679 
1680 //=============================================================================
1681 // Convenience common pre-built types.
1682 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1683 const TypeTuple *TypeTuple::IFFALSE;
1684 const TypeTuple *TypeTuple::IFTRUE;
1685 const TypeTuple *TypeTuple::IFNEITHER;
1686 const TypeTuple *TypeTuple::LOOPBODY;
1687 const TypeTuple *TypeTuple::MEMBAR;
1688 const TypeTuple *TypeTuple::STORECONDITIONAL;
1689 const TypeTuple *TypeTuple::START_I2C;
1690 const TypeTuple *TypeTuple::INT_PAIR;
1691 const TypeTuple *TypeTuple::LONG_PAIR;
1692 const TypeTuple *TypeTuple::INT_CC_PAIR;
1693 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1694 
1695 
1696 //------------------------------make-------------------------------------------
1697 // Make a TypeTuple from the range of a method signature
1698 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1699   ciType* return_type = sig->return_type();
1700   uint total_fields = TypeFunc::Parms + return_type->size();
1701   const Type **field_array = fields(total_fields);
1702   switch (return_type->basic_type()) {
1703   case T_LONG:
1704     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1705     field_array[TypeFunc::Parms+1] = Type::HALF;
1706     break;
1707   case T_DOUBLE:
1708     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1709     field_array[TypeFunc::Parms+1] = Type::HALF;
1710     break;
1711   case T_OBJECT:
1712   case T_ARRAY:
1713   case T_BOOLEAN:
1714   case T_CHAR:
1715   case T_FLOAT:
1716   case T_BYTE:
1717   case T_SHORT:
1718   case T_INT:
1719     field_array[TypeFunc::Parms] = get_const_type(return_type);
1720     break;
1721   case T_VOID:
1722     break;
1723   default:
1724     ShouldNotReachHere();
1725   }
1726   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1727 }
1728 
1729 // Make a TypeTuple from the domain of a method signature
1730 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1731   uint total_fields = TypeFunc::Parms + sig->size();
1732 
1733   uint pos = TypeFunc::Parms;
1734   const Type **field_array;
1735   if (recv != NULL) {
1736     total_fields++;
1737     field_array = fields(total_fields);
1738     // Use get_const_type here because it respects UseUniqueSubclasses:
1739     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL, true);
1740   } else {
1741     field_array = fields(total_fields);
1742   }
1743 
1744   int i = 0;
1745   while (pos < total_fields) {
1746     ciType* type = sig->type_at(i);
1747 
1748     switch (type->basic_type()) {
1749     case T_LONG:
1750       field_array[pos++] = TypeLong::LONG;
1751       field_array[pos++] = Type::HALF;
1752       break;
1753     case T_DOUBLE:
1754       field_array[pos++] = Type::DOUBLE;
1755       field_array[pos++] = Type::HALF;
1756       break;
1757     case T_OBJECT:
1758     case T_ARRAY:
1759     case T_BOOLEAN:
1760     case T_CHAR:
1761     case T_FLOAT:
1762     case T_BYTE:
1763     case T_SHORT:
1764     case T_INT:
1765       field_array[pos++] = get_const_type(type);
1766       break;
1767     default:
1768       ShouldNotReachHere();
1769     }
1770     i++;
1771   }
1772   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1773 }
1774 
1775 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1776   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1777 }
1778 
1779 //------------------------------fields-----------------------------------------
1780 // Subroutine call type with space allocated for argument types
1781 const Type **TypeTuple::fields( uint arg_cnt ) {
1782   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1783   flds[TypeFunc::Control  ] = Type::CONTROL;
1784   flds[TypeFunc::I_O      ] = Type::ABIO;
1785   flds[TypeFunc::Memory   ] = Type::MEMORY;
1786   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1787   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1788 
1789   return flds;
1790 }
1791 
1792 //------------------------------meet-------------------------------------------
1793 // Compute the MEET of two types.  It returns a new Type object.
1794 const Type *TypeTuple::xmeet( const Type *t ) const {
1795   // Perform a fast test for common case; meeting the same types together.
1796   if( this == t ) return this;  // Meeting same type-rep?
1797 
1798   // Current "this->_base" is Tuple
1799   switch (t->base()) {          // switch on original type
1800 
1801   case Bottom:                  // Ye Olde Default
1802     return t;
1803 
1804   default:                      // All else is a mistake
1805     typerr(t);
1806 
1807   case Tuple: {                 // Meeting 2 signatures?
1808     const TypeTuple *x = t->is_tuple();
1809     assert( _cnt == x->_cnt, "" );
1810     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1811     for( uint i=0; i<_cnt; i++ )
1812       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1813     return TypeTuple::make(_cnt,fields);
1814   }
1815   case Top:
1816     break;
1817   }
1818   return this;                  // Return the double constant
1819 }
1820 
1821 //------------------------------xdual------------------------------------------
1822 // Dual: compute field-by-field dual
1823 const Type *TypeTuple::xdual() const {
1824   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1825   for( uint i=0; i<_cnt; i++ )
1826     fields[i] = _fields[i]->dual();
1827   return new TypeTuple(_cnt,fields);
1828 }
1829 
1830 //------------------------------eq---------------------------------------------
1831 // Structural equality check for Type representations
1832 bool TypeTuple::eq( const Type *t ) const {
1833   const TypeTuple *s = (const TypeTuple *)t;
1834   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1835   for (uint i = 0; i < _cnt; i++)
1836     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1837       return false;             // Missed
1838   return true;
1839 }
1840 
1841 //------------------------------hash-------------------------------------------
1842 // Type-specific hashing function.
1843 int TypeTuple::hash(void) const {
1844   intptr_t sum = _cnt;
1845   for( uint i=0; i<_cnt; i++ )
1846     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1847   return sum;
1848 }
1849 
1850 //------------------------------dump2------------------------------------------
1851 // Dump signature Type
1852 #ifndef PRODUCT
1853 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1854   st->print("{");
1855   if( !depth || d[this] ) {     // Check for recursive print
1856     st->print("...}");
1857     return;
1858   }
1859   d.Insert((void*)this, (void*)this);   // Stop recursion
1860   if( _cnt ) {
1861     uint i;
1862     for( i=0; i<_cnt-1; i++ ) {
1863       st->print("%d:", i);
1864       _fields[i]->dump2(d, depth-1, st);
1865       st->print(", ");
1866     }
1867     st->print("%d:", i);
1868     _fields[i]->dump2(d, depth-1, st);
1869   }
1870   st->print("}");
1871 }
1872 #endif
1873 
1874 //------------------------------singleton--------------------------------------
1875 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1876 // constants (Ldi nodes).  Singletons are integer, float or double constants
1877 // or a single symbol.
1878 bool TypeTuple::singleton(void) const {
1879   return false;                 // Never a singleton
1880 }
1881 
1882 bool TypeTuple::empty(void) const {
1883   for( uint i=0; i<_cnt; i++ ) {
1884     if (_fields[i]->empty())  return true;
1885   }
1886   return false;
1887 }
1888 
1889 //=============================================================================
1890 // Convenience common pre-built types.
1891 
1892 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1893   // Certain normalizations keep us sane when comparing types.
1894   // We do not want arrayOop variables to differ only by the wideness
1895   // of their index types.  Pick minimum wideness, since that is the
1896   // forced wideness of small ranges anyway.
1897   if (size->_widen != Type::WidenMin)
1898     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1899   else
1900     return size;
1901 }
1902 
1903 //------------------------------make-------------------------------------------
1904 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1905   if (UseCompressedOops && elem->isa_oopptr()) {
1906     elem = elem->make_narrowoop();
1907   }
1908   size = normalize_array_size(size);
1909   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1910 }
1911 
1912 //------------------------------meet-------------------------------------------
1913 // Compute the MEET of two types.  It returns a new Type object.
1914 const Type *TypeAry::xmeet( const Type *t ) const {
1915   // Perform a fast test for common case; meeting the same types together.
1916   if( this == t ) return this;  // Meeting same type-rep?
1917 
1918   // Current "this->_base" is Ary
1919   switch (t->base()) {          // switch on original type
1920 
1921   case Bottom:                  // Ye Olde Default
1922     return t;
1923 
1924   default:                      // All else is a mistake
1925     typerr(t);
1926 
1927   case Array: {                 // Meeting 2 arrays?
1928     const TypeAry *a = t->is_ary();
1929     return TypeAry::make(_elem->meet(a->_elem, true),
1930                          _size->xmeet(a->_size)->is_int(),
1931                          _stable & a->_stable);
1932   }
1933   case Top:
1934     break;
1935   }
1936   return this;                  // Return the double constant
1937 }
1938 
1939 //------------------------------xdual------------------------------------------
1940 // Dual: compute field-by-field dual
1941 const Type *TypeAry::xdual() const {
1942   const TypeInt* size_dual = _size->dual()->is_int();
1943   size_dual = normalize_array_size(size_dual);
1944   return new TypeAry(_elem->dual(), size_dual, !_stable);
1945 }
1946 
1947 //------------------------------eq---------------------------------------------
1948 // Structural equality check for Type representations
1949 bool TypeAry::eq( const Type *t ) const {
1950   const TypeAry *a = (const TypeAry*)t;
1951   return _elem == a->_elem &&
1952     _stable == a->_stable &&
1953     _size == a->_size;
1954 }
1955 
1956 //------------------------------hash-------------------------------------------
1957 // Type-specific hashing function.
1958 int TypeAry::hash(void) const {
1959   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1960 }
1961 
1962 //----------------------interface_vs_oop---------------------------------------
1963 #ifdef ASSERT
1964 bool TypeAry::interface_vs_oop(const Type *t) const {
1965   const TypeAry* t_ary = t->is_ary();
1966   if (t_ary) {
1967     return _elem->interface_vs_oop(t_ary->_elem);
1968   }
1969   return false;
1970 }
1971 #endif
1972 
1973 //------------------------------dump2------------------------------------------
1974 #ifndef PRODUCT
1975 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1976   if (_stable)  st->print("stable:");
1977   _elem->dump2(d, depth, st);
1978   st->print("[");
1979   _size->dump2(d, depth, st);
1980   st->print("]");
1981 }
1982 #endif
1983 
1984 //------------------------------singleton--------------------------------------
1985 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1986 // constants (Ldi nodes).  Singletons are integer, float or double constants
1987 // or a single symbol.
1988 bool TypeAry::singleton(void) const {
1989   return false;                 // Never a singleton
1990 }
1991 
1992 bool TypeAry::empty(void) const {
1993   return _elem->empty() || _size->empty();
1994 }
1995 
1996 //--------------------------ary_must_be_exact----------------------------------
1997 bool TypeAry::ary_must_be_exact() const {
1998   if (!UseExactTypes)       return false;
1999   // This logic looks at the element type of an array, and returns true
2000   // if the element type is either a primitive or a final instance class.
2001   // In such cases, an array built on this ary must have no subclasses.
2002   if (_elem == BOTTOM)      return false;  // general array not exact
2003   if (_elem == TOP   )      return false;  // inverted general array not exact
2004   const TypeOopPtr*  toop = NULL;
2005   if (UseCompressedOops && _elem->isa_narrowoop()) {
2006     toop = _elem->make_ptr()->isa_oopptr();
2007   } else {
2008     toop = _elem->isa_oopptr();
2009   }
2010   if (!toop)                return true;   // a primitive type, like int
2011   ciKlass* tklass = toop->klass();
2012   if (tklass == NULL)       return false;  // unloaded class
2013   if (!tklass->is_loaded()) return false;  // unloaded class
2014   const TypeInstPtr* tinst;
2015   if (_elem->isa_narrowoop())
2016     tinst = _elem->make_ptr()->isa_instptr();
2017   else
2018     tinst = _elem->isa_instptr();
2019   if (tinst)
2020     return tklass->as_instance_klass()->is_final();
2021   const TypeAryPtr*  tap;
2022   if (_elem->isa_narrowoop())
2023     tap = _elem->make_ptr()->isa_aryptr();
2024   else
2025     tap = _elem->isa_aryptr();
2026   if (tap)
2027     return tap->ary()->ary_must_be_exact();
2028   return false;
2029 }
2030 
2031 //==============================TypeVect=======================================
2032 // Convenience common pre-built types.
2033 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2034 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2035 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2036 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2037 
2038 //------------------------------make-------------------------------------------
2039 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2040   BasicType elem_bt = elem->array_element_basic_type();
2041   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2042   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2043   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2044   int size = length * type2aelembytes(elem_bt);
2045   switch (Matcher::vector_ideal_reg(size)) {
2046   case Op_VecS:
2047     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2048   case Op_VecD:
2049   case Op_RegD:
2050     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2051   case Op_VecX:
2052     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2053   case Op_VecY:
2054     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2055   }
2056  ShouldNotReachHere();
2057   return NULL;
2058 }
2059 
2060 //------------------------------meet-------------------------------------------
2061 // Compute the MEET of two types.  It returns a new Type object.
2062 const Type *TypeVect::xmeet( const Type *t ) const {
2063   // Perform a fast test for common case; meeting the same types together.
2064   if( this == t ) return this;  // Meeting same type-rep?
2065 
2066   // Current "this->_base" is Vector
2067   switch (t->base()) {          // switch on original type
2068 
2069   case Bottom:                  // Ye Olde Default
2070     return t;
2071 
2072   default:                      // All else is a mistake
2073     typerr(t);
2074 
2075   case VectorS:
2076   case VectorD:
2077   case VectorX:
2078   case VectorY: {                // Meeting 2 vectors?
2079     const TypeVect* v = t->is_vect();
2080     assert(  base() == v->base(), "");
2081     assert(length() == v->length(), "");
2082     assert(element_basic_type() == v->element_basic_type(), "");
2083     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2084   }
2085   case Top:
2086     break;
2087   }
2088   return this;
2089 }
2090 
2091 //------------------------------xdual------------------------------------------
2092 // Dual: compute field-by-field dual
2093 const Type *TypeVect::xdual() const {
2094   return new TypeVect(base(), _elem->dual(), _length);
2095 }
2096 
2097 //------------------------------eq---------------------------------------------
2098 // Structural equality check for Type representations
2099 bool TypeVect::eq(const Type *t) const {
2100   const TypeVect *v = t->is_vect();
2101   return (_elem == v->_elem) && (_length == v->_length);
2102 }
2103 
2104 //------------------------------hash-------------------------------------------
2105 // Type-specific hashing function.
2106 int TypeVect::hash(void) const {
2107   return (intptr_t)_elem + (intptr_t)_length;
2108 }
2109 
2110 //------------------------------singleton--------------------------------------
2111 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2112 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2113 // constant value (when vector is created with Replicate code).
2114 bool TypeVect::singleton(void) const {
2115 // There is no Con node for vectors yet.
2116 //  return _elem->singleton();
2117   return false;
2118 }
2119 
2120 bool TypeVect::empty(void) const {
2121   return _elem->empty();
2122 }
2123 
2124 //------------------------------dump2------------------------------------------
2125 #ifndef PRODUCT
2126 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2127   switch (base()) {
2128   case VectorS:
2129     st->print("vectors["); break;
2130   case VectorD:
2131     st->print("vectord["); break;
2132   case VectorX:
2133     st->print("vectorx["); break;
2134   case VectorY:
2135     st->print("vectory["); break;
2136   default:
2137     ShouldNotReachHere();
2138   }
2139   st->print("%d]:{", _length);
2140   _elem->dump2(d, depth, st);
2141   st->print("}");
2142 }
2143 #endif
2144 
2145 
2146 //=============================================================================
2147 // Convenience common pre-built types.
2148 const TypePtr *TypePtr::NULL_PTR;
2149 const TypePtr *TypePtr::NOTNULL;
2150 const TypePtr *TypePtr::BOTTOM;
2151 
2152 //------------------------------meet-------------------------------------------
2153 // Meet over the PTR enum
2154 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2155   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2156   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2157   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2158   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2159   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2160   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2161   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2162 };
2163 
2164 //------------------------------make-------------------------------------------
2165 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2166   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2167 }
2168 
2169 //------------------------------cast_to_ptr_type-------------------------------
2170 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2171   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2172   if( ptr == _ptr ) return this;
2173   return make(_base, ptr, _offset);
2174 }
2175 
2176 //------------------------------get_con----------------------------------------
2177 intptr_t TypePtr::get_con() const {
2178   assert( _ptr == Null, "" );
2179   return _offset;
2180 }
2181 
2182 //------------------------------meet-------------------------------------------
2183 // Compute the MEET of two types.  It returns a new Type object.
2184 const Type *TypePtr::xmeet( const Type *t ) const {
2185   // Perform a fast test for common case; meeting the same types together.
2186   if( this == t ) return this;  // Meeting same type-rep?
2187 
2188   // Current "this->_base" is AnyPtr
2189   switch (t->base()) {          // switch on original type
2190   case Int:                     // Mixing ints & oops happens when javac
2191   case Long:                    // reuses local variables
2192   case FloatTop:
2193   case FloatCon:
2194   case FloatBot:
2195   case DoubleTop:
2196   case DoubleCon:
2197   case DoubleBot:
2198   case NarrowOop:
2199   case NarrowKlass:
2200   case Bottom:                  // Ye Olde Default
2201     return Type::BOTTOM;
2202   case Top:
2203     return this;
2204 
2205   case AnyPtr: {                // Meeting to AnyPtrs
2206     const TypePtr *tp = t->is_ptr();
2207     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2208   }
2209   case RawPtr:                  // For these, flip the call around to cut down
2210   case OopPtr:
2211   case InstPtr:                 // on the cases I have to handle.
2212   case AryPtr:
2213   case MetadataPtr:
2214   case KlassPtr:
2215     return t->xmeet(this);      // Call in reverse direction
2216   default:                      // All else is a mistake
2217     typerr(t);
2218 
2219   }
2220   return this;
2221 }
2222 
2223 //------------------------------meet_offset------------------------------------
2224 int TypePtr::meet_offset( int offset ) const {
2225   // Either is 'TOP' offset?  Return the other offset!
2226   if( _offset == OffsetTop ) return offset;
2227   if( offset == OffsetTop ) return _offset;
2228   // If either is different, return 'BOTTOM' offset
2229   if( _offset != offset ) return OffsetBot;
2230   return _offset;
2231 }
2232 
2233 //------------------------------dual_offset------------------------------------
2234 int TypePtr::dual_offset( ) const {
2235   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2236   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2237   return _offset;               // Map everything else into self
2238 }
2239 
2240 //------------------------------xdual------------------------------------------
2241 // Dual: compute field-by-field dual
2242 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2243   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2244 };
2245 const Type *TypePtr::xdual() const {
2246   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2247 }
2248 
2249 //------------------------------xadd_offset------------------------------------
2250 int TypePtr::xadd_offset( intptr_t offset ) const {
2251   // Adding to 'TOP' offset?  Return 'TOP'!
2252   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2253   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2254   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2255   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2256   offset += (intptr_t)_offset;
2257   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2258 
2259   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2260   // It is possible to construct a negative offset during PhaseCCP
2261 
2262   return (int)offset;        // Sum valid offsets
2263 }
2264 
2265 //------------------------------add_offset-------------------------------------
2266 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2267   return make( AnyPtr, _ptr, xadd_offset(offset) );
2268 }
2269 
2270 //------------------------------eq---------------------------------------------
2271 // Structural equality check for Type representations
2272 bool TypePtr::eq( const Type *t ) const {
2273   const TypePtr *a = (const TypePtr*)t;
2274   return _ptr == a->ptr() && _offset == a->offset();
2275 }
2276 
2277 //------------------------------hash-------------------------------------------
2278 // Type-specific hashing function.
2279 int TypePtr::hash(void) const {
2280   return _ptr + _offset;
2281 }
2282 
2283 //------------------------------dump2------------------------------------------
2284 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2285   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2286 };
2287 
2288 #ifndef PRODUCT
2289 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2290   if( _ptr == Null ) st->print("NULL");
2291   else st->print("%s *", ptr_msg[_ptr]);
2292   if( _offset == OffsetTop ) st->print("+top");
2293   else if( _offset == OffsetBot ) st->print("+bot");
2294   else if( _offset ) st->print("+%d", _offset);
2295 }
2296 #endif
2297 
2298 //------------------------------singleton--------------------------------------
2299 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2300 // constants
2301 bool TypePtr::singleton(void) const {
2302   // TopPTR, Null, AnyNull, Constant are all singletons
2303   return (_offset != OffsetBot) && !below_centerline(_ptr);
2304 }
2305 
2306 bool TypePtr::empty(void) const {
2307   return (_offset == OffsetTop) || above_centerline(_ptr);
2308 }
2309 
2310 //=============================================================================
2311 // Convenience common pre-built types.
2312 const TypeRawPtr *TypeRawPtr::BOTTOM;
2313 const TypeRawPtr *TypeRawPtr::NOTNULL;
2314 
2315 //------------------------------make-------------------------------------------
2316 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2317   assert( ptr != Constant, "what is the constant?" );
2318   assert( ptr != Null, "Use TypePtr for NULL" );
2319   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2320 }
2321 
2322 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2323   assert( bits, "Use TypePtr for NULL" );
2324   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2325 }
2326 
2327 //------------------------------cast_to_ptr_type-------------------------------
2328 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2329   assert( ptr != Constant, "what is the constant?" );
2330   assert( ptr != Null, "Use TypePtr for NULL" );
2331   assert( _bits==0, "Why cast a constant address?");
2332   if( ptr == _ptr ) return this;
2333   return make(ptr);
2334 }
2335 
2336 //------------------------------get_con----------------------------------------
2337 intptr_t TypeRawPtr::get_con() const {
2338   assert( _ptr == Null || _ptr == Constant, "" );
2339   return (intptr_t)_bits;
2340 }
2341 
2342 //------------------------------meet-------------------------------------------
2343 // Compute the MEET of two types.  It returns a new Type object.
2344 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2345   // Perform a fast test for common case; meeting the same types together.
2346   if( this == t ) return this;  // Meeting same type-rep?
2347 
2348   // Current "this->_base" is RawPtr
2349   switch( t->base() ) {         // switch on original type
2350   case Bottom:                  // Ye Olde Default
2351     return t;
2352   case Top:
2353     return this;
2354   case AnyPtr:                  // Meeting to AnyPtrs
2355     break;
2356   case RawPtr: {                // might be top, bot, any/not or constant
2357     enum PTR tptr = t->is_ptr()->ptr();
2358     enum PTR ptr = meet_ptr( tptr );
2359     if( ptr == Constant ) {     // Cannot be equal constants, so...
2360       if( tptr == Constant && _ptr != Constant)  return t;
2361       if( _ptr == Constant && tptr != Constant)  return this;
2362       ptr = NotNull;            // Fall down in lattice
2363     }
2364     return make( ptr );
2365   }
2366 
2367   case OopPtr:
2368   case InstPtr:
2369   case AryPtr:
2370   case MetadataPtr:
2371   case KlassPtr:
2372     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2373   default:                      // All else is a mistake
2374     typerr(t);
2375   }
2376 
2377   // Found an AnyPtr type vs self-RawPtr type
2378   const TypePtr *tp = t->is_ptr();
2379   switch (tp->ptr()) {
2380   case TypePtr::TopPTR:  return this;
2381   case TypePtr::BotPTR:  return t;
2382   case TypePtr::Null:
2383     if( _ptr == TypePtr::TopPTR ) return t;
2384     return TypeRawPtr::BOTTOM;
2385   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2386   case TypePtr::AnyNull:
2387     if( _ptr == TypePtr::Constant) return this;
2388     return make( meet_ptr(TypePtr::AnyNull) );
2389   default: ShouldNotReachHere();
2390   }
2391   return this;
2392 }
2393 
2394 //------------------------------xdual------------------------------------------
2395 // Dual: compute field-by-field dual
2396 const Type *TypeRawPtr::xdual() const {
2397   return new TypeRawPtr( dual_ptr(), _bits );
2398 }
2399 
2400 //------------------------------add_offset-------------------------------------
2401 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2402   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2403   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2404   if( offset == 0 ) return this; // No change
2405   switch (_ptr) {
2406   case TypePtr::TopPTR:
2407   case TypePtr::BotPTR:
2408   case TypePtr::NotNull:
2409     return this;
2410   case TypePtr::Null:
2411   case TypePtr::Constant: {
2412     address bits = _bits+offset;
2413     if ( bits == 0 ) return TypePtr::NULL_PTR;
2414     return make( bits );
2415   }
2416   default:  ShouldNotReachHere();
2417   }
2418   return NULL;                  // Lint noise
2419 }
2420 
2421 //------------------------------eq---------------------------------------------
2422 // Structural equality check for Type representations
2423 bool TypeRawPtr::eq( const Type *t ) const {
2424   const TypeRawPtr *a = (const TypeRawPtr*)t;
2425   return _bits == a->_bits && TypePtr::eq(t);
2426 }
2427 
2428 //------------------------------hash-------------------------------------------
2429 // Type-specific hashing function.
2430 int TypeRawPtr::hash(void) const {
2431   return (intptr_t)_bits + TypePtr::hash();
2432 }
2433 
2434 //------------------------------dump2------------------------------------------
2435 #ifndef PRODUCT
2436 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2437   if( _ptr == Constant )
2438     st->print(INTPTR_FORMAT, _bits);
2439   else
2440     st->print("rawptr:%s", ptr_msg[_ptr]);
2441 }
2442 #endif
2443 
2444 //=============================================================================
2445 // Convenience common pre-built type.
2446 const TypeOopPtr *TypeOopPtr::BOTTOM;
2447 
2448 //------------------------------TypeOopPtr-------------------------------------
2449 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
2450   : TypePtr(t, ptr, offset),
2451     _const_oop(o), _klass(k),
2452     _klass_is_exact(xk),
2453     _is_ptr_to_narrowoop(false),
2454     _is_ptr_to_narrowklass(false),
2455     _is_ptr_to_boxed_value(false),
2456     _instance_id(instance_id),
2457     _speculative(speculative) {
2458   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2459       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2460     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2461   }
2462 #ifdef _LP64
2463   if (_offset != 0) {
2464     if (_offset == oopDesc::klass_offset_in_bytes()) {
2465       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2466     } else if (klass() == NULL) {
2467       // Array with unknown body type
2468       assert(this->isa_aryptr(), "only arrays without klass");
2469       _is_ptr_to_narrowoop = UseCompressedOops;
2470     } else if (this->isa_aryptr()) {
2471       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2472                              _offset != arrayOopDesc::length_offset_in_bytes());
2473     } else if (klass()->is_instance_klass()) {
2474       ciInstanceKlass* ik = klass()->as_instance_klass();
2475       ciField* field = NULL;
2476       if (this->isa_klassptr()) {
2477         // Perm objects don't use compressed references
2478       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2479         // unsafe access
2480         _is_ptr_to_narrowoop = UseCompressedOops;
2481       } else { // exclude unsafe ops
2482         assert(this->isa_instptr(), "must be an instance ptr.");
2483 
2484         if (klass() == ciEnv::current()->Class_klass() &&
2485             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2486              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2487           // Special hidden fields from the Class.
2488           assert(this->isa_instptr(), "must be an instance ptr.");
2489           _is_ptr_to_narrowoop = false;
2490         } else if (klass() == ciEnv::current()->Class_klass() &&
2491                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2492           // Static fields
2493           assert(o != NULL, "must be constant");
2494           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2495           ciField* field = k->get_field_by_offset(_offset, true);
2496           assert(field != NULL, "missing field");
2497           BasicType basic_elem_type = field->layout_type();
2498           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2499                                                        basic_elem_type == T_ARRAY);
2500         } else {
2501           // Instance fields which contains a compressed oop references.
2502           field = ik->get_field_by_offset(_offset, false);
2503           if (field != NULL) {
2504             BasicType basic_elem_type = field->layout_type();
2505             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2506                                                          basic_elem_type == T_ARRAY);
2507           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2508             // Compile::find_alias_type() cast exactness on all types to verify
2509             // that it does not affect alias type.
2510             _is_ptr_to_narrowoop = UseCompressedOops;
2511           } else {
2512             // Type for the copy start in LibraryCallKit::inline_native_clone().
2513             _is_ptr_to_narrowoop = UseCompressedOops;
2514           }
2515         }
2516       }
2517     }
2518   }
2519 #endif
2520 }
2521 
2522 //------------------------------make-------------------------------------------
2523 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2524                                    int offset, int instance_id, const TypeOopPtr* speculative) {
2525   assert(ptr != Constant, "no constant generic pointers");
2526   ciKlass*  k = Compile::current()->env()->Object_klass();
2527   bool      xk = false;
2528   ciObject* o = NULL;
2529   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
2530 }
2531 
2532 
2533 //------------------------------cast_to_ptr_type-------------------------------
2534 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2535   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2536   if( ptr == _ptr ) return this;
2537   return make(ptr, _offset, _instance_id, _speculative);
2538 }
2539 
2540 //-----------------------------cast_to_instance_id----------------------------
2541 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2542   // There are no instances of a general oop.
2543   // Return self unchanged.
2544   return this;
2545 }
2546 
2547 //-----------------------------cast_to_exactness-------------------------------
2548 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2549   // There is no such thing as an exact general oop.
2550   // Return self unchanged.
2551   return this;
2552 }
2553 
2554 
2555 //------------------------------as_klass_type----------------------------------
2556 // Return the klass type corresponding to this instance or array type.
2557 // It is the type that is loaded from an object of this type.
2558 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2559   ciKlass* k = klass();
2560   bool    xk = klass_is_exact();
2561   if (k == NULL)
2562     return TypeKlassPtr::OBJECT;
2563   else
2564     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2565 }
2566 
2567 const Type *TypeOopPtr::xmeet(const Type *t) const {
2568   const Type* res = xmeet_helper(t);
2569   if (res->isa_oopptr() == NULL) {
2570     return res;
2571   }
2572 
2573   const TypeOopPtr* res_oopptr = res->is_oopptr();
2574   if (res_oopptr->speculative() != NULL) {
2575     // type->speculative() == NULL means that speculation is no better
2576     // than type, i.e. type->speculative() == type. So there are 2
2577     // ways to represent the fact that we have no useful speculative
2578     // data and we should use a single one to be able to test for
2579     // equality between types. Check whether type->speculative() ==
2580     // type and set speculative to NULL if it is the case.
2581     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
2582       return res_oopptr->remove_speculative();
2583     }
2584   }
2585 
2586   return res;
2587 }
2588 
2589 //------------------------------meet-------------------------------------------
2590 // Compute the MEET of two types.  It returns a new Type object.
2591 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2592   // Perform a fast test for common case; meeting the same types together.
2593   if( this == t ) return this;  // Meeting same type-rep?
2594 
2595   // Current "this->_base" is OopPtr
2596   switch (t->base()) {          // switch on original type
2597 
2598   case Int:                     // Mixing ints & oops happens when javac
2599   case Long:                    // reuses local variables
2600   case FloatTop:
2601   case FloatCon:
2602   case FloatBot:
2603   case DoubleTop:
2604   case DoubleCon:
2605   case DoubleBot:
2606   case NarrowOop:
2607   case NarrowKlass:
2608   case Bottom:                  // Ye Olde Default
2609     return Type::BOTTOM;
2610   case Top:
2611     return this;
2612 
2613   default:                      // All else is a mistake
2614     typerr(t);
2615 
2616   case RawPtr:
2617   case MetadataPtr:
2618   case KlassPtr:
2619     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2620 
2621   case AnyPtr: {
2622     // Found an AnyPtr type vs self-OopPtr type
2623     const TypePtr *tp = t->is_ptr();
2624     int offset = meet_offset(tp->offset());
2625     PTR ptr = meet_ptr(tp->ptr());
2626     switch (tp->ptr()) {
2627     case Null:
2628       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2629       // else fall through:
2630     case TopPTR:
2631     case AnyNull: {
2632       int instance_id = meet_instance_id(InstanceTop);
2633       const TypeOopPtr* speculative = _speculative;
2634       return make(ptr, offset, instance_id, speculative);
2635     }
2636     case BotPTR:
2637     case NotNull:
2638       return TypePtr::make(AnyPtr, ptr, offset);
2639     default: typerr(t);
2640     }
2641   }
2642 
2643   case OopPtr: {                 // Meeting to other OopPtrs
2644     const TypeOopPtr *tp = t->is_oopptr();
2645     int instance_id = meet_instance_id(tp->instance_id());
2646     const TypeOopPtr* speculative = meet_speculative(tp);
2647     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
2648   }
2649 
2650   case InstPtr:                  // For these, flip the call around to cut down
2651   case AryPtr:
2652     return t->xmeet(this);      // Call in reverse direction
2653 
2654   } // End of switch
2655   return this;                  // Return the double constant
2656 }
2657 
2658 
2659 //------------------------------xdual------------------------------------------
2660 // Dual of a pure heap pointer.  No relevant klass or oop information.
2661 const Type *TypeOopPtr::xdual() const {
2662   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2663   assert(const_oop() == NULL,             "no constants here");
2664   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
2665 }
2666 
2667 //--------------------------make_from_klass_common-----------------------------
2668 // Computes the element-type given a klass.
2669 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2670   if (klass->is_instance_klass()) {
2671     Compile* C = Compile::current();
2672     Dependencies* deps = C->dependencies();
2673     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2674     // Element is an instance
2675     bool klass_is_exact = false;
2676     if (klass->is_loaded()) {
2677       // Try to set klass_is_exact.
2678       ciInstanceKlass* ik = klass->as_instance_klass();
2679       klass_is_exact = ik->is_final();
2680       if (!klass_is_exact && klass_change
2681           && deps != NULL && UseUniqueSubclasses) {
2682         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2683         if (sub != NULL) {
2684           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2685           klass = ik = sub;
2686           klass_is_exact = sub->is_final();
2687         }
2688       }
2689       if (!klass_is_exact && try_for_exact
2690           && deps != NULL && UseExactTypes) {
2691         if (!ik->is_interface() && !ik->has_subklass()) {
2692           // Add a dependence; if concrete subclass added we need to recompile
2693           deps->assert_leaf_type(ik);
2694           klass_is_exact = true;
2695         }
2696       }
2697     }
2698     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2699   } else if (klass->is_obj_array_klass()) {
2700     // Element is an object array. Recursively call ourself.
2701     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2702     bool xk = etype->klass_is_exact();
2703     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2704     // We used to pass NotNull in here, asserting that the sub-arrays
2705     // are all not-null.  This is not true in generally, as code can
2706     // slam NULLs down in the subarrays.
2707     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2708     return arr;
2709   } else if (klass->is_type_array_klass()) {
2710     // Element is an typeArray
2711     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2712     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2713     // We used to pass NotNull in here, asserting that the array pointer
2714     // is not-null. That was not true in general.
2715     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2716     return arr;
2717   } else {
2718     ShouldNotReachHere();
2719     return NULL;
2720   }
2721 }
2722 
2723 //------------------------------make_from_constant-----------------------------
2724 // Make a java pointer from an oop constant
2725 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2726                                                  bool require_constant,
2727                                                  bool is_autobox_cache) {
2728   assert(!o->is_null_object(), "null object not yet handled here.");
2729   ciKlass* klass = o->klass();
2730   if (klass->is_instance_klass()) {
2731     // Element is an instance
2732     if (require_constant) {
2733       if (!o->can_be_constant())  return NULL;
2734     } else if (!o->should_be_constant()) {
2735       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2736     }
2737     return TypeInstPtr::make(o);
2738   } else if (klass->is_obj_array_klass()) {
2739     // Element is an object array. Recursively call ourself.
2740     const TypeOopPtr *etype =
2741       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2742     if (is_autobox_cache) {
2743       // The pointers in the autobox arrays are always non-null.
2744       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2745     }
2746     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2747     // We used to pass NotNull in here, asserting that the sub-arrays
2748     // are all not-null.  This is not true in generally, as code can
2749     // slam NULLs down in the subarrays.
2750     if (require_constant) {
2751       if (!o->can_be_constant())  return NULL;
2752     } else if (!o->should_be_constant()) {
2753       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2754     }
2755     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
2756     return arr;
2757   } else if (klass->is_type_array_klass()) {
2758     // Element is an typeArray
2759     const Type* etype =
2760       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2761     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2762     // We used to pass NotNull in here, asserting that the array pointer
2763     // is not-null. That was not true in general.
2764     if (require_constant) {
2765       if (!o->can_be_constant())  return NULL;
2766     } else if (!o->should_be_constant()) {
2767       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2768     }
2769     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2770     return arr;
2771   }
2772 
2773   fatal("unhandled object type");
2774   return NULL;
2775 }
2776 
2777 //------------------------------get_con----------------------------------------
2778 intptr_t TypeOopPtr::get_con() const {
2779   assert( _ptr == Null || _ptr == Constant, "" );
2780   assert( _offset >= 0, "" );
2781 
2782   if (_offset != 0) {
2783     // After being ported to the compiler interface, the compiler no longer
2784     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2785     // to a handle at compile time.  This handle is embedded in the generated
2786     // code and dereferenced at the time the nmethod is made.  Until that time,
2787     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2788     // have access to the addresses!).  This does not seem to currently happen,
2789     // but this assertion here is to help prevent its occurence.
2790     tty->print_cr("Found oop constant with non-zero offset");
2791     ShouldNotReachHere();
2792   }
2793 
2794   return (intptr_t)const_oop()->constant_encoding();
2795 }
2796 
2797 
2798 //-----------------------------filter------------------------------------------
2799 // Do not allow interface-vs.-noninterface joins to collapse to top.
2800 const Type *TypeOopPtr::filter(const Type *kills, bool include_speculative) const {
2801 
2802   const Type* ft = join(kills, include_speculative);
2803   const TypeInstPtr* ftip = ft->isa_instptr();
2804   const TypeInstPtr* ktip = kills->isa_instptr();
2805 
2806   if (ft->empty()) {
2807     // Check for evil case of 'this' being a class and 'kills' expecting an
2808     // interface.  This can happen because the bytecodes do not contain
2809     // enough type info to distinguish a Java-level interface variable
2810     // from a Java-level object variable.  If we meet 2 classes which
2811     // both implement interface I, but their meet is at 'j/l/O' which
2812     // doesn't implement I, we have no way to tell if the result should
2813     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2814     // into a Phi which "knows" it's an Interface type we'll have to
2815     // uplift the type.
2816     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2817       return kills;             // Uplift to interface
2818 
2819     return Type::TOP;           // Canonical empty value
2820   }
2821 
2822   // If we have an interface-typed Phi or cast and we narrow to a class type,
2823   // the join should report back the class.  However, if we have a J/L/Object
2824   // class-typed Phi and an interface flows in, it's possible that the meet &
2825   // join report an interface back out.  This isn't possible but happens
2826   // because the type system doesn't interact well with interfaces.
2827   if (ftip != NULL && ktip != NULL &&
2828       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2829       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2830     // Happens in a CTW of rt.jar, 320-341, no extra flags
2831     assert(!ftip->klass_is_exact(), "interface could not be exact");
2832     return ktip->cast_to_ptr_type(ftip->ptr());
2833   }
2834 
2835   return ft;
2836 }
2837 
2838 //------------------------------eq---------------------------------------------
2839 // Structural equality check for Type representations
2840 bool TypeOopPtr::eq( const Type *t ) const {
2841   const TypeOopPtr *a = (const TypeOopPtr*)t;
2842   if (_klass_is_exact != a->_klass_is_exact ||
2843       _instance_id != a->_instance_id ||
2844       !eq_speculative(a))  return false;
2845   ciObject* one = const_oop();
2846   ciObject* two = a->const_oop();
2847   if (one == NULL || two == NULL) {
2848     return (one == two) && TypePtr::eq(t);
2849   } else {
2850     return one->equals(two) && TypePtr::eq(t);
2851   }
2852 }
2853 
2854 //------------------------------hash-------------------------------------------
2855 // Type-specific hashing function.
2856 int TypeOopPtr::hash(void) const {
2857   return
2858     (const_oop() ? const_oop()->hash() : 0) +
2859     _klass_is_exact +
2860     _instance_id +
2861     hash_speculative() +
2862     TypePtr::hash();
2863 }
2864 
2865 //------------------------------dump2------------------------------------------
2866 #ifndef PRODUCT
2867 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2868   st->print("oopptr:%s", ptr_msg[_ptr]);
2869   if( _klass_is_exact ) st->print(":exact");
2870   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2871   switch( _offset ) {
2872   case OffsetTop: st->print("+top"); break;
2873   case OffsetBot: st->print("+any"); break;
2874   case         0: break;
2875   default:        st->print("+%d",_offset); break;
2876   }
2877   if (_instance_id == InstanceTop)
2878     st->print(",iid=top");
2879   else if (_instance_id != InstanceBot)
2880     st->print(",iid=%d",_instance_id);
2881 
2882   dump_speculative(st);
2883 }
2884 
2885 /**
2886  *dump the speculative part of the type
2887  */
2888 void TypeOopPtr::dump_speculative(outputStream *st) const {
2889   if (_speculative != NULL) {
2890     st->print(" (speculative=");
2891     _speculative->dump_on(st);
2892     st->print(")");
2893   }
2894 }
2895 #endif
2896 
2897 //------------------------------singleton--------------------------------------
2898 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2899 // constants
2900 bool TypeOopPtr::singleton(void) const {
2901   // detune optimizer to not generate constant oop + constant offset as a constant!
2902   // TopPTR, Null, AnyNull, Constant are all singletons
2903   return (_offset == 0) && !below_centerline(_ptr);
2904 }
2905 
2906 //------------------------------add_offset-------------------------------------
2907 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
2908   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
2909 }
2910 
2911 /**
2912  * Return same type without a speculative part
2913  */
2914 const Type* TypeOopPtr::remove_speculative() const {
2915   if (_speculative == NULL) {
2916     return this;
2917   }
2918   return make(_ptr, _offset, _instance_id, NULL);
2919 }
2920 
2921 //------------------------------meet_instance_id--------------------------------
2922 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2923   // Either is 'TOP' instance?  Return the other instance!
2924   if( _instance_id == InstanceTop ) return  instance_id;
2925   if(  instance_id == InstanceTop ) return _instance_id;
2926   // If either is different, return 'BOTTOM' instance
2927   if( _instance_id != instance_id ) return InstanceBot;
2928   return _instance_id;
2929 }
2930 
2931 //------------------------------dual_instance_id--------------------------------
2932 int TypeOopPtr::dual_instance_id( ) const {
2933   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2934   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2935   return _instance_id;              // Map everything else into self
2936 }
2937 
2938 /**
2939  * meet of the speculative parts of 2 types
2940  *
2941  * @param other  type to meet with
2942  */
2943 const TypeOopPtr* TypeOopPtr::meet_speculative(const TypeOopPtr* other) const {
2944   bool this_has_spec = (_speculative != NULL);
2945   bool other_has_spec = (other->speculative() != NULL);
2946 
2947   if (!this_has_spec && !other_has_spec) {
2948     return NULL;
2949   }
2950 
2951   // If we are at a point where control flow meets and one branch has
2952   // a speculative type and the other has not, we meet the speculative
2953   // type of one branch with the actual type of the other. If the
2954   // actual type is exact and the speculative is as well, then the
2955   // result is a speculative type which is exact and we can continue
2956   // speculation further.
2957   const TypeOopPtr* this_spec = _speculative;
2958   const TypeOopPtr* other_spec = other->speculative();
2959 
2960   if (!this_has_spec) {
2961     this_spec = this;
2962   }
2963 
2964   if (!other_has_spec) {
2965     other_spec = other;
2966   }
2967 
2968   return this_spec->meet(other_spec, true)->is_oopptr();
2969 }
2970 
2971 /**
2972  * dual of the speculative part of the type
2973  */
2974 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
2975   if (_speculative == NULL) {
2976     return NULL;
2977   }
2978   return _speculative->dual()->is_oopptr();
2979 }
2980 
2981 /**
2982  * add offset to the speculative part of the type
2983  *
2984  * @param offset  offset to add
2985  */
2986 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
2987   if (_speculative == NULL) {
2988     return NULL;
2989   }
2990   return _speculative->add_offset(offset)->is_oopptr();
2991 }
2992 
2993 /**
2994  * Are the speculative parts of 2 types equal?
2995  *
2996  * @param other  type to compare this one to
2997  */
2998 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
2999   if (_speculative == NULL || other->speculative() == NULL) {
3000     return _speculative == other->speculative();
3001   }
3002 
3003   if (_speculative->base() != other->speculative()->base()) {
3004     return false;
3005   }
3006 
3007   return _speculative->eq(other->speculative());
3008 }
3009 
3010 /**
3011  * Hash of the speculative part of the type
3012  */
3013 int TypeOopPtr::hash_speculative() const {
3014   if (_speculative == NULL) {
3015     return 0;
3016   }
3017 
3018   return _speculative->hash();
3019 }
3020 
3021 
3022 //=============================================================================
3023 // Convenience common pre-built types.
3024 const TypeInstPtr *TypeInstPtr::NOTNULL;
3025 const TypeInstPtr *TypeInstPtr::BOTTOM;
3026 const TypeInstPtr *TypeInstPtr::MIRROR;
3027 const TypeInstPtr *TypeInstPtr::MARK;
3028 const TypeInstPtr *TypeInstPtr::KLASS;
3029 
3030 //------------------------------TypeInstPtr-------------------------------------
3031 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
3032   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
3033    assert(k != NULL &&
3034           (k->is_loaded() || o == NULL),
3035           "cannot have constants with non-loaded klass");
3036 };
3037 
3038 //------------------------------make-------------------------------------------
3039 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3040                                      ciKlass* k,
3041                                      bool xk,
3042                                      ciObject* o,
3043                                      int offset,
3044                                      int instance_id,
3045                                      const TypeOopPtr* speculative) {
3046   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3047   // Either const_oop() is NULL or else ptr is Constant
3048   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3049           "constant pointers must have a value supplied" );
3050   // Ptr is never Null
3051   assert( ptr != Null, "NULL pointers are not typed" );
3052 
3053   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3054   if (!UseExactTypes)  xk = false;
3055   if (ptr == Constant) {
3056     // Note:  This case includes meta-object constants, such as methods.
3057     xk = true;
3058   } else if (k->is_loaded()) {
3059     ciInstanceKlass* ik = k->as_instance_klass();
3060     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3061     if (xk && ik->is_interface())  xk = false;  // no exact interface
3062   }
3063 
3064   // Now hash this baby
3065   TypeInstPtr *result =
3066     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();
3067 
3068   return result;
3069 }
3070 
3071 /**
3072  *  Create constant type for a constant boxed value
3073  */
3074 const Type* TypeInstPtr::get_const_boxed_value() const {
3075   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3076   assert((const_oop() != NULL), "should be called only for constant object");
3077   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3078   BasicType bt = constant.basic_type();
3079   switch (bt) {
3080     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3081     case T_INT:      return TypeInt::make(constant.as_int());
3082     case T_CHAR:     return TypeInt::make(constant.as_char());
3083     case T_BYTE:     return TypeInt::make(constant.as_byte());
3084     case T_SHORT:    return TypeInt::make(constant.as_short());
3085     case T_FLOAT:    return TypeF::make(constant.as_float());
3086     case T_DOUBLE:   return TypeD::make(constant.as_double());
3087     case T_LONG:     return TypeLong::make(constant.as_long());
3088     default:         break;
3089   }
3090   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3091   return NULL;
3092 }
3093 
3094 //------------------------------cast_to_ptr_type-------------------------------
3095 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3096   if( ptr == _ptr ) return this;
3097   // Reconstruct _sig info here since not a problem with later lazy
3098   // construction, _sig will show up on demand.
3099   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
3100 }
3101 
3102 
3103 //-----------------------------cast_to_exactness-------------------------------
3104 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3105   if( klass_is_exact == _klass_is_exact ) return this;
3106   if (!UseExactTypes)  return this;
3107   if (!_klass->is_loaded())  return this;
3108   ciInstanceKlass* ik = _klass->as_instance_klass();
3109   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3110   if( ik->is_interface() )              return this;  // cannot set xk
3111   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
3112 }
3113 
3114 //-----------------------------cast_to_instance_id----------------------------
3115 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3116   if( instance_id == _instance_id ) return this;
3117   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
3118 }
3119 
3120 //------------------------------xmeet_unloaded---------------------------------
3121 // Compute the MEET of two InstPtrs when at least one is unloaded.
3122 // Assume classes are different since called after check for same name/class-loader
3123 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3124     int off = meet_offset(tinst->offset());
3125     PTR ptr = meet_ptr(tinst->ptr());
3126     int instance_id = meet_instance_id(tinst->instance_id());
3127     const TypeOopPtr* speculative = meet_speculative(tinst);
3128 
3129     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3130     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3131     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3132       //
3133       // Meet unloaded class with java/lang/Object
3134       //
3135       // Meet
3136       //          |                     Unloaded Class
3137       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3138       //  ===================================================================
3139       //   TOP    | ..........................Unloaded......................|
3140       //  AnyNull |  U-AN    |................Unloaded......................|
3141       // Constant | ... O-NN .................................. |   O-BOT   |
3142       //  NotNull | ... O-NN .................................. |   O-BOT   |
3143       //  BOTTOM  | ........................Object-BOTTOM ..................|
3144       //
3145       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3146       //
3147       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3148       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
3149       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3150       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3151         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3152         else                                      { return TypeInstPtr::NOTNULL; }
3153       }
3154       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3155 
3156       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3157     }
3158 
3159     // Both are unloaded, not the same class, not Object
3160     // Or meet unloaded with a different loaded class, not java/lang/Object
3161     if( ptr != TypePtr::BotPTR ) {
3162       return TypeInstPtr::NOTNULL;
3163     }
3164     return TypeInstPtr::BOTTOM;
3165 }
3166 
3167 
3168 //------------------------------meet-------------------------------------------
3169 // Compute the MEET of two types.  It returns a new Type object.
3170 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3171   // Perform a fast test for common case; meeting the same types together.
3172   if( this == t ) return this;  // Meeting same type-rep?
3173 
3174   // Current "this->_base" is Pointer
3175   switch (t->base()) {          // switch on original type
3176 
3177   case Int:                     // Mixing ints & oops happens when javac
3178   case Long:                    // reuses local variables
3179   case FloatTop:
3180   case FloatCon:
3181   case FloatBot:
3182   case DoubleTop:
3183   case DoubleCon:
3184   case DoubleBot:
3185   case NarrowOop:
3186   case NarrowKlass:
3187   case Bottom:                  // Ye Olde Default
3188     return Type::BOTTOM;
3189   case Top:
3190     return this;
3191 
3192   default:                      // All else is a mistake
3193     typerr(t);
3194 
3195   case MetadataPtr:
3196   case KlassPtr:
3197   case RawPtr: return TypePtr::BOTTOM;
3198 
3199   case AryPtr: {                // All arrays inherit from Object class
3200     const TypeAryPtr *tp = t->is_aryptr();
3201     int offset = meet_offset(tp->offset());
3202     PTR ptr = meet_ptr(tp->ptr());
3203     int instance_id = meet_instance_id(tp->instance_id());
3204     const TypeOopPtr* speculative = meet_speculative(tp);
3205     switch (ptr) {
3206     case TopPTR:
3207     case AnyNull:                // Fall 'down' to dual of object klass
3208       // For instances when a subclass meets a superclass we fall
3209       // below the centerline when the superclass is exact. We need to
3210       // do the same here.
3211       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3212         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
3213       } else {
3214         // cannot subclass, so the meet has to fall badly below the centerline
3215         ptr = NotNull;
3216         instance_id = InstanceBot;
3217         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
3218       }
3219     case Constant:
3220     case NotNull:
3221     case BotPTR:                // Fall down to object klass
3222       // LCA is object_klass, but if we subclass from the top we can do better
3223       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3224         // If 'this' (InstPtr) is above the centerline and it is Object class
3225         // then we can subclass in the Java class hierarchy.
3226         // For instances when a subclass meets a superclass we fall
3227         // below the centerline when the superclass is exact. We need
3228         // to do the same here.
3229         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3230           // that is, tp's array type is a subtype of my klass
3231           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3232                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
3233         }
3234       }
3235       // The other case cannot happen, since I cannot be a subtype of an array.
3236       // The meet falls down to Object class below centerline.
3237       if( ptr == Constant )
3238          ptr = NotNull;
3239       instance_id = InstanceBot;
3240       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
3241     default: typerr(t);
3242     }
3243   }
3244 
3245   case OopPtr: {                // Meeting to OopPtrs
3246     // Found a OopPtr type vs self-InstPtr type
3247     const TypeOopPtr *tp = t->is_oopptr();
3248     int offset = meet_offset(tp->offset());
3249     PTR ptr = meet_ptr(tp->ptr());
3250     switch (tp->ptr()) {
3251     case TopPTR:
3252     case AnyNull: {
3253       int instance_id = meet_instance_id(InstanceTop);
3254       const TypeOopPtr* speculative = meet_speculative(tp);
3255       return make(ptr, klass(), klass_is_exact(),
3256                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
3257     }
3258     case NotNull:
3259     case BotPTR: {
3260       int instance_id = meet_instance_id(tp->instance_id());
3261       const TypeOopPtr* speculative = meet_speculative(tp);
3262       return TypeOopPtr::make(ptr, offset, instance_id, speculative);
3263     }
3264     default: typerr(t);
3265     }
3266   }
3267 
3268   case AnyPtr: {                // Meeting to AnyPtrs
3269     // Found an AnyPtr type vs self-InstPtr type
3270     const TypePtr *tp = t->is_ptr();
3271     int offset = meet_offset(tp->offset());
3272     PTR ptr = meet_ptr(tp->ptr());
3273     switch (tp->ptr()) {
3274     case Null:
3275       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3276       // else fall through to AnyNull
3277     case TopPTR:
3278     case AnyNull: {
3279       int instance_id = meet_instance_id(InstanceTop);
3280       const TypeOopPtr* speculative = _speculative;
3281       return make(ptr, klass(), klass_is_exact(),
3282                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
3283     }
3284     case NotNull:
3285     case BotPTR:
3286       return TypePtr::make(AnyPtr, ptr, offset);
3287     default: typerr(t);
3288     }
3289   }
3290 
3291   /*
3292                  A-top         }
3293                /   |   \       }  Tops
3294            B-top A-any C-top   }
3295               | /  |  \ |      }  Any-nulls
3296            B-any   |   C-any   }
3297               |    |    |
3298            B-con A-con C-con   } constants; not comparable across classes
3299               |    |    |
3300            B-not   |   C-not   }
3301               | \  |  / |      }  not-nulls
3302            B-bot A-not C-bot   }
3303                \   |   /       }  Bottoms
3304                  A-bot         }
3305   */
3306 
3307   case InstPtr: {                // Meeting 2 Oops?
3308     // Found an InstPtr sub-type vs self-InstPtr type
3309     const TypeInstPtr *tinst = t->is_instptr();
3310     int off = meet_offset( tinst->offset() );
3311     PTR ptr = meet_ptr( tinst->ptr() );
3312     int instance_id = meet_instance_id(tinst->instance_id());
3313     const TypeOopPtr* speculative = meet_speculative(tinst);
3314 
3315     // Check for easy case; klasses are equal (and perhaps not loaded!)
3316     // If we have constants, then we created oops so classes are loaded
3317     // and we can handle the constants further down.  This case handles
3318     // both-not-loaded or both-loaded classes
3319     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3320       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
3321     }
3322 
3323     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3324     ciKlass* tinst_klass = tinst->klass();
3325     ciKlass* this_klass  = this->klass();
3326     bool tinst_xk = tinst->klass_is_exact();
3327     bool this_xk  = this->klass_is_exact();
3328     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3329       // One of these classes has not been loaded
3330       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3331 #ifndef PRODUCT
3332       if( PrintOpto && Verbose ) {
3333         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3334         tty->print("  this == "); this->dump(); tty->cr();
3335         tty->print(" tinst == "); tinst->dump(); tty->cr();
3336       }
3337 #endif
3338       return unloaded_meet;
3339     }
3340 
3341     // Handle mixing oops and interfaces first.
3342     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3343                                         tinst_klass == ciEnv::current()->Object_klass())) {
3344       ciKlass *tmp = tinst_klass; // Swap interface around
3345       tinst_klass = this_klass;
3346       this_klass = tmp;
3347       bool tmp2 = tinst_xk;
3348       tinst_xk = this_xk;
3349       this_xk = tmp2;
3350     }
3351     if (tinst_klass->is_interface() &&
3352         !(this_klass->is_interface() ||
3353           // Treat java/lang/Object as an honorary interface,
3354           // because we need a bottom for the interface hierarchy.
3355           this_klass == ciEnv::current()->Object_klass())) {
3356       // Oop meets interface!
3357 
3358       // See if the oop subtypes (implements) interface.
3359       ciKlass *k;
3360       bool xk;
3361       if( this_klass->is_subtype_of( tinst_klass ) ) {
3362         // Oop indeed subtypes.  Now keep oop or interface depending
3363         // on whether we are both above the centerline or either is
3364         // below the centerline.  If we are on the centerline
3365         // (e.g., Constant vs. AnyNull interface), use the constant.
3366         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3367         // If we are keeping this_klass, keep its exactness too.
3368         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3369       } else {                  // Does not implement, fall to Object
3370         // Oop does not implement interface, so mixing falls to Object
3371         // just like the verifier does (if both are above the
3372         // centerline fall to interface)
3373         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3374         xk = above_centerline(ptr) ? tinst_xk : false;
3375         // Watch out for Constant vs. AnyNull interface.
3376         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3377         instance_id = InstanceBot;
3378       }
3379       ciObject* o = NULL;  // the Constant value, if any
3380       if (ptr == Constant) {
3381         // Find out which constant.
3382         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3383       }
3384       return make(ptr, k, xk, o, off, instance_id, speculative);
3385     }
3386 
3387     // Either oop vs oop or interface vs interface or interface vs Object
3388 
3389     // !!! Here's how the symmetry requirement breaks down into invariants:
3390     // If we split one up & one down AND they subtype, take the down man.
3391     // If we split one up & one down AND they do NOT subtype, "fall hard".
3392     // If both are up and they subtype, take the subtype class.
3393     // If both are up and they do NOT subtype, "fall hard".
3394     // If both are down and they subtype, take the supertype class.
3395     // If both are down and they do NOT subtype, "fall hard".
3396     // Constants treated as down.
3397 
3398     // Now, reorder the above list; observe that both-down+subtype is also
3399     // "fall hard"; "fall hard" becomes the default case:
3400     // If we split one up & one down AND they subtype, take the down man.
3401     // If both are up and they subtype, take the subtype class.
3402 
3403     // If both are down and they subtype, "fall hard".
3404     // If both are down and they do NOT subtype, "fall hard".
3405     // If both are up and they do NOT subtype, "fall hard".
3406     // If we split one up & one down AND they do NOT subtype, "fall hard".
3407 
3408     // If a proper subtype is exact, and we return it, we return it exactly.
3409     // If a proper supertype is exact, there can be no subtyping relationship!
3410     // If both types are equal to the subtype, exactness is and-ed below the
3411     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3412 
3413     // Check for subtyping:
3414     ciKlass *subtype = NULL;
3415     bool subtype_exact = false;
3416     if( tinst_klass->equals(this_klass) ) {
3417       subtype = this_klass;
3418       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3419     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3420       subtype = this_klass;     // Pick subtyping class
3421       subtype_exact = this_xk;
3422     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3423       subtype = tinst_klass;    // Pick subtyping class
3424       subtype_exact = tinst_xk;
3425     }
3426 
3427     if( subtype ) {
3428       if( above_centerline(ptr) ) { // both are up?
3429         this_klass = tinst_klass = subtype;
3430         this_xk = tinst_xk = subtype_exact;
3431       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3432         this_klass = tinst_klass; // tinst is down; keep down man
3433         this_xk = tinst_xk;
3434       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3435         tinst_klass = this_klass; // this is down; keep down man
3436         tinst_xk = this_xk;
3437       } else {
3438         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3439       }
3440     }
3441 
3442     // Check for classes now being equal
3443     if (tinst_klass->equals(this_klass)) {
3444       // If the klasses are equal, the constants may still differ.  Fall to
3445       // NotNull if they do (neither constant is NULL; that is a special case
3446       // handled elsewhere).
3447       ciObject* o = NULL;             // Assume not constant when done
3448       ciObject* this_oop  = const_oop();
3449       ciObject* tinst_oop = tinst->const_oop();
3450       if( ptr == Constant ) {
3451         if (this_oop != NULL && tinst_oop != NULL &&
3452             this_oop->equals(tinst_oop) )
3453           o = this_oop;
3454         else if (above_centerline(this ->_ptr))
3455           o = tinst_oop;
3456         else if (above_centerline(tinst ->_ptr))
3457           o = this_oop;
3458         else
3459           ptr = NotNull;
3460       }
3461       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
3462     } // Else classes are not equal
3463 
3464     // Since klasses are different, we require a LCA in the Java
3465     // class hierarchy - which means we have to fall to at least NotNull.
3466     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3467       ptr = NotNull;
3468     instance_id = InstanceBot;
3469 
3470     // Now we find the LCA of Java classes
3471     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3472     return make(ptr, k, false, NULL, off, instance_id, speculative);
3473   } // End of case InstPtr
3474 
3475   } // End of switch
3476   return this;                  // Return the double constant
3477 }
3478 
3479 
3480 //------------------------java_mirror_type--------------------------------------
3481 ciType* TypeInstPtr::java_mirror_type() const {
3482   // must be a singleton type
3483   if( const_oop() == NULL )  return NULL;
3484 
3485   // must be of type java.lang.Class
3486   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3487 
3488   return const_oop()->as_instance()->java_mirror_type();
3489 }
3490 
3491 
3492 //------------------------------xdual------------------------------------------
3493 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3494 // inheritance mechanism.
3495 const Type *TypeInstPtr::xdual() const {
3496   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
3497 }
3498 
3499 //------------------------------eq---------------------------------------------
3500 // Structural equality check for Type representations
3501 bool TypeInstPtr::eq( const Type *t ) const {
3502   const TypeInstPtr *p = t->is_instptr();
3503   return
3504     klass()->equals(p->klass()) &&
3505     TypeOopPtr::eq(p);          // Check sub-type stuff
3506 }
3507 
3508 //------------------------------hash-------------------------------------------
3509 // Type-specific hashing function.
3510 int TypeInstPtr::hash(void) const {
3511   int hash = klass()->hash() + TypeOopPtr::hash();
3512   return hash;
3513 }
3514 
3515 //------------------------------dump2------------------------------------------
3516 // Dump oop Type
3517 #ifndef PRODUCT
3518 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3519   // Print the name of the klass.
3520   klass()->print_name_on(st);
3521 
3522   switch( _ptr ) {
3523   case Constant:
3524     // TO DO: Make CI print the hex address of the underlying oop.
3525     if (WizardMode || Verbose) {
3526       const_oop()->print_oop(st);
3527     }
3528   case BotPTR:
3529     if (!WizardMode && !Verbose) {
3530       if( _klass_is_exact ) st->print(":exact");
3531       break;
3532     }
3533   case TopPTR:
3534   case AnyNull:
3535   case NotNull:
3536     st->print(":%s", ptr_msg[_ptr]);
3537     if( _klass_is_exact ) st->print(":exact");
3538     break;
3539   }
3540 
3541   if( _offset ) {               // Dump offset, if any
3542     if( _offset == OffsetBot )      st->print("+any");
3543     else if( _offset == OffsetTop ) st->print("+unknown");
3544     else st->print("+%d", _offset);
3545   }
3546 
3547   st->print(" *");
3548   if (_instance_id == InstanceTop)
3549     st->print(",iid=top");
3550   else if (_instance_id != InstanceBot)
3551     st->print(",iid=%d",_instance_id);
3552 
3553   dump_speculative(st);
3554 }
3555 #endif
3556 
3557 //------------------------------add_offset-------------------------------------
3558 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3559   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
3560 }
3561 
3562 const Type *TypeInstPtr::remove_speculative() const {
3563   if (_speculative == NULL) {
3564     return this;
3565   }
3566   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
3567 }
3568 
3569 //=============================================================================
3570 // Convenience common pre-built types.
3571 const TypeAryPtr *TypeAryPtr::RANGE;
3572 const TypeAryPtr *TypeAryPtr::OOPS;
3573 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3574 const TypeAryPtr *TypeAryPtr::BYTES;
3575 const TypeAryPtr *TypeAryPtr::SHORTS;
3576 const TypeAryPtr *TypeAryPtr::CHARS;
3577 const TypeAryPtr *TypeAryPtr::INTS;
3578 const TypeAryPtr *TypeAryPtr::LONGS;
3579 const TypeAryPtr *TypeAryPtr::FLOATS;
3580 const TypeAryPtr *TypeAryPtr::DOUBLES;
3581 
3582 //------------------------------make-------------------------------------------
3583 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
3584   assert(!(k == NULL && ary->_elem->isa_int()),
3585          "integral arrays must be pre-equipped with a class");
3586   if (!xk)  xk = ary->ary_must_be_exact();
3587   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3588   if (!UseExactTypes)  xk = (ptr == Constant);
3589   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
3590 }
3591 
3592 //------------------------------make-------------------------------------------
3593 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
3594   assert(!(k == NULL && ary->_elem->isa_int()),
3595          "integral arrays must be pre-equipped with a class");
3596   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3597   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3598   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3599   if (!UseExactTypes)  xk = (ptr == Constant);
3600   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
3601 }
3602 
3603 //------------------------------cast_to_ptr_type-------------------------------
3604 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3605   if( ptr == _ptr ) return this;
3606   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
3607 }
3608 
3609 
3610 //-----------------------------cast_to_exactness-------------------------------
3611 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3612   if( klass_is_exact == _klass_is_exact ) return this;
3613   if (!UseExactTypes)  return this;
3614   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3615   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
3616 }
3617 
3618 //-----------------------------cast_to_instance_id----------------------------
3619 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3620   if( instance_id == _instance_id ) return this;
3621   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
3622 }
3623 
3624 //-----------------------------narrow_size_type-------------------------------
3625 // Local cache for arrayOopDesc::max_array_length(etype),
3626 // which is kind of slow (and cached elsewhere by other users).
3627 static jint max_array_length_cache[T_CONFLICT+1];
3628 static jint max_array_length(BasicType etype) {
3629   jint& cache = max_array_length_cache[etype];
3630   jint res = cache;
3631   if (res == 0) {
3632     switch (etype) {
3633     case T_NARROWOOP:
3634       etype = T_OBJECT;
3635       break;
3636     case T_NARROWKLASS:
3637     case T_CONFLICT:
3638     case T_ILLEGAL:
3639     case T_VOID:
3640       etype = T_BYTE;           // will produce conservatively high value
3641     }
3642     cache = res = arrayOopDesc::max_array_length(etype);
3643   }
3644   return res;
3645 }
3646 
3647 // Narrow the given size type to the index range for the given array base type.
3648 // Return NULL if the resulting int type becomes empty.
3649 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3650   jint hi = size->_hi;
3651   jint lo = size->_lo;
3652   jint min_lo = 0;
3653   jint max_hi = max_array_length(elem()->basic_type());
3654   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3655   bool chg = false;
3656   if (lo < min_lo) {
3657     lo = min_lo;
3658     if (size->is_con()) {
3659       hi = lo;
3660     }
3661     chg = true;
3662   }
3663   if (hi > max_hi) {
3664     hi = max_hi;
3665     if (size->is_con()) {
3666       lo = hi;
3667     }
3668     chg = true;
3669   }
3670   // Negative length arrays will produce weird intermediate dead fast-path code
3671   if (lo > hi)
3672     return TypeInt::ZERO;
3673   if (!chg)
3674     return size;
3675   return TypeInt::make(lo, hi, Type::WidenMin);
3676 }
3677 
3678 //-------------------------------cast_to_size----------------------------------
3679 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3680   assert(new_size != NULL, "");
3681   new_size = narrow_size_type(new_size);
3682   if (new_size == size())  return this;
3683   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3684   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
3685 }
3686 
3687 
3688 //------------------------------cast_to_stable---------------------------------
3689 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3690   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3691     return this;
3692 
3693   const Type* elem = this->elem();
3694   const TypePtr* elem_ptr = elem->make_ptr();
3695 
3696   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3697     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3698     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3699   }
3700 
3701   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3702 
3703   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3704 }
3705 
3706 //-----------------------------stable_dimension--------------------------------
3707 int TypeAryPtr::stable_dimension() const {
3708   if (!is_stable())  return 0;
3709   int dim = 1;
3710   const TypePtr* elem_ptr = elem()->make_ptr();
3711   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3712     dim += elem_ptr->is_aryptr()->stable_dimension();
3713   return dim;
3714 }
3715 
3716 //------------------------------eq---------------------------------------------
3717 // Structural equality check for Type representations
3718 bool TypeAryPtr::eq( const Type *t ) const {
3719   const TypeAryPtr *p = t->is_aryptr();
3720   return
3721     _ary == p->_ary &&  // Check array
3722     TypeOopPtr::eq(p);  // Check sub-parts
3723 }
3724 
3725 //------------------------------hash-------------------------------------------
3726 // Type-specific hashing function.
3727 int TypeAryPtr::hash(void) const {
3728   return (intptr_t)_ary + TypeOopPtr::hash();
3729 }
3730 
3731 //------------------------------meet-------------------------------------------
3732 // Compute the MEET of two types.  It returns a new Type object.
3733 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3734   // Perform a fast test for common case; meeting the same types together.
3735   if( this == t ) return this;  // Meeting same type-rep?
3736   // Current "this->_base" is Pointer
3737   switch (t->base()) {          // switch on original type
3738 
3739   // Mixing ints & oops happens when javac reuses local variables
3740   case Int:
3741   case Long:
3742   case FloatTop:
3743   case FloatCon:
3744   case FloatBot:
3745   case DoubleTop:
3746   case DoubleCon:
3747   case DoubleBot:
3748   case NarrowOop:
3749   case NarrowKlass:
3750   case Bottom:                  // Ye Olde Default
3751     return Type::BOTTOM;
3752   case Top:
3753     return this;
3754 
3755   default:                      // All else is a mistake
3756     typerr(t);
3757 
3758   case OopPtr: {                // Meeting to OopPtrs
3759     // Found a OopPtr type vs self-AryPtr type
3760     const TypeOopPtr *tp = t->is_oopptr();
3761     int offset = meet_offset(tp->offset());
3762     PTR ptr = meet_ptr(tp->ptr());
3763     switch (tp->ptr()) {
3764     case TopPTR:
3765     case AnyNull: {
3766       int instance_id = meet_instance_id(InstanceTop);
3767       const TypeOopPtr* speculative = meet_speculative(tp);
3768       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3769                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3770     }
3771     case BotPTR:
3772     case NotNull: {
3773       int instance_id = meet_instance_id(tp->instance_id());
3774       const TypeOopPtr* speculative = meet_speculative(tp);
3775       return TypeOopPtr::make(ptr, offset, instance_id, speculative);
3776     }
3777     default: ShouldNotReachHere();
3778     }
3779   }
3780 
3781   case AnyPtr: {                // Meeting two AnyPtrs
3782     // Found an AnyPtr type vs self-AryPtr type
3783     const TypePtr *tp = t->is_ptr();
3784     int offset = meet_offset(tp->offset());
3785     PTR ptr = meet_ptr(tp->ptr());
3786     switch (tp->ptr()) {
3787     case TopPTR:
3788       return this;
3789     case BotPTR:
3790     case NotNull:
3791       return TypePtr::make(AnyPtr, ptr, offset);
3792     case Null:
3793       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3794       // else fall through to AnyNull
3795     case AnyNull: {
3796       int instance_id = meet_instance_id(InstanceTop);
3797       const TypeOopPtr* speculative = _speculative;
3798       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3799                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3800     }
3801     default: ShouldNotReachHere();
3802     }
3803   }
3804 
3805   case MetadataPtr:
3806   case KlassPtr:
3807   case RawPtr: return TypePtr::BOTTOM;
3808 
3809   case AryPtr: {                // Meeting 2 references?
3810     const TypeAryPtr *tap = t->is_aryptr();
3811     int off = meet_offset(tap->offset());
3812     const TypeAry *tary = _ary->meet(tap->_ary, true)->is_ary();
3813     PTR ptr = meet_ptr(tap->ptr());
3814     int instance_id = meet_instance_id(tap->instance_id());
3815     const TypeOopPtr* speculative = meet_speculative(tap);
3816     ciKlass* lazy_klass = NULL;
3817     if (tary->_elem->isa_int()) {
3818       // Integral array element types have irrelevant lattice relations.
3819       // It is the klass that determines array layout, not the element type.
3820       if (_klass == NULL)
3821         lazy_klass = tap->_klass;
3822       else if (tap->_klass == NULL || tap->_klass == _klass) {
3823         lazy_klass = _klass;
3824       } else {
3825         // Something like byte[int+] meets char[int+].
3826         // This must fall to bottom, not (int[-128..65535])[int+].
3827         instance_id = InstanceBot;
3828         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3829       }
3830     } else // Non integral arrays.
3831     // Must fall to bottom if exact klasses in upper lattice
3832     // are not equal or super klass is exact.
3833     if ( above_centerline(ptr) && klass() != tap->klass() &&
3834          // meet with top[] and bottom[] are processed further down:
3835          tap ->_klass != NULL  && this->_klass != NULL   &&
3836          // both are exact and not equal:
3837         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
3838          // 'tap'  is exact and super or unrelated:
3839          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3840          // 'this' is exact and super or unrelated:
3841          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3842       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3843       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
3844     }
3845 
3846     bool xk = false;
3847     switch (tap->ptr()) {
3848     case AnyNull:
3849     case TopPTR:
3850       // Compute new klass on demand, do not use tap->_klass
3851       if (below_centerline(this->_ptr)) {
3852         xk = this->_klass_is_exact;
3853       } else {
3854         xk = (tap->_klass_is_exact | this->_klass_is_exact);
3855       }
3856       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
3857     case Constant: {
3858       ciObject* o = const_oop();
3859       if( _ptr == Constant ) {
3860         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3861           xk = (klass() == tap->klass());
3862           ptr = NotNull;
3863           o = NULL;
3864           instance_id = InstanceBot;
3865         } else {
3866           xk = true;
3867         }
3868       } else if(above_centerline(_ptr)) {
3869         o = tap->const_oop();
3870         xk = true;
3871       } else {
3872         // Only precise for identical arrays
3873         xk = this->_klass_is_exact && (klass() == tap->klass());
3874       }
3875       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
3876     }
3877     case NotNull:
3878     case BotPTR:
3879       // Compute new klass on demand, do not use tap->_klass
3880       if (above_centerline(this->_ptr))
3881             xk = tap->_klass_is_exact;
3882       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3883               (klass() == tap->klass()); // Only precise for identical arrays
3884       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
3885     default: ShouldNotReachHere();
3886     }
3887   }
3888 
3889   // All arrays inherit from Object class
3890   case InstPtr: {
3891     const TypeInstPtr *tp = t->is_instptr();
3892     int offset = meet_offset(tp->offset());
3893     PTR ptr = meet_ptr(tp->ptr());
3894     int instance_id = meet_instance_id(tp->instance_id());
3895     const TypeOopPtr* speculative = meet_speculative(tp);
3896     switch (ptr) {
3897     case TopPTR:
3898     case AnyNull:                // Fall 'down' to dual of object klass
3899       // For instances when a subclass meets a superclass we fall
3900       // below the centerline when the superclass is exact. We need to
3901       // do the same here.
3902       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
3903         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3904       } else {
3905         // cannot subclass, so the meet has to fall badly below the centerline
3906         ptr = NotNull;
3907         instance_id = InstanceBot;
3908         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
3909       }
3910     case Constant:
3911     case NotNull:
3912     case BotPTR:                // Fall down to object klass
3913       // LCA is object_klass, but if we subclass from the top we can do better
3914       if (above_centerline(tp->ptr())) {
3915         // If 'tp'  is above the centerline and it is Object class
3916         // then we can subclass in the Java class hierarchy.
3917         // For instances when a subclass meets a superclass we fall
3918         // below the centerline when the superclass is exact. We need
3919         // to do the same here.
3920         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
3921           // that is, my array type is a subtype of 'tp' klass
3922           return make(ptr, (ptr == Constant ? const_oop() : NULL),
3923                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3924         }
3925       }
3926       // The other case cannot happen, since t cannot be a subtype of an array.
3927       // The meet falls down to Object class below centerline.
3928       if( ptr == Constant )
3929          ptr = NotNull;
3930       instance_id = InstanceBot;
3931       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
3932     default: typerr(t);
3933     }
3934   }
3935   }
3936   return this;                  // Lint noise
3937 }
3938 
3939 //------------------------------xdual------------------------------------------
3940 // Dual: compute field-by-field dual
3941 const Type *TypeAryPtr::xdual() const {
3942   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
3943 }
3944 
3945 //----------------------interface_vs_oop---------------------------------------
3946 #ifdef ASSERT
3947 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3948   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3949   if (t_aryptr) {
3950     return _ary->interface_vs_oop(t_aryptr->_ary);
3951   }
3952   return false;
3953 }
3954 #endif
3955 
3956 //------------------------------dump2------------------------------------------
3957 #ifndef PRODUCT
3958 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3959   _ary->dump2(d,depth,st);
3960   switch( _ptr ) {
3961   case Constant:
3962     const_oop()->print(st);
3963     break;
3964   case BotPTR:
3965     if (!WizardMode && !Verbose) {
3966       if( _klass_is_exact ) st->print(":exact");
3967       break;
3968     }
3969   case TopPTR:
3970   case AnyNull:
3971   case NotNull:
3972     st->print(":%s", ptr_msg[_ptr]);
3973     if( _klass_is_exact ) st->print(":exact");
3974     break;
3975   }
3976 
3977   if( _offset != 0 ) {
3978     int header_size = objArrayOopDesc::header_size() * wordSize;
3979     if( _offset == OffsetTop )       st->print("+undefined");
3980     else if( _offset == OffsetBot )  st->print("+any");
3981     else if( _offset < header_size ) st->print("+%d", _offset);
3982     else {
3983       BasicType basic_elem_type = elem()->basic_type();
3984       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3985       int elem_size = type2aelembytes(basic_elem_type);
3986       st->print("[%d]", (_offset - array_base)/elem_size);
3987     }
3988   }
3989   st->print(" *");
3990   if (_instance_id == InstanceTop)
3991     st->print(",iid=top");
3992   else if (_instance_id != InstanceBot)
3993     st->print(",iid=%d",_instance_id);
3994 
3995   dump_speculative(st);
3996 }
3997 #endif
3998 
3999 bool TypeAryPtr::empty(void) const {
4000   if (_ary->empty())       return true;
4001   return TypeOopPtr::empty();
4002 }
4003 
4004 //------------------------------add_offset-------------------------------------
4005 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4006   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
4007 }
4008 
4009 const Type *TypeAryPtr::remove_speculative() const {
4010   if (_speculative == NULL) {
4011     return this;
4012   }
4013   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, _offset, _instance_id, NULL);
4014 }
4015 
4016 //=============================================================================
4017 
4018 //------------------------------hash-------------------------------------------
4019 // Type-specific hashing function.
4020 int TypeNarrowPtr::hash(void) const {
4021   return _ptrtype->hash() + 7;
4022 }
4023 
4024 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4025   return _ptrtype->singleton();
4026 }
4027 
4028 bool TypeNarrowPtr::empty(void) const {
4029   return _ptrtype->empty();
4030 }
4031 
4032 intptr_t TypeNarrowPtr::get_con() const {
4033   return _ptrtype->get_con();
4034 }
4035 
4036 bool TypeNarrowPtr::eq( const Type *t ) const {
4037   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4038   if (tc != NULL) {
4039     if (_ptrtype->base() != tc->_ptrtype->base()) {
4040       return false;
4041     }
4042     return tc->_ptrtype->eq(_ptrtype);
4043   }
4044   return false;
4045 }
4046 
4047 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4048   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4049   return make_same_narrowptr(odual);
4050 }
4051 
4052 
4053 const Type *TypeNarrowPtr::filter(const Type *kills, bool include_speculative) const {
4054   if (isa_same_narrowptr(kills)) {
4055     const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4056     if (ft->empty())
4057       return Type::TOP;           // Canonical empty value
4058     if (ft->isa_ptr()) {
4059       return make_hash_same_narrowptr(ft->isa_ptr());
4060     }
4061     return ft;
4062   } else if (kills->isa_ptr()) {
4063     const Type* ft = _ptrtype->join(kills, include_speculative);
4064     if (ft->empty())
4065       return Type::TOP;           // Canonical empty value
4066     return ft;
4067   } else {
4068     return Type::TOP;
4069   }
4070 }
4071 
4072 //------------------------------xmeet------------------------------------------
4073 // Compute the MEET of two types.  It returns a new Type object.
4074 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4075   // Perform a fast test for common case; meeting the same types together.
4076   if( this == t ) return this;  // Meeting same type-rep?
4077 
4078   if (t->base() == base()) {
4079     const Type* result = _ptrtype->xmeet(t->make_ptr());
4080     if (result->isa_ptr()) {
4081       return make_hash_same_narrowptr(result->is_ptr());
4082     }
4083     return result;
4084   }
4085 
4086   // Current "this->_base" is NarrowKlass or NarrowOop
4087   switch (t->base()) {          // switch on original type
4088 
4089   case Int:                     // Mixing ints & oops happens when javac
4090   case Long:                    // reuses local variables
4091   case FloatTop:
4092   case FloatCon:
4093   case FloatBot:
4094   case DoubleTop:
4095   case DoubleCon:
4096   case DoubleBot:
4097   case AnyPtr:
4098   case RawPtr:
4099   case OopPtr:
4100   case InstPtr:
4101   case AryPtr:
4102   case MetadataPtr:
4103   case KlassPtr:
4104   case NarrowOop:
4105   case NarrowKlass:
4106 
4107   case Bottom:                  // Ye Olde Default
4108     return Type::BOTTOM;
4109   case Top:
4110     return this;
4111 
4112   default:                      // All else is a mistake
4113     typerr(t);
4114 
4115   } // End of switch
4116 
4117   return this;
4118 }
4119 
4120 #ifndef PRODUCT
4121 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4122   _ptrtype->dump2(d, depth, st);
4123 }
4124 #endif
4125 
4126 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4127 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4128 
4129 
4130 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4131   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4132 }
4133 
4134 
4135 #ifndef PRODUCT
4136 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4137   st->print("narrowoop: ");
4138   TypeNarrowPtr::dump2(d, depth, st);
4139 }
4140 #endif
4141 
4142 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4143 
4144 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4145   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4146 }
4147 
4148 #ifndef PRODUCT
4149 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4150   st->print("narrowklass: ");
4151   TypeNarrowPtr::dump2(d, depth, st);
4152 }
4153 #endif
4154 
4155 
4156 //------------------------------eq---------------------------------------------
4157 // Structural equality check for Type representations
4158 bool TypeMetadataPtr::eq( const Type *t ) const {
4159   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4160   ciMetadata* one = metadata();
4161   ciMetadata* two = a->metadata();
4162   if (one == NULL || two == NULL) {
4163     return (one == two) && TypePtr::eq(t);
4164   } else {
4165     return one->equals(two) && TypePtr::eq(t);
4166   }
4167 }
4168 
4169 //------------------------------hash-------------------------------------------
4170 // Type-specific hashing function.
4171 int TypeMetadataPtr::hash(void) const {
4172   return
4173     (metadata() ? metadata()->hash() : 0) +
4174     TypePtr::hash();
4175 }
4176 
4177 //------------------------------singleton--------------------------------------
4178 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4179 // constants
4180 bool TypeMetadataPtr::singleton(void) const {
4181   // detune optimizer to not generate constant metadta + constant offset as a constant!
4182   // TopPTR, Null, AnyNull, Constant are all singletons
4183   return (_offset == 0) && !below_centerline(_ptr);
4184 }
4185 
4186 //------------------------------add_offset-------------------------------------
4187 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4188   return make( _ptr, _metadata, xadd_offset(offset));
4189 }
4190 
4191 //-----------------------------filter------------------------------------------
4192 // Do not allow interface-vs.-noninterface joins to collapse to top.
4193 const Type *TypeMetadataPtr::filter(const Type *kills, bool include_speculative) const {
4194   const TypeMetadataPtr* ft = join(kills, include_speculative)->isa_metadataptr();
4195   if (ft == NULL || ft->empty())
4196     return Type::TOP;           // Canonical empty value
4197   return ft;
4198 }
4199 
4200  //------------------------------get_con----------------------------------------
4201 intptr_t TypeMetadataPtr::get_con() const {
4202   assert( _ptr == Null || _ptr == Constant, "" );
4203   assert( _offset >= 0, "" );
4204 
4205   if (_offset != 0) {
4206     // After being ported to the compiler interface, the compiler no longer
4207     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4208     // to a handle at compile time.  This handle is embedded in the generated
4209     // code and dereferenced at the time the nmethod is made.  Until that time,
4210     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4211     // have access to the addresses!).  This does not seem to currently happen,
4212     // but this assertion here is to help prevent its occurence.
4213     tty->print_cr("Found oop constant with non-zero offset");
4214     ShouldNotReachHere();
4215   }
4216 
4217   return (intptr_t)metadata()->constant_encoding();
4218 }
4219 
4220 //------------------------------cast_to_ptr_type-------------------------------
4221 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4222   if( ptr == _ptr ) return this;
4223   return make(ptr, metadata(), _offset);
4224 }
4225 
4226 //------------------------------meet-------------------------------------------
4227 // Compute the MEET of two types.  It returns a new Type object.
4228 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4229   // Perform a fast test for common case; meeting the same types together.
4230   if( this == t ) return this;  // Meeting same type-rep?
4231 
4232   // Current "this->_base" is OopPtr
4233   switch (t->base()) {          // switch on original type
4234 
4235   case Int:                     // Mixing ints & oops happens when javac
4236   case Long:                    // reuses local variables
4237   case FloatTop:
4238   case FloatCon:
4239   case FloatBot:
4240   case DoubleTop:
4241   case DoubleCon:
4242   case DoubleBot:
4243   case NarrowOop:
4244   case NarrowKlass:
4245   case Bottom:                  // Ye Olde Default
4246     return Type::BOTTOM;
4247   case Top:
4248     return this;
4249 
4250   default:                      // All else is a mistake
4251     typerr(t);
4252 
4253   case AnyPtr: {
4254     // Found an AnyPtr type vs self-OopPtr type
4255     const TypePtr *tp = t->is_ptr();
4256     int offset = meet_offset(tp->offset());
4257     PTR ptr = meet_ptr(tp->ptr());
4258     switch (tp->ptr()) {
4259     case Null:
4260       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
4261       // else fall through:
4262     case TopPTR:
4263     case AnyNull: {
4264       return make(ptr, NULL, offset);
4265     }
4266     case BotPTR:
4267     case NotNull:
4268       return TypePtr::make(AnyPtr, ptr, offset);
4269     default: typerr(t);
4270     }
4271   }
4272 
4273   case RawPtr:
4274   case KlassPtr:
4275   case OopPtr:
4276   case InstPtr:
4277   case AryPtr:
4278     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4279 
4280   case MetadataPtr: {
4281     const TypeMetadataPtr *tp = t->is_metadataptr();
4282     int offset = meet_offset(tp->offset());
4283     PTR tptr = tp->ptr();
4284     PTR ptr = meet_ptr(tptr);
4285     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4286     if (tptr == TopPTR || _ptr == TopPTR ||
4287         metadata()->equals(tp->metadata())) {
4288       return make(ptr, md, offset);
4289     }
4290     // metadata is different
4291     if( ptr == Constant ) {  // Cannot be equal constants, so...
4292       if( tptr == Constant && _ptr != Constant)  return t;
4293       if( _ptr == Constant && tptr != Constant)  return this;
4294       ptr = NotNull;            // Fall down in lattice
4295     }
4296     return make(ptr, NULL, offset);
4297     break;
4298   }
4299   } // End of switch
4300   return this;                  // Return the double constant
4301 }
4302 
4303 
4304 //------------------------------xdual------------------------------------------
4305 // Dual of a pure metadata pointer.
4306 const Type *TypeMetadataPtr::xdual() const {
4307   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4308 }
4309 
4310 //------------------------------dump2------------------------------------------
4311 #ifndef PRODUCT
4312 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4313   st->print("metadataptr:%s", ptr_msg[_ptr]);
4314   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4315   switch( _offset ) {
4316   case OffsetTop: st->print("+top"); break;
4317   case OffsetBot: st->print("+any"); break;
4318   case         0: break;
4319   default:        st->print("+%d",_offset); break;
4320   }
4321 }
4322 #endif
4323 
4324 
4325 //=============================================================================
4326 // Convenience common pre-built type.
4327 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4328 
4329 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4330   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4331 }
4332 
4333 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4334   return make(Constant, m, 0);
4335 }
4336 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4337   return make(Constant, m, 0);
4338 }
4339 
4340 //------------------------------make-------------------------------------------
4341 // Create a meta data constant
4342 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4343   assert(m == NULL || !m->is_klass(), "wrong type");
4344   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4345 }
4346 
4347 
4348 //=============================================================================
4349 // Convenience common pre-built types.
4350 
4351 // Not-null object klass or below
4352 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4353 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4354 
4355 //------------------------------TypeKlassPtr-----------------------------------
4356 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4357   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4358 }
4359 
4360 //------------------------------make-------------------------------------------
4361 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4362 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4363   assert( k != NULL, "Expect a non-NULL klass");
4364   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4365   TypeKlassPtr *r =
4366     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4367 
4368   return r;
4369 }
4370 
4371 //------------------------------eq---------------------------------------------
4372 // Structural equality check for Type representations
4373 bool TypeKlassPtr::eq( const Type *t ) const {
4374   const TypeKlassPtr *p = t->is_klassptr();
4375   return
4376     klass()->equals(p->klass()) &&
4377     TypePtr::eq(p);
4378 }
4379 
4380 //------------------------------hash-------------------------------------------
4381 // Type-specific hashing function.
4382 int TypeKlassPtr::hash(void) const {
4383   return klass()->hash() + TypePtr::hash();
4384 }
4385 
4386 //------------------------------singleton--------------------------------------
4387 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4388 // constants
4389 bool TypeKlassPtr::singleton(void) const {
4390   // detune optimizer to not generate constant klass + constant offset as a constant!
4391   // TopPTR, Null, AnyNull, Constant are all singletons
4392   return (_offset == 0) && !below_centerline(_ptr);
4393 }
4394 
4395 // Do not allow interface-vs.-noninterface joins to collapse to top.
4396 const Type *TypeKlassPtr::filter(const Type *kills, bool include_speculative) const {
4397   // logic here mirrors the one from TypeOopPtr::filter. See comments
4398   // there.
4399   const Type* ft = join(kills, include_speculative);
4400   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4401   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4402 
4403   if (ft->empty()) {
4404     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4405       return kills;             // Uplift to interface
4406 
4407     return Type::TOP;           // Canonical empty value
4408   }
4409 
4410   // Interface klass type could be exact in opposite to interface type,
4411   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4412   if (ftkp != NULL && ktkp != NULL &&
4413       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4414       !ftkp->klass_is_exact() && // Keep exact interface klass
4415       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4416     return ktkp->cast_to_ptr_type(ftkp->ptr());
4417   }
4418 
4419   return ft;
4420 }
4421 
4422 //----------------------compute_klass------------------------------------------
4423 // Compute the defining klass for this class
4424 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4425   // Compute _klass based on element type.
4426   ciKlass* k_ary = NULL;
4427   const TypeInstPtr *tinst;
4428   const TypeAryPtr *tary;
4429   const Type* el = elem();
4430   if (el->isa_narrowoop()) {
4431     el = el->make_ptr();
4432   }
4433 
4434   // Get element klass
4435   if ((tinst = el->isa_instptr()) != NULL) {
4436     // Compute array klass from element klass
4437     k_ary = ciObjArrayKlass::make(tinst->klass());
4438   } else if ((tary = el->isa_aryptr()) != NULL) {
4439     // Compute array klass from element klass
4440     ciKlass* k_elem = tary->klass();
4441     // If element type is something like bottom[], k_elem will be null.
4442     if (k_elem != NULL)
4443       k_ary = ciObjArrayKlass::make(k_elem);
4444   } else if ((el->base() == Type::Top) ||
4445              (el->base() == Type::Bottom)) {
4446     // element type of Bottom occurs from meet of basic type
4447     // and object; Top occurs when doing join on Bottom.
4448     // Leave k_ary at NULL.
4449   } else {
4450     // Cannot compute array klass directly from basic type,
4451     // since subtypes of TypeInt all have basic type T_INT.
4452 #ifdef ASSERT
4453     if (verify && el->isa_int()) {
4454       // Check simple cases when verifying klass.
4455       BasicType bt = T_ILLEGAL;
4456       if (el == TypeInt::BYTE) {
4457         bt = T_BYTE;
4458       } else if (el == TypeInt::SHORT) {
4459         bt = T_SHORT;
4460       } else if (el == TypeInt::CHAR) {
4461         bt = T_CHAR;
4462       } else if (el == TypeInt::INT) {
4463         bt = T_INT;
4464       } else {
4465         return _klass; // just return specified klass
4466       }
4467       return ciTypeArrayKlass::make(bt);
4468     }
4469 #endif
4470     assert(!el->isa_int(),
4471            "integral arrays must be pre-equipped with a class");
4472     // Compute array klass directly from basic type
4473     k_ary = ciTypeArrayKlass::make(el->basic_type());
4474   }
4475   return k_ary;
4476 }
4477 
4478 //------------------------------klass------------------------------------------
4479 // Return the defining klass for this class
4480 ciKlass* TypeAryPtr::klass() const {
4481   if( _klass ) return _klass;   // Return cached value, if possible
4482 
4483   // Oops, need to compute _klass and cache it
4484   ciKlass* k_ary = compute_klass();
4485 
4486   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4487     // The _klass field acts as a cache of the underlying
4488     // ciKlass for this array type.  In order to set the field,
4489     // we need to cast away const-ness.
4490     //
4491     // IMPORTANT NOTE: we *never* set the _klass field for the
4492     // type TypeAryPtr::OOPS.  This Type is shared between all
4493     // active compilations.  However, the ciKlass which represents
4494     // this Type is *not* shared between compilations, so caching
4495     // this value would result in fetching a dangling pointer.
4496     //
4497     // Recomputing the underlying ciKlass for each request is
4498     // a bit less efficient than caching, but calls to
4499     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4500     ((TypeAryPtr*)this)->_klass = k_ary;
4501     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4502         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4503       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4504     }
4505   }
4506   return k_ary;
4507 }
4508 
4509 
4510 //------------------------------add_offset-------------------------------------
4511 // Access internals of klass object
4512 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4513   return make( _ptr, klass(), xadd_offset(offset) );
4514 }
4515 
4516 //------------------------------cast_to_ptr_type-------------------------------
4517 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4518   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4519   if( ptr == _ptr ) return this;
4520   return make(ptr, _klass, _offset);
4521 }
4522 
4523 
4524 //-----------------------------cast_to_exactness-------------------------------
4525 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4526   if( klass_is_exact == _klass_is_exact ) return this;
4527   if (!UseExactTypes)  return this;
4528   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4529 }
4530 
4531 
4532 //-----------------------------as_instance_type--------------------------------
4533 // Corresponding type for an instance of the given class.
4534 // It will be NotNull, and exact if and only if the klass type is exact.
4535 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4536   ciKlass* k = klass();
4537   bool    xk = klass_is_exact();
4538   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4539   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4540   guarantee(toop != NULL, "need type for given klass");
4541   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4542   return toop->cast_to_exactness(xk)->is_oopptr();
4543 }
4544 
4545 
4546 //------------------------------xmeet------------------------------------------
4547 // Compute the MEET of two types, return a new Type object.
4548 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4549   // Perform a fast test for common case; meeting the same types together.
4550   if( this == t ) return this;  // Meeting same type-rep?
4551 
4552   // Current "this->_base" is Pointer
4553   switch (t->base()) {          // switch on original type
4554 
4555   case Int:                     // Mixing ints & oops happens when javac
4556   case Long:                    // reuses local variables
4557   case FloatTop:
4558   case FloatCon:
4559   case FloatBot:
4560   case DoubleTop:
4561   case DoubleCon:
4562   case DoubleBot:
4563   case NarrowOop:
4564   case NarrowKlass:
4565   case Bottom:                  // Ye Olde Default
4566     return Type::BOTTOM;
4567   case Top:
4568     return this;
4569 
4570   default:                      // All else is a mistake
4571     typerr(t);
4572 
4573   case AnyPtr: {                // Meeting to AnyPtrs
4574     // Found an AnyPtr type vs self-KlassPtr type
4575     const TypePtr *tp = t->is_ptr();
4576     int offset = meet_offset(tp->offset());
4577     PTR ptr = meet_ptr(tp->ptr());
4578     switch (tp->ptr()) {
4579     case TopPTR:
4580       return this;
4581     case Null:
4582       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4583     case AnyNull:
4584       return make( ptr, klass(), offset );
4585     case BotPTR:
4586     case NotNull:
4587       return TypePtr::make(AnyPtr, ptr, offset);
4588     default: typerr(t);
4589     }
4590   }
4591 
4592   case RawPtr:
4593   case MetadataPtr:
4594   case OopPtr:
4595   case AryPtr:                  // Meet with AryPtr
4596   case InstPtr:                 // Meet with InstPtr
4597     return TypePtr::BOTTOM;
4598 
4599   //
4600   //             A-top         }
4601   //           /   |   \       }  Tops
4602   //       B-top A-any C-top   }
4603   //          | /  |  \ |      }  Any-nulls
4604   //       B-any   |   C-any   }
4605   //          |    |    |
4606   //       B-con A-con C-con   } constants; not comparable across classes
4607   //          |    |    |
4608   //       B-not   |   C-not   }
4609   //          | \  |  / |      }  not-nulls
4610   //       B-bot A-not C-bot   }
4611   //           \   |   /       }  Bottoms
4612   //             A-bot         }
4613   //
4614 
4615   case KlassPtr: {  // Meet two KlassPtr types
4616     const TypeKlassPtr *tkls = t->is_klassptr();
4617     int  off     = meet_offset(tkls->offset());
4618     PTR  ptr     = meet_ptr(tkls->ptr());
4619 
4620     // Check for easy case; klasses are equal (and perhaps not loaded!)
4621     // If we have constants, then we created oops so classes are loaded
4622     // and we can handle the constants further down.  This case handles
4623     // not-loaded classes
4624     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4625       return make( ptr, klass(), off );
4626     }
4627 
4628     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4629     ciKlass* tkls_klass = tkls->klass();
4630     ciKlass* this_klass = this->klass();
4631     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4632     assert( this_klass->is_loaded(), "This class should have been loaded.");
4633 
4634     // If 'this' type is above the centerline and is a superclass of the
4635     // other, we can treat 'this' as having the same type as the other.
4636     if ((above_centerline(this->ptr())) &&
4637         tkls_klass->is_subtype_of(this_klass)) {
4638       this_klass = tkls_klass;
4639     }
4640     // If 'tinst' type is above the centerline and is a superclass of the
4641     // other, we can treat 'tinst' as having the same type as the other.
4642     if ((above_centerline(tkls->ptr())) &&
4643         this_klass->is_subtype_of(tkls_klass)) {
4644       tkls_klass = this_klass;
4645     }
4646 
4647     // Check for classes now being equal
4648     if (tkls_klass->equals(this_klass)) {
4649       // If the klasses are equal, the constants may still differ.  Fall to
4650       // NotNull if they do (neither constant is NULL; that is a special case
4651       // handled elsewhere).
4652       if( ptr == Constant ) {
4653         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4654             this->klass()->equals(tkls->klass()));
4655         else if (above_centerline(this->ptr()));
4656         else if (above_centerline(tkls->ptr()));
4657         else
4658           ptr = NotNull;
4659       }
4660       return make( ptr, this_klass, off );
4661     } // Else classes are not equal
4662 
4663     // Since klasses are different, we require the LCA in the Java
4664     // class hierarchy - which means we have to fall to at least NotNull.
4665     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4666       ptr = NotNull;
4667     // Now we find the LCA of Java classes
4668     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4669     return   make( ptr, k, off );
4670   } // End of case KlassPtr
4671 
4672   } // End of switch
4673   return this;                  // Return the double constant
4674 }
4675 
4676 //------------------------------xdual------------------------------------------
4677 // Dual: compute field-by-field dual
4678 const Type    *TypeKlassPtr::xdual() const {
4679   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4680 }
4681 
4682 //------------------------------get_con----------------------------------------
4683 intptr_t TypeKlassPtr::get_con() const {
4684   assert( _ptr == Null || _ptr == Constant, "" );
4685   assert( _offset >= 0, "" );
4686 
4687   if (_offset != 0) {
4688     // After being ported to the compiler interface, the compiler no longer
4689     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4690     // to a handle at compile time.  This handle is embedded in the generated
4691     // code and dereferenced at the time the nmethod is made.  Until that time,
4692     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4693     // have access to the addresses!).  This does not seem to currently happen,
4694     // but this assertion here is to help prevent its occurence.
4695     tty->print_cr("Found oop constant with non-zero offset");
4696     ShouldNotReachHere();
4697   }
4698 
4699   return (intptr_t)klass()->constant_encoding();
4700 }
4701 //------------------------------dump2------------------------------------------
4702 // Dump Klass Type
4703 #ifndef PRODUCT
4704 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4705   switch( _ptr ) {
4706   case Constant:
4707     st->print("precise ");
4708   case NotNull:
4709     {
4710       const char *name = klass()->name()->as_utf8();
4711       if( name ) {
4712         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4713       } else {
4714         ShouldNotReachHere();
4715       }
4716     }
4717   case BotPTR:
4718     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4719   case TopPTR:
4720   case AnyNull:
4721     st->print(":%s", ptr_msg[_ptr]);
4722     if( _klass_is_exact ) st->print(":exact");
4723     break;
4724   }
4725 
4726   if( _offset ) {               // Dump offset, if any
4727     if( _offset == OffsetBot )      { st->print("+any"); }
4728     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4729     else                            { st->print("+%d", _offset); }
4730   }
4731 
4732   st->print(" *");
4733 }
4734 #endif
4735 
4736 
4737 
4738 //=============================================================================
4739 // Convenience common pre-built types.
4740 
4741 //------------------------------make-------------------------------------------
4742 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4743   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4744 }
4745 
4746 //------------------------------make-------------------------------------------
4747 const TypeFunc *TypeFunc::make(ciMethod* method) {
4748   Compile* C = Compile::current();
4749   const TypeFunc* tf = C->last_tf(method); // check cache
4750   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4751   const TypeTuple *domain;
4752   if (method->is_static()) {
4753     domain = TypeTuple::make_domain(NULL, method->signature());
4754   } else {
4755     domain = TypeTuple::make_domain(method->holder(), method->signature());
4756   }
4757   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4758   tf = TypeFunc::make(domain, range);
4759   C->set_last_tf(method, tf);  // fill cache
4760   return tf;
4761 }
4762 
4763 //------------------------------meet-------------------------------------------
4764 // Compute the MEET of two types.  It returns a new Type object.
4765 const Type *TypeFunc::xmeet( const Type *t ) const {
4766   // Perform a fast test for common case; meeting the same types together.
4767   if( this == t ) return this;  // Meeting same type-rep?
4768 
4769   // Current "this->_base" is Func
4770   switch (t->base()) {          // switch on original type
4771 
4772   case Bottom:                  // Ye Olde Default
4773     return t;
4774 
4775   default:                      // All else is a mistake
4776     typerr(t);
4777 
4778   case Top:
4779     break;
4780   }
4781   return this;                  // Return the double constant
4782 }
4783 
4784 //------------------------------xdual------------------------------------------
4785 // Dual: compute field-by-field dual
4786 const Type *TypeFunc::xdual() const {
4787   return this;
4788 }
4789 
4790 //------------------------------eq---------------------------------------------
4791 // Structural equality check for Type representations
4792 bool TypeFunc::eq( const Type *t ) const {
4793   const TypeFunc *a = (const TypeFunc*)t;
4794   return _domain == a->_domain &&
4795     _range == a->_range;
4796 }
4797 
4798 //------------------------------hash-------------------------------------------
4799 // Type-specific hashing function.
4800 int TypeFunc::hash(void) const {
4801   return (intptr_t)_domain + (intptr_t)_range;
4802 }
4803 
4804 //------------------------------dump2------------------------------------------
4805 // Dump Function Type
4806 #ifndef PRODUCT
4807 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4808   if( _range->_cnt <= Parms )
4809     st->print("void");
4810   else {
4811     uint i;
4812     for (i = Parms; i < _range->_cnt-1; i++) {
4813       _range->field_at(i)->dump2(d,depth,st);
4814       st->print("/");
4815     }
4816     _range->field_at(i)->dump2(d,depth,st);
4817   }
4818   st->print(" ");
4819   st->print("( ");
4820   if( !depth || d[this] ) {     // Check for recursive dump
4821     st->print("...)");
4822     return;
4823   }
4824   d.Insert((void*)this,(void*)this);    // Stop recursion
4825   if (Parms < _domain->_cnt)
4826     _domain->field_at(Parms)->dump2(d,depth-1,st);
4827   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4828     st->print(", ");
4829     _domain->field_at(i)->dump2(d,depth-1,st);
4830   }
4831   st->print(" )");
4832 }
4833 #endif
4834 
4835 //------------------------------singleton--------------------------------------
4836 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4837 // constants (Ldi nodes).  Singletons are integer, float or double constants
4838 // or a single symbol.
4839 bool TypeFunc::singleton(void) const {
4840   return false;                 // Never a singleton
4841 }
4842 
4843 bool TypeFunc::empty(void) const {
4844   return false;                 // Never empty
4845 }
4846 
4847 
4848 BasicType TypeFunc::return_type() const{
4849   if (range()->cnt() == TypeFunc::Parms) {
4850     return T_VOID;
4851   }
4852   return range()->field_at(TypeFunc::Parms)->basic_type();
4853 }