1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76 
  77 private:
  78   // Every data layout begins with a header.  This header
  79   // contains a tag, which is used to indicate the size/layout
  80   // of the data, 4 bits of flags, which can be used in any way,
  81   // 4 bits of trap history (none/one reason/many reasons),
  82   // and a bci, which is used to tie this piece of data to a
  83   // specific bci in the bytecodes.
  84   union {
  85     intptr_t _bits;
  86     struct {
  87       u1 _tag;
  88       u1 _flags;
  89       u2 _bci;
  90     } _struct;
  91   } _header;
  92 
  93   // The data layout has an arbitrary number of cells, each sized
  94   // to accomodate a pointer or an integer.
  95   intptr_t _cells[1];
  96 
  97   // Some types of data layouts need a length field.
  98   static bool needs_array_len(u1 tag);
  99 
 100 public:
 101   enum {
 102     counter_increment = 1
 103   };
 104 
 105   enum {
 106     cell_size = sizeof(intptr_t)
 107   };
 108 
 109   // Tag values
 110   enum {
 111     no_tag,
 112     bit_data_tag,
 113     counter_data_tag,
 114     jump_data_tag,
 115     receiver_type_data_tag,
 116     virtual_call_data_tag,
 117     ret_data_tag,
 118     branch_data_tag,
 119     multi_branch_data_tag,
 120     arg_info_data_tag,
 121     call_type_data_tag,
 122     virtual_call_type_data_tag,
 123     parameters_type_data_tag
 124   };
 125 
 126   enum {
 127     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 128     // The trap state breaks down further as [recompile:1 | reason:3].
 129     // This further breakdown is defined in deoptimization.cpp.
 130     // See Deoptimization::trap_state_reason for an assert that
 131     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 132     //
 133     // The trap_state is collected only if ProfileTraps is true.
 134     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 135     trap_shift = BitsPerByte - trap_bits,
 136     trap_mask = right_n_bits(trap_bits),
 137     trap_mask_in_place = (trap_mask << trap_shift),
 138     flag_limit = trap_shift,
 139     flag_mask = right_n_bits(flag_limit),
 140     first_flag = 0
 141   };
 142 
 143   // Size computation
 144   static int header_size_in_bytes() {
 145     return cell_size;
 146   }
 147   static int header_size_in_cells() {
 148     return 1;
 149   }
 150 
 151   static int compute_size_in_bytes(int cell_count) {
 152     return header_size_in_bytes() + cell_count * cell_size;
 153   }
 154 
 155   // Initialization
 156   void initialize(u1 tag, u2 bci, int cell_count);
 157 
 158   // Accessors
 159   u1 tag() {
 160     return _header._struct._tag;
 161   }
 162 
 163   // Return a few bits of trap state.  Range is [0..trap_mask].
 164   // The state tells if traps with zero, one, or many reasons have occurred.
 165   // It also tells whether zero or many recompilations have occurred.
 166   // The associated trap histogram in the MDO itself tells whether
 167   // traps are common or not.  If a BCI shows that a trap X has
 168   // occurred, and the MDO shows N occurrences of X, we make the
 169   // simplifying assumption that all N occurrences can be blamed
 170   // on that BCI.
 171   int trap_state() const {
 172     return ((_header._struct._flags >> trap_shift) & trap_mask);
 173   }
 174 
 175   void set_trap_state(int new_state) {
 176     assert(ProfileTraps, "used only under +ProfileTraps");
 177     uint old_flags = (_header._struct._flags & flag_mask);
 178     _header._struct._flags = (new_state << trap_shift) | old_flags;
 179   }
 180 
 181   u1 flags() const {
 182     return _header._struct._flags;
 183   }
 184 
 185   u2 bci() const {
 186     return _header._struct._bci;
 187   }
 188 
 189   void set_header(intptr_t value) {
 190     _header._bits = value;
 191   }
 192   void release_set_header(intptr_t value) {
 193     OrderAccess::release_store_ptr(&_header._bits, value);
 194   }
 195   intptr_t header() {
 196     return _header._bits;
 197   }
 198   void set_cell_at(int index, intptr_t value) {
 199     _cells[index] = value;
 200   }
 201   void release_set_cell_at(int index, intptr_t value) {
 202     OrderAccess::release_store_ptr(&_cells[index], value);
 203   }
 204   intptr_t cell_at(int index) const {
 205     return _cells[index];
 206   }
 207 
 208   void set_flag_at(int flag_number) {
 209     assert(flag_number < flag_limit, "oob");
 210     _header._struct._flags |= (0x1 << flag_number);
 211   }
 212   bool flag_at(int flag_number) const {
 213     assert(flag_number < flag_limit, "oob");
 214     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 215   }
 216 
 217   // Low-level support for code generation.
 218   static ByteSize header_offset() {
 219     return byte_offset_of(DataLayout, _header);
 220   }
 221   static ByteSize tag_offset() {
 222     return byte_offset_of(DataLayout, _header._struct._tag);
 223   }
 224   static ByteSize flags_offset() {
 225     return byte_offset_of(DataLayout, _header._struct._flags);
 226   }
 227   static ByteSize bci_offset() {
 228     return byte_offset_of(DataLayout, _header._struct._bci);
 229   }
 230   static ByteSize cell_offset(int index) {
 231     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 232   }
 233   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 234   static int flag_number_to_byte_constant(int flag_number) {
 235     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 236     DataLayout temp; temp.set_header(0);
 237     temp.set_flag_at(flag_number);
 238     return temp._header._struct._flags;
 239   }
 240   // Return a value which, when or-ed as a word into _header, sets the flag.
 241   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 242     DataLayout temp; temp.set_header(0);
 243     temp._header._struct._flags = byte_constant;
 244     return temp._header._bits;
 245   }
 246 
 247   ProfileData* data_in();
 248 
 249   // GC support
 250   void clean_weak_klass_links(BoolObjectClosure* cl);
 251 };
 252 
 253 
 254 // ProfileData class hierarchy
 255 class ProfileData;
 256 class   BitData;
 257 class     CounterData;
 258 class       ReceiverTypeData;
 259 class         VirtualCallData;
 260 class           VirtualCallTypeData;
 261 class       RetData;
 262 class       CallTypeData;
 263 class   JumpData;
 264 class     BranchData;
 265 class   ArrayData;
 266 class     MultiBranchData;
 267 class     ArgInfoData;
 268 class     ParametersTypeData;
 269 
 270 // ProfileData
 271 //
 272 // A ProfileData object is created to refer to a section of profiling
 273 // data in a structured way.
 274 class ProfileData : public ResourceObj {
 275   friend class TypeEntries;
 276   friend class ReturnTypeEntry;
 277   friend class TypeStackSlotEntries;
 278 private:
 279 #ifndef PRODUCT
 280   enum {
 281     tab_width_one = 16,
 282     tab_width_two = 36
 283   };
 284 #endif // !PRODUCT
 285 
 286   // This is a pointer to a section of profiling data.
 287   DataLayout* _data;
 288 
 289 protected:
 290   DataLayout* data() { return _data; }
 291   const DataLayout* data() const { return _data; }
 292 
 293   enum {
 294     cell_size = DataLayout::cell_size
 295   };
 296 
 297 public:
 298   // How many cells are in this?
 299   virtual int cell_count() const {
 300     ShouldNotReachHere();
 301     return -1;
 302   }
 303 
 304   // Return the size of this data.
 305   int size_in_bytes() {
 306     return DataLayout::compute_size_in_bytes(cell_count());
 307   }
 308 
 309 protected:
 310   // Low-level accessors for underlying data
 311   void set_intptr_at(int index, intptr_t value) {
 312     assert(0 <= index && index < cell_count(), "oob");
 313     data()->set_cell_at(index, value);
 314   }
 315   void release_set_intptr_at(int index, intptr_t value) {
 316     assert(0 <= index && index < cell_count(), "oob");
 317     data()->release_set_cell_at(index, value);
 318   }
 319   intptr_t intptr_at(int index) const {
 320     assert(0 <= index && index < cell_count(), "oob");
 321     return data()->cell_at(index);
 322   }
 323   void set_uint_at(int index, uint value) {
 324     set_intptr_at(index, (intptr_t) value);
 325   }
 326   void release_set_uint_at(int index, uint value) {
 327     release_set_intptr_at(index, (intptr_t) value);
 328   }
 329   uint uint_at(int index) const {
 330     return (uint)intptr_at(index);
 331   }
 332   void set_int_at(int index, int value) {
 333     set_intptr_at(index, (intptr_t) value);
 334   }
 335   void release_set_int_at(int index, int value) {
 336     release_set_intptr_at(index, (intptr_t) value);
 337   }
 338   int int_at(int index) const {
 339     return (int)intptr_at(index);
 340   }
 341   int int_at_unchecked(int index) const {
 342     return (int)data()->cell_at(index);
 343   }
 344   void set_oop_at(int index, oop value) {
 345     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 346   }
 347   oop oop_at(int index) const {
 348     return cast_to_oop(intptr_at(index));
 349   }
 350 
 351   void set_flag_at(int flag_number) {
 352     data()->set_flag_at(flag_number);
 353   }
 354   bool flag_at(int flag_number) const {
 355     return data()->flag_at(flag_number);
 356   }
 357 
 358   // two convenient imports for use by subclasses:
 359   static ByteSize cell_offset(int index) {
 360     return DataLayout::cell_offset(index);
 361   }
 362   static int flag_number_to_byte_constant(int flag_number) {
 363     return DataLayout::flag_number_to_byte_constant(flag_number);
 364   }
 365 
 366   ProfileData(DataLayout* data) {
 367     _data = data;
 368   }
 369 
 370 public:
 371   // Constructor for invalid ProfileData.
 372   ProfileData();
 373 
 374   u2 bci() const {
 375     return data()->bci();
 376   }
 377 
 378   address dp() {
 379     return (address)_data;
 380   }
 381 
 382   int trap_state() const {
 383     return data()->trap_state();
 384   }
 385   void set_trap_state(int new_state) {
 386     data()->set_trap_state(new_state);
 387   }
 388 
 389   // Type checking
 390   virtual bool is_BitData()         const { return false; }
 391   virtual bool is_CounterData()     const { return false; }
 392   virtual bool is_JumpData()        const { return false; }
 393   virtual bool is_ReceiverTypeData()const { return false; }
 394   virtual bool is_VirtualCallData() const { return false; }
 395   virtual bool is_RetData()         const { return false; }
 396   virtual bool is_BranchData()      const { return false; }
 397   virtual bool is_ArrayData()       const { return false; }
 398   virtual bool is_MultiBranchData() const { return false; }
 399   virtual bool is_ArgInfoData()     const { return false; }
 400   virtual bool is_CallTypeData()    const { return false; }
 401   virtual bool is_VirtualCallTypeData()const { return false; }
 402   virtual bool is_ParametersTypeData() const { return false; }
 403 
 404 
 405   BitData* as_BitData() const {
 406     assert(is_BitData(), "wrong type");
 407     return is_BitData()         ? (BitData*)        this : NULL;
 408   }
 409   CounterData* as_CounterData() const {
 410     assert(is_CounterData(), "wrong type");
 411     return is_CounterData()     ? (CounterData*)    this : NULL;
 412   }
 413   JumpData* as_JumpData() const {
 414     assert(is_JumpData(), "wrong type");
 415     return is_JumpData()        ? (JumpData*)       this : NULL;
 416   }
 417   ReceiverTypeData* as_ReceiverTypeData() const {
 418     assert(is_ReceiverTypeData(), "wrong type");
 419     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 420   }
 421   VirtualCallData* as_VirtualCallData() const {
 422     assert(is_VirtualCallData(), "wrong type");
 423     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 424   }
 425   RetData* as_RetData() const {
 426     assert(is_RetData(), "wrong type");
 427     return is_RetData()         ? (RetData*)        this : NULL;
 428   }
 429   BranchData* as_BranchData() const {
 430     assert(is_BranchData(), "wrong type");
 431     return is_BranchData()      ? (BranchData*)     this : NULL;
 432   }
 433   ArrayData* as_ArrayData() const {
 434     assert(is_ArrayData(), "wrong type");
 435     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 436   }
 437   MultiBranchData* as_MultiBranchData() const {
 438     assert(is_MultiBranchData(), "wrong type");
 439     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 440   }
 441   ArgInfoData* as_ArgInfoData() const {
 442     assert(is_ArgInfoData(), "wrong type");
 443     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 444   }
 445   CallTypeData* as_CallTypeData() const {
 446     assert(is_CallTypeData(), "wrong type");
 447     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 448   }
 449   VirtualCallTypeData* as_VirtualCallTypeData() const {
 450     assert(is_VirtualCallTypeData(), "wrong type");
 451     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 452   }
 453   ParametersTypeData* as_ParametersTypeData() const {
 454     assert(is_ParametersTypeData(), "wrong type");
 455     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
 456   }
 457 
 458 
 459   // Subclass specific initialization
 460   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 461 
 462   // GC support
 463   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 464 
 465   // CI translation: ProfileData can represent both MethodDataOop data
 466   // as well as CIMethodData data. This function is provided for translating
 467   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 468   // most ProfileData don't require any translation, so we provide the null
 469   // translation here, and the required translators are in the ci subclasses.
 470   virtual void translate_from(const ProfileData* data) {}
 471 
 472   virtual void print_data_on(outputStream* st) const {
 473     ShouldNotReachHere();
 474   }
 475 
 476 #ifndef PRODUCT
 477   void print_shared(outputStream* st, const char* name) const;
 478   void tab(outputStream* st, bool first = false) const;
 479 #endif
 480 };
 481 
 482 // BitData
 483 //
 484 // A BitData holds a flag or two in its header.
 485 class BitData : public ProfileData {
 486 protected:
 487   enum {
 488     // null_seen:
 489     //  saw a null operand (cast/aastore/instanceof)
 490     null_seen_flag              = DataLayout::first_flag + 0
 491   };
 492   enum { bit_cell_count = 0 };  // no additional data fields needed.
 493 public:
 494   BitData(DataLayout* layout) : ProfileData(layout) {
 495   }
 496 
 497   virtual bool is_BitData() const { return true; }
 498 
 499   static int static_cell_count() {
 500     return bit_cell_count;
 501   }
 502 
 503   virtual int cell_count() const {
 504     return static_cell_count();
 505   }
 506 
 507   // Accessor
 508 
 509   // The null_seen flag bit is specially known to the interpreter.
 510   // Consulting it allows the compiler to avoid setting up null_check traps.
 511   bool null_seen()     { return flag_at(null_seen_flag); }
 512   void set_null_seen()    { set_flag_at(null_seen_flag); }
 513 
 514 
 515   // Code generation support
 516   static int null_seen_byte_constant() {
 517     return flag_number_to_byte_constant(null_seen_flag);
 518   }
 519 
 520   static ByteSize bit_data_size() {
 521     return cell_offset(bit_cell_count);
 522   }
 523 
 524 #ifndef PRODUCT
 525   void print_data_on(outputStream* st) const;
 526 #endif
 527 };
 528 
 529 // CounterData
 530 //
 531 // A CounterData corresponds to a simple counter.
 532 class CounterData : public BitData {
 533 protected:
 534   enum {
 535     count_off,
 536     counter_cell_count
 537   };
 538 public:
 539   CounterData(DataLayout* layout) : BitData(layout) {}
 540 
 541   virtual bool is_CounterData() const { return true; }
 542 
 543   static int static_cell_count() {
 544     return counter_cell_count;
 545   }
 546 
 547   virtual int cell_count() const {
 548     return static_cell_count();
 549   }
 550 
 551   // Direct accessor
 552   uint count() const {
 553     return uint_at(count_off);
 554   }
 555 
 556   // Code generation support
 557   static ByteSize count_offset() {
 558     return cell_offset(count_off);
 559   }
 560   static ByteSize counter_data_size() {
 561     return cell_offset(counter_cell_count);
 562   }
 563 
 564   void set_count(uint count) {
 565     set_uint_at(count_off, count);
 566   }
 567 
 568 #ifndef PRODUCT
 569   void print_data_on(outputStream* st) const;
 570 #endif
 571 };
 572 
 573 // JumpData
 574 //
 575 // A JumpData is used to access profiling information for a direct
 576 // branch.  It is a counter, used for counting the number of branches,
 577 // plus a data displacement, used for realigning the data pointer to
 578 // the corresponding target bci.
 579 class JumpData : public ProfileData {
 580 protected:
 581   enum {
 582     taken_off_set,
 583     displacement_off_set,
 584     jump_cell_count
 585   };
 586 
 587   void set_displacement(int displacement) {
 588     set_int_at(displacement_off_set, displacement);
 589   }
 590 
 591 public:
 592   JumpData(DataLayout* layout) : ProfileData(layout) {
 593     assert(layout->tag() == DataLayout::jump_data_tag ||
 594       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 595   }
 596 
 597   virtual bool is_JumpData() const { return true; }
 598 
 599   static int static_cell_count() {
 600     return jump_cell_count;
 601   }
 602 
 603   virtual int cell_count() const {
 604     return static_cell_count();
 605   }
 606 
 607   // Direct accessor
 608   uint taken() const {
 609     return uint_at(taken_off_set);
 610   }
 611 
 612   void set_taken(uint cnt) {
 613     set_uint_at(taken_off_set, cnt);
 614   }
 615 
 616   // Saturating counter
 617   uint inc_taken() {
 618     uint cnt = taken() + 1;
 619     // Did we wrap? Will compiler screw us??
 620     if (cnt == 0) cnt--;
 621     set_uint_at(taken_off_set, cnt);
 622     return cnt;
 623   }
 624 
 625   int displacement() const {
 626     return int_at(displacement_off_set);
 627   }
 628 
 629   // Code generation support
 630   static ByteSize taken_offset() {
 631     return cell_offset(taken_off_set);
 632   }
 633 
 634   static ByteSize displacement_offset() {
 635     return cell_offset(displacement_off_set);
 636   }
 637 
 638   // Specific initialization.
 639   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 640 
 641 #ifndef PRODUCT
 642   void print_data_on(outputStream* st) const;
 643 #endif
 644 };
 645 
 646 // Entries in a ProfileData object to record types: it can either be
 647 // none (no profile), unknown (conflicting profile data) or a klass if
 648 // a single one is seen. Whether a null reference was seen is also
 649 // recorded. No counter is associated with the type and a single type
 650 // is tracked (unlike VirtualCallData).
 651 class TypeEntries {
 652 
 653 public:
 654 
 655   // A single cell is used to record information for a type:
 656   // - the cell is initialized to 0
 657   // - when a type is discovered it is stored in the cell
 658   // - bit zero of the cell is used to record whether a null reference
 659   // was encountered or not
 660   // - bit 1 is set to record a conflict in the type information
 661 
 662   enum {
 663     null_seen = 1,
 664     type_mask = ~null_seen,
 665     type_unknown = 2,
 666     status_bits = null_seen | type_unknown,
 667     type_klass_mask = ~status_bits
 668   };
 669 
 670   // what to initialize a cell to
 671   static intptr_t type_none() {
 672     return 0;
 673   }
 674 
 675   // null seen = bit 0 set?
 676   static bool was_null_seen(intptr_t v) {
 677     return (v & null_seen) != 0;
 678   }
 679 
 680   // conflicting type information = bit 1 set?
 681   static bool is_type_unknown(intptr_t v) {
 682     return (v & type_unknown) != 0;
 683   }
 684 
 685   // not type information yet = all bits cleared, ignoring bit 0?
 686   static bool is_type_none(intptr_t v) {
 687     return (v & type_mask) == 0;
 688   }
 689 
 690   // recorded type: cell without bit 0 and 1
 691   static intptr_t klass_part(intptr_t v) {
 692     intptr_t r = v & type_klass_mask;
 693     return r;
 694   }
 695 
 696   // type recorded
 697   static Klass* valid_klass(intptr_t k) {
 698     if (!is_type_none(k) &&
 699         !is_type_unknown(k)) {
 700       Klass* res = (Klass*)klass_part(k);
 701       assert(res != NULL, "invalid");
 702       return res;
 703     } else {
 704       return NULL;
 705     }
 706   }
 707 
 708   static intptr_t with_status(intptr_t k, intptr_t in) {
 709     return k | (in & status_bits);
 710   }
 711 
 712   static intptr_t with_status(Klass* k, intptr_t in) {
 713     return with_status((intptr_t)k, in);
 714   }
 715 
 716 #ifndef PRODUCT
 717   static void print_klass(outputStream* st, intptr_t k);
 718 #endif
 719 
 720   // GC support
 721   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 722 
 723 protected:
 724   // ProfileData object these entries are part of
 725   ProfileData* _pd;
 726   // offset within the ProfileData object where the entries start
 727   const int _base_off;
 728 
 729   TypeEntries(int base_off)
 730     : _base_off(base_off), _pd(NULL) {}
 731 
 732   void set_intptr_at(int index, intptr_t value) {
 733     _pd->set_intptr_at(index, value);
 734   }
 735 
 736   intptr_t intptr_at(int index) const {
 737     return _pd->intptr_at(index);
 738   }
 739 
 740 public:
 741   void set_profile_data(ProfileData* pd) {
 742     _pd = pd;
 743   }
 744 };
 745 
 746 // Type entries used for arguments passed at a call and parameters on
 747 // method entry. 2 cells per entry: one for the type encoded as in
 748 // TypeEntries and one initialized with the stack slot where the
 749 // profiled object is to be found so that the interpreter can locate
 750 // it quickly.
 751 class TypeStackSlotEntries : public TypeEntries {
 752 
 753 private:
 754   enum {
 755     stack_slot_entry,
 756     type_entry,
 757     per_arg_cell_count
 758   };
 759 
 760   // offset of cell for stack slot for entry i within ProfileData object
 761   int stack_slot_offset(int i) const {
 762     return _base_off + stack_slot_local_offset(i);
 763   }
 764 
 765 protected:
 766   const int _number_of_entries;
 767 
 768   // offset of cell for type for entry i within ProfileData object
 769   int type_offset(int i) const {
 770     return _base_off + type_local_offset(i);
 771   }
 772 
 773 public:
 774 
 775   TypeStackSlotEntries(int base_off, int nb_entries)
 776     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 777 
 778   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 779 
 780   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 781 
 782   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 783   static int stack_slot_local_offset(int i) {
 784     return i * per_arg_cell_count + stack_slot_entry;
 785   }
 786 
 787   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 788   static int type_local_offset(int i) {
 789     return i * per_arg_cell_count + type_entry;
 790   }
 791 
 792   // stack slot for entry i
 793   uint stack_slot(int i) const {
 794     assert(i >= 0 && i < _number_of_entries, "oob");
 795     return _pd->uint_at(stack_slot_offset(i));
 796   }
 797 
 798   // set stack slot for entry i
 799   void set_stack_slot(int i, uint num) {
 800     assert(i >= 0 && i < _number_of_entries, "oob");
 801     _pd->set_uint_at(stack_slot_offset(i), num);
 802   }
 803 
 804   // type for entry i
 805   intptr_t type(int i) const {
 806     assert(i >= 0 && i < _number_of_entries, "oob");
 807     return _pd->intptr_at(type_offset(i));
 808   }
 809 
 810   // set type for entry i
 811   void set_type(int i, intptr_t k) {
 812     assert(i >= 0 && i < _number_of_entries, "oob");
 813     _pd->set_intptr_at(type_offset(i), k);
 814   }
 815 
 816   static ByteSize per_arg_size() {
 817     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 818   }
 819 
 820   static int per_arg_count() {
 821     return per_arg_cell_count ;
 822   }
 823 
 824   // GC support
 825   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 826 
 827 #ifndef PRODUCT
 828   void print_data_on(outputStream* st) const;
 829 #endif
 830 };
 831 
 832 // Type entry used for return from a call. A single cell to record the
 833 // type.
 834 class ReturnTypeEntry : public TypeEntries {
 835 
 836 private:
 837   enum {
 838     cell_count = 1
 839   };
 840 
 841 public:
 842   ReturnTypeEntry(int base_off)
 843     : TypeEntries(base_off) {}
 844 
 845   void post_initialize() {
 846     set_type(type_none());
 847   }
 848 
 849   intptr_t type() const {
 850     return _pd->intptr_at(_base_off);
 851   }
 852 
 853   void set_type(intptr_t k) {
 854     _pd->set_intptr_at(_base_off, k);
 855   }
 856 
 857   static int static_cell_count() {
 858     return cell_count;
 859   }
 860 
 861   static ByteSize size() {
 862     return in_ByteSize(cell_count * DataLayout::cell_size);
 863   }
 864 
 865   ByteSize type_offset() {
 866     return DataLayout::cell_offset(_base_off);
 867   }
 868 
 869   // GC support
 870   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 871 
 872 #ifndef PRODUCT
 873   void print_data_on(outputStream* st) const;
 874 #endif
 875 };
 876 
 877 // Entries to collect type information at a call: contains arguments
 878 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 879 // number of cells. Because the number of cells for the return type is
 880 // smaller than the number of cells for the type of an arguments, the
 881 // number of cells is used to tell how many arguments are profiled and
 882 // whether a return value is profiled. See has_arguments() and
 883 // has_return().
 884 class TypeEntriesAtCall {
 885 private:
 886   static int stack_slot_local_offset(int i) {
 887     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 888   }
 889 
 890   static int argument_type_local_offset(int i) {
 891     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
 892   }
 893 
 894 public:
 895 
 896   static int header_cell_count() {
 897     return 1;
 898   }
 899 
 900   static int cell_count_local_offset() {
 901     return 0;
 902   }
 903 
 904   static int compute_cell_count(BytecodeStream* stream);
 905 
 906   static void initialize(DataLayout* dl, int base, int cell_count) {
 907     int off = base + cell_count_local_offset();
 908     dl->set_cell_at(off, cell_count - base - header_cell_count());
 909   }
 910 
 911   static bool arguments_profiling_enabled();
 912   static bool return_profiling_enabled();
 913 
 914   // Code generation support
 915   static ByteSize cell_count_offset() {
 916     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
 917   }
 918 
 919   static ByteSize args_data_offset() {
 920     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
 921   }
 922 
 923   static ByteSize stack_slot_offset(int i) {
 924     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
 925   }
 926 
 927   static ByteSize argument_type_offset(int i) {
 928     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
 929   }
 930 };
 931 
 932 // CallTypeData
 933 //
 934 // A CallTypeData is used to access profiling information about a non
 935 // virtual call for which we collect type information about arguments
 936 // and return value.
 937 class CallTypeData : public CounterData {
 938 private:
 939   // entries for arguments if any
 940   TypeStackSlotEntries _args;
 941   // entry for return type if any
 942   ReturnTypeEntry _ret;
 943 
 944   int cell_count_global_offset() const {
 945     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
 946   }
 947 
 948   // number of cells not counting the header
 949   int cell_count_no_header() const {
 950     return uint_at(cell_count_global_offset());
 951   }
 952 
 953   void check_number_of_arguments(int total) {
 954     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
 955   }
 956 
 957 public:
 958   CallTypeData(DataLayout* layout) :
 959     CounterData(layout),
 960     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
 961     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
 962   {
 963     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
 964     // Some compilers (VC++) don't want this passed in member initialization list
 965     _args.set_profile_data(this);
 966     _ret.set_profile_data(this);
 967   }
 968 
 969   const TypeStackSlotEntries* args() const {
 970     assert(has_arguments(), "no profiling of arguments");
 971     return &_args;
 972   }
 973 
 974   const ReturnTypeEntry* ret() const {
 975     assert(has_return(), "no profiling of return value");
 976     return &_ret;
 977   }
 978 
 979   virtual bool is_CallTypeData() const { return true; }
 980 
 981   static int static_cell_count() {
 982     return -1;
 983   }
 984 
 985   static int compute_cell_count(BytecodeStream* stream) {
 986     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
 987   }
 988 
 989   static void initialize(DataLayout* dl, int cell_count) {
 990     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
 991   }
 992 
 993   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
 994 
 995   virtual int cell_count() const {
 996     return CounterData::static_cell_count() +
 997       TypeEntriesAtCall::header_cell_count() +
 998       int_at_unchecked(cell_count_global_offset());
 999   }
1000 
1001   int number_of_arguments() const {
1002     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1003   }
1004 
1005   void set_argument_type(int i, Klass* k) {
1006     assert(has_arguments(), "no arguments!");
1007     intptr_t current = _args.type(i);
1008     _args.set_type(i, TypeEntries::with_status(k, current));
1009   }
1010 
1011   void set_return_type(Klass* k) {
1012     assert(has_return(), "no return!");
1013     intptr_t current = _ret.type();
1014     _ret.set_type(TypeEntries::with_status(k, current));
1015   }
1016 
1017   // An entry for a return value takes less space than an entry for an
1018   // argument so if the number of cells exceeds the number of cells
1019   // needed for an argument, this object contains type information for
1020   // at least one argument.
1021   bool has_arguments() const {
1022     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1023     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1024     return res;
1025   }
1026 
1027   // An entry for a return value takes less space than an entry for an
1028   // argument, so if the remainder of the number of cells divided by
1029   // the number of cells for an argument is not null, a return value
1030   // is profiled in this object.
1031   bool has_return() const {
1032     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1033     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1034     return res;
1035   }
1036 
1037   // Code generation support
1038   static ByteSize args_data_offset() {
1039     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1040   }
1041 
1042   // GC support
1043   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1044     if (has_arguments()) {
1045       _args.clean_weak_klass_links(is_alive_closure);
1046     }
1047     if (has_return()) {
1048       _ret.clean_weak_klass_links(is_alive_closure);
1049     }
1050   }
1051 
1052 #ifndef PRODUCT
1053   virtual void print_data_on(outputStream* st) const;
1054 #endif
1055 };
1056 
1057 // ReceiverTypeData
1058 //
1059 // A ReceiverTypeData is used to access profiling information about a
1060 // dynamic type check.  It consists of a counter which counts the total times
1061 // that the check is reached, and a series of (Klass*, count) pairs
1062 // which are used to store a type profile for the receiver of the check.
1063 class ReceiverTypeData : public CounterData {
1064 protected:
1065   enum {
1066     receiver0_offset = counter_cell_count,
1067     count0_offset,
1068     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1069   };
1070 
1071 public:
1072   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1073     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1074            layout->tag() == DataLayout::virtual_call_data_tag ||
1075            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1076   }
1077 
1078   virtual bool is_ReceiverTypeData() const { return true; }
1079 
1080   static int static_cell_count() {
1081     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1082   }
1083 
1084   virtual int cell_count() const {
1085     return static_cell_count();
1086   }
1087 
1088   // Direct accessors
1089   static uint row_limit() {
1090     return TypeProfileWidth;
1091   }
1092   static int receiver_cell_index(uint row) {
1093     return receiver0_offset + row * receiver_type_row_cell_count;
1094   }
1095   static int receiver_count_cell_index(uint row) {
1096     return count0_offset + row * receiver_type_row_cell_count;
1097   }
1098 
1099   Klass* receiver(uint row) const {
1100     assert(row < row_limit(), "oob");
1101 
1102     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1103     assert(recv == NULL || recv->is_klass(), "wrong type");
1104     return recv;
1105   }
1106 
1107   void set_receiver(uint row, Klass* k) {
1108     assert((uint)row < row_limit(), "oob");
1109     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1110   }
1111 
1112   uint receiver_count(uint row) const {
1113     assert(row < row_limit(), "oob");
1114     return uint_at(receiver_count_cell_index(row));
1115   }
1116 
1117   void set_receiver_count(uint row, uint count) {
1118     assert(row < row_limit(), "oob");
1119     set_uint_at(receiver_count_cell_index(row), count);
1120   }
1121 
1122   void clear_row(uint row) {
1123     assert(row < row_limit(), "oob");
1124     // Clear total count - indicator of polymorphic call site.
1125     // The site may look like as monomorphic after that but
1126     // it allow to have more accurate profiling information because
1127     // there was execution phase change since klasses were unloaded.
1128     // If the site is still polymorphic then MDO will be updated
1129     // to reflect it. But it could be the case that the site becomes
1130     // only bimorphic. Then keeping total count not 0 will be wrong.
1131     // Even if we use monomorphic (when it is not) for compilation
1132     // we will only have trap, deoptimization and recompile again
1133     // with updated MDO after executing method in Interpreter.
1134     // An additional receiver will be recorded in the cleaned row
1135     // during next call execution.
1136     //
1137     // Note: our profiling logic works with empty rows in any slot.
1138     // We do sorting a profiling info (ciCallProfile) for compilation.
1139     //
1140     set_count(0);
1141     set_receiver(row, NULL);
1142     set_receiver_count(row, 0);
1143   }
1144 
1145   // Code generation support
1146   static ByteSize receiver_offset(uint row) {
1147     return cell_offset(receiver_cell_index(row));
1148   }
1149   static ByteSize receiver_count_offset(uint row) {
1150     return cell_offset(receiver_count_cell_index(row));
1151   }
1152   static ByteSize receiver_type_data_size() {
1153     return cell_offset(static_cell_count());
1154   }
1155 
1156   // GC support
1157   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1158 
1159 #ifndef PRODUCT
1160   void print_receiver_data_on(outputStream* st) const;
1161   void print_data_on(outputStream* st) const;
1162 #endif
1163 };
1164 
1165 // VirtualCallData
1166 //
1167 // A VirtualCallData is used to access profiling information about a
1168 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1169 class VirtualCallData : public ReceiverTypeData {
1170 public:
1171   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1172     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1173            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1174   }
1175 
1176   virtual bool is_VirtualCallData() const { return true; }
1177 
1178   static int static_cell_count() {
1179     // At this point we could add more profile state, e.g., for arguments.
1180     // But for now it's the same size as the base record type.
1181     return ReceiverTypeData::static_cell_count();
1182   }
1183 
1184   virtual int cell_count() const {
1185     return static_cell_count();
1186   }
1187 
1188   // Direct accessors
1189   static ByteSize virtual_call_data_size() {
1190     return cell_offset(static_cell_count());
1191   }
1192 
1193 #ifndef PRODUCT
1194   void print_data_on(outputStream* st) const;
1195 #endif
1196 };
1197 
1198 // VirtualCallTypeData
1199 //
1200 // A VirtualCallTypeData is used to access profiling information about
1201 // a virtual call for which we collect type information about
1202 // arguments and return value.
1203 class VirtualCallTypeData : public VirtualCallData {
1204 private:
1205   // entries for arguments if any
1206   TypeStackSlotEntries _args;
1207   // entry for return type if any
1208   ReturnTypeEntry _ret;
1209 
1210   int cell_count_global_offset() const {
1211     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1212   }
1213 
1214   // number of cells not counting the header
1215   int cell_count_no_header() const {
1216     return uint_at(cell_count_global_offset());
1217   }
1218 
1219   void check_number_of_arguments(int total) {
1220     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1221   }
1222 
1223 public:
1224   VirtualCallTypeData(DataLayout* layout) :
1225     VirtualCallData(layout),
1226     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1227     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1228   {
1229     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1230     // Some compilers (VC++) don't want this passed in member initialization list
1231     _args.set_profile_data(this);
1232     _ret.set_profile_data(this);
1233   }
1234 
1235   const TypeStackSlotEntries* args() const {
1236     assert(has_arguments(), "no profiling of arguments");
1237     return &_args;
1238   }
1239 
1240   const ReturnTypeEntry* ret() const {
1241     assert(has_return(), "no profiling of return value");
1242     return &_ret;
1243   }
1244 
1245   virtual bool is_VirtualCallTypeData() const { return true; }
1246 
1247   static int static_cell_count() {
1248     return -1;
1249   }
1250 
1251   static int compute_cell_count(BytecodeStream* stream) {
1252     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1253   }
1254 
1255   static void initialize(DataLayout* dl, int cell_count) {
1256     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1257   }
1258 
1259   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1260 
1261   virtual int cell_count() const {
1262     return VirtualCallData::static_cell_count() +
1263       TypeEntriesAtCall::header_cell_count() +
1264       int_at_unchecked(cell_count_global_offset());
1265   }
1266 
1267   int number_of_arguments() const {
1268     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1269   }
1270 
1271   void set_argument_type(int i, Klass* k) {
1272     assert(has_arguments(), "no arguments!");
1273     intptr_t current = _args.type(i);
1274     _args.set_type(i, TypeEntries::with_status(k, current));
1275   }
1276 
1277   void set_return_type(Klass* k) {
1278     assert(has_return(), "no return!");
1279     intptr_t current = _ret.type();
1280     _ret.set_type(TypeEntries::with_status(k, current));
1281   }
1282 
1283   // An entry for a return value takes less space than an entry for an
1284   // argument, so if the remainder of the number of cells divided by
1285   // the number of cells for an argument is not null, a return value
1286   // is profiled in this object.
1287   bool has_return() const {
1288     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1289     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1290     return res;
1291   }
1292 
1293   // An entry for a return value takes less space than an entry for an
1294   // argument so if the number of cells exceeds the number of cells
1295   // needed for an argument, this object contains type information for
1296   // at least one argument.
1297   bool has_arguments() const {
1298     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1299     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1300     return res;
1301   }
1302 
1303   // Code generation support
1304   static ByteSize args_data_offset() {
1305     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1306   }
1307 
1308   // GC support
1309   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1310     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1311     if (has_arguments()) {
1312       _args.clean_weak_klass_links(is_alive_closure);
1313     }
1314     if (has_return()) {
1315       _ret.clean_weak_klass_links(is_alive_closure);
1316     }
1317   }
1318 
1319 #ifndef PRODUCT
1320   virtual void print_data_on(outputStream* st) const;
1321 #endif
1322 };
1323 
1324 // RetData
1325 //
1326 // A RetData is used to access profiling information for a ret bytecode.
1327 // It is composed of a count of the number of times that the ret has
1328 // been executed, followed by a series of triples of the form
1329 // (bci, count, di) which count the number of times that some bci was the
1330 // target of the ret and cache a corresponding data displacement.
1331 class RetData : public CounterData {
1332 protected:
1333   enum {
1334     bci0_offset = counter_cell_count,
1335     count0_offset,
1336     displacement0_offset,
1337     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1338   };
1339 
1340   void set_bci(uint row, int bci) {
1341     assert((uint)row < row_limit(), "oob");
1342     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1343   }
1344   void release_set_bci(uint row, int bci) {
1345     assert((uint)row < row_limit(), "oob");
1346     // 'release' when setting the bci acts as a valid flag for other
1347     // threads wrt bci_count and bci_displacement.
1348     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1349   }
1350   void set_bci_count(uint row, uint count) {
1351     assert((uint)row < row_limit(), "oob");
1352     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1353   }
1354   void set_bci_displacement(uint row, int disp) {
1355     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1356   }
1357 
1358 public:
1359   RetData(DataLayout* layout) : CounterData(layout) {
1360     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1361   }
1362 
1363   virtual bool is_RetData() const { return true; }
1364 
1365   enum {
1366     no_bci = -1 // value of bci when bci1/2 are not in use.
1367   };
1368 
1369   static int static_cell_count() {
1370     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1371   }
1372 
1373   virtual int cell_count() const {
1374     return static_cell_count();
1375   }
1376 
1377   static uint row_limit() {
1378     return BciProfileWidth;
1379   }
1380   static int bci_cell_index(uint row) {
1381     return bci0_offset + row * ret_row_cell_count;
1382   }
1383   static int bci_count_cell_index(uint row) {
1384     return count0_offset + row * ret_row_cell_count;
1385   }
1386   static int bci_displacement_cell_index(uint row) {
1387     return displacement0_offset + row * ret_row_cell_count;
1388   }
1389 
1390   // Direct accessors
1391   int bci(uint row) const {
1392     return int_at(bci_cell_index(row));
1393   }
1394   uint bci_count(uint row) const {
1395     return uint_at(bci_count_cell_index(row));
1396   }
1397   int bci_displacement(uint row) const {
1398     return int_at(bci_displacement_cell_index(row));
1399   }
1400 
1401   // Interpreter Runtime support
1402   address fixup_ret(int return_bci, MethodData* mdo);
1403 
1404   // Code generation support
1405   static ByteSize bci_offset(uint row) {
1406     return cell_offset(bci_cell_index(row));
1407   }
1408   static ByteSize bci_count_offset(uint row) {
1409     return cell_offset(bci_count_cell_index(row));
1410   }
1411   static ByteSize bci_displacement_offset(uint row) {
1412     return cell_offset(bci_displacement_cell_index(row));
1413   }
1414 
1415   // Specific initialization.
1416   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1417 
1418 #ifndef PRODUCT
1419   void print_data_on(outputStream* st) const;
1420 #endif
1421 };
1422 
1423 // BranchData
1424 //
1425 // A BranchData is used to access profiling data for a two-way branch.
1426 // It consists of taken and not_taken counts as well as a data displacement
1427 // for the taken case.
1428 class BranchData : public JumpData {
1429 protected:
1430   enum {
1431     not_taken_off_set = jump_cell_count,
1432     branch_cell_count
1433   };
1434 
1435   void set_displacement(int displacement) {
1436     set_int_at(displacement_off_set, displacement);
1437   }
1438 
1439 public:
1440   BranchData(DataLayout* layout) : JumpData(layout) {
1441     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1442   }
1443 
1444   virtual bool is_BranchData() const { return true; }
1445 
1446   static int static_cell_count() {
1447     return branch_cell_count;
1448   }
1449 
1450   virtual int cell_count() const {
1451     return static_cell_count();
1452   }
1453 
1454   // Direct accessor
1455   uint not_taken() const {
1456     return uint_at(not_taken_off_set);
1457   }
1458 
1459   void set_not_taken(uint cnt) {
1460     set_uint_at(not_taken_off_set, cnt);
1461   }
1462 
1463   uint inc_not_taken() {
1464     uint cnt = not_taken() + 1;
1465     // Did we wrap? Will compiler screw us??
1466     if (cnt == 0) cnt--;
1467     set_uint_at(not_taken_off_set, cnt);
1468     return cnt;
1469   }
1470 
1471   // Code generation support
1472   static ByteSize not_taken_offset() {
1473     return cell_offset(not_taken_off_set);
1474   }
1475   static ByteSize branch_data_size() {
1476     return cell_offset(branch_cell_count);
1477   }
1478 
1479   // Specific initialization.
1480   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1481 
1482 #ifndef PRODUCT
1483   void print_data_on(outputStream* st) const;
1484 #endif
1485 };
1486 
1487 // ArrayData
1488 //
1489 // A ArrayData is a base class for accessing profiling data which does
1490 // not have a statically known size.  It consists of an array length
1491 // and an array start.
1492 class ArrayData : public ProfileData {
1493 protected:
1494   friend class DataLayout;
1495 
1496   enum {
1497     array_len_off_set,
1498     array_start_off_set
1499   };
1500 
1501   uint array_uint_at(int index) const {
1502     int aindex = index + array_start_off_set;
1503     return uint_at(aindex);
1504   }
1505   int array_int_at(int index) const {
1506     int aindex = index + array_start_off_set;
1507     return int_at(aindex);
1508   }
1509   oop array_oop_at(int index) const {
1510     int aindex = index + array_start_off_set;
1511     return oop_at(aindex);
1512   }
1513   void array_set_int_at(int index, int value) {
1514     int aindex = index + array_start_off_set;
1515     set_int_at(aindex, value);
1516   }
1517 
1518   // Code generation support for subclasses.
1519   static ByteSize array_element_offset(int index) {
1520     return cell_offset(array_start_off_set + index);
1521   }
1522 
1523 public:
1524   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1525 
1526   virtual bool is_ArrayData() const { return true; }
1527 
1528   static int static_cell_count() {
1529     return -1;
1530   }
1531 
1532   int array_len() const {
1533     return int_at_unchecked(array_len_off_set);
1534   }
1535 
1536   virtual int cell_count() const {
1537     return array_len() + 1;
1538   }
1539 
1540   // Code generation support
1541   static ByteSize array_len_offset() {
1542     return cell_offset(array_len_off_set);
1543   }
1544   static ByteSize array_start_offset() {
1545     return cell_offset(array_start_off_set);
1546   }
1547 };
1548 
1549 // MultiBranchData
1550 //
1551 // A MultiBranchData is used to access profiling information for
1552 // a multi-way branch (*switch bytecodes).  It consists of a series
1553 // of (count, displacement) pairs, which count the number of times each
1554 // case was taken and specify the data displacment for each branch target.
1555 class MultiBranchData : public ArrayData {
1556 protected:
1557   enum {
1558     default_count_off_set,
1559     default_disaplacement_off_set,
1560     case_array_start
1561   };
1562   enum {
1563     relative_count_off_set,
1564     relative_displacement_off_set,
1565     per_case_cell_count
1566   };
1567 
1568   void set_default_displacement(int displacement) {
1569     array_set_int_at(default_disaplacement_off_set, displacement);
1570   }
1571   void set_displacement_at(int index, int displacement) {
1572     array_set_int_at(case_array_start +
1573                      index * per_case_cell_count +
1574                      relative_displacement_off_set,
1575                      displacement);
1576   }
1577 
1578 public:
1579   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1580     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1581   }
1582 
1583   virtual bool is_MultiBranchData() const { return true; }
1584 
1585   static int compute_cell_count(BytecodeStream* stream);
1586 
1587   int number_of_cases() const {
1588     int alen = array_len() - 2; // get rid of default case here.
1589     assert(alen % per_case_cell_count == 0, "must be even");
1590     return (alen / per_case_cell_count);
1591   }
1592 
1593   uint default_count() const {
1594     return array_uint_at(default_count_off_set);
1595   }
1596   int default_displacement() const {
1597     return array_int_at(default_disaplacement_off_set);
1598   }
1599 
1600   uint count_at(int index) const {
1601     return array_uint_at(case_array_start +
1602                          index * per_case_cell_count +
1603                          relative_count_off_set);
1604   }
1605   int displacement_at(int index) const {
1606     return array_int_at(case_array_start +
1607                         index * per_case_cell_count +
1608                         relative_displacement_off_set);
1609   }
1610 
1611   // Code generation support
1612   static ByteSize default_count_offset() {
1613     return array_element_offset(default_count_off_set);
1614   }
1615   static ByteSize default_displacement_offset() {
1616     return array_element_offset(default_disaplacement_off_set);
1617   }
1618   static ByteSize case_count_offset(int index) {
1619     return case_array_offset() +
1620            (per_case_size() * index) +
1621            relative_count_offset();
1622   }
1623   static ByteSize case_array_offset() {
1624     return array_element_offset(case_array_start);
1625   }
1626   static ByteSize per_case_size() {
1627     return in_ByteSize(per_case_cell_count) * cell_size;
1628   }
1629   static ByteSize relative_count_offset() {
1630     return in_ByteSize(relative_count_off_set) * cell_size;
1631   }
1632   static ByteSize relative_displacement_offset() {
1633     return in_ByteSize(relative_displacement_off_set) * cell_size;
1634   }
1635 
1636   // Specific initialization.
1637   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1638 
1639 #ifndef PRODUCT
1640   void print_data_on(outputStream* st) const;
1641 #endif
1642 };
1643 
1644 class ArgInfoData : public ArrayData {
1645 
1646 public:
1647   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1648     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1649   }
1650 
1651   virtual bool is_ArgInfoData() const { return true; }
1652 
1653 
1654   int number_of_args() const {
1655     return array_len();
1656   }
1657 
1658   uint arg_modified(int arg) const {
1659     return array_uint_at(arg);
1660   }
1661 
1662   void set_arg_modified(int arg, uint val) {
1663     array_set_int_at(arg, val);
1664   }
1665 
1666 #ifndef PRODUCT
1667   void print_data_on(outputStream* st) const;
1668 #endif
1669 };
1670 
1671 // ParametersTypeData
1672 //
1673 // A ParametersTypeData is used to access profiling information about
1674 // types of parameters to a method
1675 class ParametersTypeData : public ArrayData {
1676 
1677 private:
1678   TypeStackSlotEntries _parameters;
1679 
1680   static int stack_slot_local_offset(int i) {
1681     assert_profiling_enabled();
1682     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1683   }
1684 
1685   static int type_local_offset(int i) {
1686     assert_profiling_enabled();
1687     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1688   }
1689 
1690   static bool profiling_enabled();
1691   static void assert_profiling_enabled() {
1692     assert(profiling_enabled(), "method parameters profiling should be on");
1693   }
1694 
1695 public:
1696   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1697     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1698     // Some compilers (VC++) don't want this passed in member initialization list
1699     _parameters.set_profile_data(this);
1700   }
1701 
1702   static int compute_cell_count(Method* m);
1703 
1704   virtual bool is_ParametersTypeData() const { return true; }
1705 
1706   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1707 
1708   int number_of_parameters() const {
1709     return array_len() / TypeStackSlotEntries::per_arg_count();
1710   }
1711 
1712   const TypeStackSlotEntries* parameters() const { return &_parameters; }
1713 
1714   uint stack_slot(int i) const {
1715     return _parameters.stack_slot(i);
1716   }
1717 
1718   void set_type(int i, Klass* k) {
1719     intptr_t current = _parameters.type(i);
1720     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1721   }
1722 
1723   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1724     _parameters.clean_weak_klass_links(is_alive_closure);
1725   }
1726 
1727 #ifndef PRODUCT
1728   virtual void print_data_on(outputStream* st) const;
1729 #endif
1730 
1731   static ByteSize stack_slot_offset(int i) {
1732     return cell_offset(stack_slot_local_offset(i));
1733   }
1734 
1735   static ByteSize type_offset(int i) {
1736     return cell_offset(type_local_offset(i));
1737   }
1738 };
1739 
1740 // MethodData*
1741 //
1742 // A MethodData* holds information which has been collected about
1743 // a method.  Its layout looks like this:
1744 //
1745 // -----------------------------
1746 // | header                    |
1747 // | klass                     |
1748 // -----------------------------
1749 // | method                    |
1750 // | size of the MethodData* |
1751 // -----------------------------
1752 // | Data entries...           |
1753 // |   (variable size)         |
1754 // |                           |
1755 // .                           .
1756 // .                           .
1757 // .                           .
1758 // |                           |
1759 // -----------------------------
1760 //
1761 // The data entry area is a heterogeneous array of DataLayouts. Each
1762 // DataLayout in the array corresponds to a specific bytecode in the
1763 // method.  The entries in the array are sorted by the corresponding
1764 // bytecode.  Access to the data is via resource-allocated ProfileData,
1765 // which point to the underlying blocks of DataLayout structures.
1766 //
1767 // During interpretation, if profiling in enabled, the interpreter
1768 // maintains a method data pointer (mdp), which points at the entry
1769 // in the array corresponding to the current bci.  In the course of
1770 // intepretation, when a bytecode is encountered that has profile data
1771 // associated with it, the entry pointed to by mdp is updated, then the
1772 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1773 // is NULL to begin with, the interpreter assumes that the current method
1774 // is not (yet) being profiled.
1775 //
1776 // In MethodData* parlance, "dp" is a "data pointer", the actual address
1777 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1778 // from the base of the data entry array.  A "displacement" is the byte offset
1779 // in certain ProfileData objects that indicate the amount the mdp must be
1780 // adjusted in the event of a change in control flow.
1781 //
1782 
1783 class MethodData : public Metadata {
1784   friend class VMStructs;
1785 private:
1786   friend class ProfileData;
1787 
1788   // Back pointer to the Method*
1789   Method* _method;
1790 
1791   // Size of this oop in bytes
1792   int _size;
1793 
1794   // Cached hint for bci_to_dp and bci_to_data
1795   int _hint_di;
1796 
1797   MethodData(methodHandle method, int size, TRAPS);
1798 public:
1799   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
1800   MethodData() {}; // For ciMethodData
1801 
1802   bool is_methodData() const volatile { return true; }
1803 
1804   // Whole-method sticky bits and flags
1805   enum {
1806     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
1807     _trap_hist_mask     = max_jubyte,
1808     _extra_data_count   = 4     // extra DataLayout headers, for trap history
1809   }; // Public flag values
1810 private:
1811   uint _nof_decompiles;             // count of all nmethod removals
1812   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
1813   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
1814   union {
1815     intptr_t _align;
1816     u1 _array[_trap_hist_limit];
1817   } _trap_hist;
1818 
1819   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1820   intx              _eflags;          // flags on escape information
1821   intx              _arg_local;       // bit set of non-escaping arguments
1822   intx              _arg_stack;       // bit set of stack-allocatable arguments
1823   intx              _arg_returned;    // bit set of returned arguments
1824 
1825   int _creation_mileage;              // method mileage at MDO creation
1826 
1827   // How many invocations has this MDO seen?
1828   // These counters are used to determine the exact age of MDO.
1829   // We need those because in tiered a method can be concurrently
1830   // executed at different levels.
1831   InvocationCounter _invocation_counter;
1832   // Same for backedges.
1833   InvocationCounter _backedge_counter;
1834   // Counter values at the time profiling started.
1835   int               _invocation_counter_start;
1836   int               _backedge_counter_start;
1837   // Number of loops and blocks is computed when compiling the first
1838   // time with C1. It is used to determine if method is trivial.
1839   short             _num_loops;
1840   short             _num_blocks;
1841   // Highest compile level this method has ever seen.
1842   u1                _highest_comp_level;
1843   // Same for OSR level
1844   u1                _highest_osr_comp_level;
1845   // Does this method contain anything worth profiling?
1846   bool              _would_profile;
1847 
1848   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
1849   int _data_size;
1850 
1851   // data index for the area dedicated to parameters. -1 if no
1852   // parameter profiling.
1853   int _parameters_type_data_di;
1854 
1855   // Beginning of the data entries
1856   intptr_t _data[1];
1857 
1858   // Helper for size computation
1859   static int compute_data_size(BytecodeStream* stream);
1860   static int bytecode_cell_count(Bytecodes::Code code);
1861   enum { no_profile_data = -1, variable_cell_count = -2 };
1862 
1863   // Helper for initialization
1864   DataLayout* data_layout_at(int data_index) const {
1865     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
1866     return (DataLayout*) (((address)_data) + data_index);
1867   }
1868 
1869   // Initialize an individual data segment.  Returns the size of
1870   // the segment in bytes.
1871   int initialize_data(BytecodeStream* stream, int data_index);
1872 
1873   // Helper for data_at
1874   DataLayout* limit_data_position() const {
1875     return (DataLayout*)((address)data_base() + _data_size);
1876   }
1877   bool out_of_bounds(int data_index) const {
1878     return data_index >= data_size();
1879   }
1880 
1881   // Give each of the data entries a chance to perform specific
1882   // data initialization.
1883   void post_initialize(BytecodeStream* stream);
1884 
1885   // hint accessors
1886   int      hint_di() const  { return _hint_di; }
1887   void set_hint_di(int di)  {
1888     assert(!out_of_bounds(di), "hint_di out of bounds");
1889     _hint_di = di;
1890   }
1891   ProfileData* data_before(int bci) {
1892     // avoid SEGV on this edge case
1893     if (data_size() == 0)
1894       return NULL;
1895     int hint = hint_di();
1896     if (data_layout_at(hint)->bci() <= bci)
1897       return data_at(hint);
1898     return first_data();
1899   }
1900 
1901   // What is the index of the first data entry?
1902   int first_di() const { return 0; }
1903 
1904   // Find or create an extra ProfileData:
1905   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
1906 
1907   // return the argument info cell
1908   ArgInfoData *arg_info();
1909 
1910   enum {
1911     no_type_profile = 0,
1912     type_profile_jsr292 = 1,
1913     type_profile_all = 2
1914   };
1915 
1916   static bool profile_jsr292(methodHandle m, int bci);
1917   static int profile_arguments_flag();
1918   static bool profile_arguments_jsr292_only();
1919   static bool profile_all_arguments();
1920   static bool profile_arguments_for_invoke(methodHandle m, int bci);
1921   static int profile_return_flag();
1922   static bool profile_all_return();
1923   static bool profile_return_for_invoke(methodHandle m, int bci);
1924   static int profile_parameters_flag();
1925   static bool profile_parameters_jsr292_only();
1926   static bool profile_all_parameters();
1927 
1928 public:
1929   static int header_size() {
1930     return sizeof(MethodData)/wordSize;
1931   }
1932 
1933   // Compute the size of a MethodData* before it is created.
1934   static int compute_allocation_size_in_bytes(methodHandle method);
1935   static int compute_allocation_size_in_words(methodHandle method);
1936   static int compute_extra_data_count(int data_size, int empty_bc_count);
1937 
1938   // Determine if a given bytecode can have profile information.
1939   static bool bytecode_has_profile(Bytecodes::Code code) {
1940     return bytecode_cell_count(code) != no_profile_data;
1941   }
1942 
1943   // reset into original state
1944   void init();
1945 
1946   // My size
1947   int size_in_bytes() const { return _size; }
1948   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
1949 #if INCLUDE_SERVICES
1950   void collect_statistics(KlassSizeStats *sz) const;
1951 #endif
1952 
1953   int      creation_mileage() const  { return _creation_mileage; }
1954   void set_creation_mileage(int x)   { _creation_mileage = x; }
1955 
1956   int invocation_count() {
1957     if (invocation_counter()->carry()) {
1958       return InvocationCounter::count_limit;
1959     }
1960     return invocation_counter()->count();
1961   }
1962   int backedge_count() {
1963     if (backedge_counter()->carry()) {
1964       return InvocationCounter::count_limit;
1965     }
1966     return backedge_counter()->count();
1967   }
1968 
1969   int invocation_count_start() {
1970     if (invocation_counter()->carry()) {
1971       return 0;
1972     }
1973     return _invocation_counter_start;
1974   }
1975 
1976   int backedge_count_start() {
1977     if (backedge_counter()->carry()) {
1978       return 0;
1979     }
1980     return _backedge_counter_start;
1981   }
1982 
1983   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
1984   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
1985 
1986   void reset_start_counters() {
1987     _invocation_counter_start = invocation_count();
1988     _backedge_counter_start = backedge_count();
1989   }
1990 
1991   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
1992   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
1993 
1994   void set_would_profile(bool p)              { _would_profile = p;    }
1995   bool would_profile() const                  { return _would_profile; }
1996 
1997   int highest_comp_level() const              { return _highest_comp_level;      }
1998   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
1999   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
2000   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
2001 
2002   int num_loops() const                       { return _num_loops;  }
2003   void set_num_loops(int n)                   { _num_loops = n;     }
2004   int num_blocks() const                      { return _num_blocks; }
2005   void set_num_blocks(int n)                  { _num_blocks = n;    }
2006 
2007   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2008   static int mileage_of(Method* m);
2009 
2010   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2011   enum EscapeFlag {
2012     estimated    = 1 << 0,
2013     return_local = 1 << 1,
2014     return_allocated = 1 << 2,
2015     allocated_escapes = 1 << 3,
2016     unknown_modified = 1 << 4
2017   };
2018 
2019   intx eflags()                                  { return _eflags; }
2020   intx arg_local()                               { return _arg_local; }
2021   intx arg_stack()                               { return _arg_stack; }
2022   intx arg_returned()                            { return _arg_returned; }
2023   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2024                                                    assert(aid != NULL, "arg_info must be not null");
2025                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2026                                                    return aid->arg_modified(a); }
2027 
2028   void set_eflags(intx v)                        { _eflags = v; }
2029   void set_arg_local(intx v)                     { _arg_local = v; }
2030   void set_arg_stack(intx v)                     { _arg_stack = v; }
2031   void set_arg_returned(intx v)                  { _arg_returned = v; }
2032   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2033                                                    assert(aid != NULL, "arg_info must be not null");
2034                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2035                                                    aid->set_arg_modified(a, v); }
2036 
2037   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2038 
2039   // Location and size of data area
2040   address data_base() const {
2041     return (address) _data;
2042   }
2043   int data_size() const {
2044     return _data_size;
2045   }
2046 
2047   // Accessors
2048   Method* method() const { return _method; }
2049 
2050   // Get the data at an arbitrary (sort of) data index.
2051   ProfileData* data_at(int data_index) const;
2052 
2053   // Walk through the data in order.
2054   ProfileData* first_data() const { return data_at(first_di()); }
2055   ProfileData* next_data(ProfileData* current) const;
2056   bool is_valid(ProfileData* current) const { return current != NULL; }
2057 
2058   // Convert a dp (data pointer) to a di (data index).
2059   int dp_to_di(address dp) const {
2060     return dp - ((address)_data);
2061   }
2062 
2063   address di_to_dp(int di) {
2064     return (address)data_layout_at(di);
2065   }
2066 
2067   // bci to di/dp conversion.
2068   address bci_to_dp(int bci);
2069   int bci_to_di(int bci) {
2070     return dp_to_di(bci_to_dp(bci));
2071   }
2072 
2073   // Get the data at an arbitrary bci, or NULL if there is none.
2074   ProfileData* bci_to_data(int bci);
2075 
2076   // Same, but try to create an extra_data record if one is needed:
2077   ProfileData* allocate_bci_to_data(int bci) {
2078     ProfileData* data = bci_to_data(bci);
2079     return (data != NULL) ? data : bci_to_extra_data(bci, true);
2080   }
2081 
2082   // Add a handful of extra data records, for trap tracking.
2083   DataLayout* extra_data_base() const { return limit_data_position(); }
2084   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2085   int extra_data_size() const { return (address)extra_data_limit()
2086                                - (address)extra_data_base(); }
2087   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
2088 
2089   // Return (uint)-1 for overflow.
2090   uint trap_count(int reason) const {
2091     assert((uint)reason < _trap_hist_limit, "oob");
2092     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2093   }
2094   // For loops:
2095   static uint trap_reason_limit() { return _trap_hist_limit; }
2096   static uint trap_count_limit()  { return _trap_hist_mask; }
2097   uint inc_trap_count(int reason) {
2098     // Count another trap, anywhere in this method.
2099     assert(reason >= 0, "must be single trap");
2100     if ((uint)reason < _trap_hist_limit) {
2101       uint cnt1 = 1 + _trap_hist._array[reason];
2102       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2103         _trap_hist._array[reason] = cnt1;
2104         return cnt1;
2105       } else {
2106         return _trap_hist_mask + (++_nof_overflow_traps);
2107       }
2108     } else {
2109       // Could not represent the count in the histogram.
2110       return (++_nof_overflow_traps);
2111     }
2112   }
2113 
2114   uint overflow_trap_count() const {
2115     return _nof_overflow_traps;
2116   }
2117   uint overflow_recompile_count() const {
2118     return _nof_overflow_recompiles;
2119   }
2120   void inc_overflow_recompile_count() {
2121     _nof_overflow_recompiles += 1;
2122   }
2123   uint decompile_count() const {
2124     return _nof_decompiles;
2125   }
2126   void inc_decompile_count() {
2127     _nof_decompiles += 1;
2128     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2129       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2130     }
2131   }
2132 
2133   // Return pointer to area dedicated to parameters in MDO
2134   ParametersTypeData* parameters_type_data() const {
2135     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2136   }
2137 
2138   int parameters_type_data_di() const {
2139     assert(_parameters_type_data_di != -1, "no args type data");
2140     return _parameters_type_data_di;
2141   }
2142 
2143   // Support for code generation
2144   static ByteSize data_offset() {
2145     return byte_offset_of(MethodData, _data[0]);
2146   }
2147 
2148   static ByteSize invocation_counter_offset() {
2149     return byte_offset_of(MethodData, _invocation_counter);
2150   }
2151   static ByteSize backedge_counter_offset() {
2152     return byte_offset_of(MethodData, _backedge_counter);
2153   }
2154 
2155   static ByteSize parameters_type_data_di_offset() {
2156     return byte_offset_of(MethodData, _parameters_type_data_di);
2157   }
2158 
2159   // Deallocation support - no pointer fields to deallocate
2160   void deallocate_contents(ClassLoaderData* loader_data) {}
2161 
2162   // GC support
2163   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2164 
2165   // Printing
2166 #ifndef PRODUCT
2167   void print_on      (outputStream* st) const;
2168 #endif
2169   void print_value_on(outputStream* st) const;
2170 
2171 #ifndef PRODUCT
2172   // printing support for method data
2173   void print_data_on(outputStream* st) const;
2174 #endif
2175 
2176   const char* internal_name() const { return "{method data}"; }
2177 
2178   // verification
2179   void verify_on(outputStream* st);
2180   void verify_data_on(outputStream* st);
2181 
2182   static bool profile_parameters_for_method(methodHandle m);
2183   static bool profile_arguments();
2184   static bool profile_return();
2185   static bool profile_parameters();
2186   static bool profile_return_jsr292_only();
2187 };
2188 
2189 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP