1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76 
  77 private:
  78   // Every data layout begins with a header.  This header
  79   // contains a tag, which is used to indicate the size/layout
  80   // of the data, 4 bits of flags, which can be used in any way,
  81   // 4 bits of trap history (none/one reason/many reasons),
  82   // and a bci, which is used to tie this piece of data to a
  83   // specific bci in the bytecodes.
  84   union {
  85     intptr_t _bits;
  86     struct {
  87       u1 _tag;
  88       u1 _flags;
  89       u2 _bci;
  90     } _struct;
  91   } _header;
  92 
  93   // The data layout has an arbitrary number of cells, each sized
  94   // to accomodate a pointer or an integer.
  95   intptr_t _cells[1];
  96 
  97   // Some types of data layouts need a length field.
  98   static bool needs_array_len(u1 tag);
  99 
 100 public:
 101   enum {
 102     counter_increment = 1
 103   };
 104 
 105   enum {
 106     cell_size = sizeof(intptr_t)
 107   };
 108 
 109   // Tag values
 110   enum {
 111     no_tag,
 112     bit_data_tag,
 113     counter_data_tag,
 114     jump_data_tag,
 115     receiver_type_data_tag,
 116     virtual_call_data_tag,
 117     ret_data_tag,
 118     branch_data_tag,
 119     multi_branch_data_tag,
 120     arg_info_data_tag,
 121     call_type_data_tag,
 122     virtual_call_type_data_tag,
 123     parameters_type_data_tag,
 124     speculative_trap_data_tag
 125   };
 126 
 127   enum {
 128     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 129     // The trap state breaks down further as [recompile:1 | reason:3].
 130     // This further breakdown is defined in deoptimization.cpp.
 131     // See Deoptimization::trap_state_reason for an assert that
 132     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 133     //
 134     // The trap_state is collected only if ProfileTraps is true.
 135     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 136     trap_shift = BitsPerByte - trap_bits,
 137     trap_mask = right_n_bits(trap_bits),
 138     trap_mask_in_place = (trap_mask << trap_shift),
 139     flag_limit = trap_shift,
 140     flag_mask = right_n_bits(flag_limit),
 141     first_flag = 0
 142   };
 143 
 144   // Size computation
 145   static int header_size_in_bytes() {
 146     return cell_size;
 147   }
 148   static int header_size_in_cells() {
 149     return 1;
 150   }
 151 
 152   static int compute_size_in_bytes(int cell_count) {
 153     return header_size_in_bytes() + cell_count * cell_size;
 154   }
 155 
 156   // Initialization
 157   void initialize(u1 tag, u2 bci, int cell_count);
 158 
 159   // Accessors
 160   u1 tag() {
 161     return _header._struct._tag;
 162   }
 163 
 164   // Return a few bits of trap state.  Range is [0..trap_mask].
 165   // The state tells if traps with zero, one, or many reasons have occurred.
 166   // It also tells whether zero or many recompilations have occurred.
 167   // The associated trap histogram in the MDO itself tells whether
 168   // traps are common or not.  If a BCI shows that a trap X has
 169   // occurred, and the MDO shows N occurrences of X, we make the
 170   // simplifying assumption that all N occurrences can be blamed
 171   // on that BCI.
 172   int trap_state() const {
 173     return ((_header._struct._flags >> trap_shift) & trap_mask);
 174   }
 175 
 176   void set_trap_state(int new_state) {
 177     assert(ProfileTraps, "used only under +ProfileTraps");
 178     uint old_flags = (_header._struct._flags & flag_mask);
 179     _header._struct._flags = (new_state << trap_shift) | old_flags;
 180   }
 181 
 182   u1 flags() const {
 183     return _header._struct._flags;
 184   }
 185 
 186   u2 bci() const {
 187     return _header._struct._bci;
 188   }
 189 
 190   void set_header(intptr_t value) {
 191     _header._bits = value;
 192   }
 193   bool atomic_set_header(intptr_t value) {
 194     if (Atomic::cmpxchg_ptr(value, (volatile intptr_t*)&_header._bits, 0) == 0) {
 195       return true;
 196     }
 197     return false;
 198   }
 199   intptr_t header() {
 200     return _header._bits;
 201   }
 202   void set_cell_at(int index, intptr_t value) {
 203     _cells[index] = value;
 204   }
 205   void release_set_cell_at(int index, intptr_t value) {
 206     OrderAccess::release_store_ptr(&_cells[index], value);
 207   }
 208   intptr_t cell_at(int index) const {
 209     return _cells[index];
 210   }
 211 
 212   void set_flag_at(int flag_number) {
 213     assert(flag_number < flag_limit, "oob");
 214     _header._struct._flags |= (0x1 << flag_number);
 215   }
 216   bool flag_at(int flag_number) const {
 217     assert(flag_number < flag_limit, "oob");
 218     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 219   }
 220 
 221   // Low-level support for code generation.
 222   static ByteSize header_offset() {
 223     return byte_offset_of(DataLayout, _header);
 224   }
 225   static ByteSize tag_offset() {
 226     return byte_offset_of(DataLayout, _header._struct._tag);
 227   }
 228   static ByteSize flags_offset() {
 229     return byte_offset_of(DataLayout, _header._struct._flags);
 230   }
 231   static ByteSize bci_offset() {
 232     return byte_offset_of(DataLayout, _header._struct._bci);
 233   }
 234   static ByteSize cell_offset(int index) {
 235     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 236   }
 237   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 238   static int flag_number_to_byte_constant(int flag_number) {
 239     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 240     DataLayout temp; temp.set_header(0);
 241     temp.set_flag_at(flag_number);
 242     return temp._header._struct._flags;
 243   }
 244   // Return a value which, when or-ed as a word into _header, sets the flag.
 245   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 246     DataLayout temp; temp.set_header(0);
 247     temp._header._struct._flags = byte_constant;
 248     return temp._header._bits;
 249   }
 250 
 251   ProfileData* data_in();
 252 
 253   // GC support
 254   void clean_weak_klass_links(BoolObjectClosure* cl);
 255 };
 256 
 257 
 258 // ProfileData class hierarchy
 259 class ProfileData;
 260 class   BitData;
 261 class     CounterData;
 262 class       ReceiverTypeData;
 263 class         VirtualCallData;
 264 class           VirtualCallTypeData;
 265 class       RetData;
 266 class       CallTypeData;
 267 class   JumpData;
 268 class     BranchData;
 269 class   ArrayData;
 270 class     MultiBranchData;
 271 class     ArgInfoData;
 272 class     ParametersTypeData;
 273 class   SpeculativeTrapData;
 274 
 275 // ProfileData
 276 //
 277 // A ProfileData object is created to refer to a section of profiling
 278 // data in a structured way.
 279 class ProfileData : public ResourceObj {
 280   friend class TypeEntries;
 281   friend class ReturnTypeEntry;
 282   friend class TypeStackSlotEntries;
 283 private:
 284 #ifndef PRODUCT
 285   enum {
 286     tab_width_one = 16,
 287     tab_width_two = 36
 288   };
 289 #endif // !PRODUCT
 290 
 291   // This is a pointer to a section of profiling data.
 292   DataLayout* _data;
 293 
 294   char* print_data_on_helper(const MethodData* md) const;
 295 
 296 protected:
 297   DataLayout* data() { return _data; }
 298   const DataLayout* data() const { return _data; }
 299 
 300   enum {
 301     cell_size = DataLayout::cell_size
 302   };
 303 
 304 public:
 305   // How many cells are in this?
 306   virtual int cell_count() const {
 307     ShouldNotReachHere();
 308     return -1;
 309   }
 310 
 311   // Return the size of this data.
 312   int size_in_bytes() {
 313     return DataLayout::compute_size_in_bytes(cell_count());
 314   }
 315 
 316 protected:
 317   // Low-level accessors for underlying data
 318   void set_intptr_at(int index, intptr_t value) {
 319     assert(0 <= index && index < cell_count(), "oob");
 320     data()->set_cell_at(index, value);
 321   }
 322   void release_set_intptr_at(int index, intptr_t value) {
 323     assert(0 <= index && index < cell_count(), "oob");
 324     data()->release_set_cell_at(index, value);
 325   }
 326   intptr_t intptr_at(int index) const {
 327     assert(0 <= index && index < cell_count(), "oob");
 328     return data()->cell_at(index);
 329   }
 330   void set_uint_at(int index, uint value) {
 331     set_intptr_at(index, (intptr_t) value);
 332   }
 333   void release_set_uint_at(int index, uint value) {
 334     release_set_intptr_at(index, (intptr_t) value);
 335   }
 336   uint uint_at(int index) const {
 337     return (uint)intptr_at(index);
 338   }
 339   void set_int_at(int index, int value) {
 340     set_intptr_at(index, (intptr_t) value);
 341   }
 342   void release_set_int_at(int index, int value) {
 343     release_set_intptr_at(index, (intptr_t) value);
 344   }
 345   int int_at(int index) const {
 346     return (int)intptr_at(index);
 347   }
 348   int int_at_unchecked(int index) const {
 349     return (int)data()->cell_at(index);
 350   }
 351   void set_oop_at(int index, oop value) {
 352     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 353   }
 354   oop oop_at(int index) const {
 355     return cast_to_oop(intptr_at(index));
 356   }
 357 
 358   void set_flag_at(int flag_number) {
 359     data()->set_flag_at(flag_number);
 360   }
 361   bool flag_at(int flag_number) const {
 362     return data()->flag_at(flag_number);
 363   }
 364 
 365   // two convenient imports for use by subclasses:
 366   static ByteSize cell_offset(int index) {
 367     return DataLayout::cell_offset(index);
 368   }
 369   static int flag_number_to_byte_constant(int flag_number) {
 370     return DataLayout::flag_number_to_byte_constant(flag_number);
 371   }
 372 
 373   ProfileData(DataLayout* data) {
 374     _data = data;
 375   }
 376 
 377 public:
 378   // Constructor for invalid ProfileData.
 379   ProfileData();
 380 
 381   u2 bci() const {
 382     return data()->bci();
 383   }
 384 
 385   address dp() {
 386     return (address)_data;
 387   }
 388 
 389   int trap_state() const {
 390     return data()->trap_state();
 391   }
 392   void set_trap_state(int new_state) {
 393     data()->set_trap_state(new_state);
 394   }
 395 
 396   // Type checking
 397   virtual bool is_BitData()         const { return false; }
 398   virtual bool is_CounterData()     const { return false; }
 399   virtual bool is_JumpData()        const { return false; }
 400   virtual bool is_ReceiverTypeData()const { return false; }
 401   virtual bool is_VirtualCallData() const { return false; }
 402   virtual bool is_RetData()         const { return false; }
 403   virtual bool is_BranchData()      const { return false; }
 404   virtual bool is_ArrayData()       const { return false; }
 405   virtual bool is_MultiBranchData() const { return false; }
 406   virtual bool is_ArgInfoData()     const { return false; }
 407   virtual bool is_CallTypeData()    const { return false; }
 408   virtual bool is_VirtualCallTypeData()const { return false; }
 409   virtual bool is_ParametersTypeData() const { return false; }
 410   virtual bool is_SpeculativeTrapData()const { return false; }
 411 
 412 
 413   BitData* as_BitData() const {
 414     assert(is_BitData(), "wrong type");
 415     return is_BitData()         ? (BitData*)        this : NULL;
 416   }
 417   CounterData* as_CounterData() const {
 418     assert(is_CounterData(), "wrong type");
 419     return is_CounterData()     ? (CounterData*)    this : NULL;
 420   }
 421   JumpData* as_JumpData() const {
 422     assert(is_JumpData(), "wrong type");
 423     return is_JumpData()        ? (JumpData*)       this : NULL;
 424   }
 425   ReceiverTypeData* as_ReceiverTypeData() const {
 426     assert(is_ReceiverTypeData(), "wrong type");
 427     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 428   }
 429   VirtualCallData* as_VirtualCallData() const {
 430     assert(is_VirtualCallData(), "wrong type");
 431     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 432   }
 433   RetData* as_RetData() const {
 434     assert(is_RetData(), "wrong type");
 435     return is_RetData()         ? (RetData*)        this : NULL;
 436   }
 437   BranchData* as_BranchData() const {
 438     assert(is_BranchData(), "wrong type");
 439     return is_BranchData()      ? (BranchData*)     this : NULL;
 440   }
 441   ArrayData* as_ArrayData() const {
 442     assert(is_ArrayData(), "wrong type");
 443     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 444   }
 445   MultiBranchData* as_MultiBranchData() const {
 446     assert(is_MultiBranchData(), "wrong type");
 447     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 448   }
 449   ArgInfoData* as_ArgInfoData() const {
 450     assert(is_ArgInfoData(), "wrong type");
 451     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 452   }
 453   CallTypeData* as_CallTypeData() const {
 454     assert(is_CallTypeData(), "wrong type");
 455     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 456   }
 457   VirtualCallTypeData* as_VirtualCallTypeData() const {
 458     assert(is_VirtualCallTypeData(), "wrong type");
 459     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 460   }
 461   ParametersTypeData* as_ParametersTypeData() const {
 462     assert(is_ParametersTypeData(), "wrong type");
 463     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
 464   }
 465   SpeculativeTrapData* as_SpeculativeTrapData() const {
 466     assert(is_SpeculativeTrapData(), "wrong type");
 467     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
 468   }
 469 
 470 
 471   // Subclass specific initialization
 472   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 473 
 474   // GC support
 475   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 476 
 477   // CI translation: ProfileData can represent both MethodDataOop data
 478   // as well as CIMethodData data. This function is provided for translating
 479   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 480   // most ProfileData don't require any translation, so we provide the null
 481   // translation here, and the required translators are in the ci subclasses.
 482   virtual void translate_from(const ProfileData* data) {}
 483 
 484   virtual void print_data_on(outputStream* st, const char* extra) const {
 485     ShouldNotReachHere();
 486   }
 487 
 488   void print_data_on(outputStream* st, const MethodData* md) const;
 489 
 490 #ifndef PRODUCT
 491   void print_shared(outputStream* st, const char* name, const char* extra) const;
 492   void tab(outputStream* st, bool first = false) const;
 493 #endif
 494 };
 495 
 496 // BitData
 497 //
 498 // A BitData holds a flag or two in its header.
 499 class BitData : public ProfileData {
 500 protected:
 501   enum {
 502     // null_seen:
 503     //  saw a null operand (cast/aastore/instanceof)
 504     null_seen_flag              = DataLayout::first_flag + 0
 505   };
 506   enum { bit_cell_count = 0 };  // no additional data fields needed.
 507 public:
 508   BitData(DataLayout* layout) : ProfileData(layout) {
 509   }
 510 
 511   virtual bool is_BitData() const { return true; }
 512 
 513   static int static_cell_count() {
 514     return bit_cell_count;
 515   }
 516 
 517   virtual int cell_count() const {
 518     return static_cell_count();
 519   }
 520 
 521   // Accessor
 522 
 523   // The null_seen flag bit is specially known to the interpreter.
 524   // Consulting it allows the compiler to avoid setting up null_check traps.
 525   bool null_seen()     { return flag_at(null_seen_flag); }
 526   void set_null_seen()    { set_flag_at(null_seen_flag); }
 527 
 528 
 529   // Code generation support
 530   static int null_seen_byte_constant() {
 531     return flag_number_to_byte_constant(null_seen_flag);
 532   }
 533 
 534   static ByteSize bit_data_size() {
 535     return cell_offset(bit_cell_count);
 536   }
 537 
 538 #ifndef PRODUCT
 539   void print_data_on(outputStream* st, const char* extra) const;
 540 #endif
 541 };
 542 
 543 // CounterData
 544 //
 545 // A CounterData corresponds to a simple counter.
 546 class CounterData : public BitData {
 547 protected:
 548   enum {
 549     count_off,
 550     counter_cell_count
 551   };
 552 public:
 553   CounterData(DataLayout* layout) : BitData(layout) {}
 554 
 555   virtual bool is_CounterData() const { return true; }
 556 
 557   static int static_cell_count() {
 558     return counter_cell_count;
 559   }
 560 
 561   virtual int cell_count() const {
 562     return static_cell_count();
 563   }
 564 
 565   // Direct accessor
 566   uint count() const {
 567     return uint_at(count_off);
 568   }
 569 
 570   // Code generation support
 571   static ByteSize count_offset() {
 572     return cell_offset(count_off);
 573   }
 574   static ByteSize counter_data_size() {
 575     return cell_offset(counter_cell_count);
 576   }
 577 
 578   void set_count(uint count) {
 579     set_uint_at(count_off, count);
 580   }
 581 
 582 #ifndef PRODUCT
 583   void print_data_on(outputStream* st, const char* extra) const;
 584 #endif
 585 };
 586 
 587 // JumpData
 588 //
 589 // A JumpData is used to access profiling information for a direct
 590 // branch.  It is a counter, used for counting the number of branches,
 591 // plus a data displacement, used for realigning the data pointer to
 592 // the corresponding target bci.
 593 class JumpData : public ProfileData {
 594 protected:
 595   enum {
 596     taken_off_set,
 597     displacement_off_set,
 598     jump_cell_count
 599   };
 600 
 601   void set_displacement(int displacement) {
 602     set_int_at(displacement_off_set, displacement);
 603   }
 604 
 605 public:
 606   JumpData(DataLayout* layout) : ProfileData(layout) {
 607     assert(layout->tag() == DataLayout::jump_data_tag ||
 608       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 609   }
 610 
 611   virtual bool is_JumpData() const { return true; }
 612 
 613   static int static_cell_count() {
 614     return jump_cell_count;
 615   }
 616 
 617   virtual int cell_count() const {
 618     return static_cell_count();
 619   }
 620 
 621   // Direct accessor
 622   uint taken() const {
 623     return uint_at(taken_off_set);
 624   }
 625 
 626   void set_taken(uint cnt) {
 627     set_uint_at(taken_off_set, cnt);
 628   }
 629 
 630   // Saturating counter
 631   uint inc_taken() {
 632     uint cnt = taken() + 1;
 633     // Did we wrap? Will compiler screw us??
 634     if (cnt == 0) cnt--;
 635     set_uint_at(taken_off_set, cnt);
 636     return cnt;
 637   }
 638 
 639   int displacement() const {
 640     return int_at(displacement_off_set);
 641   }
 642 
 643   // Code generation support
 644   static ByteSize taken_offset() {
 645     return cell_offset(taken_off_set);
 646   }
 647 
 648   static ByteSize displacement_offset() {
 649     return cell_offset(displacement_off_set);
 650   }
 651 
 652   // Specific initialization.
 653   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 654 
 655 #ifndef PRODUCT
 656   void print_data_on(outputStream* st, const char* extra) const;
 657 #endif
 658 };
 659 
 660 // Entries in a ProfileData object to record types: it can either be
 661 // none (no profile), unknown (conflicting profile data) or a klass if
 662 // a single one is seen. Whether a null reference was seen is also
 663 // recorded. No counter is associated with the type and a single type
 664 // is tracked (unlike VirtualCallData).
 665 class TypeEntries {
 666 
 667 public:
 668 
 669   // A single cell is used to record information for a type:
 670   // - the cell is initialized to 0
 671   // - when a type is discovered it is stored in the cell
 672   // - bit zero of the cell is used to record whether a null reference
 673   // was encountered or not
 674   // - bit 1 is set to record a conflict in the type information
 675 
 676   enum {
 677     null_seen = 1,
 678     type_mask = ~null_seen,
 679     type_unknown = 2,
 680     status_bits = null_seen | type_unknown,
 681     type_klass_mask = ~status_bits
 682   };
 683 
 684   // what to initialize a cell to
 685   static intptr_t type_none() {
 686     return 0;
 687   }
 688 
 689   // null seen = bit 0 set?
 690   static bool was_null_seen(intptr_t v) {
 691     return (v & null_seen) != 0;
 692   }
 693 
 694   // conflicting type information = bit 1 set?
 695   static bool is_type_unknown(intptr_t v) {
 696     return (v & type_unknown) != 0;
 697   }
 698 
 699   // not type information yet = all bits cleared, ignoring bit 0?
 700   static bool is_type_none(intptr_t v) {
 701     return (v & type_mask) == 0;
 702   }
 703 
 704   // recorded type: cell without bit 0 and 1
 705   static intptr_t klass_part(intptr_t v) {
 706     intptr_t r = v & type_klass_mask;
 707     return r;
 708   }
 709 
 710   // type recorded
 711   static Klass* valid_klass(intptr_t k) {
 712     if (!is_type_none(k) &&
 713         !is_type_unknown(k)) {
 714       Klass* res = (Klass*)klass_part(k);
 715       assert(res != NULL, "invalid");
 716       return res;
 717     } else {
 718       return NULL;
 719     }
 720   }
 721 
 722   static intptr_t with_status(intptr_t k, intptr_t in) {
 723     return k | (in & status_bits);
 724   }
 725 
 726   static intptr_t with_status(Klass* k, intptr_t in) {
 727     return with_status((intptr_t)k, in);
 728   }
 729 
 730 #ifndef PRODUCT
 731   static void print_klass(outputStream* st, intptr_t k);
 732 #endif
 733 
 734   // GC support
 735   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 736 
 737 protected:
 738   // ProfileData object these entries are part of
 739   ProfileData* _pd;
 740   // offset within the ProfileData object where the entries start
 741   const int _base_off;
 742 
 743   TypeEntries(int base_off)
 744     : _base_off(base_off), _pd(NULL) {}
 745 
 746   void set_intptr_at(int index, intptr_t value) {
 747     _pd->set_intptr_at(index, value);
 748   }
 749 
 750   intptr_t intptr_at(int index) const {
 751     return _pd->intptr_at(index);
 752   }
 753 
 754 public:
 755   void set_profile_data(ProfileData* pd) {
 756     _pd = pd;
 757   }
 758 };
 759 
 760 // Type entries used for arguments passed at a call and parameters on
 761 // method entry. 2 cells per entry: one for the type encoded as in
 762 // TypeEntries and one initialized with the stack slot where the
 763 // profiled object is to be found so that the interpreter can locate
 764 // it quickly.
 765 class TypeStackSlotEntries : public TypeEntries {
 766 
 767 private:
 768   enum {
 769     stack_slot_entry,
 770     type_entry,
 771     per_arg_cell_count
 772   };
 773 
 774   // offset of cell for stack slot for entry i within ProfileData object
 775   int stack_slot_offset(int i) const {
 776     return _base_off + stack_slot_local_offset(i);
 777   }
 778 
 779 protected:
 780   const int _number_of_entries;
 781 
 782   // offset of cell for type for entry i within ProfileData object
 783   int type_offset(int i) const {
 784     return _base_off + type_local_offset(i);
 785   }
 786 
 787 public:
 788 
 789   TypeStackSlotEntries(int base_off, int nb_entries)
 790     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 791 
 792   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 793 
 794   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 795 
 796   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 797   static int stack_slot_local_offset(int i) {
 798     return i * per_arg_cell_count + stack_slot_entry;
 799   }
 800 
 801   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 802   static int type_local_offset(int i) {
 803     return i * per_arg_cell_count + type_entry;
 804   }
 805 
 806   // stack slot for entry i
 807   uint stack_slot(int i) const {
 808     assert(i >= 0 && i < _number_of_entries, "oob");
 809     return _pd->uint_at(stack_slot_offset(i));
 810   }
 811 
 812   // set stack slot for entry i
 813   void set_stack_slot(int i, uint num) {
 814     assert(i >= 0 && i < _number_of_entries, "oob");
 815     _pd->set_uint_at(stack_slot_offset(i), num);
 816   }
 817 
 818   // type for entry i
 819   intptr_t type(int i) const {
 820     assert(i >= 0 && i < _number_of_entries, "oob");
 821     return _pd->intptr_at(type_offset(i));
 822   }
 823 
 824   // set type for entry i
 825   void set_type(int i, intptr_t k) {
 826     assert(i >= 0 && i < _number_of_entries, "oob");
 827     _pd->set_intptr_at(type_offset(i), k);
 828   }
 829 
 830   static ByteSize per_arg_size() {
 831     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 832   }
 833 
 834   static int per_arg_count() {
 835     return per_arg_cell_count ;
 836   }
 837 
 838   // GC support
 839   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 840 
 841 #ifndef PRODUCT
 842   void print_data_on(outputStream* st) const;
 843 #endif
 844 };
 845 
 846 // Type entry used for return from a call. A single cell to record the
 847 // type.
 848 class ReturnTypeEntry : public TypeEntries {
 849 
 850 private:
 851   enum {
 852     cell_count = 1
 853   };
 854 
 855 public:
 856   ReturnTypeEntry(int base_off)
 857     : TypeEntries(base_off) {}
 858 
 859   void post_initialize() {
 860     set_type(type_none());
 861   }
 862 
 863   intptr_t type() const {
 864     return _pd->intptr_at(_base_off);
 865   }
 866 
 867   void set_type(intptr_t k) {
 868     _pd->set_intptr_at(_base_off, k);
 869   }
 870 
 871   static int static_cell_count() {
 872     return cell_count;
 873   }
 874 
 875   static ByteSize size() {
 876     return in_ByteSize(cell_count * DataLayout::cell_size);
 877   }
 878 
 879   ByteSize type_offset() {
 880     return DataLayout::cell_offset(_base_off);
 881   }
 882 
 883   // GC support
 884   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 885 
 886 #ifndef PRODUCT
 887   void print_data_on(outputStream* st) const;
 888 #endif
 889 };
 890 
 891 // Entries to collect type information at a call: contains arguments
 892 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 893 // number of cells. Because the number of cells for the return type is
 894 // smaller than the number of cells for the type of an arguments, the
 895 // number of cells is used to tell how many arguments are profiled and
 896 // whether a return value is profiled. See has_arguments() and
 897 // has_return().
 898 class TypeEntriesAtCall {
 899 private:
 900   static int stack_slot_local_offset(int i) {
 901     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 902   }
 903 
 904   static int argument_type_local_offset(int i) {
 905     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
 906   }
 907 
 908 public:
 909 
 910   static int header_cell_count() {
 911     return 1;
 912   }
 913 
 914   static int cell_count_local_offset() {
 915     return 0;
 916   }
 917 
 918   static int compute_cell_count(BytecodeStream* stream);
 919 
 920   static void initialize(DataLayout* dl, int base, int cell_count) {
 921     int off = base + cell_count_local_offset();
 922     dl->set_cell_at(off, cell_count - base - header_cell_count());
 923   }
 924 
 925   static bool arguments_profiling_enabled();
 926   static bool return_profiling_enabled();
 927 
 928   // Code generation support
 929   static ByteSize cell_count_offset() {
 930     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
 931   }
 932 
 933   static ByteSize args_data_offset() {
 934     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
 935   }
 936 
 937   static ByteSize stack_slot_offset(int i) {
 938     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
 939   }
 940 
 941   static ByteSize argument_type_offset(int i) {
 942     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
 943   }
 944 };
 945 
 946 // CallTypeData
 947 //
 948 // A CallTypeData is used to access profiling information about a non
 949 // virtual call for which we collect type information about arguments
 950 // and return value.
 951 class CallTypeData : public CounterData {
 952 private:
 953   // entries for arguments if any
 954   TypeStackSlotEntries _args;
 955   // entry for return type if any
 956   ReturnTypeEntry _ret;
 957 
 958   int cell_count_global_offset() const {
 959     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
 960   }
 961 
 962   // number of cells not counting the header
 963   int cell_count_no_header() const {
 964     return uint_at(cell_count_global_offset());
 965   }
 966 
 967   void check_number_of_arguments(int total) {
 968     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
 969   }
 970 
 971 public:
 972   CallTypeData(DataLayout* layout) :
 973     CounterData(layout),
 974     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
 975     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
 976   {
 977     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
 978     // Some compilers (VC++) don't want this passed in member initialization list
 979     _args.set_profile_data(this);
 980     _ret.set_profile_data(this);
 981   }
 982 
 983   const TypeStackSlotEntries* args() const {
 984     assert(has_arguments(), "no profiling of arguments");
 985     return &_args;
 986   }
 987 
 988   const ReturnTypeEntry* ret() const {
 989     assert(has_return(), "no profiling of return value");
 990     return &_ret;
 991   }
 992 
 993   virtual bool is_CallTypeData() const { return true; }
 994 
 995   static int static_cell_count() {
 996     return -1;
 997   }
 998 
 999   static int compute_cell_count(BytecodeStream* stream) {
1000     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1001   }
1002 
1003   static void initialize(DataLayout* dl, int cell_count) {
1004     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1005   }
1006 
1007   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1008 
1009   virtual int cell_count() const {
1010     return CounterData::static_cell_count() +
1011       TypeEntriesAtCall::header_cell_count() +
1012       int_at_unchecked(cell_count_global_offset());
1013   }
1014 
1015   int number_of_arguments() const {
1016     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1017   }
1018 
1019   void set_argument_type(int i, Klass* k) {
1020     assert(has_arguments(), "no arguments!");
1021     intptr_t current = _args.type(i);
1022     _args.set_type(i, TypeEntries::with_status(k, current));
1023   }
1024 
1025   void set_return_type(Klass* k) {
1026     assert(has_return(), "no return!");
1027     intptr_t current = _ret.type();
1028     _ret.set_type(TypeEntries::with_status(k, current));
1029   }
1030 
1031   // An entry for a return value takes less space than an entry for an
1032   // argument so if the number of cells exceeds the number of cells
1033   // needed for an argument, this object contains type information for
1034   // at least one argument.
1035   bool has_arguments() const {
1036     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1037     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1038     return res;
1039   }
1040 
1041   // An entry for a return value takes less space than an entry for an
1042   // argument, so if the remainder of the number of cells divided by
1043   // the number of cells for an argument is not null, a return value
1044   // is profiled in this object.
1045   bool has_return() const {
1046     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1047     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1048     return res;
1049   }
1050 
1051   // Code generation support
1052   static ByteSize args_data_offset() {
1053     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1054   }
1055 
1056   // GC support
1057   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1058     if (has_arguments()) {
1059       _args.clean_weak_klass_links(is_alive_closure);
1060     }
1061     if (has_return()) {
1062       _ret.clean_weak_klass_links(is_alive_closure);
1063     }
1064   }
1065 
1066 #ifndef PRODUCT
1067   virtual void print_data_on(outputStream* st, const char* extra) const;
1068 #endif
1069 };
1070 
1071 // ReceiverTypeData
1072 //
1073 // A ReceiverTypeData is used to access profiling information about a
1074 // dynamic type check.  It consists of a counter which counts the total times
1075 // that the check is reached, and a series of (Klass*, count) pairs
1076 // which are used to store a type profile for the receiver of the check.
1077 class ReceiverTypeData : public CounterData {
1078 protected:
1079   enum {
1080     receiver0_offset = counter_cell_count,
1081     count0_offset,
1082     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1083   };
1084 
1085 public:
1086   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1087     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1088            layout->tag() == DataLayout::virtual_call_data_tag ||
1089            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1090   }
1091 
1092   virtual bool is_ReceiverTypeData() const { return true; }
1093 
1094   static int static_cell_count() {
1095     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1096   }
1097 
1098   virtual int cell_count() const {
1099     return static_cell_count();
1100   }
1101 
1102   // Direct accessors
1103   static uint row_limit() {
1104     return TypeProfileWidth;
1105   }
1106   static int receiver_cell_index(uint row) {
1107     return receiver0_offset + row * receiver_type_row_cell_count;
1108   }
1109   static int receiver_count_cell_index(uint row) {
1110     return count0_offset + row * receiver_type_row_cell_count;
1111   }
1112 
1113   Klass* receiver(uint row) const {
1114     assert(row < row_limit(), "oob");
1115 
1116     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1117     assert(recv == NULL || recv->is_klass(), "wrong type");
1118     return recv;
1119   }
1120 
1121   void set_receiver(uint row, Klass* k) {
1122     assert((uint)row < row_limit(), "oob");
1123     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1124   }
1125 
1126   uint receiver_count(uint row) const {
1127     assert(row < row_limit(), "oob");
1128     return uint_at(receiver_count_cell_index(row));
1129   }
1130 
1131   void set_receiver_count(uint row, uint count) {
1132     assert(row < row_limit(), "oob");
1133     set_uint_at(receiver_count_cell_index(row), count);
1134   }
1135 
1136   void clear_row(uint row) {
1137     assert(row < row_limit(), "oob");
1138     // Clear total count - indicator of polymorphic call site.
1139     // The site may look like as monomorphic after that but
1140     // it allow to have more accurate profiling information because
1141     // there was execution phase change since klasses were unloaded.
1142     // If the site is still polymorphic then MDO will be updated
1143     // to reflect it. But it could be the case that the site becomes
1144     // only bimorphic. Then keeping total count not 0 will be wrong.
1145     // Even if we use monomorphic (when it is not) for compilation
1146     // we will only have trap, deoptimization and recompile again
1147     // with updated MDO after executing method in Interpreter.
1148     // An additional receiver will be recorded in the cleaned row
1149     // during next call execution.
1150     //
1151     // Note: our profiling logic works with empty rows in any slot.
1152     // We do sorting a profiling info (ciCallProfile) for compilation.
1153     //
1154     set_count(0);
1155     set_receiver(row, NULL);
1156     set_receiver_count(row, 0);
1157   }
1158 
1159   // Code generation support
1160   static ByteSize receiver_offset(uint row) {
1161     return cell_offset(receiver_cell_index(row));
1162   }
1163   static ByteSize receiver_count_offset(uint row) {
1164     return cell_offset(receiver_count_cell_index(row));
1165   }
1166   static ByteSize receiver_type_data_size() {
1167     return cell_offset(static_cell_count());
1168   }
1169 
1170   // GC support
1171   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1172 
1173 #ifndef PRODUCT
1174   void print_receiver_data_on(outputStream* st) const;
1175   void print_data_on(outputStream* st, const char* extra) const;
1176 #endif
1177 };
1178 
1179 // VirtualCallData
1180 //
1181 // A VirtualCallData is used to access profiling information about a
1182 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1183 class VirtualCallData : public ReceiverTypeData {
1184 public:
1185   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1186     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1187            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1188   }
1189 
1190   virtual bool is_VirtualCallData() const { return true; }
1191 
1192   static int static_cell_count() {
1193     // At this point we could add more profile state, e.g., for arguments.
1194     // But for now it's the same size as the base record type.
1195     return ReceiverTypeData::static_cell_count();
1196   }
1197 
1198   virtual int cell_count() const {
1199     return static_cell_count();
1200   }
1201 
1202   // Direct accessors
1203   static ByteSize virtual_call_data_size() {
1204     return cell_offset(static_cell_count());
1205   }
1206 
1207 #ifndef PRODUCT
1208   void print_data_on(outputStream* st, const char* extra) const;
1209 #endif
1210 };
1211 
1212 // VirtualCallTypeData
1213 //
1214 // A VirtualCallTypeData is used to access profiling information about
1215 // a virtual call for which we collect type information about
1216 // arguments and return value.
1217 class VirtualCallTypeData : public VirtualCallData {
1218 private:
1219   // entries for arguments if any
1220   TypeStackSlotEntries _args;
1221   // entry for return type if any
1222   ReturnTypeEntry _ret;
1223 
1224   int cell_count_global_offset() const {
1225     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1226   }
1227 
1228   // number of cells not counting the header
1229   int cell_count_no_header() const {
1230     return uint_at(cell_count_global_offset());
1231   }
1232 
1233   void check_number_of_arguments(int total) {
1234     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1235   }
1236 
1237 public:
1238   VirtualCallTypeData(DataLayout* layout) :
1239     VirtualCallData(layout),
1240     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1241     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1242   {
1243     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1244     // Some compilers (VC++) don't want this passed in member initialization list
1245     _args.set_profile_data(this);
1246     _ret.set_profile_data(this);
1247   }
1248 
1249   const TypeStackSlotEntries* args() const {
1250     assert(has_arguments(), "no profiling of arguments");
1251     return &_args;
1252   }
1253 
1254   const ReturnTypeEntry* ret() const {
1255     assert(has_return(), "no profiling of return value");
1256     return &_ret;
1257   }
1258 
1259   virtual bool is_VirtualCallTypeData() const { return true; }
1260 
1261   static int static_cell_count() {
1262     return -1;
1263   }
1264 
1265   static int compute_cell_count(BytecodeStream* stream) {
1266     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1267   }
1268 
1269   static void initialize(DataLayout* dl, int cell_count) {
1270     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1271   }
1272 
1273   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1274 
1275   virtual int cell_count() const {
1276     return VirtualCallData::static_cell_count() +
1277       TypeEntriesAtCall::header_cell_count() +
1278       int_at_unchecked(cell_count_global_offset());
1279   }
1280 
1281   int number_of_arguments() const {
1282     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1283   }
1284 
1285   void set_argument_type(int i, Klass* k) {
1286     assert(has_arguments(), "no arguments!");
1287     intptr_t current = _args.type(i);
1288     _args.set_type(i, TypeEntries::with_status(k, current));
1289   }
1290 
1291   void set_return_type(Klass* k) {
1292     assert(has_return(), "no return!");
1293     intptr_t current = _ret.type();
1294     _ret.set_type(TypeEntries::with_status(k, current));
1295   }
1296 
1297   // An entry for a return value takes less space than an entry for an
1298   // argument, so if the remainder of the number of cells divided by
1299   // the number of cells for an argument is not null, a return value
1300   // is profiled in this object.
1301   bool has_return() const {
1302     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1303     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1304     return res;
1305   }
1306 
1307   // An entry for a return value takes less space than an entry for an
1308   // argument so if the number of cells exceeds the number of cells
1309   // needed for an argument, this object contains type information for
1310   // at least one argument.
1311   bool has_arguments() const {
1312     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1313     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1314     return res;
1315   }
1316 
1317   // Code generation support
1318   static ByteSize args_data_offset() {
1319     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1320   }
1321 
1322   // GC support
1323   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1324     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1325     if (has_arguments()) {
1326       _args.clean_weak_klass_links(is_alive_closure);
1327     }
1328     if (has_return()) {
1329       _ret.clean_weak_klass_links(is_alive_closure);
1330     }
1331   }
1332 
1333 #ifndef PRODUCT
1334   virtual void print_data_on(outputStream* st, const char* extra) const;
1335 #endif
1336 };
1337 
1338 // RetData
1339 //
1340 // A RetData is used to access profiling information for a ret bytecode.
1341 // It is composed of a count of the number of times that the ret has
1342 // been executed, followed by a series of triples of the form
1343 // (bci, count, di) which count the number of times that some bci was the
1344 // target of the ret and cache a corresponding data displacement.
1345 class RetData : public CounterData {
1346 protected:
1347   enum {
1348     bci0_offset = counter_cell_count,
1349     count0_offset,
1350     displacement0_offset,
1351     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1352   };
1353 
1354   void set_bci(uint row, int bci) {
1355     assert((uint)row < row_limit(), "oob");
1356     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1357   }
1358   void release_set_bci(uint row, int bci) {
1359     assert((uint)row < row_limit(), "oob");
1360     // 'release' when setting the bci acts as a valid flag for other
1361     // threads wrt bci_count and bci_displacement.
1362     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1363   }
1364   void set_bci_count(uint row, uint count) {
1365     assert((uint)row < row_limit(), "oob");
1366     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1367   }
1368   void set_bci_displacement(uint row, int disp) {
1369     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1370   }
1371 
1372 public:
1373   RetData(DataLayout* layout) : CounterData(layout) {
1374     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1375   }
1376 
1377   virtual bool is_RetData() const { return true; }
1378 
1379   enum {
1380     no_bci = -1 // value of bci when bci1/2 are not in use.
1381   };
1382 
1383   static int static_cell_count() {
1384     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1385   }
1386 
1387   virtual int cell_count() const {
1388     return static_cell_count();
1389   }
1390 
1391   static uint row_limit() {
1392     return BciProfileWidth;
1393   }
1394   static int bci_cell_index(uint row) {
1395     return bci0_offset + row * ret_row_cell_count;
1396   }
1397   static int bci_count_cell_index(uint row) {
1398     return count0_offset + row * ret_row_cell_count;
1399   }
1400   static int bci_displacement_cell_index(uint row) {
1401     return displacement0_offset + row * ret_row_cell_count;
1402   }
1403 
1404   // Direct accessors
1405   int bci(uint row) const {
1406     return int_at(bci_cell_index(row));
1407   }
1408   uint bci_count(uint row) const {
1409     return uint_at(bci_count_cell_index(row));
1410   }
1411   int bci_displacement(uint row) const {
1412     return int_at(bci_displacement_cell_index(row));
1413   }
1414 
1415   // Interpreter Runtime support
1416   address fixup_ret(int return_bci, MethodData* mdo);
1417 
1418   // Code generation support
1419   static ByteSize bci_offset(uint row) {
1420     return cell_offset(bci_cell_index(row));
1421   }
1422   static ByteSize bci_count_offset(uint row) {
1423     return cell_offset(bci_count_cell_index(row));
1424   }
1425   static ByteSize bci_displacement_offset(uint row) {
1426     return cell_offset(bci_displacement_cell_index(row));
1427   }
1428 
1429   // Specific initialization.
1430   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1431 
1432 #ifndef PRODUCT
1433   void print_data_on(outputStream* st, const char* extra) const;
1434 #endif
1435 };
1436 
1437 // BranchData
1438 //
1439 // A BranchData is used to access profiling data for a two-way branch.
1440 // It consists of taken and not_taken counts as well as a data displacement
1441 // for the taken case.
1442 class BranchData : public JumpData {
1443 protected:
1444   enum {
1445     not_taken_off_set = jump_cell_count,
1446     branch_cell_count
1447   };
1448 
1449   void set_displacement(int displacement) {
1450     set_int_at(displacement_off_set, displacement);
1451   }
1452 
1453 public:
1454   BranchData(DataLayout* layout) : JumpData(layout) {
1455     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1456   }
1457 
1458   virtual bool is_BranchData() const { return true; }
1459 
1460   static int static_cell_count() {
1461     return branch_cell_count;
1462   }
1463 
1464   virtual int cell_count() const {
1465     return static_cell_count();
1466   }
1467 
1468   // Direct accessor
1469   uint not_taken() const {
1470     return uint_at(not_taken_off_set);
1471   }
1472 
1473   void set_not_taken(uint cnt) {
1474     set_uint_at(not_taken_off_set, cnt);
1475   }
1476 
1477   uint inc_not_taken() {
1478     uint cnt = not_taken() + 1;
1479     // Did we wrap? Will compiler screw us??
1480     if (cnt == 0) cnt--;
1481     set_uint_at(not_taken_off_set, cnt);
1482     return cnt;
1483   }
1484 
1485   // Code generation support
1486   static ByteSize not_taken_offset() {
1487     return cell_offset(not_taken_off_set);
1488   }
1489   static ByteSize branch_data_size() {
1490     return cell_offset(branch_cell_count);
1491   }
1492 
1493   // Specific initialization.
1494   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1495 
1496 #ifndef PRODUCT
1497   void print_data_on(outputStream* st, const char* extra) const;
1498 #endif
1499 };
1500 
1501 // ArrayData
1502 //
1503 // A ArrayData is a base class for accessing profiling data which does
1504 // not have a statically known size.  It consists of an array length
1505 // and an array start.
1506 class ArrayData : public ProfileData {
1507 protected:
1508   friend class DataLayout;
1509 
1510   enum {
1511     array_len_off_set,
1512     array_start_off_set
1513   };
1514 
1515   uint array_uint_at(int index) const {
1516     int aindex = index + array_start_off_set;
1517     return uint_at(aindex);
1518   }
1519   int array_int_at(int index) const {
1520     int aindex = index + array_start_off_set;
1521     return int_at(aindex);
1522   }
1523   oop array_oop_at(int index) const {
1524     int aindex = index + array_start_off_set;
1525     return oop_at(aindex);
1526   }
1527   void array_set_int_at(int index, int value) {
1528     int aindex = index + array_start_off_set;
1529     set_int_at(aindex, value);
1530   }
1531 
1532   // Code generation support for subclasses.
1533   static ByteSize array_element_offset(int index) {
1534     return cell_offset(array_start_off_set + index);
1535   }
1536 
1537 public:
1538   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1539 
1540   virtual bool is_ArrayData() const { return true; }
1541 
1542   static int static_cell_count() {
1543     return -1;
1544   }
1545 
1546   int array_len() const {
1547     return int_at_unchecked(array_len_off_set);
1548   }
1549 
1550   virtual int cell_count() const {
1551     return array_len() + 1;
1552   }
1553 
1554   // Code generation support
1555   static ByteSize array_len_offset() {
1556     return cell_offset(array_len_off_set);
1557   }
1558   static ByteSize array_start_offset() {
1559     return cell_offset(array_start_off_set);
1560   }
1561 };
1562 
1563 // MultiBranchData
1564 //
1565 // A MultiBranchData is used to access profiling information for
1566 // a multi-way branch (*switch bytecodes).  It consists of a series
1567 // of (count, displacement) pairs, which count the number of times each
1568 // case was taken and specify the data displacment for each branch target.
1569 class MultiBranchData : public ArrayData {
1570 protected:
1571   enum {
1572     default_count_off_set,
1573     default_disaplacement_off_set,
1574     case_array_start
1575   };
1576   enum {
1577     relative_count_off_set,
1578     relative_displacement_off_set,
1579     per_case_cell_count
1580   };
1581 
1582   void set_default_displacement(int displacement) {
1583     array_set_int_at(default_disaplacement_off_set, displacement);
1584   }
1585   void set_displacement_at(int index, int displacement) {
1586     array_set_int_at(case_array_start +
1587                      index * per_case_cell_count +
1588                      relative_displacement_off_set,
1589                      displacement);
1590   }
1591 
1592 public:
1593   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1594     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1595   }
1596 
1597   virtual bool is_MultiBranchData() const { return true; }
1598 
1599   static int compute_cell_count(BytecodeStream* stream);
1600 
1601   int number_of_cases() const {
1602     int alen = array_len() - 2; // get rid of default case here.
1603     assert(alen % per_case_cell_count == 0, "must be even");
1604     return (alen / per_case_cell_count);
1605   }
1606 
1607   uint default_count() const {
1608     return array_uint_at(default_count_off_set);
1609   }
1610   int default_displacement() const {
1611     return array_int_at(default_disaplacement_off_set);
1612   }
1613 
1614   uint count_at(int index) const {
1615     return array_uint_at(case_array_start +
1616                          index * per_case_cell_count +
1617                          relative_count_off_set);
1618   }
1619   int displacement_at(int index) const {
1620     return array_int_at(case_array_start +
1621                         index * per_case_cell_count +
1622                         relative_displacement_off_set);
1623   }
1624 
1625   // Code generation support
1626   static ByteSize default_count_offset() {
1627     return array_element_offset(default_count_off_set);
1628   }
1629   static ByteSize default_displacement_offset() {
1630     return array_element_offset(default_disaplacement_off_set);
1631   }
1632   static ByteSize case_count_offset(int index) {
1633     return case_array_offset() +
1634            (per_case_size() * index) +
1635            relative_count_offset();
1636   }
1637   static ByteSize case_array_offset() {
1638     return array_element_offset(case_array_start);
1639   }
1640   static ByteSize per_case_size() {
1641     return in_ByteSize(per_case_cell_count) * cell_size;
1642   }
1643   static ByteSize relative_count_offset() {
1644     return in_ByteSize(relative_count_off_set) * cell_size;
1645   }
1646   static ByteSize relative_displacement_offset() {
1647     return in_ByteSize(relative_displacement_off_set) * cell_size;
1648   }
1649 
1650   // Specific initialization.
1651   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1652 
1653 #ifndef PRODUCT
1654   void print_data_on(outputStream* st, const char* extra) const;
1655 #endif
1656 };
1657 
1658 class ArgInfoData : public ArrayData {
1659 
1660 public:
1661   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1662     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1663   }
1664 
1665   virtual bool is_ArgInfoData() const { return true; }
1666 
1667 
1668   int number_of_args() const {
1669     return array_len();
1670   }
1671 
1672   uint arg_modified(int arg) const {
1673     return array_uint_at(arg);
1674   }
1675 
1676   void set_arg_modified(int arg, uint val) {
1677     array_set_int_at(arg, val);
1678   }
1679 
1680 #ifndef PRODUCT
1681   void print_data_on(outputStream* st, const char* extra) const;
1682 #endif
1683 };
1684 
1685 // ParametersTypeData
1686 //
1687 // A ParametersTypeData is used to access profiling information about
1688 // types of parameters to a method
1689 class ParametersTypeData : public ArrayData {
1690 
1691 private:
1692   TypeStackSlotEntries _parameters;
1693 
1694   static int stack_slot_local_offset(int i) {
1695     assert_profiling_enabled();
1696     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1697   }
1698 
1699   static int type_local_offset(int i) {
1700     assert_profiling_enabled();
1701     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1702   }
1703 
1704   static bool profiling_enabled();
1705   static void assert_profiling_enabled() {
1706     assert(profiling_enabled(), "method parameters profiling should be on");
1707   }
1708 
1709 public:
1710   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1711     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1712     // Some compilers (VC++) don't want this passed in member initialization list
1713     _parameters.set_profile_data(this);
1714   }
1715 
1716   static int compute_cell_count(Method* m);
1717 
1718   virtual bool is_ParametersTypeData() const { return true; }
1719 
1720   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1721 
1722   int number_of_parameters() const {
1723     return array_len() / TypeStackSlotEntries::per_arg_count();
1724   }
1725 
1726   const TypeStackSlotEntries* parameters() const { return &_parameters; }
1727 
1728   uint stack_slot(int i) const {
1729     return _parameters.stack_slot(i);
1730   }
1731 
1732   void set_type(int i, Klass* k) {
1733     intptr_t current = _parameters.type(i);
1734     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1735   }
1736 
1737   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1738     _parameters.clean_weak_klass_links(is_alive_closure);
1739   }
1740 
1741 #ifndef PRODUCT
1742   virtual void print_data_on(outputStream* st, const char* extra) const;
1743 #endif
1744 
1745   static ByteSize stack_slot_offset(int i) {
1746     return cell_offset(stack_slot_local_offset(i));
1747   }
1748 
1749   static ByteSize type_offset(int i) {
1750     return cell_offset(type_local_offset(i));
1751   }
1752 };
1753 
1754 // SpeculativeTrapData
1755 //
1756 // A SpeculativeTrapData is used to record traps due to type
1757 // speculation. It records the root of the compilation: that type
1758 // speculation is wrong in the context of one compilation (for
1759 // method1) doesn't mean it's wrong in the context of another one (for
1760 // method2). Type speculation could have more/different data in the
1761 // context of the compilation of method2 and it's worthwhile to try an
1762 // optimization that failed for compilation of method1 in the context
1763 // of compilation of method2.
1764 // Space for SpeculativeTrapData entries is allocated from the extra
1765 // data space in the MDO. If we run out of space, the trap data for
1766 // the ProfileData at that bci is updated.
1767 class SpeculativeTrapData : public ProfileData {
1768 protected:
1769   enum {
1770     method_offset,
1771     speculative_trap_cell_count
1772   };
1773 public:
1774   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1775     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1776   }
1777 
1778   virtual bool is_SpeculativeTrapData() const { return true; }
1779 
1780   static int static_cell_count() {
1781     return speculative_trap_cell_count;
1782   }
1783 
1784   virtual int cell_count() const {
1785     return static_cell_count();
1786   }
1787 
1788   // Direct accessor
1789   Method* method() const {
1790     return (Method*)intptr_at(method_offset);
1791   }
1792 
1793   void set_method(Method* m) {
1794     set_intptr_at(method_offset, (intptr_t)m);
1795   }
1796 
1797 #ifndef PRODUCT
1798   virtual void print_data_on(outputStream* st, const char* extra) const;
1799 #endif
1800 };
1801 
1802 // MethodData*
1803 //
1804 // A MethodData* holds information which has been collected about
1805 // a method.  Its layout looks like this:
1806 //
1807 // -----------------------------
1808 // | header                    |
1809 // | klass                     |
1810 // -----------------------------
1811 // | method                    |
1812 // | size of the MethodData* |
1813 // -----------------------------
1814 // | Data entries...           |
1815 // |   (variable size)         |
1816 // |                           |
1817 // .                           .
1818 // .                           .
1819 // .                           .
1820 // |                           |
1821 // -----------------------------
1822 //
1823 // The data entry area is a heterogeneous array of DataLayouts. Each
1824 // DataLayout in the array corresponds to a specific bytecode in the
1825 // method.  The entries in the array are sorted by the corresponding
1826 // bytecode.  Access to the data is via resource-allocated ProfileData,
1827 // which point to the underlying blocks of DataLayout structures.
1828 //
1829 // During interpretation, if profiling in enabled, the interpreter
1830 // maintains a method data pointer (mdp), which points at the entry
1831 // in the array corresponding to the current bci.  In the course of
1832 // intepretation, when a bytecode is encountered that has profile data
1833 // associated with it, the entry pointed to by mdp is updated, then the
1834 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1835 // is NULL to begin with, the interpreter assumes that the current method
1836 // is not (yet) being profiled.
1837 //
1838 // In MethodData* parlance, "dp" is a "data pointer", the actual address
1839 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1840 // from the base of the data entry array.  A "displacement" is the byte offset
1841 // in certain ProfileData objects that indicate the amount the mdp must be
1842 // adjusted in the event of a change in control flow.
1843 //
1844 
1845 class MethodData : public Metadata {
1846   friend class VMStructs;
1847 private:
1848   friend class ProfileData;
1849 
1850   // Back pointer to the Method*
1851   Method* _method;
1852 
1853   // Size of this oop in bytes
1854   int _size;
1855 
1856   // Cached hint for bci_to_dp and bci_to_data
1857   int _hint_di;
1858 
1859   MethodData(methodHandle method, int size, TRAPS);
1860 public:
1861   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
1862   MethodData() {}; // For ciMethodData
1863 
1864   bool is_methodData() const volatile { return true; }
1865 
1866   // Whole-method sticky bits and flags
1867   enum {
1868     _trap_hist_limit    = 18,   // decoupled from Deoptimization::Reason_LIMIT
1869     _trap_hist_mask     = max_jubyte,
1870     _extra_data_count   = 4     // extra DataLayout headers, for trap history
1871   }; // Public flag values
1872 private:
1873   uint _nof_decompiles;             // count of all nmethod removals
1874   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
1875   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
1876   union {
1877     intptr_t _align;
1878     u1 _array[_trap_hist_limit];
1879   } _trap_hist;
1880 
1881   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1882   intx              _eflags;          // flags on escape information
1883   intx              _arg_local;       // bit set of non-escaping arguments
1884   intx              _arg_stack;       // bit set of stack-allocatable arguments
1885   intx              _arg_returned;    // bit set of returned arguments
1886 
1887   int _creation_mileage;              // method mileage at MDO creation
1888 
1889   // How many invocations has this MDO seen?
1890   // These counters are used to determine the exact age of MDO.
1891   // We need those because in tiered a method can be concurrently
1892   // executed at different levels.
1893   InvocationCounter _invocation_counter;
1894   // Same for backedges.
1895   InvocationCounter _backedge_counter;
1896   // Counter values at the time profiling started.
1897   int               _invocation_counter_start;
1898   int               _backedge_counter_start;
1899   // Number of loops and blocks is computed when compiling the first
1900   // time with C1. It is used to determine if method is trivial.
1901   short             _num_loops;
1902   short             _num_blocks;
1903   // Highest compile level this method has ever seen.
1904   u1                _highest_comp_level;
1905   // Same for OSR level
1906   u1                _highest_osr_comp_level;
1907   // Does this method contain anything worth profiling?
1908   bool              _would_profile;
1909 
1910   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
1911   int _data_size;
1912 
1913   // data index for the area dedicated to parameters. -1 if no
1914   // parameter profiling.
1915   int _parameters_type_data_di;
1916 
1917   // Beginning of the data entries
1918   intptr_t _data[1];
1919 
1920   // Helper for size computation
1921   static int compute_data_size(BytecodeStream* stream);
1922   static int bytecode_cell_count(Bytecodes::Code code);
1923   static bool speculative_trap_bytecode(Bytecodes::Code code);
1924   enum { no_profile_data = -1, variable_cell_count = -2 };
1925 
1926   // Helper for initialization
1927   DataLayout* data_layout_at(int data_index) const {
1928     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
1929     return (DataLayout*) (((address)_data) + data_index);
1930   }
1931 
1932   // Initialize an individual data segment.  Returns the size of
1933   // the segment in bytes.
1934   int initialize_data(BytecodeStream* stream, int data_index);
1935 
1936   // Helper for data_at
1937   DataLayout* limit_data_position() const {
1938     return (DataLayout*)((address)data_base() + _data_size);
1939   }
1940   bool out_of_bounds(int data_index) const {
1941     return data_index >= data_size();
1942   }
1943 
1944   // Give each of the data entries a chance to perform specific
1945   // data initialization.
1946   void post_initialize(BytecodeStream* stream);
1947 
1948   // hint accessors
1949   int      hint_di() const  { return _hint_di; }
1950   void set_hint_di(int di)  {
1951     assert(!out_of_bounds(di), "hint_di out of bounds");
1952     _hint_di = di;
1953   }
1954   ProfileData* data_before(int bci) {
1955     // avoid SEGV on this edge case
1956     if (data_size() == 0)
1957       return NULL;
1958     int hint = hint_di();
1959     if (data_layout_at(hint)->bci() <= bci)
1960       return data_at(hint);
1961     return first_data();
1962   }
1963 
1964   // What is the index of the first data entry?
1965   int first_di() const { return 0; }
1966 
1967   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp);
1968   // Find or create an extra ProfileData:
1969   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
1970 
1971   // return the argument info cell
1972   ArgInfoData *arg_info();
1973 
1974   enum {
1975     no_type_profile = 0,
1976     type_profile_jsr292 = 1,
1977     type_profile_all = 2
1978   };
1979 
1980   static bool profile_jsr292(methodHandle m, int bci);
1981   static int profile_arguments_flag();
1982   static bool profile_arguments_jsr292_only();
1983   static bool profile_all_arguments();
1984   static bool profile_arguments_for_invoke(methodHandle m, int bci);
1985   static int profile_return_flag();
1986   static bool profile_all_return();
1987   static bool profile_return_for_invoke(methodHandle m, int bci);
1988   static int profile_parameters_flag();
1989   static bool profile_parameters_jsr292_only();
1990   static bool profile_all_parameters();
1991 
1992 public:
1993   static int header_size() {
1994     return sizeof(MethodData)/wordSize;
1995   }
1996 
1997   // Compute the size of a MethodData* before it is created.
1998   static int compute_allocation_size_in_bytes(methodHandle method);
1999   static int compute_allocation_size_in_words(methodHandle method);
2000   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2001 
2002   // Determine if a given bytecode can have profile information.
2003   static bool bytecode_has_profile(Bytecodes::Code code) {
2004     return bytecode_cell_count(code) != no_profile_data;
2005   }
2006 
2007   // reset into original state
2008   void init();
2009 
2010   // My size
2011   int size_in_bytes() const { return _size; }
2012   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2013 #if INCLUDE_SERVICES
2014   void collect_statistics(KlassSizeStats *sz) const;
2015 #endif
2016 
2017   int      creation_mileage() const  { return _creation_mileage; }
2018   void set_creation_mileage(int x)   { _creation_mileage = x; }
2019 
2020   int invocation_count() {
2021     if (invocation_counter()->carry()) {
2022       return InvocationCounter::count_limit;
2023     }
2024     return invocation_counter()->count();
2025   }
2026   int backedge_count() {
2027     if (backedge_counter()->carry()) {
2028       return InvocationCounter::count_limit;
2029     }
2030     return backedge_counter()->count();
2031   }
2032 
2033   int invocation_count_start() {
2034     if (invocation_counter()->carry()) {
2035       return 0;
2036     }
2037     return _invocation_counter_start;
2038   }
2039 
2040   int backedge_count_start() {
2041     if (backedge_counter()->carry()) {
2042       return 0;
2043     }
2044     return _backedge_counter_start;
2045   }
2046 
2047   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2048   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2049 
2050   void reset_start_counters() {
2051     _invocation_counter_start = invocation_count();
2052     _backedge_counter_start = backedge_count();
2053   }
2054 
2055   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2056   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2057 
2058   void set_would_profile(bool p)              { _would_profile = p;    }
2059   bool would_profile() const                  { return _would_profile; }
2060 
2061   int highest_comp_level() const              { return _highest_comp_level;      }
2062   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
2063   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
2064   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
2065 
2066   int num_loops() const                       { return _num_loops;  }
2067   void set_num_loops(int n)                   { _num_loops = n;     }
2068   int num_blocks() const                      { return _num_blocks; }
2069   void set_num_blocks(int n)                  { _num_blocks = n;    }
2070 
2071   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2072   static int mileage_of(Method* m);
2073 
2074   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2075   enum EscapeFlag {
2076     estimated    = 1 << 0,
2077     return_local = 1 << 1,
2078     return_allocated = 1 << 2,
2079     allocated_escapes = 1 << 3,
2080     unknown_modified = 1 << 4
2081   };
2082 
2083   intx eflags()                                  { return _eflags; }
2084   intx arg_local()                               { return _arg_local; }
2085   intx arg_stack()                               { return _arg_stack; }
2086   intx arg_returned()                            { return _arg_returned; }
2087   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2088                                                    assert(aid != NULL, "arg_info must be not null");
2089                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2090                                                    return aid->arg_modified(a); }
2091 
2092   void set_eflags(intx v)                        { _eflags = v; }
2093   void set_arg_local(intx v)                     { _arg_local = v; }
2094   void set_arg_stack(intx v)                     { _arg_stack = v; }
2095   void set_arg_returned(intx v)                  { _arg_returned = v; }
2096   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2097                                                    assert(aid != NULL, "arg_info must be not null");
2098                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2099                                                    aid->set_arg_modified(a, v); }
2100 
2101   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2102 
2103   // Location and size of data area
2104   address data_base() const {
2105     return (address) _data;
2106   }
2107   int data_size() const {
2108     return _data_size;
2109   }
2110 
2111   // Accessors
2112   Method* method() const { return _method; }
2113 
2114   // Get the data at an arbitrary (sort of) data index.
2115   ProfileData* data_at(int data_index) const;
2116 
2117   // Walk through the data in order.
2118   ProfileData* first_data() const { return data_at(first_di()); }
2119   ProfileData* next_data(ProfileData* current) const;
2120   bool is_valid(ProfileData* current) const { return current != NULL; }
2121 
2122   // Convert a dp (data pointer) to a di (data index).
2123   int dp_to_di(address dp) const {
2124     return dp - ((address)_data);
2125   }
2126 
2127   address di_to_dp(int di) {
2128     return (address)data_layout_at(di);
2129   }
2130 
2131   // bci to di/dp conversion.
2132   address bci_to_dp(int bci);
2133   int bci_to_di(int bci) {
2134     return dp_to_di(bci_to_dp(bci));
2135   }
2136 
2137   // Get the data at an arbitrary bci, or NULL if there is none.
2138   ProfileData* bci_to_data(int bci);
2139 
2140   // Same, but try to create an extra_data record if one is needed:
2141   ProfileData* allocate_bci_to_data(int bci, Method* m) {
2142     ProfileData* data = NULL;
2143     // If m not NULL, try to allocate a SpeculativeTrapData entry
2144     if (m == NULL) {
2145       data = bci_to_data(bci);
2146     }
2147     if (data != NULL) {
2148       return data;
2149     }
2150     data = bci_to_extra_data(bci, m, true);
2151     if (data != NULL) {
2152       return data;
2153     }
2154     // If SpeculativeTrapData allocation fails try to allocate a
2155     // regular entry
2156     data = bci_to_data(bci);
2157     if (data != NULL) {
2158       return data;
2159     }
2160     return bci_to_extra_data(bci, NULL, true);
2161   }
2162 
2163   // Add a handful of extra data records, for trap tracking.
2164   DataLayout* extra_data_base() const { return limit_data_position(); }
2165   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2166   int extra_data_size() const { return (address)extra_data_limit()
2167                                - (address)extra_data_base(); }
2168   static DataLayout* next_extra(DataLayout* dp);
2169 
2170   // Return (uint)-1 for overflow.
2171   uint trap_count(int reason) const {
2172     assert((uint)reason < _trap_hist_limit, "oob");
2173     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2174   }
2175   // For loops:
2176   static uint trap_reason_limit() { return _trap_hist_limit; }
2177   static uint trap_count_limit()  { return _trap_hist_mask; }
2178   uint inc_trap_count(int reason) {
2179     // Count another trap, anywhere in this method.
2180     assert(reason >= 0, "must be single trap");
2181     if ((uint)reason < _trap_hist_limit) {
2182       uint cnt1 = 1 + _trap_hist._array[reason];
2183       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2184         _trap_hist._array[reason] = cnt1;
2185         return cnt1;
2186       } else {
2187         return _trap_hist_mask + (++_nof_overflow_traps);
2188       }
2189     } else {
2190       // Could not represent the count in the histogram.
2191       return (++_nof_overflow_traps);
2192     }
2193   }
2194 
2195   uint overflow_trap_count() const {
2196     return _nof_overflow_traps;
2197   }
2198   uint overflow_recompile_count() const {
2199     return _nof_overflow_recompiles;
2200   }
2201   void inc_overflow_recompile_count() {
2202     _nof_overflow_recompiles += 1;
2203   }
2204   uint decompile_count() const {
2205     return _nof_decompiles;
2206   }
2207   void inc_decompile_count() {
2208     _nof_decompiles += 1;
2209     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2210       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2211     }
2212   }
2213 
2214   // Return pointer to area dedicated to parameters in MDO
2215   ParametersTypeData* parameters_type_data() const {
2216     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2217   }
2218 
2219   int parameters_type_data_di() const {
2220     assert(_parameters_type_data_di != -1, "no args type data");
2221     return _parameters_type_data_di;
2222   }
2223 
2224   // Support for code generation
2225   static ByteSize data_offset() {
2226     return byte_offset_of(MethodData, _data[0]);
2227   }
2228 
2229   static ByteSize invocation_counter_offset() {
2230     return byte_offset_of(MethodData, _invocation_counter);
2231   }
2232   static ByteSize backedge_counter_offset() {
2233     return byte_offset_of(MethodData, _backedge_counter);
2234   }
2235 
2236   static ByteSize parameters_type_data_di_offset() {
2237     return byte_offset_of(MethodData, _parameters_type_data_di);
2238   }
2239 
2240   // Deallocation support - no pointer fields to deallocate
2241   void deallocate_contents(ClassLoaderData* loader_data) {}
2242 
2243   // GC support
2244   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2245 
2246   // Printing
2247 #ifndef PRODUCT
2248   void print_on      (outputStream* st) const;
2249 #endif
2250   void print_value_on(outputStream* st) const;
2251 
2252 #ifndef PRODUCT
2253   // printing support for method data
2254   void print_data_on(outputStream* st) const;
2255 #endif
2256 
2257   const char* internal_name() const { return "{method data}"; }
2258 
2259   // verification
2260   void verify_on(outputStream* st);
2261   void verify_data_on(outputStream* st);
2262 
2263   static bool profile_parameters_for_method(methodHandle m);
2264   static bool profile_arguments();
2265   static bool profile_return();
2266   static bool profile_parameters();
2267   static bool profile_return_jsr292_only();
2268 
2269   void clean_method_data(BoolObjectClosure* is_alive);
2270 };
2271 
2272 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP