1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifndef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  69 #else
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74 #endif // IA32 || AMD64
  75   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  76   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  77   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  78   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  79   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  80   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  81   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  82   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  83   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  84   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  85   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  86   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  87   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  88   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  89   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  90   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  91   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  92   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
  93 };
  94 
  95 // Map ideal registers (machine types) to ideal types
  96 const Type *Type::mreg2type[_last_machine_leaf];
  97 
  98 // Map basic types to canonical Type* pointers.
  99 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 100 
 101 // Map basic types to constant-zero Types.
 102 const Type* Type::            _zero_type[T_CONFLICT+1];
 103 
 104 // Map basic types to array-body alias types.
 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 106 
 107 //=============================================================================
 108 // Convenience common pre-built types.
 109 const Type *Type::ABIO;         // State-of-machine only
 110 const Type *Type::BOTTOM;       // All values
 111 const Type *Type::CONTROL;      // Control only
 112 const Type *Type::DOUBLE;       // All doubles
 113 const Type *Type::FLOAT;        // All floats
 114 const Type *Type::HALF;         // Placeholder half of doublewide type
 115 const Type *Type::MEMORY;       // Abstract store only
 116 const Type *Type::RETURN_ADDRESS;
 117 const Type *Type::TOP;          // No values in set
 118 
 119 //------------------------------get_const_type---------------------------
 120 const Type* Type::get_const_type(ciType* type) {
 121   if (type == NULL) {
 122     return NULL;
 123   } else if (type->is_primitive_type()) {
 124     return get_const_basic_type(type->basic_type());
 125   } else {
 126     return TypeOopPtr::make_from_klass(type->as_klass());
 127   }
 128 }
 129 
 130 //---------------------------array_element_basic_type---------------------------------
 131 // Mapping to the array element's basic type.
 132 BasicType Type::array_element_basic_type() const {
 133   BasicType bt = basic_type();
 134   if (bt == T_INT) {
 135     if (this == TypeInt::INT)   return T_INT;
 136     if (this == TypeInt::CHAR)  return T_CHAR;
 137     if (this == TypeInt::BYTE)  return T_BYTE;
 138     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 139     if (this == TypeInt::SHORT) return T_SHORT;
 140     return T_VOID;
 141   }
 142   return bt;
 143 }
 144 
 145 //---------------------------get_typeflow_type---------------------------------
 146 // Import a type produced by ciTypeFlow.
 147 const Type* Type::get_typeflow_type(ciType* type) {
 148   switch (type->basic_type()) {
 149 
 150   case ciTypeFlow::StateVector::T_BOTTOM:
 151     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 152     return Type::BOTTOM;
 153 
 154   case ciTypeFlow::StateVector::T_TOP:
 155     assert(type == ciTypeFlow::StateVector::top_type(), "");
 156     return Type::TOP;
 157 
 158   case ciTypeFlow::StateVector::T_NULL:
 159     assert(type == ciTypeFlow::StateVector::null_type(), "");
 160     return TypePtr::NULL_PTR;
 161 
 162   case ciTypeFlow::StateVector::T_LONG2:
 163     // The ciTypeFlow pass pushes a long, then the half.
 164     // We do the same.
 165     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 166     return TypeInt::TOP;
 167 
 168   case ciTypeFlow::StateVector::T_DOUBLE2:
 169     // The ciTypeFlow pass pushes double, then the half.
 170     // Our convention is the same.
 171     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 172     return Type::TOP;
 173 
 174   case T_ADDRESS:
 175     assert(type->is_return_address(), "");
 176     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 177 
 178   default:
 179     // make sure we did not mix up the cases:
 180     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 181     assert(type != ciTypeFlow::StateVector::top_type(), "");
 182     assert(type != ciTypeFlow::StateVector::null_type(), "");
 183     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 184     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 185     assert(!type->is_return_address(), "");
 186 
 187     return Type::get_const_type(type);
 188   }
 189 }
 190 
 191 
 192 //-----------------------make_from_constant------------------------------------
 193 const Type* Type::make_from_constant(ciConstant constant,
 194                                      bool require_constant, bool is_autobox_cache) {
 195   switch (constant.basic_type()) {
 196   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 197   case T_CHAR:     return TypeInt::make(constant.as_char());
 198   case T_BYTE:     return TypeInt::make(constant.as_byte());
 199   case T_SHORT:    return TypeInt::make(constant.as_short());
 200   case T_INT:      return TypeInt::make(constant.as_int());
 201   case T_LONG:     return TypeLong::make(constant.as_long());
 202   case T_FLOAT:    return TypeF::make(constant.as_float());
 203   case T_DOUBLE:   return TypeD::make(constant.as_double());
 204   case T_ARRAY:
 205   case T_OBJECT:
 206     {
 207       // cases:
 208       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 209       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 210       // An oop is not scavengable if it is in the perm gen.
 211       ciObject* oop_constant = constant.as_object();
 212       if (oop_constant->is_null_object()) {
 213         return Type::get_zero_type(T_OBJECT);
 214       } else if (require_constant || oop_constant->should_be_constant()) {
 215         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 216       }
 217     }
 218   }
 219   // Fall through to failure
 220   return NULL;
 221 }
 222 
 223 
 224 //------------------------------make-------------------------------------------
 225 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 226 // and look for an existing copy in the type dictionary.
 227 const Type *Type::make( enum TYPES t ) {
 228   return (new Type(t))->hashcons();
 229 }
 230 
 231 //------------------------------cmp--------------------------------------------
 232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 233   if( t1->_base != t2->_base )
 234     return 1;                   // Missed badly
 235   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 236   return !t1->eq(t2);           // Return ZERO if equal
 237 }
 238 
 239 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 240   if (!include_speculative) {
 241     return remove_speculative();
 242   }
 243   return this;
 244 }
 245 
 246 //------------------------------hash-------------------------------------------
 247 int Type::uhash( const Type *const t ) {
 248   return t->hash();
 249 }
 250 
 251 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 252 
 253 //--------------------------Initialize_shared----------------------------------
 254 void Type::Initialize_shared(Compile* current) {
 255   // This method does not need to be locked because the first system
 256   // compilations (stub compilations) occur serially.  If they are
 257   // changed to proceed in parallel, then this section will need
 258   // locking.
 259 
 260   Arena* save = current->type_arena();
 261   Arena* shared_type_arena = new (mtCompiler)Arena();
 262 
 263   current->set_type_arena(shared_type_arena);
 264   _shared_type_dict =
 265     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 266                                   shared_type_arena, 128 );
 267   current->set_type_dict(_shared_type_dict);
 268 
 269   // Make shared pre-built types.
 270   CONTROL = make(Control);      // Control only
 271   TOP     = make(Top);          // No values in set
 272   MEMORY  = make(Memory);       // Abstract store only
 273   ABIO    = make(Abio);         // State-of-machine only
 274   RETURN_ADDRESS=make(Return_Address);
 275   FLOAT   = make(FloatBot);     // All floats
 276   DOUBLE  = make(DoubleBot);    // All doubles
 277   BOTTOM  = make(Bottom);       // Everything
 278   HALF    = make(Half);         // Placeholder half of doublewide type
 279 
 280   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 281   TypeF::ONE  = TypeF::make(1.0); // Float 1
 282 
 283   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 284   TypeD::ONE  = TypeD::make(1.0); // Double 1
 285 
 286   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 287   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 288   TypeInt::ONE     = TypeInt::make( 1);  //  1
 289   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 290   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 291   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 292   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 293   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 294   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 295   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 296   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 297   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 298   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 299   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 300   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 301   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 302   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 303   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 304   // CmpL is overloaded both as the bytecode computation returning
 305   // a trinary (-1,0,+1) integer result AND as an efficient long
 306   // compare returning optimizer ideal-type flags.
 307   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 308   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 309   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 310   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 311   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 312 
 313   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 314   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 315   TypeLong::ONE     = TypeLong::make( 1);        //  1
 316   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 317   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 318   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 319   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 320 
 321   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 322   fboth[0] = Type::CONTROL;
 323   fboth[1] = Type::CONTROL;
 324   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 325 
 326   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 327   ffalse[0] = Type::CONTROL;
 328   ffalse[1] = Type::TOP;
 329   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 330 
 331   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 332   fneither[0] = Type::TOP;
 333   fneither[1] = Type::TOP;
 334   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 335 
 336   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 337   ftrue[0] = Type::TOP;
 338   ftrue[1] = Type::CONTROL;
 339   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 340 
 341   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 342   floop[0] = Type::CONTROL;
 343   floop[1] = TypeInt::INT;
 344   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 345 
 346   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 347   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 348   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 349 
 350   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 351   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 352 
 353   const Type **fmembar = TypeTuple::fields(0);
 354   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 355 
 356   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 357   fsc[0] = TypeInt::CC;
 358   fsc[1] = Type::MEMORY;
 359   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 360 
 361   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 362   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 363   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 364   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 365                                            false, 0, oopDesc::mark_offset_in_bytes());
 366   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 367                                            false, 0, oopDesc::klass_offset_in_bytes());
 368   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
 369 
 370   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 371 
 372   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 373   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 374 
 375   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 376 
 377   mreg2type[Op_Node] = Type::BOTTOM;
 378   mreg2type[Op_Set ] = 0;
 379   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 380   mreg2type[Op_RegI] = TypeInt::INT;
 381   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 382   mreg2type[Op_RegF] = Type::FLOAT;
 383   mreg2type[Op_RegD] = Type::DOUBLE;
 384   mreg2type[Op_RegL] = TypeLong::LONG;
 385   mreg2type[Op_RegFlags] = TypeInt::CC;
 386 
 387   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 388 
 389   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 390 
 391 #ifdef _LP64
 392   if (UseCompressedOops) {
 393     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 394     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 395   } else
 396 #endif
 397   {
 398     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 399     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 400   }
 401   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 402   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 403   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 404   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 405   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 406   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 407   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 408 
 409   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 410   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 411   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 412   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 413   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 414   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 415   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 416   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 417   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 418   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 419   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 420   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 421 
 422   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 423   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 424 
 425   const Type **fi2c = TypeTuple::fields(2);
 426   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 427   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 428   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 429 
 430   const Type **intpair = TypeTuple::fields(2);
 431   intpair[0] = TypeInt::INT;
 432   intpair[1] = TypeInt::INT;
 433   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 434 
 435   const Type **longpair = TypeTuple::fields(2);
 436   longpair[0] = TypeLong::LONG;
 437   longpair[1] = TypeLong::LONG;
 438   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 439 
 440   const Type **intccpair = TypeTuple::fields(2);
 441   intccpair[0] = TypeInt::INT;
 442   intccpair[1] = TypeInt::CC;
 443   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 444 
 445   const Type **longccpair = TypeTuple::fields(2);
 446   longccpair[0] = TypeLong::LONG;
 447   longccpair[1] = TypeInt::CC;
 448   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 449 
 450   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 451   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 452   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 453   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 454   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 455   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 456   _const_basic_type[T_INT]         = TypeInt::INT;
 457   _const_basic_type[T_LONG]        = TypeLong::LONG;
 458   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 459   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 460   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 461   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 462   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 463   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 464   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 465 
 466   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 467   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 468   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 469   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 470   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 471   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 472   _zero_type[T_INT]         = TypeInt::ZERO;
 473   _zero_type[T_LONG]        = TypeLong::ZERO;
 474   _zero_type[T_FLOAT]       = TypeF::ZERO;
 475   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 476   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 477   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 478   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 479   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 480 
 481   // get_zero_type() should not happen for T_CONFLICT
 482   _zero_type[T_CONFLICT]= NULL;
 483 
 484   // Vector predefined types, it needs initialized _const_basic_type[].
 485   if (Matcher::vector_size_supported(T_BYTE,4)) {
 486     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 487   }
 488   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 489     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 490   }
 491   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 492     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 493   }
 494   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 495     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 496   }
 497   mreg2type[Op_VecS] = TypeVect::VECTS;
 498   mreg2type[Op_VecD] = TypeVect::VECTD;
 499   mreg2type[Op_VecX] = TypeVect::VECTX;
 500   mreg2type[Op_VecY] = TypeVect::VECTY;
 501 
 502   // Restore working type arena.
 503   current->set_type_arena(save);
 504   current->set_type_dict(NULL);
 505 }
 506 
 507 //------------------------------Initialize-------------------------------------
 508 void Type::Initialize(Compile* current) {
 509   assert(current->type_arena() != NULL, "must have created type arena");
 510 
 511   if (_shared_type_dict == NULL) {
 512     Initialize_shared(current);
 513   }
 514 
 515   Arena* type_arena = current->type_arena();
 516 
 517   // Create the hash-cons'ing dictionary with top-level storage allocation
 518   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 519   current->set_type_dict(tdic);
 520 
 521   // Transfer the shared types.
 522   DictI i(_shared_type_dict);
 523   for( ; i.test(); ++i ) {
 524     Type* t = (Type*)i._value;
 525     tdic->Insert(t,t);  // New Type, insert into Type table
 526   }
 527 }
 528 
 529 //------------------------------hashcons---------------------------------------
 530 // Do the hash-cons trick.  If the Type already exists in the type table,
 531 // delete the current Type and return the existing Type.  Otherwise stick the
 532 // current Type in the Type table.
 533 const Type *Type::hashcons(void) {
 534   debug_only(base());           // Check the assertion in Type::base().
 535   // Look up the Type in the Type dictionary
 536   Dict *tdic = type_dict();
 537   Type* old = (Type*)(tdic->Insert(this, this, false));
 538   if( old ) {                   // Pre-existing Type?
 539     if( old != this )           // Yes, this guy is not the pre-existing?
 540       delete this;              // Yes, Nuke this guy
 541     assert( old->_dual, "" );
 542     return old;                 // Return pre-existing
 543   }
 544 
 545   // Every type has a dual (to make my lattice symmetric).
 546   // Since we just discovered a new Type, compute its dual right now.
 547   assert( !_dual, "" );         // No dual yet
 548   _dual = xdual();              // Compute the dual
 549   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 550     _dual = this;
 551     return this;
 552   }
 553   assert( !_dual->_dual, "" );  // No reverse dual yet
 554   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 555   // New Type, insert into Type table
 556   tdic->Insert((void*)_dual,(void*)_dual);
 557   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 558 #ifdef ASSERT
 559   Type *dual_dual = (Type*)_dual->xdual();
 560   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 561   delete dual_dual;
 562 #endif
 563   return this;                  // Return new Type
 564 }
 565 
 566 //------------------------------eq---------------------------------------------
 567 // Structural equality check for Type representations
 568 bool Type::eq( const Type * ) const {
 569   return true;                  // Nothing else can go wrong
 570 }
 571 
 572 //------------------------------hash-------------------------------------------
 573 // Type-specific hashing function.
 574 int Type::hash(void) const {
 575   return _base;
 576 }
 577 
 578 //------------------------------is_finite--------------------------------------
 579 // Has a finite value
 580 bool Type::is_finite() const {
 581   return false;
 582 }
 583 
 584 //------------------------------is_nan-----------------------------------------
 585 // Is not a number (NaN)
 586 bool Type::is_nan()    const {
 587   return false;
 588 }
 589 
 590 //----------------------interface_vs_oop---------------------------------------
 591 #ifdef ASSERT
 592 bool Type::interface_vs_oop_helper(const Type *t) const {
 593   bool result = false;
 594 
 595   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 596   const TypePtr*    t_ptr =    t->make_ptr();
 597   if( this_ptr == NULL || t_ptr == NULL )
 598     return result;
 599 
 600   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 601   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 602   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 603     bool this_interface = this_inst->klass()->is_interface();
 604     bool    t_interface =    t_inst->klass()->is_interface();
 605     result = this_interface ^ t_interface;
 606   }
 607 
 608   return result;
 609 }
 610 
 611 bool Type::interface_vs_oop(const Type *t) const {
 612   if (interface_vs_oop_helper(t)) {
 613     return true;
 614   }
 615   // Now check the speculative parts as well
 616   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
 617   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
 618   if (this_spec != NULL && t_spec != NULL) {
 619     if (this_spec->interface_vs_oop_helper(t_spec)) {
 620       return true;
 621     }
 622     return false;
 623   }
 624   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 625     return true;
 626   }
 627   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 628     return true;
 629   }
 630   return false;
 631 }
 632 
 633 #endif
 634 
 635 //------------------------------meet-------------------------------------------
 636 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 637 // commutative and the lattice is symmetric.
 638 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 639   if (isa_narrowoop() && t->isa_narrowoop()) {
 640     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 641     return result->make_narrowoop();
 642   }
 643   if (isa_narrowklass() && t->isa_narrowklass()) {
 644     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 645     return result->make_narrowklass();
 646   }
 647 
 648   const Type *this_t = maybe_remove_speculative(include_speculative);
 649   t = t->maybe_remove_speculative(include_speculative);
 650 
 651   const Type *mt = this_t->xmeet(t);
 652   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 653   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 654 #ifdef ASSERT
 655   assert(mt == t->xmeet(this_t), "meet not commutative");
 656   const Type* dual_join = mt->_dual;
 657   const Type *t2t    = dual_join->xmeet(t->_dual);
 658   const Type *t2this = dual_join->xmeet(this_t->_dual);
 659 
 660   // Interface meet Oop is Not Symmetric:
 661   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 662   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 663 
 664   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 665     tty->print_cr("=== Meet Not Symmetric ===");
 666     tty->print("t   =                   ");              t->dump(); tty->cr();
 667     tty->print("this=                   ");         this_t->dump(); tty->cr();
 668     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 669 
 670     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 671     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 672     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 673 
 674     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 675     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 676 
 677     fatal("meet not symmetric" );
 678   }
 679 #endif
 680   return mt;
 681 }
 682 
 683 //------------------------------xmeet------------------------------------------
 684 // Compute the MEET of two types.  It returns a new Type object.
 685 const Type *Type::xmeet( const Type *t ) const {
 686   // Perform a fast test for common case; meeting the same types together.
 687   if( this == t ) return this;  // Meeting same type-rep?
 688 
 689   // Meeting TOP with anything?
 690   if( _base == Top ) return t;
 691 
 692   // Meeting BOTTOM with anything?
 693   if( _base == Bottom ) return BOTTOM;
 694 
 695   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 696   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 697   switch (t->base()) {  // Switch on original type
 698 
 699   // Cut in half the number of cases I must handle.  Only need cases for when
 700   // the given enum "t->type" is less than or equal to the local enum "type".
 701   case FloatCon:
 702   case DoubleCon:
 703   case Int:
 704   case Long:
 705     return t->xmeet(this);
 706 
 707   case OopPtr:
 708     return t->xmeet(this);
 709 
 710   case InstPtr:
 711     return t->xmeet(this);
 712 
 713   case MetadataPtr:
 714   case KlassPtr:
 715     return t->xmeet(this);
 716 
 717   case AryPtr:
 718     return t->xmeet(this);
 719 
 720   case NarrowOop:
 721     return t->xmeet(this);
 722 
 723   case NarrowKlass:
 724     return t->xmeet(this);
 725 
 726   case Bad:                     // Type check
 727   default:                      // Bogus type not in lattice
 728     typerr(t);
 729     return Type::BOTTOM;
 730 
 731   case Bottom:                  // Ye Olde Default
 732     return t;
 733 
 734   case FloatTop:
 735     if( _base == FloatTop ) return this;
 736   case FloatBot:                // Float
 737     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 738     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 739     typerr(t);
 740     return Type::BOTTOM;
 741 
 742   case DoubleTop:
 743     if( _base == DoubleTop ) return this;
 744   case DoubleBot:               // Double
 745     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 746     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 747     typerr(t);
 748     return Type::BOTTOM;
 749 
 750   // These next few cases must match exactly or it is a compile-time error.
 751   case Control:                 // Control of code
 752   case Abio:                    // State of world outside of program
 753   case Memory:
 754     if( _base == t->_base )  return this;
 755     typerr(t);
 756     return Type::BOTTOM;
 757 
 758   case Top:                     // Top of the lattice
 759     return this;
 760   }
 761 
 762   // The type is unchanged
 763   return this;
 764 }
 765 
 766 //-----------------------------filter------------------------------------------
 767 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 768   const Type* ft = join_helper(kills, include_speculative);
 769   if (ft->empty())
 770     return Type::TOP;           // Canonical empty value
 771   return ft;
 772 }
 773 
 774 //------------------------------xdual------------------------------------------
 775 // Compute dual right now.
 776 const Type::TYPES Type::dual_type[Type::lastype] = {
 777   Bad,          // Bad
 778   Control,      // Control
 779   Bottom,       // Top
 780   Bad,          // Int - handled in v-call
 781   Bad,          // Long - handled in v-call
 782   Half,         // Half
 783   Bad,          // NarrowOop - handled in v-call
 784   Bad,          // NarrowKlass - handled in v-call
 785 
 786   Bad,          // Tuple - handled in v-call
 787   Bad,          // Array - handled in v-call
 788   Bad,          // VectorS - handled in v-call
 789   Bad,          // VectorD - handled in v-call
 790   Bad,          // VectorX - handled in v-call
 791   Bad,          // VectorY - handled in v-call
 792 
 793   Bad,          // AnyPtr - handled in v-call
 794   Bad,          // RawPtr - handled in v-call
 795   Bad,          // OopPtr - handled in v-call
 796   Bad,          // InstPtr - handled in v-call
 797   Bad,          // AryPtr - handled in v-call
 798 
 799   Bad,          //  MetadataPtr - handled in v-call
 800   Bad,          // KlassPtr - handled in v-call
 801 
 802   Bad,          // Function - handled in v-call
 803   Abio,         // Abio
 804   Return_Address,// Return_Address
 805   Memory,       // Memory
 806   FloatBot,     // FloatTop
 807   FloatCon,     // FloatCon
 808   FloatTop,     // FloatBot
 809   DoubleBot,    // DoubleTop
 810   DoubleCon,    // DoubleCon
 811   DoubleTop,    // DoubleBot
 812   Top           // Bottom
 813 };
 814 
 815 const Type *Type::xdual() const {
 816   // Note: the base() accessor asserts the sanity of _base.
 817   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 818   return new Type(_type_info[_base].dual_type);
 819 }
 820 
 821 //------------------------------has_memory-------------------------------------
 822 bool Type::has_memory() const {
 823   Type::TYPES tx = base();
 824   if (tx == Memory) return true;
 825   if (tx == Tuple) {
 826     const TypeTuple *t = is_tuple();
 827     for (uint i=0; i < t->cnt(); i++) {
 828       tx = t->field_at(i)->base();
 829       if (tx == Memory)  return true;
 830     }
 831   }
 832   return false;
 833 }
 834 
 835 #ifndef PRODUCT
 836 //------------------------------dump2------------------------------------------
 837 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 838   st->print(_type_info[_base].msg);
 839 }
 840 
 841 //------------------------------dump-------------------------------------------
 842 void Type::dump_on(outputStream *st) const {
 843   ResourceMark rm;
 844   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 845   dump2(d,1, st);
 846   if (is_ptr_to_narrowoop()) {
 847     st->print(" [narrow]");
 848   } else if (is_ptr_to_narrowklass()) {
 849     st->print(" [narrowklass]");
 850   }
 851 }
 852 #endif
 853 
 854 //------------------------------singleton--------------------------------------
 855 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 856 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 857 bool Type::singleton(void) const {
 858   return _base == Top || _base == Half;
 859 }
 860 
 861 //------------------------------empty------------------------------------------
 862 // TRUE if Type is a type with no values, FALSE otherwise.
 863 bool Type::empty(void) const {
 864   switch (_base) {
 865   case DoubleTop:
 866   case FloatTop:
 867   case Top:
 868     return true;
 869 
 870   case Half:
 871   case Abio:
 872   case Return_Address:
 873   case Memory:
 874   case Bottom:
 875   case FloatBot:
 876   case DoubleBot:
 877     return false;  // never a singleton, therefore never empty
 878   }
 879 
 880   ShouldNotReachHere();
 881   return false;
 882 }
 883 
 884 //------------------------------dump_stats-------------------------------------
 885 // Dump collected statistics to stderr
 886 #ifndef PRODUCT
 887 void Type::dump_stats() {
 888   tty->print("Types made: %d\n", type_dict()->Size());
 889 }
 890 #endif
 891 
 892 //------------------------------typerr-----------------------------------------
 893 void Type::typerr( const Type *t ) const {
 894 #ifndef PRODUCT
 895   tty->print("\nError mixing types: ");
 896   dump();
 897   tty->print(" and ");
 898   t->dump();
 899   tty->print("\n");
 900 #endif
 901   ShouldNotReachHere();
 902 }
 903 
 904 
 905 //=============================================================================
 906 // Convenience common pre-built types.
 907 const TypeF *TypeF::ZERO;       // Floating point zero
 908 const TypeF *TypeF::ONE;        // Floating point one
 909 
 910 //------------------------------make-------------------------------------------
 911 // Create a float constant
 912 const TypeF *TypeF::make(float f) {
 913   return (TypeF*)(new TypeF(f))->hashcons();
 914 }
 915 
 916 //------------------------------meet-------------------------------------------
 917 // Compute the MEET of two types.  It returns a new Type object.
 918 const Type *TypeF::xmeet( const Type *t ) const {
 919   // Perform a fast test for common case; meeting the same types together.
 920   if( this == t ) return this;  // Meeting same type-rep?
 921 
 922   // Current "this->_base" is FloatCon
 923   switch (t->base()) {          // Switch on original type
 924   case AnyPtr:                  // Mixing with oops happens when javac
 925   case RawPtr:                  // reuses local variables
 926   case OopPtr:
 927   case InstPtr:
 928   case AryPtr:
 929   case MetadataPtr:
 930   case KlassPtr:
 931   case NarrowOop:
 932   case NarrowKlass:
 933   case Int:
 934   case Long:
 935   case DoubleTop:
 936   case DoubleCon:
 937   case DoubleBot:
 938   case Bottom:                  // Ye Olde Default
 939     return Type::BOTTOM;
 940 
 941   case FloatBot:
 942     return t;
 943 
 944   default:                      // All else is a mistake
 945     typerr(t);
 946 
 947   case FloatCon:                // Float-constant vs Float-constant?
 948     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 949                                 // must compare bitwise as positive zero, negative zero and NaN have
 950                                 // all the same representation in C++
 951       return FLOAT;             // Return generic float
 952                                 // Equal constants
 953   case Top:
 954   case FloatTop:
 955     break;                      // Return the float constant
 956   }
 957   return this;                  // Return the float constant
 958 }
 959 
 960 //------------------------------xdual------------------------------------------
 961 // Dual: symmetric
 962 const Type *TypeF::xdual() const {
 963   return this;
 964 }
 965 
 966 //------------------------------eq---------------------------------------------
 967 // Structural equality check for Type representations
 968 bool TypeF::eq( const Type *t ) const {
 969   if( g_isnan(_f) ||
 970       g_isnan(t->getf()) ) {
 971     // One or both are NANs.  If both are NANs return true, else false.
 972     return (g_isnan(_f) && g_isnan(t->getf()));
 973   }
 974   if (_f == t->getf()) {
 975     // (NaN is impossible at this point, since it is not equal even to itself)
 976     if (_f == 0.0) {
 977       // difference between positive and negative zero
 978       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 979     }
 980     return true;
 981   }
 982   return false;
 983 }
 984 
 985 //------------------------------hash-------------------------------------------
 986 // Type-specific hashing function.
 987 int TypeF::hash(void) const {
 988   return *(int*)(&_f);
 989 }
 990 
 991 //------------------------------is_finite--------------------------------------
 992 // Has a finite value
 993 bool TypeF::is_finite() const {
 994   return g_isfinite(getf()) != 0;
 995 }
 996 
 997 //------------------------------is_nan-----------------------------------------
 998 // Is not a number (NaN)
 999 bool TypeF::is_nan()    const {
1000   return g_isnan(getf()) != 0;
1001 }
1002 
1003 //------------------------------dump2------------------------------------------
1004 // Dump float constant Type
1005 #ifndef PRODUCT
1006 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1007   Type::dump2(d,depth, st);
1008   st->print("%f", _f);
1009 }
1010 #endif
1011 
1012 //------------------------------singleton--------------------------------------
1013 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1014 // constants (Ldi nodes).  Singletons are integer, float or double constants
1015 // or a single symbol.
1016 bool TypeF::singleton(void) const {
1017   return true;                  // Always a singleton
1018 }
1019 
1020 bool TypeF::empty(void) const {
1021   return false;                 // always exactly a singleton
1022 }
1023 
1024 //=============================================================================
1025 // Convenience common pre-built types.
1026 const TypeD *TypeD::ZERO;       // Floating point zero
1027 const TypeD *TypeD::ONE;        // Floating point one
1028 
1029 //------------------------------make-------------------------------------------
1030 const TypeD *TypeD::make(double d) {
1031   return (TypeD*)(new TypeD(d))->hashcons();
1032 }
1033 
1034 //------------------------------meet-------------------------------------------
1035 // Compute the MEET of two types.  It returns a new Type object.
1036 const Type *TypeD::xmeet( const Type *t ) const {
1037   // Perform a fast test for common case; meeting the same types together.
1038   if( this == t ) return this;  // Meeting same type-rep?
1039 
1040   // Current "this->_base" is DoubleCon
1041   switch (t->base()) {          // Switch on original type
1042   case AnyPtr:                  // Mixing with oops happens when javac
1043   case RawPtr:                  // reuses local variables
1044   case OopPtr:
1045   case InstPtr:
1046   case AryPtr:
1047   case MetadataPtr:
1048   case KlassPtr:
1049   case NarrowOop:
1050   case NarrowKlass:
1051   case Int:
1052   case Long:
1053   case FloatTop:
1054   case FloatCon:
1055   case FloatBot:
1056   case Bottom:                  // Ye Olde Default
1057     return Type::BOTTOM;
1058 
1059   case DoubleBot:
1060     return t;
1061 
1062   default:                      // All else is a mistake
1063     typerr(t);
1064 
1065   case DoubleCon:               // Double-constant vs Double-constant?
1066     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1067       return DOUBLE;            // Return generic double
1068   case Top:
1069   case DoubleTop:
1070     break;
1071   }
1072   return this;                  // Return the double constant
1073 }
1074 
1075 //------------------------------xdual------------------------------------------
1076 // Dual: symmetric
1077 const Type *TypeD::xdual() const {
1078   return this;
1079 }
1080 
1081 //------------------------------eq---------------------------------------------
1082 // Structural equality check for Type representations
1083 bool TypeD::eq( const Type *t ) const {
1084   if( g_isnan(_d) ||
1085       g_isnan(t->getd()) ) {
1086     // One or both are NANs.  If both are NANs return true, else false.
1087     return (g_isnan(_d) && g_isnan(t->getd()));
1088   }
1089   if (_d == t->getd()) {
1090     // (NaN is impossible at this point, since it is not equal even to itself)
1091     if (_d == 0.0) {
1092       // difference between positive and negative zero
1093       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1094     }
1095     return true;
1096   }
1097   return false;
1098 }
1099 
1100 //------------------------------hash-------------------------------------------
1101 // Type-specific hashing function.
1102 int TypeD::hash(void) const {
1103   return *(int*)(&_d);
1104 }
1105 
1106 //------------------------------is_finite--------------------------------------
1107 // Has a finite value
1108 bool TypeD::is_finite() const {
1109   return g_isfinite(getd()) != 0;
1110 }
1111 
1112 //------------------------------is_nan-----------------------------------------
1113 // Is not a number (NaN)
1114 bool TypeD::is_nan()    const {
1115   return g_isnan(getd()) != 0;
1116 }
1117 
1118 //------------------------------dump2------------------------------------------
1119 // Dump double constant Type
1120 #ifndef PRODUCT
1121 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1122   Type::dump2(d,depth,st);
1123   st->print("%f", _d);
1124 }
1125 #endif
1126 
1127 //------------------------------singleton--------------------------------------
1128 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1129 // constants (Ldi nodes).  Singletons are integer, float or double constants
1130 // or a single symbol.
1131 bool TypeD::singleton(void) const {
1132   return true;                  // Always a singleton
1133 }
1134 
1135 bool TypeD::empty(void) const {
1136   return false;                 // always exactly a singleton
1137 }
1138 
1139 //=============================================================================
1140 // Convience common pre-built types.
1141 const TypeInt *TypeInt::MINUS_1;// -1
1142 const TypeInt *TypeInt::ZERO;   // 0
1143 const TypeInt *TypeInt::ONE;    // 1
1144 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1145 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1146 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1147 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1148 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1149 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1150 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1151 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1152 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1153 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1154 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1155 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1156 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1157 const TypeInt *TypeInt::INT;    // 32-bit integers
1158 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1159 
1160 //------------------------------TypeInt----------------------------------------
1161 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1162 }
1163 
1164 //------------------------------make-------------------------------------------
1165 const TypeInt *TypeInt::make( jint lo ) {
1166   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1167 }
1168 
1169 static int normalize_int_widen( jint lo, jint hi, int w ) {
1170   // Certain normalizations keep us sane when comparing types.
1171   // The 'SMALLINT' covers constants and also CC and its relatives.
1172   if (lo <= hi) {
1173     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1174     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1175   } else {
1176     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1177     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1178   }
1179   return w;
1180 }
1181 
1182 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1183   w = normalize_int_widen(lo, hi, w);
1184   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1185 }
1186 
1187 //------------------------------meet-------------------------------------------
1188 // Compute the MEET of two types.  It returns a new Type representation object
1189 // with reference count equal to the number of Types pointing at it.
1190 // Caller should wrap a Types around it.
1191 const Type *TypeInt::xmeet( const Type *t ) const {
1192   // Perform a fast test for common case; meeting the same types together.
1193   if( this == t ) return this;  // Meeting same type?
1194 
1195   // Currently "this->_base" is a TypeInt
1196   switch (t->base()) {          // Switch on original type
1197   case AnyPtr:                  // Mixing with oops happens when javac
1198   case RawPtr:                  // reuses local variables
1199   case OopPtr:
1200   case InstPtr:
1201   case AryPtr:
1202   case MetadataPtr:
1203   case KlassPtr:
1204   case NarrowOop:
1205   case NarrowKlass:
1206   case Long:
1207   case FloatTop:
1208   case FloatCon:
1209   case FloatBot:
1210   case DoubleTop:
1211   case DoubleCon:
1212   case DoubleBot:
1213   case Bottom:                  // Ye Olde Default
1214     return Type::BOTTOM;
1215   default:                      // All else is a mistake
1216     typerr(t);
1217   case Top:                     // No change
1218     return this;
1219   case Int:                     // Int vs Int?
1220     break;
1221   }
1222 
1223   // Expand covered set
1224   const TypeInt *r = t->is_int();
1225   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1226 }
1227 
1228 //------------------------------xdual------------------------------------------
1229 // Dual: reverse hi & lo; flip widen
1230 const Type *TypeInt::xdual() const {
1231   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1232   return new TypeInt(_hi,_lo,w);
1233 }
1234 
1235 //------------------------------widen------------------------------------------
1236 // Only happens for optimistic top-down optimizations.
1237 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1238   // Coming from TOP or such; no widening
1239   if( old->base() != Int ) return this;
1240   const TypeInt *ot = old->is_int();
1241 
1242   // If new guy is equal to old guy, no widening
1243   if( _lo == ot->_lo && _hi == ot->_hi )
1244     return old;
1245 
1246   // If new guy contains old, then we widened
1247   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1248     // New contains old
1249     // If new guy is already wider than old, no widening
1250     if( _widen > ot->_widen ) return this;
1251     // If old guy was a constant, do not bother
1252     if (ot->_lo == ot->_hi)  return this;
1253     // Now widen new guy.
1254     // Check for widening too far
1255     if (_widen == WidenMax) {
1256       int max = max_jint;
1257       int min = min_jint;
1258       if (limit->isa_int()) {
1259         max = limit->is_int()->_hi;
1260         min = limit->is_int()->_lo;
1261       }
1262       if (min < _lo && _hi < max) {
1263         // If neither endpoint is extremal yet, push out the endpoint
1264         // which is closer to its respective limit.
1265         if (_lo >= 0 ||                 // easy common case
1266             (juint)(_lo - min) >= (juint)(max - _hi)) {
1267           // Try to widen to an unsigned range type of 31 bits:
1268           return make(_lo, max, WidenMax);
1269         } else {
1270           return make(min, _hi, WidenMax);
1271         }
1272       }
1273       return TypeInt::INT;
1274     }
1275     // Returned widened new guy
1276     return make(_lo,_hi,_widen+1);
1277   }
1278 
1279   // If old guy contains new, then we probably widened too far & dropped to
1280   // bottom.  Return the wider fellow.
1281   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1282     return old;
1283 
1284   //fatal("Integer value range is not subset");
1285   //return this;
1286   return TypeInt::INT;
1287 }
1288 
1289 //------------------------------narrow---------------------------------------
1290 // Only happens for pessimistic optimizations.
1291 const Type *TypeInt::narrow( const Type *old ) const {
1292   if (_lo >= _hi)  return this;   // already narrow enough
1293   if (old == NULL)  return this;
1294   const TypeInt* ot = old->isa_int();
1295   if (ot == NULL)  return this;
1296   jint olo = ot->_lo;
1297   jint ohi = ot->_hi;
1298 
1299   // If new guy is equal to old guy, no narrowing
1300   if (_lo == olo && _hi == ohi)  return old;
1301 
1302   // If old guy was maximum range, allow the narrowing
1303   if (olo == min_jint && ohi == max_jint)  return this;
1304 
1305   if (_lo < olo || _hi > ohi)
1306     return this;                // doesn't narrow; pretty wierd
1307 
1308   // The new type narrows the old type, so look for a "death march".
1309   // See comments on PhaseTransform::saturate.
1310   juint nrange = _hi - _lo;
1311   juint orange = ohi - olo;
1312   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1313     // Use the new type only if the range shrinks a lot.
1314     // We do not want the optimizer computing 2^31 point by point.
1315     return old;
1316   }
1317 
1318   return this;
1319 }
1320 
1321 //-----------------------------filter------------------------------------------
1322 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1323   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1324   if (ft == NULL || ft->empty())
1325     return Type::TOP;           // Canonical empty value
1326   if (ft->_widen < this->_widen) {
1327     // Do not allow the value of kill->_widen to affect the outcome.
1328     // The widen bits must be allowed to run freely through the graph.
1329     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1330   }
1331   return ft;
1332 }
1333 
1334 //------------------------------eq---------------------------------------------
1335 // Structural equality check for Type representations
1336 bool TypeInt::eq( const Type *t ) const {
1337   const TypeInt *r = t->is_int(); // Handy access
1338   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1339 }
1340 
1341 //------------------------------hash-------------------------------------------
1342 // Type-specific hashing function.
1343 int TypeInt::hash(void) const {
1344   return _lo+_hi+_widen+(int)Type::Int;
1345 }
1346 
1347 //------------------------------is_finite--------------------------------------
1348 // Has a finite value
1349 bool TypeInt::is_finite() const {
1350   return true;
1351 }
1352 
1353 //------------------------------dump2------------------------------------------
1354 // Dump TypeInt
1355 #ifndef PRODUCT
1356 static const char* intname(char* buf, jint n) {
1357   if (n == min_jint)
1358     return "min";
1359   else if (n < min_jint + 10000)
1360     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1361   else if (n == max_jint)
1362     return "max";
1363   else if (n > max_jint - 10000)
1364     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1365   else
1366     sprintf(buf, INT32_FORMAT, n);
1367   return buf;
1368 }
1369 
1370 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1371   char buf[40], buf2[40];
1372   if (_lo == min_jint && _hi == max_jint)
1373     st->print("int");
1374   else if (is_con())
1375     st->print("int:%s", intname(buf, get_con()));
1376   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1377     st->print("bool");
1378   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1379     st->print("byte");
1380   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1381     st->print("char");
1382   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1383     st->print("short");
1384   else if (_hi == max_jint)
1385     st->print("int:>=%s", intname(buf, _lo));
1386   else if (_lo == min_jint)
1387     st->print("int:<=%s", intname(buf, _hi));
1388   else
1389     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1390 
1391   if (_widen != 0 && this != TypeInt::INT)
1392     st->print(":%.*s", _widen, "wwww");
1393 }
1394 #endif
1395 
1396 //------------------------------singleton--------------------------------------
1397 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1398 // constants.
1399 bool TypeInt::singleton(void) const {
1400   return _lo >= _hi;
1401 }
1402 
1403 bool TypeInt::empty(void) const {
1404   return _lo > _hi;
1405 }
1406 
1407 //=============================================================================
1408 // Convenience common pre-built types.
1409 const TypeLong *TypeLong::MINUS_1;// -1
1410 const TypeLong *TypeLong::ZERO; // 0
1411 const TypeLong *TypeLong::ONE;  // 1
1412 const TypeLong *TypeLong::POS;  // >=0
1413 const TypeLong *TypeLong::LONG; // 64-bit integers
1414 const TypeLong *TypeLong::INT;  // 32-bit subrange
1415 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1416 
1417 //------------------------------TypeLong---------------------------------------
1418 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1419 }
1420 
1421 //------------------------------make-------------------------------------------
1422 const TypeLong *TypeLong::make( jlong lo ) {
1423   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1424 }
1425 
1426 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1427   // Certain normalizations keep us sane when comparing types.
1428   // The 'SMALLINT' covers constants.
1429   if (lo <= hi) {
1430     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1431     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1432   } else {
1433     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1434     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1435   }
1436   return w;
1437 }
1438 
1439 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1440   w = normalize_long_widen(lo, hi, w);
1441   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1442 }
1443 
1444 
1445 //------------------------------meet-------------------------------------------
1446 // Compute the MEET of two types.  It returns a new Type representation object
1447 // with reference count equal to the number of Types pointing at it.
1448 // Caller should wrap a Types around it.
1449 const Type *TypeLong::xmeet( const Type *t ) const {
1450   // Perform a fast test for common case; meeting the same types together.
1451   if( this == t ) return this;  // Meeting same type?
1452 
1453   // Currently "this->_base" is a TypeLong
1454   switch (t->base()) {          // Switch on original type
1455   case AnyPtr:                  // Mixing with oops happens when javac
1456   case RawPtr:                  // reuses local variables
1457   case OopPtr:
1458   case InstPtr:
1459   case AryPtr:
1460   case MetadataPtr:
1461   case KlassPtr:
1462   case NarrowOop:
1463   case NarrowKlass:
1464   case Int:
1465   case FloatTop:
1466   case FloatCon:
1467   case FloatBot:
1468   case DoubleTop:
1469   case DoubleCon:
1470   case DoubleBot:
1471   case Bottom:                  // Ye Olde Default
1472     return Type::BOTTOM;
1473   default:                      // All else is a mistake
1474     typerr(t);
1475   case Top:                     // No change
1476     return this;
1477   case Long:                    // Long vs Long?
1478     break;
1479   }
1480 
1481   // Expand covered set
1482   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1483   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1484 }
1485 
1486 //------------------------------xdual------------------------------------------
1487 // Dual: reverse hi & lo; flip widen
1488 const Type *TypeLong::xdual() const {
1489   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1490   return new TypeLong(_hi,_lo,w);
1491 }
1492 
1493 //------------------------------widen------------------------------------------
1494 // Only happens for optimistic top-down optimizations.
1495 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1496   // Coming from TOP or such; no widening
1497   if( old->base() != Long ) return this;
1498   const TypeLong *ot = old->is_long();
1499 
1500   // If new guy is equal to old guy, no widening
1501   if( _lo == ot->_lo && _hi == ot->_hi )
1502     return old;
1503 
1504   // If new guy contains old, then we widened
1505   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1506     // New contains old
1507     // If new guy is already wider than old, no widening
1508     if( _widen > ot->_widen ) return this;
1509     // If old guy was a constant, do not bother
1510     if (ot->_lo == ot->_hi)  return this;
1511     // Now widen new guy.
1512     // Check for widening too far
1513     if (_widen == WidenMax) {
1514       jlong max = max_jlong;
1515       jlong min = min_jlong;
1516       if (limit->isa_long()) {
1517         max = limit->is_long()->_hi;
1518         min = limit->is_long()->_lo;
1519       }
1520       if (min < _lo && _hi < max) {
1521         // If neither endpoint is extremal yet, push out the endpoint
1522         // which is closer to its respective limit.
1523         if (_lo >= 0 ||                 // easy common case
1524             (julong)(_lo - min) >= (julong)(max - _hi)) {
1525           // Try to widen to an unsigned range type of 32/63 bits:
1526           if (max >= max_juint && _hi < max_juint)
1527             return make(_lo, max_juint, WidenMax);
1528           else
1529             return make(_lo, max, WidenMax);
1530         } else {
1531           return make(min, _hi, WidenMax);
1532         }
1533       }
1534       return TypeLong::LONG;
1535     }
1536     // Returned widened new guy
1537     return make(_lo,_hi,_widen+1);
1538   }
1539 
1540   // If old guy contains new, then we probably widened too far & dropped to
1541   // bottom.  Return the wider fellow.
1542   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1543     return old;
1544 
1545   //  fatal("Long value range is not subset");
1546   // return this;
1547   return TypeLong::LONG;
1548 }
1549 
1550 //------------------------------narrow----------------------------------------
1551 // Only happens for pessimistic optimizations.
1552 const Type *TypeLong::narrow( const Type *old ) const {
1553   if (_lo >= _hi)  return this;   // already narrow enough
1554   if (old == NULL)  return this;
1555   const TypeLong* ot = old->isa_long();
1556   if (ot == NULL)  return this;
1557   jlong olo = ot->_lo;
1558   jlong ohi = ot->_hi;
1559 
1560   // If new guy is equal to old guy, no narrowing
1561   if (_lo == olo && _hi == ohi)  return old;
1562 
1563   // If old guy was maximum range, allow the narrowing
1564   if (olo == min_jlong && ohi == max_jlong)  return this;
1565 
1566   if (_lo < olo || _hi > ohi)
1567     return this;                // doesn't narrow; pretty wierd
1568 
1569   // The new type narrows the old type, so look for a "death march".
1570   // See comments on PhaseTransform::saturate.
1571   julong nrange = _hi - _lo;
1572   julong orange = ohi - olo;
1573   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1574     // Use the new type only if the range shrinks a lot.
1575     // We do not want the optimizer computing 2^31 point by point.
1576     return old;
1577   }
1578 
1579   return this;
1580 }
1581 
1582 //-----------------------------filter------------------------------------------
1583 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1584   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1585   if (ft == NULL || ft->empty())
1586     return Type::TOP;           // Canonical empty value
1587   if (ft->_widen < this->_widen) {
1588     // Do not allow the value of kill->_widen to affect the outcome.
1589     // The widen bits must be allowed to run freely through the graph.
1590     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1591   }
1592   return ft;
1593 }
1594 
1595 //------------------------------eq---------------------------------------------
1596 // Structural equality check for Type representations
1597 bool TypeLong::eq( const Type *t ) const {
1598   const TypeLong *r = t->is_long(); // Handy access
1599   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1600 }
1601 
1602 //------------------------------hash-------------------------------------------
1603 // Type-specific hashing function.
1604 int TypeLong::hash(void) const {
1605   return (int)(_lo+_hi+_widen+(int)Type::Long);
1606 }
1607 
1608 //------------------------------is_finite--------------------------------------
1609 // Has a finite value
1610 bool TypeLong::is_finite() const {
1611   return true;
1612 }
1613 
1614 //------------------------------dump2------------------------------------------
1615 // Dump TypeLong
1616 #ifndef PRODUCT
1617 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1618   if (n > x) {
1619     if (n >= x + 10000)  return NULL;
1620     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1621   } else if (n < x) {
1622     if (n <= x - 10000)  return NULL;
1623     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1624   } else {
1625     return xname;
1626   }
1627   return buf;
1628 }
1629 
1630 static const char* longname(char* buf, jlong n) {
1631   const char* str;
1632   if (n == min_jlong)
1633     return "min";
1634   else if (n < min_jlong + 10000)
1635     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1636   else if (n == max_jlong)
1637     return "max";
1638   else if (n > max_jlong - 10000)
1639     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1640   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1641     return str;
1642   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1643     return str;
1644   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1645     return str;
1646   else
1647     sprintf(buf, JLONG_FORMAT, n);
1648   return buf;
1649 }
1650 
1651 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1652   char buf[80], buf2[80];
1653   if (_lo == min_jlong && _hi == max_jlong)
1654     st->print("long");
1655   else if (is_con())
1656     st->print("long:%s", longname(buf, get_con()));
1657   else if (_hi == max_jlong)
1658     st->print("long:>=%s", longname(buf, _lo));
1659   else if (_lo == min_jlong)
1660     st->print("long:<=%s", longname(buf, _hi));
1661   else
1662     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1663 
1664   if (_widen != 0 && this != TypeLong::LONG)
1665     st->print(":%.*s", _widen, "wwww");
1666 }
1667 #endif
1668 
1669 //------------------------------singleton--------------------------------------
1670 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1671 // constants
1672 bool TypeLong::singleton(void) const {
1673   return _lo >= _hi;
1674 }
1675 
1676 bool TypeLong::empty(void) const {
1677   return _lo > _hi;
1678 }
1679 
1680 //=============================================================================
1681 // Convenience common pre-built types.
1682 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1683 const TypeTuple *TypeTuple::IFFALSE;
1684 const TypeTuple *TypeTuple::IFTRUE;
1685 const TypeTuple *TypeTuple::IFNEITHER;
1686 const TypeTuple *TypeTuple::LOOPBODY;
1687 const TypeTuple *TypeTuple::MEMBAR;
1688 const TypeTuple *TypeTuple::STORECONDITIONAL;
1689 const TypeTuple *TypeTuple::START_I2C;
1690 const TypeTuple *TypeTuple::INT_PAIR;
1691 const TypeTuple *TypeTuple::LONG_PAIR;
1692 const TypeTuple *TypeTuple::INT_CC_PAIR;
1693 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1694 
1695 
1696 //------------------------------make-------------------------------------------
1697 // Make a TypeTuple from the range of a method signature
1698 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1699   ciType* return_type = sig->return_type();
1700   uint total_fields = TypeFunc::Parms + return_type->size();
1701   const Type **field_array = fields(total_fields);
1702   switch (return_type->basic_type()) {
1703   case T_LONG:
1704     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1705     field_array[TypeFunc::Parms+1] = Type::HALF;
1706     break;
1707   case T_DOUBLE:
1708     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1709     field_array[TypeFunc::Parms+1] = Type::HALF;
1710     break;
1711   case T_OBJECT:
1712   case T_ARRAY:
1713   case T_BOOLEAN:
1714   case T_CHAR:
1715   case T_FLOAT:
1716   case T_BYTE:
1717   case T_SHORT:
1718   case T_INT:
1719     field_array[TypeFunc::Parms] = get_const_type(return_type);
1720     break;
1721   case T_VOID:
1722     break;
1723   default:
1724     ShouldNotReachHere();
1725   }
1726   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1727 }
1728 
1729 // Make a TypeTuple from the domain of a method signature
1730 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1731   uint total_fields = TypeFunc::Parms + sig->size();
1732 
1733   uint pos = TypeFunc::Parms;
1734   const Type **field_array;
1735   if (recv != NULL) {
1736     total_fields++;
1737     field_array = fields(total_fields);
1738     // Use get_const_type here because it respects UseUniqueSubclasses:
1739     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1740   } else {
1741     field_array = fields(total_fields);
1742   }
1743 
1744   int i = 0;
1745   while (pos < total_fields) {
1746     ciType* type = sig->type_at(i);
1747 
1748     switch (type->basic_type()) {
1749     case T_LONG:
1750       field_array[pos++] = TypeLong::LONG;
1751       field_array[pos++] = Type::HALF;
1752       break;
1753     case T_DOUBLE:
1754       field_array[pos++] = Type::DOUBLE;
1755       field_array[pos++] = Type::HALF;
1756       break;
1757     case T_OBJECT:
1758     case T_ARRAY:
1759     case T_BOOLEAN:
1760     case T_CHAR:
1761     case T_FLOAT:
1762     case T_BYTE:
1763     case T_SHORT:
1764     case T_INT:
1765       field_array[pos++] = get_const_type(type);
1766       break;
1767     default:
1768       ShouldNotReachHere();
1769     }
1770     i++;
1771   }
1772   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1773 }
1774 
1775 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1776   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1777 }
1778 
1779 //------------------------------fields-----------------------------------------
1780 // Subroutine call type with space allocated for argument types
1781 const Type **TypeTuple::fields( uint arg_cnt ) {
1782   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1783   flds[TypeFunc::Control  ] = Type::CONTROL;
1784   flds[TypeFunc::I_O      ] = Type::ABIO;
1785   flds[TypeFunc::Memory   ] = Type::MEMORY;
1786   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1787   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1788 
1789   return flds;
1790 }
1791 
1792 //------------------------------meet-------------------------------------------
1793 // Compute the MEET of two types.  It returns a new Type object.
1794 const Type *TypeTuple::xmeet( const Type *t ) const {
1795   // Perform a fast test for common case; meeting the same types together.
1796   if( this == t ) return this;  // Meeting same type-rep?
1797 
1798   // Current "this->_base" is Tuple
1799   switch (t->base()) {          // switch on original type
1800 
1801   case Bottom:                  // Ye Olde Default
1802     return t;
1803 
1804   default:                      // All else is a mistake
1805     typerr(t);
1806 
1807   case Tuple: {                 // Meeting 2 signatures?
1808     const TypeTuple *x = t->is_tuple();
1809     assert( _cnt == x->_cnt, "" );
1810     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1811     for( uint i=0; i<_cnt; i++ )
1812       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1813     return TypeTuple::make(_cnt,fields);
1814   }
1815   case Top:
1816     break;
1817   }
1818   return this;                  // Return the double constant
1819 }
1820 
1821 //------------------------------xdual------------------------------------------
1822 // Dual: compute field-by-field dual
1823 const Type *TypeTuple::xdual() const {
1824   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1825   for( uint i=0; i<_cnt; i++ )
1826     fields[i] = _fields[i]->dual();
1827   return new TypeTuple(_cnt,fields);
1828 }
1829 
1830 //------------------------------eq---------------------------------------------
1831 // Structural equality check for Type representations
1832 bool TypeTuple::eq( const Type *t ) const {
1833   const TypeTuple *s = (const TypeTuple *)t;
1834   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1835   for (uint i = 0; i < _cnt; i++)
1836     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1837       return false;             // Missed
1838   return true;
1839 }
1840 
1841 //------------------------------hash-------------------------------------------
1842 // Type-specific hashing function.
1843 int TypeTuple::hash(void) const {
1844   intptr_t sum = _cnt;
1845   for( uint i=0; i<_cnt; i++ )
1846     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1847   return sum;
1848 }
1849 
1850 //------------------------------dump2------------------------------------------
1851 // Dump signature Type
1852 #ifndef PRODUCT
1853 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1854   st->print("{");
1855   if( !depth || d[this] ) {     // Check for recursive print
1856     st->print("...}");
1857     return;
1858   }
1859   d.Insert((void*)this, (void*)this);   // Stop recursion
1860   if( _cnt ) {
1861     uint i;
1862     for( i=0; i<_cnt-1; i++ ) {
1863       st->print("%d:", i);
1864       _fields[i]->dump2(d, depth-1, st);
1865       st->print(", ");
1866     }
1867     st->print("%d:", i);
1868     _fields[i]->dump2(d, depth-1, st);
1869   }
1870   st->print("}");
1871 }
1872 #endif
1873 
1874 //------------------------------singleton--------------------------------------
1875 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1876 // constants (Ldi nodes).  Singletons are integer, float or double constants
1877 // or a single symbol.
1878 bool TypeTuple::singleton(void) const {
1879   return false;                 // Never a singleton
1880 }
1881 
1882 bool TypeTuple::empty(void) const {
1883   for( uint i=0; i<_cnt; i++ ) {
1884     if (_fields[i]->empty())  return true;
1885   }
1886   return false;
1887 }
1888 
1889 //=============================================================================
1890 // Convenience common pre-built types.
1891 
1892 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1893   // Certain normalizations keep us sane when comparing types.
1894   // We do not want arrayOop variables to differ only by the wideness
1895   // of their index types.  Pick minimum wideness, since that is the
1896   // forced wideness of small ranges anyway.
1897   if (size->_widen != Type::WidenMin)
1898     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1899   else
1900     return size;
1901 }
1902 
1903 //------------------------------make-------------------------------------------
1904 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1905   if (UseCompressedOops && elem->isa_oopptr()) {
1906     elem = elem->make_narrowoop();
1907   }
1908   size = normalize_array_size(size);
1909   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1910 }
1911 
1912 //------------------------------meet-------------------------------------------
1913 // Compute the MEET of two types.  It returns a new Type object.
1914 const Type *TypeAry::xmeet( const Type *t ) const {
1915   // Perform a fast test for common case; meeting the same types together.
1916   if( this == t ) return this;  // Meeting same type-rep?
1917 
1918   // Current "this->_base" is Ary
1919   switch (t->base()) {          // switch on original type
1920 
1921   case Bottom:                  // Ye Olde Default
1922     return t;
1923 
1924   default:                      // All else is a mistake
1925     typerr(t);
1926 
1927   case Array: {                 // Meeting 2 arrays?
1928     const TypeAry *a = t->is_ary();
1929     return TypeAry::make(_elem->meet_speculative(a->_elem),
1930                          _size->xmeet(a->_size)->is_int(),
1931                          _stable & a->_stable);
1932   }
1933   case Top:
1934     break;
1935   }
1936   return this;                  // Return the double constant
1937 }
1938 
1939 //------------------------------xdual------------------------------------------
1940 // Dual: compute field-by-field dual
1941 const Type *TypeAry::xdual() const {
1942   const TypeInt* size_dual = _size->dual()->is_int();
1943   size_dual = normalize_array_size(size_dual);
1944   return new TypeAry(_elem->dual(), size_dual, !_stable);
1945 }
1946 
1947 //------------------------------eq---------------------------------------------
1948 // Structural equality check for Type representations
1949 bool TypeAry::eq( const Type *t ) const {
1950   const TypeAry *a = (const TypeAry*)t;
1951   return _elem == a->_elem &&
1952     _stable == a->_stable &&
1953     _size == a->_size;
1954 }
1955 
1956 //------------------------------hash-------------------------------------------
1957 // Type-specific hashing function.
1958 int TypeAry::hash(void) const {
1959   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1960 }
1961 
1962 /**
1963  * Return same type without a speculative part in the element
1964  */
1965 const Type* TypeAry::remove_speculative() const {
1966   return make(_elem->remove_speculative(), _size, _stable);
1967 }
1968 
1969 //----------------------interface_vs_oop---------------------------------------
1970 #ifdef ASSERT
1971 bool TypeAry::interface_vs_oop(const Type *t) const {
1972   const TypeAry* t_ary = t->is_ary();
1973   if (t_ary) {
1974     return _elem->interface_vs_oop(t_ary->_elem);
1975   }
1976   return false;
1977 }
1978 #endif
1979 
1980 //------------------------------dump2------------------------------------------
1981 #ifndef PRODUCT
1982 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1983   if (_stable)  st->print("stable:");
1984   _elem->dump2(d, depth, st);
1985   st->print("[");
1986   _size->dump2(d, depth, st);
1987   st->print("]");
1988 }
1989 #endif
1990 
1991 //------------------------------singleton--------------------------------------
1992 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1993 // constants (Ldi nodes).  Singletons are integer, float or double constants
1994 // or a single symbol.
1995 bool TypeAry::singleton(void) const {
1996   return false;                 // Never a singleton
1997 }
1998 
1999 bool TypeAry::empty(void) const {
2000   return _elem->empty() || _size->empty();
2001 }
2002 
2003 //--------------------------ary_must_be_exact----------------------------------
2004 bool TypeAry::ary_must_be_exact() const {
2005   if (!UseExactTypes)       return false;
2006   // This logic looks at the element type of an array, and returns true
2007   // if the element type is either a primitive or a final instance class.
2008   // In such cases, an array built on this ary must have no subclasses.
2009   if (_elem == BOTTOM)      return false;  // general array not exact
2010   if (_elem == TOP   )      return false;  // inverted general array not exact
2011   const TypeOopPtr*  toop = NULL;
2012   if (UseCompressedOops && _elem->isa_narrowoop()) {
2013     toop = _elem->make_ptr()->isa_oopptr();
2014   } else {
2015     toop = _elem->isa_oopptr();
2016   }
2017   if (!toop)                return true;   // a primitive type, like int
2018   ciKlass* tklass = toop->klass();
2019   if (tklass == NULL)       return false;  // unloaded class
2020   if (!tklass->is_loaded()) return false;  // unloaded class
2021   const TypeInstPtr* tinst;
2022   if (_elem->isa_narrowoop())
2023     tinst = _elem->make_ptr()->isa_instptr();
2024   else
2025     tinst = _elem->isa_instptr();
2026   if (tinst)
2027     return tklass->as_instance_klass()->is_final();
2028   const TypeAryPtr*  tap;
2029   if (_elem->isa_narrowoop())
2030     tap = _elem->make_ptr()->isa_aryptr();
2031   else
2032     tap = _elem->isa_aryptr();
2033   if (tap)
2034     return tap->ary()->ary_must_be_exact();
2035   return false;
2036 }
2037 
2038 //==============================TypeVect=======================================
2039 // Convenience common pre-built types.
2040 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2041 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2042 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2043 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2044 
2045 //------------------------------make-------------------------------------------
2046 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2047   BasicType elem_bt = elem->array_element_basic_type();
2048   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2049   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2050   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2051   int size = length * type2aelembytes(elem_bt);
2052   switch (Matcher::vector_ideal_reg(size)) {
2053   case Op_VecS:
2054     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2055   case Op_VecD:
2056   case Op_RegD:
2057     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2058   case Op_VecX:
2059     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2060   case Op_VecY:
2061     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2062   }
2063  ShouldNotReachHere();
2064   return NULL;
2065 }
2066 
2067 //------------------------------meet-------------------------------------------
2068 // Compute the MEET of two types.  It returns a new Type object.
2069 const Type *TypeVect::xmeet( const Type *t ) const {
2070   // Perform a fast test for common case; meeting the same types together.
2071   if( this == t ) return this;  // Meeting same type-rep?
2072 
2073   // Current "this->_base" is Vector
2074   switch (t->base()) {          // switch on original type
2075 
2076   case Bottom:                  // Ye Olde Default
2077     return t;
2078 
2079   default:                      // All else is a mistake
2080     typerr(t);
2081 
2082   case VectorS:
2083   case VectorD:
2084   case VectorX:
2085   case VectorY: {                // Meeting 2 vectors?
2086     const TypeVect* v = t->is_vect();
2087     assert(  base() == v->base(), "");
2088     assert(length() == v->length(), "");
2089     assert(element_basic_type() == v->element_basic_type(), "");
2090     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2091   }
2092   case Top:
2093     break;
2094   }
2095   return this;
2096 }
2097 
2098 //------------------------------xdual------------------------------------------
2099 // Dual: compute field-by-field dual
2100 const Type *TypeVect::xdual() const {
2101   return new TypeVect(base(), _elem->dual(), _length);
2102 }
2103 
2104 //------------------------------eq---------------------------------------------
2105 // Structural equality check for Type representations
2106 bool TypeVect::eq(const Type *t) const {
2107   const TypeVect *v = t->is_vect();
2108   return (_elem == v->_elem) && (_length == v->_length);
2109 }
2110 
2111 //------------------------------hash-------------------------------------------
2112 // Type-specific hashing function.
2113 int TypeVect::hash(void) const {
2114   return (intptr_t)_elem + (intptr_t)_length;
2115 }
2116 
2117 //------------------------------singleton--------------------------------------
2118 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2119 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2120 // constant value (when vector is created with Replicate code).
2121 bool TypeVect::singleton(void) const {
2122 // There is no Con node for vectors yet.
2123 //  return _elem->singleton();
2124   return false;
2125 }
2126 
2127 bool TypeVect::empty(void) const {
2128   return _elem->empty();
2129 }
2130 
2131 //------------------------------dump2------------------------------------------
2132 #ifndef PRODUCT
2133 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2134   switch (base()) {
2135   case VectorS:
2136     st->print("vectors["); break;
2137   case VectorD:
2138     st->print("vectord["); break;
2139   case VectorX:
2140     st->print("vectorx["); break;
2141   case VectorY:
2142     st->print("vectory["); break;
2143   default:
2144     ShouldNotReachHere();
2145   }
2146   st->print("%d]:{", _length);
2147   _elem->dump2(d, depth, st);
2148   st->print("}");
2149 }
2150 #endif
2151 
2152 
2153 //=============================================================================
2154 // Convenience common pre-built types.
2155 const TypePtr *TypePtr::NULL_PTR;
2156 const TypePtr *TypePtr::NOTNULL;
2157 const TypePtr *TypePtr::BOTTOM;
2158 
2159 //------------------------------meet-------------------------------------------
2160 // Meet over the PTR enum
2161 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2162   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2163   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2164   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2165   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2166   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2167   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2168   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2169 };
2170 
2171 //------------------------------make-------------------------------------------
2172 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2173   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2174 }
2175 
2176 //------------------------------cast_to_ptr_type-------------------------------
2177 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2178   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2179   if( ptr == _ptr ) return this;
2180   return make(_base, ptr, _offset);
2181 }
2182 
2183 //------------------------------get_con----------------------------------------
2184 intptr_t TypePtr::get_con() const {
2185   assert( _ptr == Null, "" );
2186   return _offset;
2187 }
2188 
2189 //------------------------------meet-------------------------------------------
2190 // Compute the MEET of two types.  It returns a new Type object.
2191 const Type *TypePtr::xmeet( const Type *t ) const {
2192   // Perform a fast test for common case; meeting the same types together.
2193   if( this == t ) return this;  // Meeting same type-rep?
2194 
2195   // Current "this->_base" is AnyPtr
2196   switch (t->base()) {          // switch on original type
2197   case Int:                     // Mixing ints & oops happens when javac
2198   case Long:                    // reuses local variables
2199   case FloatTop:
2200   case FloatCon:
2201   case FloatBot:
2202   case DoubleTop:
2203   case DoubleCon:
2204   case DoubleBot:
2205   case NarrowOop:
2206   case NarrowKlass:
2207   case Bottom:                  // Ye Olde Default
2208     return Type::BOTTOM;
2209   case Top:
2210     return this;
2211 
2212   case AnyPtr: {                // Meeting to AnyPtrs
2213     const TypePtr *tp = t->is_ptr();
2214     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2215   }
2216   case RawPtr:                  // For these, flip the call around to cut down
2217   case OopPtr:
2218   case InstPtr:                 // on the cases I have to handle.
2219   case AryPtr:
2220   case MetadataPtr:
2221   case KlassPtr:
2222     return t->xmeet(this);      // Call in reverse direction
2223   default:                      // All else is a mistake
2224     typerr(t);
2225 
2226   }
2227   return this;
2228 }
2229 
2230 //------------------------------meet_offset------------------------------------
2231 int TypePtr::meet_offset( int offset ) const {
2232   // Either is 'TOP' offset?  Return the other offset!
2233   if( _offset == OffsetTop ) return offset;
2234   if( offset == OffsetTop ) return _offset;
2235   // If either is different, return 'BOTTOM' offset
2236   if( _offset != offset ) return OffsetBot;
2237   return _offset;
2238 }
2239 
2240 //------------------------------dual_offset------------------------------------
2241 int TypePtr::dual_offset( ) const {
2242   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2243   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2244   return _offset;               // Map everything else into self
2245 }
2246 
2247 //------------------------------xdual------------------------------------------
2248 // Dual: compute field-by-field dual
2249 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2250   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2251 };
2252 const Type *TypePtr::xdual() const {
2253   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2254 }
2255 
2256 //------------------------------xadd_offset------------------------------------
2257 int TypePtr::xadd_offset( intptr_t offset ) const {
2258   // Adding to 'TOP' offset?  Return 'TOP'!
2259   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2260   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2261   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2262   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2263   offset += (intptr_t)_offset;
2264   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2265 
2266   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2267   // It is possible to construct a negative offset during PhaseCCP
2268 
2269   return (int)offset;        // Sum valid offsets
2270 }
2271 
2272 //------------------------------add_offset-------------------------------------
2273 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2274   return make( AnyPtr, _ptr, xadd_offset(offset) );
2275 }
2276 
2277 //------------------------------eq---------------------------------------------
2278 // Structural equality check for Type representations
2279 bool TypePtr::eq( const Type *t ) const {
2280   const TypePtr *a = (const TypePtr*)t;
2281   return _ptr == a->ptr() && _offset == a->offset();
2282 }
2283 
2284 //------------------------------hash-------------------------------------------
2285 // Type-specific hashing function.
2286 int TypePtr::hash(void) const {
2287   return _ptr + _offset;
2288 }
2289 
2290 //------------------------------dump2------------------------------------------
2291 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2292   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2293 };
2294 
2295 #ifndef PRODUCT
2296 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2297   if( _ptr == Null ) st->print("NULL");
2298   else st->print("%s *", ptr_msg[_ptr]);
2299   if( _offset == OffsetTop ) st->print("+top");
2300   else if( _offset == OffsetBot ) st->print("+bot");
2301   else if( _offset ) st->print("+%d", _offset);
2302 }
2303 #endif
2304 
2305 //------------------------------singleton--------------------------------------
2306 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2307 // constants
2308 bool TypePtr::singleton(void) const {
2309   // TopPTR, Null, AnyNull, Constant are all singletons
2310   return (_offset != OffsetBot) && !below_centerline(_ptr);
2311 }
2312 
2313 bool TypePtr::empty(void) const {
2314   return (_offset == OffsetTop) || above_centerline(_ptr);
2315 }
2316 
2317 //=============================================================================
2318 // Convenience common pre-built types.
2319 const TypeRawPtr *TypeRawPtr::BOTTOM;
2320 const TypeRawPtr *TypeRawPtr::NOTNULL;
2321 
2322 //------------------------------make-------------------------------------------
2323 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2324   assert( ptr != Constant, "what is the constant?" );
2325   assert( ptr != Null, "Use TypePtr for NULL" );
2326   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2327 }
2328 
2329 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2330   assert( bits, "Use TypePtr for NULL" );
2331   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2332 }
2333 
2334 //------------------------------cast_to_ptr_type-------------------------------
2335 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2336   assert( ptr != Constant, "what is the constant?" );
2337   assert( ptr != Null, "Use TypePtr for NULL" );
2338   assert( _bits==0, "Why cast a constant address?");
2339   if( ptr == _ptr ) return this;
2340   return make(ptr);
2341 }
2342 
2343 //------------------------------get_con----------------------------------------
2344 intptr_t TypeRawPtr::get_con() const {
2345   assert( _ptr == Null || _ptr == Constant, "" );
2346   return (intptr_t)_bits;
2347 }
2348 
2349 //------------------------------meet-------------------------------------------
2350 // Compute the MEET of two types.  It returns a new Type object.
2351 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2352   // Perform a fast test for common case; meeting the same types together.
2353   if( this == t ) return this;  // Meeting same type-rep?
2354 
2355   // Current "this->_base" is RawPtr
2356   switch( t->base() ) {         // switch on original type
2357   case Bottom:                  // Ye Olde Default
2358     return t;
2359   case Top:
2360     return this;
2361   case AnyPtr:                  // Meeting to AnyPtrs
2362     break;
2363   case RawPtr: {                // might be top, bot, any/not or constant
2364     enum PTR tptr = t->is_ptr()->ptr();
2365     enum PTR ptr = meet_ptr( tptr );
2366     if( ptr == Constant ) {     // Cannot be equal constants, so...
2367       if( tptr == Constant && _ptr != Constant)  return t;
2368       if( _ptr == Constant && tptr != Constant)  return this;
2369       ptr = NotNull;            // Fall down in lattice
2370     }
2371     return make( ptr );
2372   }
2373 
2374   case OopPtr:
2375   case InstPtr:
2376   case AryPtr:
2377   case MetadataPtr:
2378   case KlassPtr:
2379     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2380   default:                      // All else is a mistake
2381     typerr(t);
2382   }
2383 
2384   // Found an AnyPtr type vs self-RawPtr type
2385   const TypePtr *tp = t->is_ptr();
2386   switch (tp->ptr()) {
2387   case TypePtr::TopPTR:  return this;
2388   case TypePtr::BotPTR:  return t;
2389   case TypePtr::Null:
2390     if( _ptr == TypePtr::TopPTR ) return t;
2391     return TypeRawPtr::BOTTOM;
2392   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2393   case TypePtr::AnyNull:
2394     if( _ptr == TypePtr::Constant) return this;
2395     return make( meet_ptr(TypePtr::AnyNull) );
2396   default: ShouldNotReachHere();
2397   }
2398   return this;
2399 }
2400 
2401 //------------------------------xdual------------------------------------------
2402 // Dual: compute field-by-field dual
2403 const Type *TypeRawPtr::xdual() const {
2404   return new TypeRawPtr( dual_ptr(), _bits );
2405 }
2406 
2407 //------------------------------add_offset-------------------------------------
2408 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2409   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2410   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2411   if( offset == 0 ) return this; // No change
2412   switch (_ptr) {
2413   case TypePtr::TopPTR:
2414   case TypePtr::BotPTR:
2415   case TypePtr::NotNull:
2416     return this;
2417   case TypePtr::Null:
2418   case TypePtr::Constant: {
2419     address bits = _bits+offset;
2420     if ( bits == 0 ) return TypePtr::NULL_PTR;
2421     return make( bits );
2422   }
2423   default:  ShouldNotReachHere();
2424   }
2425   return NULL;                  // Lint noise
2426 }
2427 
2428 //------------------------------eq---------------------------------------------
2429 // Structural equality check for Type representations
2430 bool TypeRawPtr::eq( const Type *t ) const {
2431   const TypeRawPtr *a = (const TypeRawPtr*)t;
2432   return _bits == a->_bits && TypePtr::eq(t);
2433 }
2434 
2435 //------------------------------hash-------------------------------------------
2436 // Type-specific hashing function.
2437 int TypeRawPtr::hash(void) const {
2438   return (intptr_t)_bits + TypePtr::hash();
2439 }
2440 
2441 //------------------------------dump2------------------------------------------
2442 #ifndef PRODUCT
2443 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2444   if( _ptr == Constant )
2445     st->print(INTPTR_FORMAT, _bits);
2446   else
2447     st->print("rawptr:%s", ptr_msg[_ptr]);
2448 }
2449 #endif
2450 
2451 //=============================================================================
2452 // Convenience common pre-built type.
2453 const TypeOopPtr *TypeOopPtr::BOTTOM;
2454 
2455 //------------------------------TypeOopPtr-------------------------------------
2456 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
2457   : TypePtr(t, ptr, offset),
2458     _const_oop(o), _klass(k),
2459     _klass_is_exact(xk),
2460     _is_ptr_to_narrowoop(false),
2461     _is_ptr_to_narrowklass(false),
2462     _is_ptr_to_boxed_value(false),
2463     _instance_id(instance_id),
2464     _speculative(speculative) {
2465   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2466       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2467     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2468   }
2469 #ifdef _LP64
2470   if (_offset != 0) {
2471     if (_offset == oopDesc::klass_offset_in_bytes()) {
2472       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2473     } else if (klass() == NULL) {
2474       // Array with unknown body type
2475       assert(this->isa_aryptr(), "only arrays without klass");
2476       _is_ptr_to_narrowoop = UseCompressedOops;
2477     } else if (this->isa_aryptr()) {
2478       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2479                              _offset != arrayOopDesc::length_offset_in_bytes());
2480     } else if (klass()->is_instance_klass()) {
2481       ciInstanceKlass* ik = klass()->as_instance_klass();
2482       ciField* field = NULL;
2483       if (this->isa_klassptr()) {
2484         // Perm objects don't use compressed references
2485       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2486         // unsafe access
2487         _is_ptr_to_narrowoop = UseCompressedOops;
2488       } else { // exclude unsafe ops
2489         assert(this->isa_instptr(), "must be an instance ptr.");
2490 
2491         if (klass() == ciEnv::current()->Class_klass() &&
2492             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2493              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2494           // Special hidden fields from the Class.
2495           assert(this->isa_instptr(), "must be an instance ptr.");
2496           _is_ptr_to_narrowoop = false;
2497         } else if (klass() == ciEnv::current()->Class_klass() &&
2498                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2499           // Static fields
2500           assert(o != NULL, "must be constant");
2501           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2502           ciField* field = k->get_field_by_offset(_offset, true);
2503           assert(field != NULL, "missing field");
2504           BasicType basic_elem_type = field->layout_type();
2505           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2506                                                        basic_elem_type == T_ARRAY);
2507         } else {
2508           // Instance fields which contains a compressed oop references.
2509           field = ik->get_field_by_offset(_offset, false);
2510           if (field != NULL) {
2511             BasicType basic_elem_type = field->layout_type();
2512             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2513                                                          basic_elem_type == T_ARRAY);
2514           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2515             // Compile::find_alias_type() cast exactness on all types to verify
2516             // that it does not affect alias type.
2517             _is_ptr_to_narrowoop = UseCompressedOops;
2518           } else {
2519             // Type for the copy start in LibraryCallKit::inline_native_clone().
2520             _is_ptr_to_narrowoop = UseCompressedOops;
2521           }
2522         }
2523       }
2524     }
2525   }
2526 #endif
2527 }
2528 
2529 //------------------------------make-------------------------------------------
2530 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2531                                    int offset, int instance_id, const TypeOopPtr* speculative) {
2532   assert(ptr != Constant, "no constant generic pointers");
2533   ciKlass*  k = Compile::current()->env()->Object_klass();
2534   bool      xk = false;
2535   ciObject* o = NULL;
2536   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
2537 }
2538 
2539 
2540 //------------------------------cast_to_ptr_type-------------------------------
2541 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2542   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2543   if( ptr == _ptr ) return this;
2544   return make(ptr, _offset, _instance_id, _speculative);
2545 }
2546 
2547 //-----------------------------cast_to_instance_id----------------------------
2548 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2549   // There are no instances of a general oop.
2550   // Return self unchanged.
2551   return this;
2552 }
2553 
2554 //-----------------------------cast_to_exactness-------------------------------
2555 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2556   // There is no such thing as an exact general oop.
2557   // Return self unchanged.
2558   return this;
2559 }
2560 
2561 
2562 //------------------------------as_klass_type----------------------------------
2563 // Return the klass type corresponding to this instance or array type.
2564 // It is the type that is loaded from an object of this type.
2565 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2566   ciKlass* k = klass();
2567   bool    xk = klass_is_exact();
2568   if (k == NULL)
2569     return TypeKlassPtr::OBJECT;
2570   else
2571     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2572 }
2573 
2574 const Type *TypeOopPtr::xmeet(const Type *t) const {
2575   const Type* res = xmeet_helper(t);
2576   if (res->isa_oopptr() == NULL) {
2577     return res;
2578   }
2579 
2580   const TypeOopPtr* res_oopptr = res->is_oopptr();
2581   if (res_oopptr->speculative() != NULL) {
2582     // type->speculative() == NULL means that speculation is no better
2583     // than type, i.e. type->speculative() == type. So there are 2
2584     // ways to represent the fact that we have no useful speculative
2585     // data and we should use a single one to be able to test for
2586     // equality between types. Check whether type->speculative() ==
2587     // type and set speculative to NULL if it is the case.
2588     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
2589       return res_oopptr->remove_speculative();
2590     }
2591   }
2592 
2593   return res;
2594 }
2595 
2596 //------------------------------meet-------------------------------------------
2597 // Compute the MEET of two types.  It returns a new Type object.
2598 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2599   // Perform a fast test for common case; meeting the same types together.
2600   if( this == t ) return this;  // Meeting same type-rep?
2601 
2602   // Current "this->_base" is OopPtr
2603   switch (t->base()) {          // switch on original type
2604 
2605   case Int:                     // Mixing ints & oops happens when javac
2606   case Long:                    // reuses local variables
2607   case FloatTop:
2608   case FloatCon:
2609   case FloatBot:
2610   case DoubleTop:
2611   case DoubleCon:
2612   case DoubleBot:
2613   case NarrowOop:
2614   case NarrowKlass:
2615   case Bottom:                  // Ye Olde Default
2616     return Type::BOTTOM;
2617   case Top:
2618     return this;
2619 
2620   default:                      // All else is a mistake
2621     typerr(t);
2622 
2623   case RawPtr:
2624   case MetadataPtr:
2625   case KlassPtr:
2626     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2627 
2628   case AnyPtr: {
2629     // Found an AnyPtr type vs self-OopPtr type
2630     const TypePtr *tp = t->is_ptr();
2631     int offset = meet_offset(tp->offset());
2632     PTR ptr = meet_ptr(tp->ptr());
2633     switch (tp->ptr()) {
2634     case Null:
2635       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2636       // else fall through:
2637     case TopPTR:
2638     case AnyNull: {
2639       int instance_id = meet_instance_id(InstanceTop);
2640       const TypeOopPtr* speculative = _speculative;
2641       return make(ptr, offset, instance_id, speculative);
2642     }
2643     case BotPTR:
2644     case NotNull:
2645       return TypePtr::make(AnyPtr, ptr, offset);
2646     default: typerr(t);
2647     }
2648   }
2649 
2650   case OopPtr: {                 // Meeting to other OopPtrs
2651     const TypeOopPtr *tp = t->is_oopptr();
2652     int instance_id = meet_instance_id(tp->instance_id());
2653     const TypeOopPtr* speculative = xmeet_speculative(tp);
2654     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
2655   }
2656 
2657   case InstPtr:                  // For these, flip the call around to cut down
2658   case AryPtr:
2659     return t->xmeet(this);      // Call in reverse direction
2660 
2661   } // End of switch
2662   return this;                  // Return the double constant
2663 }
2664 
2665 
2666 //------------------------------xdual------------------------------------------
2667 // Dual of a pure heap pointer.  No relevant klass or oop information.
2668 const Type *TypeOopPtr::xdual() const {
2669   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2670   assert(const_oop() == NULL,             "no constants here");
2671   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
2672 }
2673 
2674 //--------------------------make_from_klass_common-----------------------------
2675 // Computes the element-type given a klass.
2676 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2677   if (klass->is_instance_klass()) {
2678     Compile* C = Compile::current();
2679     Dependencies* deps = C->dependencies();
2680     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2681     // Element is an instance
2682     bool klass_is_exact = false;
2683     if (klass->is_loaded()) {
2684       // Try to set klass_is_exact.
2685       ciInstanceKlass* ik = klass->as_instance_klass();
2686       klass_is_exact = ik->is_final();
2687       if (!klass_is_exact && klass_change
2688           && deps != NULL && UseUniqueSubclasses) {
2689         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2690         if (sub != NULL) {
2691           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2692           klass = ik = sub;
2693           klass_is_exact = sub->is_final();
2694         }
2695       }
2696       if (!klass_is_exact && try_for_exact
2697           && deps != NULL && UseExactTypes) {
2698         if (!ik->is_interface() && !ik->has_subklass()) {
2699           // Add a dependence; if concrete subclass added we need to recompile
2700           deps->assert_leaf_type(ik);
2701           klass_is_exact = true;
2702         }
2703       }
2704     }
2705     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2706   } else if (klass->is_obj_array_klass()) {
2707     // Element is an object array. Recursively call ourself.
2708     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2709     bool xk = etype->klass_is_exact();
2710     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2711     // We used to pass NotNull in here, asserting that the sub-arrays
2712     // are all not-null.  This is not true in generally, as code can
2713     // slam NULLs down in the subarrays.
2714     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2715     return arr;
2716   } else if (klass->is_type_array_klass()) {
2717     // Element is an typeArray
2718     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2719     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2720     // We used to pass NotNull in here, asserting that the array pointer
2721     // is not-null. That was not true in general.
2722     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2723     return arr;
2724   } else {
2725     ShouldNotReachHere();
2726     return NULL;
2727   }
2728 }
2729 
2730 //------------------------------make_from_constant-----------------------------
2731 // Make a java pointer from an oop constant
2732 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2733                                                  bool require_constant,
2734                                                  bool is_autobox_cache) {
2735   assert(!o->is_null_object(), "null object not yet handled here.");
2736   ciKlass* klass = o->klass();
2737   if (klass->is_instance_klass()) {
2738     // Element is an instance
2739     if (require_constant) {
2740       if (!o->can_be_constant())  return NULL;
2741     } else if (!o->should_be_constant()) {
2742       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2743     }
2744     return TypeInstPtr::make(o);
2745   } else if (klass->is_obj_array_klass()) {
2746     // Element is an object array. Recursively call ourself.
2747     const TypeOopPtr *etype =
2748       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2749     if (is_autobox_cache) {
2750       // The pointers in the autobox arrays are always non-null.
2751       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2752     }
2753     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2754     // We used to pass NotNull in here, asserting that the sub-arrays
2755     // are all not-null.  This is not true in generally, as code can
2756     // slam NULLs down in the subarrays.
2757     if (require_constant) {
2758       if (!o->can_be_constant())  return NULL;
2759     } else if (!o->should_be_constant()) {
2760       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2761     }
2762     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
2763     return arr;
2764   } else if (klass->is_type_array_klass()) {
2765     // Element is an typeArray
2766     const Type* etype =
2767       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2768     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2769     // We used to pass NotNull in here, asserting that the array pointer
2770     // is not-null. That was not true in general.
2771     if (require_constant) {
2772       if (!o->can_be_constant())  return NULL;
2773     } else if (!o->should_be_constant()) {
2774       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2775     }
2776     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2777     return arr;
2778   }
2779 
2780   fatal("unhandled object type");
2781   return NULL;
2782 }
2783 
2784 //------------------------------get_con----------------------------------------
2785 intptr_t TypeOopPtr::get_con() const {
2786   assert( _ptr == Null || _ptr == Constant, "" );
2787   assert( _offset >= 0, "" );
2788 
2789   if (_offset != 0) {
2790     // After being ported to the compiler interface, the compiler no longer
2791     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2792     // to a handle at compile time.  This handle is embedded in the generated
2793     // code and dereferenced at the time the nmethod is made.  Until that time,
2794     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2795     // have access to the addresses!).  This does not seem to currently happen,
2796     // but this assertion here is to help prevent its occurence.
2797     tty->print_cr("Found oop constant with non-zero offset");
2798     ShouldNotReachHere();
2799   }
2800 
2801   return (intptr_t)const_oop()->constant_encoding();
2802 }
2803 
2804 
2805 //-----------------------------filter------------------------------------------
2806 // Do not allow interface-vs.-noninterface joins to collapse to top.
2807 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
2808 
2809   const Type* ft = join_helper(kills, include_speculative);
2810   const TypeInstPtr* ftip = ft->isa_instptr();
2811   const TypeInstPtr* ktip = kills->isa_instptr();
2812 
2813   if (ft->empty()) {
2814     // Check for evil case of 'this' being a class and 'kills' expecting an
2815     // interface.  This can happen because the bytecodes do not contain
2816     // enough type info to distinguish a Java-level interface variable
2817     // from a Java-level object variable.  If we meet 2 classes which
2818     // both implement interface I, but their meet is at 'j/l/O' which
2819     // doesn't implement I, we have no way to tell if the result should
2820     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2821     // into a Phi which "knows" it's an Interface type we'll have to
2822     // uplift the type.
2823     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2824       return kills;             // Uplift to interface
2825 
2826     return Type::TOP;           // Canonical empty value
2827   }
2828 
2829   // If we have an interface-typed Phi or cast and we narrow to a class type,
2830   // the join should report back the class.  However, if we have a J/L/Object
2831   // class-typed Phi and an interface flows in, it's possible that the meet &
2832   // join report an interface back out.  This isn't possible but happens
2833   // because the type system doesn't interact well with interfaces.
2834   if (ftip != NULL && ktip != NULL &&
2835       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2836       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2837     // Happens in a CTW of rt.jar, 320-341, no extra flags
2838     assert(!ftip->klass_is_exact(), "interface could not be exact");
2839     return ktip->cast_to_ptr_type(ftip->ptr());
2840   }
2841 
2842   return ft;
2843 }
2844 
2845 //------------------------------eq---------------------------------------------
2846 // Structural equality check for Type representations
2847 bool TypeOopPtr::eq( const Type *t ) const {
2848   const TypeOopPtr *a = (const TypeOopPtr*)t;
2849   if (_klass_is_exact != a->_klass_is_exact ||
2850       _instance_id != a->_instance_id ||
2851       !eq_speculative(a))  return false;
2852   ciObject* one = const_oop();
2853   ciObject* two = a->const_oop();
2854   if (one == NULL || two == NULL) {
2855     return (one == two) && TypePtr::eq(t);
2856   } else {
2857     return one->equals(two) && TypePtr::eq(t);
2858   }
2859 }
2860 
2861 //------------------------------hash-------------------------------------------
2862 // Type-specific hashing function.
2863 int TypeOopPtr::hash(void) const {
2864   return
2865     (const_oop() ? const_oop()->hash() : 0) +
2866     _klass_is_exact +
2867     _instance_id +
2868     hash_speculative() +
2869     TypePtr::hash();
2870 }
2871 
2872 //------------------------------dump2------------------------------------------
2873 #ifndef PRODUCT
2874 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2875   st->print("oopptr:%s", ptr_msg[_ptr]);
2876   if( _klass_is_exact ) st->print(":exact");
2877   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2878   switch( _offset ) {
2879   case OffsetTop: st->print("+top"); break;
2880   case OffsetBot: st->print("+any"); break;
2881   case         0: break;
2882   default:        st->print("+%d",_offset); break;
2883   }
2884   if (_instance_id == InstanceTop)
2885     st->print(",iid=top");
2886   else if (_instance_id != InstanceBot)
2887     st->print(",iid=%d",_instance_id);
2888 
2889   dump_speculative(st);
2890 }
2891 
2892 /**
2893  *dump the speculative part of the type
2894  */
2895 void TypeOopPtr::dump_speculative(outputStream *st) const {
2896   if (_speculative != NULL) {
2897     st->print(" (speculative=");
2898     _speculative->dump_on(st);
2899     st->print(")");
2900   }
2901 }
2902 #endif
2903 
2904 //------------------------------singleton--------------------------------------
2905 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2906 // constants
2907 bool TypeOopPtr::singleton(void) const {
2908   // detune optimizer to not generate constant oop + constant offset as a constant!
2909   // TopPTR, Null, AnyNull, Constant are all singletons
2910   return (_offset == 0) && !below_centerline(_ptr);
2911 }
2912 
2913 //------------------------------add_offset-------------------------------------
2914 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
2915   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
2916 }
2917 
2918 /**
2919  * Return same type without a speculative part
2920  */
2921 const Type* TypeOopPtr::remove_speculative() const {
2922   if (_speculative == NULL) {
2923     return this;
2924   }
2925   return make(_ptr, _offset, _instance_id, NULL);
2926 }
2927 
2928 //------------------------------meet_instance_id--------------------------------
2929 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2930   // Either is 'TOP' instance?  Return the other instance!
2931   if( _instance_id == InstanceTop ) return  instance_id;
2932   if(  instance_id == InstanceTop ) return _instance_id;
2933   // If either is different, return 'BOTTOM' instance
2934   if( _instance_id != instance_id ) return InstanceBot;
2935   return _instance_id;
2936 }
2937 
2938 //------------------------------dual_instance_id--------------------------------
2939 int TypeOopPtr::dual_instance_id( ) const {
2940   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2941   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2942   return _instance_id;              // Map everything else into self
2943 }
2944 
2945 /**
2946  * meet of the speculative parts of 2 types
2947  *
2948  * @param other  type to meet with
2949  */
2950 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
2951   bool this_has_spec = (_speculative != NULL);
2952   bool other_has_spec = (other->speculative() != NULL);
2953 
2954   if (!this_has_spec && !other_has_spec) {
2955     return NULL;
2956   }
2957 
2958   // If we are at a point where control flow meets and one branch has
2959   // a speculative type and the other has not, we meet the speculative
2960   // type of one branch with the actual type of the other. If the
2961   // actual type is exact and the speculative is as well, then the
2962   // result is a speculative type which is exact and we can continue
2963   // speculation further.
2964   const TypeOopPtr* this_spec = _speculative;
2965   const TypeOopPtr* other_spec = other->speculative();
2966 
2967   if (!this_has_spec) {
2968     this_spec = this;
2969   }
2970 
2971   if (!other_has_spec) {
2972     other_spec = other;
2973   }
2974 
2975   return this_spec->meet_speculative(other_spec)->is_oopptr();
2976 }
2977 
2978 /**
2979  * dual of the speculative part of the type
2980  */
2981 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
2982   if (_speculative == NULL) {
2983     return NULL;
2984   }
2985   return _speculative->dual()->is_oopptr();
2986 }
2987 
2988 /**
2989  * add offset to the speculative part of the type
2990  *
2991  * @param offset  offset to add
2992  */
2993 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
2994   if (_speculative == NULL) {
2995     return NULL;
2996   }
2997   return _speculative->add_offset(offset)->is_oopptr();
2998 }
2999 
3000 /**
3001  * Are the speculative parts of 2 types equal?
3002  *
3003  * @param other  type to compare this one to
3004  */
3005 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
3006   if (_speculative == NULL || other->speculative() == NULL) {
3007     return _speculative == other->speculative();
3008   }
3009 
3010   if (_speculative->base() != other->speculative()->base()) {
3011     return false;
3012   }
3013 
3014   return _speculative->eq(other->speculative());
3015 }
3016 
3017 /**
3018  * Hash of the speculative part of the type
3019  */
3020 int TypeOopPtr::hash_speculative() const {
3021   if (_speculative == NULL) {
3022     return 0;
3023   }
3024 
3025   return _speculative->hash();
3026 }
3027 
3028 
3029 //=============================================================================
3030 // Convenience common pre-built types.
3031 const TypeInstPtr *TypeInstPtr::NOTNULL;
3032 const TypeInstPtr *TypeInstPtr::BOTTOM;
3033 const TypeInstPtr *TypeInstPtr::MIRROR;
3034 const TypeInstPtr *TypeInstPtr::MARK;
3035 const TypeInstPtr *TypeInstPtr::KLASS;
3036 
3037 //------------------------------TypeInstPtr-------------------------------------
3038 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
3039   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
3040    assert(k != NULL &&
3041           (k->is_loaded() || o == NULL),
3042           "cannot have constants with non-loaded klass");
3043 };
3044 
3045 //------------------------------make-------------------------------------------
3046 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3047                                      ciKlass* k,
3048                                      bool xk,
3049                                      ciObject* o,
3050                                      int offset,
3051                                      int instance_id,
3052                                      const TypeOopPtr* speculative) {
3053   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3054   // Either const_oop() is NULL or else ptr is Constant
3055   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3056           "constant pointers must have a value supplied" );
3057   // Ptr is never Null
3058   assert( ptr != Null, "NULL pointers are not typed" );
3059 
3060   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3061   if (!UseExactTypes)  xk = false;
3062   if (ptr == Constant) {
3063     // Note:  This case includes meta-object constants, such as methods.
3064     xk = true;
3065   } else if (k->is_loaded()) {
3066     ciInstanceKlass* ik = k->as_instance_klass();
3067     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3068     if (xk && ik->is_interface())  xk = false;  // no exact interface
3069   }
3070 
3071   // Now hash this baby
3072   TypeInstPtr *result =
3073     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();
3074 
3075   return result;
3076 }
3077 
3078 /**
3079  *  Create constant type for a constant boxed value
3080  */
3081 const Type* TypeInstPtr::get_const_boxed_value() const {
3082   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3083   assert((const_oop() != NULL), "should be called only for constant object");
3084   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3085   BasicType bt = constant.basic_type();
3086   switch (bt) {
3087     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3088     case T_INT:      return TypeInt::make(constant.as_int());
3089     case T_CHAR:     return TypeInt::make(constant.as_char());
3090     case T_BYTE:     return TypeInt::make(constant.as_byte());
3091     case T_SHORT:    return TypeInt::make(constant.as_short());
3092     case T_FLOAT:    return TypeF::make(constant.as_float());
3093     case T_DOUBLE:   return TypeD::make(constant.as_double());
3094     case T_LONG:     return TypeLong::make(constant.as_long());
3095     default:         break;
3096   }
3097   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3098   return NULL;
3099 }
3100 
3101 //------------------------------cast_to_ptr_type-------------------------------
3102 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3103   if( ptr == _ptr ) return this;
3104   // Reconstruct _sig info here since not a problem with later lazy
3105   // construction, _sig will show up on demand.
3106   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
3107 }
3108 
3109 
3110 //-----------------------------cast_to_exactness-------------------------------
3111 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3112   if( klass_is_exact == _klass_is_exact ) return this;
3113   if (!UseExactTypes)  return this;
3114   if (!_klass->is_loaded())  return this;
3115   ciInstanceKlass* ik = _klass->as_instance_klass();
3116   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3117   if( ik->is_interface() )              return this;  // cannot set xk
3118   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
3119 }
3120 
3121 //-----------------------------cast_to_instance_id----------------------------
3122 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3123   if( instance_id == _instance_id ) return this;
3124   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
3125 }
3126 
3127 //------------------------------xmeet_unloaded---------------------------------
3128 // Compute the MEET of two InstPtrs when at least one is unloaded.
3129 // Assume classes are different since called after check for same name/class-loader
3130 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3131     int off = meet_offset(tinst->offset());
3132     PTR ptr = meet_ptr(tinst->ptr());
3133     int instance_id = meet_instance_id(tinst->instance_id());
3134     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3135 
3136     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3137     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3138     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3139       //
3140       // Meet unloaded class with java/lang/Object
3141       //
3142       // Meet
3143       //          |                     Unloaded Class
3144       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3145       //  ===================================================================
3146       //   TOP    | ..........................Unloaded......................|
3147       //  AnyNull |  U-AN    |................Unloaded......................|
3148       // Constant | ... O-NN .................................. |   O-BOT   |
3149       //  NotNull | ... O-NN .................................. |   O-BOT   |
3150       //  BOTTOM  | ........................Object-BOTTOM ..................|
3151       //
3152       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3153       //
3154       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3155       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
3156       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3157       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3158         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3159         else                                      { return TypeInstPtr::NOTNULL; }
3160       }
3161       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3162 
3163       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3164     }
3165 
3166     // Both are unloaded, not the same class, not Object
3167     // Or meet unloaded with a different loaded class, not java/lang/Object
3168     if( ptr != TypePtr::BotPTR ) {
3169       return TypeInstPtr::NOTNULL;
3170     }
3171     return TypeInstPtr::BOTTOM;
3172 }
3173 
3174 
3175 //------------------------------meet-------------------------------------------
3176 // Compute the MEET of two types.  It returns a new Type object.
3177 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3178   // Perform a fast test for common case; meeting the same types together.
3179   if( this == t ) return this;  // Meeting same type-rep?
3180 
3181   // Current "this->_base" is Pointer
3182   switch (t->base()) {          // switch on original type
3183 
3184   case Int:                     // Mixing ints & oops happens when javac
3185   case Long:                    // reuses local variables
3186   case FloatTop:
3187   case FloatCon:
3188   case FloatBot:
3189   case DoubleTop:
3190   case DoubleCon:
3191   case DoubleBot:
3192   case NarrowOop:
3193   case NarrowKlass:
3194   case Bottom:                  // Ye Olde Default
3195     return Type::BOTTOM;
3196   case Top:
3197     return this;
3198 
3199   default:                      // All else is a mistake
3200     typerr(t);
3201 
3202   case MetadataPtr:
3203   case KlassPtr:
3204   case RawPtr: return TypePtr::BOTTOM;
3205 
3206   case AryPtr: {                // All arrays inherit from Object class
3207     const TypeAryPtr *tp = t->is_aryptr();
3208     int offset = meet_offset(tp->offset());
3209     PTR ptr = meet_ptr(tp->ptr());
3210     int instance_id = meet_instance_id(tp->instance_id());
3211     const TypeOopPtr* speculative = xmeet_speculative(tp);
3212     switch (ptr) {
3213     case TopPTR:
3214     case AnyNull:                // Fall 'down' to dual of object klass
3215       // For instances when a subclass meets a superclass we fall
3216       // below the centerline when the superclass is exact. We need to
3217       // do the same here.
3218       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3219         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
3220       } else {
3221         // cannot subclass, so the meet has to fall badly below the centerline
3222         ptr = NotNull;
3223         instance_id = InstanceBot;
3224         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
3225       }
3226     case Constant:
3227     case NotNull:
3228     case BotPTR:                // Fall down to object klass
3229       // LCA is object_klass, but if we subclass from the top we can do better
3230       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3231         // If 'this' (InstPtr) is above the centerline and it is Object class
3232         // then we can subclass in the Java class hierarchy.
3233         // For instances when a subclass meets a superclass we fall
3234         // below the centerline when the superclass is exact. We need
3235         // to do the same here.
3236         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3237           // that is, tp's array type is a subtype of my klass
3238           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3239                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
3240         }
3241       }
3242       // The other case cannot happen, since I cannot be a subtype of an array.
3243       // The meet falls down to Object class below centerline.
3244       if( ptr == Constant )
3245          ptr = NotNull;
3246       instance_id = InstanceBot;
3247       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
3248     default: typerr(t);
3249     }
3250   }
3251 
3252   case OopPtr: {                // Meeting to OopPtrs
3253     // Found a OopPtr type vs self-InstPtr type
3254     const TypeOopPtr *tp = t->is_oopptr();
3255     int offset = meet_offset(tp->offset());
3256     PTR ptr = meet_ptr(tp->ptr());
3257     switch (tp->ptr()) {
3258     case TopPTR:
3259     case AnyNull: {
3260       int instance_id = meet_instance_id(InstanceTop);
3261       const TypeOopPtr* speculative = xmeet_speculative(tp);
3262       return make(ptr, klass(), klass_is_exact(),
3263                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
3264     }
3265     case NotNull:
3266     case BotPTR: {
3267       int instance_id = meet_instance_id(tp->instance_id());
3268       const TypeOopPtr* speculative = xmeet_speculative(tp);
3269       return TypeOopPtr::make(ptr, offset, instance_id, speculative);
3270     }
3271     default: typerr(t);
3272     }
3273   }
3274 
3275   case AnyPtr: {                // Meeting to AnyPtrs
3276     // Found an AnyPtr type vs self-InstPtr type
3277     const TypePtr *tp = t->is_ptr();
3278     int offset = meet_offset(tp->offset());
3279     PTR ptr = meet_ptr(tp->ptr());
3280     switch (tp->ptr()) {
3281     case Null:
3282       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3283       // else fall through to AnyNull
3284     case TopPTR:
3285     case AnyNull: {
3286       int instance_id = meet_instance_id(InstanceTop);
3287       const TypeOopPtr* speculative = _speculative;
3288       return make(ptr, klass(), klass_is_exact(),
3289                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
3290     }
3291     case NotNull:
3292     case BotPTR:
3293       return TypePtr::make(AnyPtr, ptr, offset);
3294     default: typerr(t);
3295     }
3296   }
3297 
3298   /*
3299                  A-top         }
3300                /   |   \       }  Tops
3301            B-top A-any C-top   }
3302               | /  |  \ |      }  Any-nulls
3303            B-any   |   C-any   }
3304               |    |    |
3305            B-con A-con C-con   } constants; not comparable across classes
3306               |    |    |
3307            B-not   |   C-not   }
3308               | \  |  / |      }  not-nulls
3309            B-bot A-not C-bot   }
3310                \   |   /       }  Bottoms
3311                  A-bot         }
3312   */
3313 
3314   case InstPtr: {                // Meeting 2 Oops?
3315     // Found an InstPtr sub-type vs self-InstPtr type
3316     const TypeInstPtr *tinst = t->is_instptr();
3317     int off = meet_offset( tinst->offset() );
3318     PTR ptr = meet_ptr( tinst->ptr() );
3319     int instance_id = meet_instance_id(tinst->instance_id());
3320     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3321 
3322     // Check for easy case; klasses are equal (and perhaps not loaded!)
3323     // If we have constants, then we created oops so classes are loaded
3324     // and we can handle the constants further down.  This case handles
3325     // both-not-loaded or both-loaded classes
3326     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3327       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
3328     }
3329 
3330     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3331     ciKlass* tinst_klass = tinst->klass();
3332     ciKlass* this_klass  = this->klass();
3333     bool tinst_xk = tinst->klass_is_exact();
3334     bool this_xk  = this->klass_is_exact();
3335     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3336       // One of these classes has not been loaded
3337       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3338 #ifndef PRODUCT
3339       if( PrintOpto && Verbose ) {
3340         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3341         tty->print("  this == "); this->dump(); tty->cr();
3342         tty->print(" tinst == "); tinst->dump(); tty->cr();
3343       }
3344 #endif
3345       return unloaded_meet;
3346     }
3347 
3348     // Handle mixing oops and interfaces first.
3349     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3350                                         tinst_klass == ciEnv::current()->Object_klass())) {
3351       ciKlass *tmp = tinst_klass; // Swap interface around
3352       tinst_klass = this_klass;
3353       this_klass = tmp;
3354       bool tmp2 = tinst_xk;
3355       tinst_xk = this_xk;
3356       this_xk = tmp2;
3357     }
3358     if (tinst_klass->is_interface() &&
3359         !(this_klass->is_interface() ||
3360           // Treat java/lang/Object as an honorary interface,
3361           // because we need a bottom for the interface hierarchy.
3362           this_klass == ciEnv::current()->Object_klass())) {
3363       // Oop meets interface!
3364 
3365       // See if the oop subtypes (implements) interface.
3366       ciKlass *k;
3367       bool xk;
3368       if( this_klass->is_subtype_of( tinst_klass ) ) {
3369         // Oop indeed subtypes.  Now keep oop or interface depending
3370         // on whether we are both above the centerline or either is
3371         // below the centerline.  If we are on the centerline
3372         // (e.g., Constant vs. AnyNull interface), use the constant.
3373         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3374         // If we are keeping this_klass, keep its exactness too.
3375         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3376       } else {                  // Does not implement, fall to Object
3377         // Oop does not implement interface, so mixing falls to Object
3378         // just like the verifier does (if both are above the
3379         // centerline fall to interface)
3380         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3381         xk = above_centerline(ptr) ? tinst_xk : false;
3382         // Watch out for Constant vs. AnyNull interface.
3383         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3384         instance_id = InstanceBot;
3385       }
3386       ciObject* o = NULL;  // the Constant value, if any
3387       if (ptr == Constant) {
3388         // Find out which constant.
3389         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3390       }
3391       return make(ptr, k, xk, o, off, instance_id, speculative);
3392     }
3393 
3394     // Either oop vs oop or interface vs interface or interface vs Object
3395 
3396     // !!! Here's how the symmetry requirement breaks down into invariants:
3397     // If we split one up & one down AND they subtype, take the down man.
3398     // If we split one up & one down AND they do NOT subtype, "fall hard".
3399     // If both are up and they subtype, take the subtype class.
3400     // If both are up and they do NOT subtype, "fall hard".
3401     // If both are down and they subtype, take the supertype class.
3402     // If both are down and they do NOT subtype, "fall hard".
3403     // Constants treated as down.
3404 
3405     // Now, reorder the above list; observe that both-down+subtype is also
3406     // "fall hard"; "fall hard" becomes the default case:
3407     // If we split one up & one down AND they subtype, take the down man.
3408     // If both are up and they subtype, take the subtype class.
3409 
3410     // If both are down and they subtype, "fall hard".
3411     // If both are down and they do NOT subtype, "fall hard".
3412     // If both are up and they do NOT subtype, "fall hard".
3413     // If we split one up & one down AND they do NOT subtype, "fall hard".
3414 
3415     // If a proper subtype is exact, and we return it, we return it exactly.
3416     // If a proper supertype is exact, there can be no subtyping relationship!
3417     // If both types are equal to the subtype, exactness is and-ed below the
3418     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3419 
3420     // Check for subtyping:
3421     ciKlass *subtype = NULL;
3422     bool subtype_exact = false;
3423     if( tinst_klass->equals(this_klass) ) {
3424       subtype = this_klass;
3425       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3426     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3427       subtype = this_klass;     // Pick subtyping class
3428       subtype_exact = this_xk;
3429     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3430       subtype = tinst_klass;    // Pick subtyping class
3431       subtype_exact = tinst_xk;
3432     }
3433 
3434     if( subtype ) {
3435       if( above_centerline(ptr) ) { // both are up?
3436         this_klass = tinst_klass = subtype;
3437         this_xk = tinst_xk = subtype_exact;
3438       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3439         this_klass = tinst_klass; // tinst is down; keep down man
3440         this_xk = tinst_xk;
3441       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3442         tinst_klass = this_klass; // this is down; keep down man
3443         tinst_xk = this_xk;
3444       } else {
3445         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3446       }
3447     }
3448 
3449     // Check for classes now being equal
3450     if (tinst_klass->equals(this_klass)) {
3451       // If the klasses are equal, the constants may still differ.  Fall to
3452       // NotNull if they do (neither constant is NULL; that is a special case
3453       // handled elsewhere).
3454       ciObject* o = NULL;             // Assume not constant when done
3455       ciObject* this_oop  = const_oop();
3456       ciObject* tinst_oop = tinst->const_oop();
3457       if( ptr == Constant ) {
3458         if (this_oop != NULL && tinst_oop != NULL &&
3459             this_oop->equals(tinst_oop) )
3460           o = this_oop;
3461         else if (above_centerline(this ->_ptr))
3462           o = tinst_oop;
3463         else if (above_centerline(tinst ->_ptr))
3464           o = this_oop;
3465         else
3466           ptr = NotNull;
3467       }
3468       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
3469     } // Else classes are not equal
3470 
3471     // Since klasses are different, we require a LCA in the Java
3472     // class hierarchy - which means we have to fall to at least NotNull.
3473     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3474       ptr = NotNull;
3475     instance_id = InstanceBot;
3476 
3477     // Now we find the LCA of Java classes
3478     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3479     return make(ptr, k, false, NULL, off, instance_id, speculative);
3480   } // End of case InstPtr
3481 
3482   } // End of switch
3483   return this;                  // Return the double constant
3484 }
3485 
3486 
3487 //------------------------java_mirror_type--------------------------------------
3488 ciType* TypeInstPtr::java_mirror_type() const {
3489   // must be a singleton type
3490   if( const_oop() == NULL )  return NULL;
3491 
3492   // must be of type java.lang.Class
3493   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3494 
3495   return const_oop()->as_instance()->java_mirror_type();
3496 }
3497 
3498 
3499 //------------------------------xdual------------------------------------------
3500 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3501 // inheritance mechanism.
3502 const Type *TypeInstPtr::xdual() const {
3503   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
3504 }
3505 
3506 //------------------------------eq---------------------------------------------
3507 // Structural equality check for Type representations
3508 bool TypeInstPtr::eq( const Type *t ) const {
3509   const TypeInstPtr *p = t->is_instptr();
3510   return
3511     klass()->equals(p->klass()) &&
3512     TypeOopPtr::eq(p);          // Check sub-type stuff
3513 }
3514 
3515 //------------------------------hash-------------------------------------------
3516 // Type-specific hashing function.
3517 int TypeInstPtr::hash(void) const {
3518   int hash = klass()->hash() + TypeOopPtr::hash();
3519   return hash;
3520 }
3521 
3522 //------------------------------dump2------------------------------------------
3523 // Dump oop Type
3524 #ifndef PRODUCT
3525 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3526   // Print the name of the klass.
3527   klass()->print_name_on(st);
3528 
3529   switch( _ptr ) {
3530   case Constant:
3531     // TO DO: Make CI print the hex address of the underlying oop.
3532     if (WizardMode || Verbose) {
3533       const_oop()->print_oop(st);
3534     }
3535   case BotPTR:
3536     if (!WizardMode && !Verbose) {
3537       if( _klass_is_exact ) st->print(":exact");
3538       break;
3539     }
3540   case TopPTR:
3541   case AnyNull:
3542   case NotNull:
3543     st->print(":%s", ptr_msg[_ptr]);
3544     if( _klass_is_exact ) st->print(":exact");
3545     break;
3546   }
3547 
3548   if( _offset ) {               // Dump offset, if any
3549     if( _offset == OffsetBot )      st->print("+any");
3550     else if( _offset == OffsetTop ) st->print("+unknown");
3551     else st->print("+%d", _offset);
3552   }
3553 
3554   st->print(" *");
3555   if (_instance_id == InstanceTop)
3556     st->print(",iid=top");
3557   else if (_instance_id != InstanceBot)
3558     st->print(",iid=%d",_instance_id);
3559 
3560   dump_speculative(st);
3561 }
3562 #endif
3563 
3564 //------------------------------add_offset-------------------------------------
3565 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3566   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
3567 }
3568 
3569 const Type *TypeInstPtr::remove_speculative() const {
3570   if (_speculative == NULL) {
3571     return this;
3572   }
3573   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
3574 }
3575 
3576 //=============================================================================
3577 // Convenience common pre-built types.
3578 const TypeAryPtr *TypeAryPtr::RANGE;
3579 const TypeAryPtr *TypeAryPtr::OOPS;
3580 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3581 const TypeAryPtr *TypeAryPtr::BYTES;
3582 const TypeAryPtr *TypeAryPtr::SHORTS;
3583 const TypeAryPtr *TypeAryPtr::CHARS;
3584 const TypeAryPtr *TypeAryPtr::INTS;
3585 const TypeAryPtr *TypeAryPtr::LONGS;
3586 const TypeAryPtr *TypeAryPtr::FLOATS;
3587 const TypeAryPtr *TypeAryPtr::DOUBLES;
3588 
3589 //------------------------------make-------------------------------------------
3590 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
3591   assert(!(k == NULL && ary->_elem->isa_int()),
3592          "integral arrays must be pre-equipped with a class");
3593   if (!xk)  xk = ary->ary_must_be_exact();
3594   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3595   if (!UseExactTypes)  xk = (ptr == Constant);
3596   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
3597 }
3598 
3599 //------------------------------make-------------------------------------------
3600 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
3601   assert(!(k == NULL && ary->_elem->isa_int()),
3602          "integral arrays must be pre-equipped with a class");
3603   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3604   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3605   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3606   if (!UseExactTypes)  xk = (ptr == Constant);
3607   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
3608 }
3609 
3610 //------------------------------cast_to_ptr_type-------------------------------
3611 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3612   if( ptr == _ptr ) return this;
3613   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
3614 }
3615 
3616 
3617 //-----------------------------cast_to_exactness-------------------------------
3618 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3619   if( klass_is_exact == _klass_is_exact ) return this;
3620   if (!UseExactTypes)  return this;
3621   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3622   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
3623 }
3624 
3625 //-----------------------------cast_to_instance_id----------------------------
3626 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3627   if( instance_id == _instance_id ) return this;
3628   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
3629 }
3630 
3631 //-----------------------------narrow_size_type-------------------------------
3632 // Local cache for arrayOopDesc::max_array_length(etype),
3633 // which is kind of slow (and cached elsewhere by other users).
3634 static jint max_array_length_cache[T_CONFLICT+1];
3635 static jint max_array_length(BasicType etype) {
3636   jint& cache = max_array_length_cache[etype];
3637   jint res = cache;
3638   if (res == 0) {
3639     switch (etype) {
3640     case T_NARROWOOP:
3641       etype = T_OBJECT;
3642       break;
3643     case T_NARROWKLASS:
3644     case T_CONFLICT:
3645     case T_ILLEGAL:
3646     case T_VOID:
3647       etype = T_BYTE;           // will produce conservatively high value
3648     }
3649     cache = res = arrayOopDesc::max_array_length(etype);
3650   }
3651   return res;
3652 }
3653 
3654 // Narrow the given size type to the index range for the given array base type.
3655 // Return NULL if the resulting int type becomes empty.
3656 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3657   jint hi = size->_hi;
3658   jint lo = size->_lo;
3659   jint min_lo = 0;
3660   jint max_hi = max_array_length(elem()->basic_type());
3661   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3662   bool chg = false;
3663   if (lo < min_lo) {
3664     lo = min_lo;
3665     if (size->is_con()) {
3666       hi = lo;
3667     }
3668     chg = true;
3669   }
3670   if (hi > max_hi) {
3671     hi = max_hi;
3672     if (size->is_con()) {
3673       lo = hi;
3674     }
3675     chg = true;
3676   }
3677   // Negative length arrays will produce weird intermediate dead fast-path code
3678   if (lo > hi)
3679     return TypeInt::ZERO;
3680   if (!chg)
3681     return size;
3682   return TypeInt::make(lo, hi, Type::WidenMin);
3683 }
3684 
3685 //-------------------------------cast_to_size----------------------------------
3686 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3687   assert(new_size != NULL, "");
3688   new_size = narrow_size_type(new_size);
3689   if (new_size == size())  return this;
3690   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3691   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
3692 }
3693 
3694 
3695 //------------------------------cast_to_stable---------------------------------
3696 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3697   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3698     return this;
3699 
3700   const Type* elem = this->elem();
3701   const TypePtr* elem_ptr = elem->make_ptr();
3702 
3703   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3704     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3705     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3706   }
3707 
3708   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3709 
3710   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3711 }
3712 
3713 //-----------------------------stable_dimension--------------------------------
3714 int TypeAryPtr::stable_dimension() const {
3715   if (!is_stable())  return 0;
3716   int dim = 1;
3717   const TypePtr* elem_ptr = elem()->make_ptr();
3718   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3719     dim += elem_ptr->is_aryptr()->stable_dimension();
3720   return dim;
3721 }
3722 
3723 //------------------------------eq---------------------------------------------
3724 // Structural equality check for Type representations
3725 bool TypeAryPtr::eq( const Type *t ) const {
3726   const TypeAryPtr *p = t->is_aryptr();
3727   return
3728     _ary == p->_ary &&  // Check array
3729     TypeOopPtr::eq(p);  // Check sub-parts
3730 }
3731 
3732 //------------------------------hash-------------------------------------------
3733 // Type-specific hashing function.
3734 int TypeAryPtr::hash(void) const {
3735   return (intptr_t)_ary + TypeOopPtr::hash();
3736 }
3737 
3738 //------------------------------meet-------------------------------------------
3739 // Compute the MEET of two types.  It returns a new Type object.
3740 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3741   // Perform a fast test for common case; meeting the same types together.
3742   if( this == t ) return this;  // Meeting same type-rep?
3743   // Current "this->_base" is Pointer
3744   switch (t->base()) {          // switch on original type
3745 
3746   // Mixing ints & oops happens when javac reuses local variables
3747   case Int:
3748   case Long:
3749   case FloatTop:
3750   case FloatCon:
3751   case FloatBot:
3752   case DoubleTop:
3753   case DoubleCon:
3754   case DoubleBot:
3755   case NarrowOop:
3756   case NarrowKlass:
3757   case Bottom:                  // Ye Olde Default
3758     return Type::BOTTOM;
3759   case Top:
3760     return this;
3761 
3762   default:                      // All else is a mistake
3763     typerr(t);
3764 
3765   case OopPtr: {                // Meeting to OopPtrs
3766     // Found a OopPtr type vs self-AryPtr type
3767     const TypeOopPtr *tp = t->is_oopptr();
3768     int offset = meet_offset(tp->offset());
3769     PTR ptr = meet_ptr(tp->ptr());
3770     switch (tp->ptr()) {
3771     case TopPTR:
3772     case AnyNull: {
3773       int instance_id = meet_instance_id(InstanceTop);
3774       const TypeOopPtr* speculative = xmeet_speculative(tp);
3775       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3776                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3777     }
3778     case BotPTR:
3779     case NotNull: {
3780       int instance_id = meet_instance_id(tp->instance_id());
3781       const TypeOopPtr* speculative = xmeet_speculative(tp);
3782       return TypeOopPtr::make(ptr, offset, instance_id, speculative);
3783     }
3784     default: ShouldNotReachHere();
3785     }
3786   }
3787 
3788   case AnyPtr: {                // Meeting two AnyPtrs
3789     // Found an AnyPtr type vs self-AryPtr type
3790     const TypePtr *tp = t->is_ptr();
3791     int offset = meet_offset(tp->offset());
3792     PTR ptr = meet_ptr(tp->ptr());
3793     switch (tp->ptr()) {
3794     case TopPTR:
3795       return this;
3796     case BotPTR:
3797     case NotNull:
3798       return TypePtr::make(AnyPtr, ptr, offset);
3799     case Null:
3800       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3801       // else fall through to AnyNull
3802     case AnyNull: {
3803       int instance_id = meet_instance_id(InstanceTop);
3804       const TypeOopPtr* speculative = _speculative;
3805       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3806                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3807     }
3808     default: ShouldNotReachHere();
3809     }
3810   }
3811 
3812   case MetadataPtr:
3813   case KlassPtr:
3814   case RawPtr: return TypePtr::BOTTOM;
3815 
3816   case AryPtr: {                // Meeting 2 references?
3817     const TypeAryPtr *tap = t->is_aryptr();
3818     int off = meet_offset(tap->offset());
3819     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
3820     PTR ptr = meet_ptr(tap->ptr());
3821     int instance_id = meet_instance_id(tap->instance_id());
3822     const TypeOopPtr* speculative = xmeet_speculative(tap);
3823     ciKlass* lazy_klass = NULL;
3824     if (tary->_elem->isa_int()) {
3825       // Integral array element types have irrelevant lattice relations.
3826       // It is the klass that determines array layout, not the element type.
3827       if (_klass == NULL)
3828         lazy_klass = tap->_klass;
3829       else if (tap->_klass == NULL || tap->_klass == _klass) {
3830         lazy_klass = _klass;
3831       } else {
3832         // Something like byte[int+] meets char[int+].
3833         // This must fall to bottom, not (int[-128..65535])[int+].
3834         instance_id = InstanceBot;
3835         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3836       }
3837     } else // Non integral arrays.
3838       // Must fall to bottom if exact klasses in upper lattice
3839       // are not equal or super klass is exact.
3840       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
3841           // meet with top[] and bottom[] are processed further down:
3842           tap->_klass != NULL  && this->_klass != NULL   &&
3843           // both are exact and not equal:
3844           ((tap->_klass_is_exact && this->_klass_is_exact) ||
3845            // 'tap'  is exact and super or unrelated:
3846            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3847            // 'this' is exact and super or unrelated:
3848            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3849       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3850       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
3851     }
3852 
3853     bool xk = false;
3854     switch (tap->ptr()) {
3855     case AnyNull:
3856     case TopPTR:
3857       // Compute new klass on demand, do not use tap->_klass
3858       if (below_centerline(this->_ptr)) {
3859         xk = this->_klass_is_exact;
3860       } else {
3861         xk = (tap->_klass_is_exact | this->_klass_is_exact);
3862       }
3863       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
3864     case Constant: {
3865       ciObject* o = const_oop();
3866       if( _ptr == Constant ) {
3867         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3868           xk = (klass() == tap->klass());
3869           ptr = NotNull;
3870           o = NULL;
3871           instance_id = InstanceBot;
3872         } else {
3873           xk = true;
3874         }
3875       } else if(above_centerline(_ptr)) {
3876         o = tap->const_oop();
3877         xk = true;
3878       } else {
3879         // Only precise for identical arrays
3880         xk = this->_klass_is_exact && (klass() == tap->klass());
3881       }
3882       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
3883     }
3884     case NotNull:
3885     case BotPTR:
3886       // Compute new klass on demand, do not use tap->_klass
3887       if (above_centerline(this->_ptr))
3888             xk = tap->_klass_is_exact;
3889       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3890               (klass() == tap->klass()); // Only precise for identical arrays
3891       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
3892     default: ShouldNotReachHere();
3893     }
3894   }
3895 
3896   // All arrays inherit from Object class
3897   case InstPtr: {
3898     const TypeInstPtr *tp = t->is_instptr();
3899     int offset = meet_offset(tp->offset());
3900     PTR ptr = meet_ptr(tp->ptr());
3901     int instance_id = meet_instance_id(tp->instance_id());
3902     const TypeOopPtr* speculative = xmeet_speculative(tp);
3903     switch (ptr) {
3904     case TopPTR:
3905     case AnyNull:                // Fall 'down' to dual of object klass
3906       // For instances when a subclass meets a superclass we fall
3907       // below the centerline when the superclass is exact. We need to
3908       // do the same here.
3909       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
3910         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3911       } else {
3912         // cannot subclass, so the meet has to fall badly below the centerline
3913         ptr = NotNull;
3914         instance_id = InstanceBot;
3915         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
3916       }
3917     case Constant:
3918     case NotNull:
3919     case BotPTR:                // Fall down to object klass
3920       // LCA is object_klass, but if we subclass from the top we can do better
3921       if (above_centerline(tp->ptr())) {
3922         // If 'tp'  is above the centerline and it is Object class
3923         // then we can subclass in the Java class hierarchy.
3924         // For instances when a subclass meets a superclass we fall
3925         // below the centerline when the superclass is exact. We need
3926         // to do the same here.
3927         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
3928           // that is, my array type is a subtype of 'tp' klass
3929           return make(ptr, (ptr == Constant ? const_oop() : NULL),
3930                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3931         }
3932       }
3933       // The other case cannot happen, since t cannot be a subtype of an array.
3934       // The meet falls down to Object class below centerline.
3935       if( ptr == Constant )
3936          ptr = NotNull;
3937       instance_id = InstanceBot;
3938       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
3939     default: typerr(t);
3940     }
3941   }
3942   }
3943   return this;                  // Lint noise
3944 }
3945 
3946 //------------------------------xdual------------------------------------------
3947 // Dual: compute field-by-field dual
3948 const Type *TypeAryPtr::xdual() const {
3949   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
3950 }
3951 
3952 //----------------------interface_vs_oop---------------------------------------
3953 #ifdef ASSERT
3954 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3955   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3956   if (t_aryptr) {
3957     return _ary->interface_vs_oop(t_aryptr->_ary);
3958   }
3959   return false;
3960 }
3961 #endif
3962 
3963 //------------------------------dump2------------------------------------------
3964 #ifndef PRODUCT
3965 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3966   _ary->dump2(d,depth,st);
3967   switch( _ptr ) {
3968   case Constant:
3969     const_oop()->print(st);
3970     break;
3971   case BotPTR:
3972     if (!WizardMode && !Verbose) {
3973       if( _klass_is_exact ) st->print(":exact");
3974       break;
3975     }
3976   case TopPTR:
3977   case AnyNull:
3978   case NotNull:
3979     st->print(":%s", ptr_msg[_ptr]);
3980     if( _klass_is_exact ) st->print(":exact");
3981     break;
3982   }
3983 
3984   if( _offset != 0 ) {
3985     int header_size = objArrayOopDesc::header_size() * wordSize;
3986     if( _offset == OffsetTop )       st->print("+undefined");
3987     else if( _offset == OffsetBot )  st->print("+any");
3988     else if( _offset < header_size ) st->print("+%d", _offset);
3989     else {
3990       BasicType basic_elem_type = elem()->basic_type();
3991       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3992       int elem_size = type2aelembytes(basic_elem_type);
3993       st->print("[%d]", (_offset - array_base)/elem_size);
3994     }
3995   }
3996   st->print(" *");
3997   if (_instance_id == InstanceTop)
3998     st->print(",iid=top");
3999   else if (_instance_id != InstanceBot)
4000     st->print(",iid=%d",_instance_id);
4001 
4002   dump_speculative(st);
4003 }
4004 #endif
4005 
4006 bool TypeAryPtr::empty(void) const {
4007   if (_ary->empty())       return true;
4008   return TypeOopPtr::empty();
4009 }
4010 
4011 //------------------------------add_offset-------------------------------------
4012 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4013   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
4014 }
4015 
4016 const Type *TypeAryPtr::remove_speculative() const {
4017   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL);
4018 }
4019 
4020 //=============================================================================
4021 
4022 //------------------------------hash-------------------------------------------
4023 // Type-specific hashing function.
4024 int TypeNarrowPtr::hash(void) const {
4025   return _ptrtype->hash() + 7;
4026 }
4027 
4028 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4029   return _ptrtype->singleton();
4030 }
4031 
4032 bool TypeNarrowPtr::empty(void) const {
4033   return _ptrtype->empty();
4034 }
4035 
4036 intptr_t TypeNarrowPtr::get_con() const {
4037   return _ptrtype->get_con();
4038 }
4039 
4040 bool TypeNarrowPtr::eq( const Type *t ) const {
4041   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4042   if (tc != NULL) {
4043     if (_ptrtype->base() != tc->_ptrtype->base()) {
4044       return false;
4045     }
4046     return tc->_ptrtype->eq(_ptrtype);
4047   }
4048   return false;
4049 }
4050 
4051 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4052   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4053   return make_same_narrowptr(odual);
4054 }
4055 
4056 
4057 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4058   if (isa_same_narrowptr(kills)) {
4059     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4060     if (ft->empty())
4061       return Type::TOP;           // Canonical empty value
4062     if (ft->isa_ptr()) {
4063       return make_hash_same_narrowptr(ft->isa_ptr());
4064     }
4065     return ft;
4066   } else if (kills->isa_ptr()) {
4067     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4068     if (ft->empty())
4069       return Type::TOP;           // Canonical empty value
4070     return ft;
4071   } else {
4072     return Type::TOP;
4073   }
4074 }
4075 
4076 //------------------------------xmeet------------------------------------------
4077 // Compute the MEET of two types.  It returns a new Type object.
4078 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4079   // Perform a fast test for common case; meeting the same types together.
4080   if( this == t ) return this;  // Meeting same type-rep?
4081 
4082   if (t->base() == base()) {
4083     const Type* result = _ptrtype->xmeet(t->make_ptr());
4084     if (result->isa_ptr()) {
4085       return make_hash_same_narrowptr(result->is_ptr());
4086     }
4087     return result;
4088   }
4089 
4090   // Current "this->_base" is NarrowKlass or NarrowOop
4091   switch (t->base()) {          // switch on original type
4092 
4093   case Int:                     // Mixing ints & oops happens when javac
4094   case Long:                    // reuses local variables
4095   case FloatTop:
4096   case FloatCon:
4097   case FloatBot:
4098   case DoubleTop:
4099   case DoubleCon:
4100   case DoubleBot:
4101   case AnyPtr:
4102   case RawPtr:
4103   case OopPtr:
4104   case InstPtr:
4105   case AryPtr:
4106   case MetadataPtr:
4107   case KlassPtr:
4108   case NarrowOop:
4109   case NarrowKlass:
4110 
4111   case Bottom:                  // Ye Olde Default
4112     return Type::BOTTOM;
4113   case Top:
4114     return this;
4115 
4116   default:                      // All else is a mistake
4117     typerr(t);
4118 
4119   } // End of switch
4120 
4121   return this;
4122 }
4123 
4124 #ifndef PRODUCT
4125 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4126   _ptrtype->dump2(d, depth, st);
4127 }
4128 #endif
4129 
4130 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4131 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4132 
4133 
4134 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4135   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4136 }
4137 
4138 
4139 #ifndef PRODUCT
4140 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4141   st->print("narrowoop: ");
4142   TypeNarrowPtr::dump2(d, depth, st);
4143 }
4144 #endif
4145 
4146 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4147 
4148 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4149   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4150 }
4151 
4152 #ifndef PRODUCT
4153 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4154   st->print("narrowklass: ");
4155   TypeNarrowPtr::dump2(d, depth, st);
4156 }
4157 #endif
4158 
4159 
4160 //------------------------------eq---------------------------------------------
4161 // Structural equality check for Type representations
4162 bool TypeMetadataPtr::eq( const Type *t ) const {
4163   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4164   ciMetadata* one = metadata();
4165   ciMetadata* two = a->metadata();
4166   if (one == NULL || two == NULL) {
4167     return (one == two) && TypePtr::eq(t);
4168   } else {
4169     return one->equals(two) && TypePtr::eq(t);
4170   }
4171 }
4172 
4173 //------------------------------hash-------------------------------------------
4174 // Type-specific hashing function.
4175 int TypeMetadataPtr::hash(void) const {
4176   return
4177     (metadata() ? metadata()->hash() : 0) +
4178     TypePtr::hash();
4179 }
4180 
4181 //------------------------------singleton--------------------------------------
4182 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4183 // constants
4184 bool TypeMetadataPtr::singleton(void) const {
4185   // detune optimizer to not generate constant metadta + constant offset as a constant!
4186   // TopPTR, Null, AnyNull, Constant are all singletons
4187   return (_offset == 0) && !below_centerline(_ptr);
4188 }
4189 
4190 //------------------------------add_offset-------------------------------------
4191 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4192   return make( _ptr, _metadata, xadd_offset(offset));
4193 }
4194 
4195 //-----------------------------filter------------------------------------------
4196 // Do not allow interface-vs.-noninterface joins to collapse to top.
4197 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4198   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4199   if (ft == NULL || ft->empty())
4200     return Type::TOP;           // Canonical empty value
4201   return ft;
4202 }
4203 
4204  //------------------------------get_con----------------------------------------
4205 intptr_t TypeMetadataPtr::get_con() const {
4206   assert( _ptr == Null || _ptr == Constant, "" );
4207   assert( _offset >= 0, "" );
4208 
4209   if (_offset != 0) {
4210     // After being ported to the compiler interface, the compiler no longer
4211     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4212     // to a handle at compile time.  This handle is embedded in the generated
4213     // code and dereferenced at the time the nmethod is made.  Until that time,
4214     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4215     // have access to the addresses!).  This does not seem to currently happen,
4216     // but this assertion here is to help prevent its occurence.
4217     tty->print_cr("Found oop constant with non-zero offset");
4218     ShouldNotReachHere();
4219   }
4220 
4221   return (intptr_t)metadata()->constant_encoding();
4222 }
4223 
4224 //------------------------------cast_to_ptr_type-------------------------------
4225 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4226   if( ptr == _ptr ) return this;
4227   return make(ptr, metadata(), _offset);
4228 }
4229 
4230 //------------------------------meet-------------------------------------------
4231 // Compute the MEET of two types.  It returns a new Type object.
4232 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4233   // Perform a fast test for common case; meeting the same types together.
4234   if( this == t ) return this;  // Meeting same type-rep?
4235 
4236   // Current "this->_base" is OopPtr
4237   switch (t->base()) {          // switch on original type
4238 
4239   case Int:                     // Mixing ints & oops happens when javac
4240   case Long:                    // reuses local variables
4241   case FloatTop:
4242   case FloatCon:
4243   case FloatBot:
4244   case DoubleTop:
4245   case DoubleCon:
4246   case DoubleBot:
4247   case NarrowOop:
4248   case NarrowKlass:
4249   case Bottom:                  // Ye Olde Default
4250     return Type::BOTTOM;
4251   case Top:
4252     return this;
4253 
4254   default:                      // All else is a mistake
4255     typerr(t);
4256 
4257   case AnyPtr: {
4258     // Found an AnyPtr type vs self-OopPtr type
4259     const TypePtr *tp = t->is_ptr();
4260     int offset = meet_offset(tp->offset());
4261     PTR ptr = meet_ptr(tp->ptr());
4262     switch (tp->ptr()) {
4263     case Null:
4264       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
4265       // else fall through:
4266     case TopPTR:
4267     case AnyNull: {
4268       return make(ptr, NULL, offset);
4269     }
4270     case BotPTR:
4271     case NotNull:
4272       return TypePtr::make(AnyPtr, ptr, offset);
4273     default: typerr(t);
4274     }
4275   }
4276 
4277   case RawPtr:
4278   case KlassPtr:
4279   case OopPtr:
4280   case InstPtr:
4281   case AryPtr:
4282     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4283 
4284   case MetadataPtr: {
4285     const TypeMetadataPtr *tp = t->is_metadataptr();
4286     int offset = meet_offset(tp->offset());
4287     PTR tptr = tp->ptr();
4288     PTR ptr = meet_ptr(tptr);
4289     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4290     if (tptr == TopPTR || _ptr == TopPTR ||
4291         metadata()->equals(tp->metadata())) {
4292       return make(ptr, md, offset);
4293     }
4294     // metadata is different
4295     if( ptr == Constant ) {  // Cannot be equal constants, so...
4296       if( tptr == Constant && _ptr != Constant)  return t;
4297       if( _ptr == Constant && tptr != Constant)  return this;
4298       ptr = NotNull;            // Fall down in lattice
4299     }
4300     return make(ptr, NULL, offset);
4301     break;
4302   }
4303   } // End of switch
4304   return this;                  // Return the double constant
4305 }
4306 
4307 
4308 //------------------------------xdual------------------------------------------
4309 // Dual of a pure metadata pointer.
4310 const Type *TypeMetadataPtr::xdual() const {
4311   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4312 }
4313 
4314 //------------------------------dump2------------------------------------------
4315 #ifndef PRODUCT
4316 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4317   st->print("metadataptr:%s", ptr_msg[_ptr]);
4318   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4319   switch( _offset ) {
4320   case OffsetTop: st->print("+top"); break;
4321   case OffsetBot: st->print("+any"); break;
4322   case         0: break;
4323   default:        st->print("+%d",_offset); break;
4324   }
4325 }
4326 #endif
4327 
4328 
4329 //=============================================================================
4330 // Convenience common pre-built type.
4331 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4332 
4333 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4334   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4335 }
4336 
4337 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4338   return make(Constant, m, 0);
4339 }
4340 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4341   return make(Constant, m, 0);
4342 }
4343 
4344 //------------------------------make-------------------------------------------
4345 // Create a meta data constant
4346 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4347   assert(m == NULL || !m->is_klass(), "wrong type");
4348   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4349 }
4350 
4351 
4352 //=============================================================================
4353 // Convenience common pre-built types.
4354 
4355 // Not-null object klass or below
4356 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4357 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4358 
4359 //------------------------------TypeKlassPtr-----------------------------------
4360 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4361   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4362 }
4363 
4364 //------------------------------make-------------------------------------------
4365 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4366 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4367   assert( k != NULL, "Expect a non-NULL klass");
4368   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4369   TypeKlassPtr *r =
4370     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4371 
4372   return r;
4373 }
4374 
4375 //------------------------------eq---------------------------------------------
4376 // Structural equality check for Type representations
4377 bool TypeKlassPtr::eq( const Type *t ) const {
4378   const TypeKlassPtr *p = t->is_klassptr();
4379   return
4380     klass()->equals(p->klass()) &&
4381     TypePtr::eq(p);
4382 }
4383 
4384 //------------------------------hash-------------------------------------------
4385 // Type-specific hashing function.
4386 int TypeKlassPtr::hash(void) const {
4387   return klass()->hash() + TypePtr::hash();
4388 }
4389 
4390 //------------------------------singleton--------------------------------------
4391 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4392 // constants
4393 bool TypeKlassPtr::singleton(void) const {
4394   // detune optimizer to not generate constant klass + constant offset as a constant!
4395   // TopPTR, Null, AnyNull, Constant are all singletons
4396   return (_offset == 0) && !below_centerline(_ptr);
4397 }
4398 
4399 // Do not allow interface-vs.-noninterface joins to collapse to top.
4400 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4401   // logic here mirrors the one from TypeOopPtr::filter. See comments
4402   // there.
4403   const Type* ft = join_helper(kills, include_speculative);
4404   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4405   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4406 
4407   if (ft->empty()) {
4408     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4409       return kills;             // Uplift to interface
4410 
4411     return Type::TOP;           // Canonical empty value
4412   }
4413 
4414   // Interface klass type could be exact in opposite to interface type,
4415   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4416   if (ftkp != NULL && ktkp != NULL &&
4417       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4418       !ftkp->klass_is_exact() && // Keep exact interface klass
4419       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4420     return ktkp->cast_to_ptr_type(ftkp->ptr());
4421   }
4422 
4423   return ft;
4424 }
4425 
4426 //----------------------compute_klass------------------------------------------
4427 // Compute the defining klass for this class
4428 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4429   // Compute _klass based on element type.
4430   ciKlass* k_ary = NULL;
4431   const TypeInstPtr *tinst;
4432   const TypeAryPtr *tary;
4433   const Type* el = elem();
4434   if (el->isa_narrowoop()) {
4435     el = el->make_ptr();
4436   }
4437 
4438   // Get element klass
4439   if ((tinst = el->isa_instptr()) != NULL) {
4440     // Compute array klass from element klass
4441     k_ary = ciObjArrayKlass::make(tinst->klass());
4442   } else if ((tary = el->isa_aryptr()) != NULL) {
4443     // Compute array klass from element klass
4444     ciKlass* k_elem = tary->klass();
4445     // If element type is something like bottom[], k_elem will be null.
4446     if (k_elem != NULL)
4447       k_ary = ciObjArrayKlass::make(k_elem);
4448   } else if ((el->base() == Type::Top) ||
4449              (el->base() == Type::Bottom)) {
4450     // element type of Bottom occurs from meet of basic type
4451     // and object; Top occurs when doing join on Bottom.
4452     // Leave k_ary at NULL.
4453   } else {
4454     // Cannot compute array klass directly from basic type,
4455     // since subtypes of TypeInt all have basic type T_INT.
4456 #ifdef ASSERT
4457     if (verify && el->isa_int()) {
4458       // Check simple cases when verifying klass.
4459       BasicType bt = T_ILLEGAL;
4460       if (el == TypeInt::BYTE) {
4461         bt = T_BYTE;
4462       } else if (el == TypeInt::SHORT) {
4463         bt = T_SHORT;
4464       } else if (el == TypeInt::CHAR) {
4465         bt = T_CHAR;
4466       } else if (el == TypeInt::INT) {
4467         bt = T_INT;
4468       } else {
4469         return _klass; // just return specified klass
4470       }
4471       return ciTypeArrayKlass::make(bt);
4472     }
4473 #endif
4474     assert(!el->isa_int(),
4475            "integral arrays must be pre-equipped with a class");
4476     // Compute array klass directly from basic type
4477     k_ary = ciTypeArrayKlass::make(el->basic_type());
4478   }
4479   return k_ary;
4480 }
4481 
4482 //------------------------------klass------------------------------------------
4483 // Return the defining klass for this class
4484 ciKlass* TypeAryPtr::klass() const {
4485   if( _klass ) return _klass;   // Return cached value, if possible
4486 
4487   // Oops, need to compute _klass and cache it
4488   ciKlass* k_ary = compute_klass();
4489 
4490   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4491     // The _klass field acts as a cache of the underlying
4492     // ciKlass for this array type.  In order to set the field,
4493     // we need to cast away const-ness.
4494     //
4495     // IMPORTANT NOTE: we *never* set the _klass field for the
4496     // type TypeAryPtr::OOPS.  This Type is shared between all
4497     // active compilations.  However, the ciKlass which represents
4498     // this Type is *not* shared between compilations, so caching
4499     // this value would result in fetching a dangling pointer.
4500     //
4501     // Recomputing the underlying ciKlass for each request is
4502     // a bit less efficient than caching, but calls to
4503     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4504     ((TypeAryPtr*)this)->_klass = k_ary;
4505     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4506         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4507       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4508     }
4509   }
4510   return k_ary;
4511 }
4512 
4513 
4514 //------------------------------add_offset-------------------------------------
4515 // Access internals of klass object
4516 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4517   return make( _ptr, klass(), xadd_offset(offset) );
4518 }
4519 
4520 //------------------------------cast_to_ptr_type-------------------------------
4521 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4522   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4523   if( ptr == _ptr ) return this;
4524   return make(ptr, _klass, _offset);
4525 }
4526 
4527 
4528 //-----------------------------cast_to_exactness-------------------------------
4529 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4530   if( klass_is_exact == _klass_is_exact ) return this;
4531   if (!UseExactTypes)  return this;
4532   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4533 }
4534 
4535 
4536 //-----------------------------as_instance_type--------------------------------
4537 // Corresponding type for an instance of the given class.
4538 // It will be NotNull, and exact if and only if the klass type is exact.
4539 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4540   ciKlass* k = klass();
4541   bool    xk = klass_is_exact();
4542   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4543   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4544   guarantee(toop != NULL, "need type for given klass");
4545   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4546   return toop->cast_to_exactness(xk)->is_oopptr();
4547 }
4548 
4549 
4550 //------------------------------xmeet------------------------------------------
4551 // Compute the MEET of two types, return a new Type object.
4552 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4553   // Perform a fast test for common case; meeting the same types together.
4554   if( this == t ) return this;  // Meeting same type-rep?
4555 
4556   // Current "this->_base" is Pointer
4557   switch (t->base()) {          // switch on original type
4558 
4559   case Int:                     // Mixing ints & oops happens when javac
4560   case Long:                    // reuses local variables
4561   case FloatTop:
4562   case FloatCon:
4563   case FloatBot:
4564   case DoubleTop:
4565   case DoubleCon:
4566   case DoubleBot:
4567   case NarrowOop:
4568   case NarrowKlass:
4569   case Bottom:                  // Ye Olde Default
4570     return Type::BOTTOM;
4571   case Top:
4572     return this;
4573 
4574   default:                      // All else is a mistake
4575     typerr(t);
4576 
4577   case AnyPtr: {                // Meeting to AnyPtrs
4578     // Found an AnyPtr type vs self-KlassPtr type
4579     const TypePtr *tp = t->is_ptr();
4580     int offset = meet_offset(tp->offset());
4581     PTR ptr = meet_ptr(tp->ptr());
4582     switch (tp->ptr()) {
4583     case TopPTR:
4584       return this;
4585     case Null:
4586       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4587     case AnyNull:
4588       return make( ptr, klass(), offset );
4589     case BotPTR:
4590     case NotNull:
4591       return TypePtr::make(AnyPtr, ptr, offset);
4592     default: typerr(t);
4593     }
4594   }
4595 
4596   case RawPtr:
4597   case MetadataPtr:
4598   case OopPtr:
4599   case AryPtr:                  // Meet with AryPtr
4600   case InstPtr:                 // Meet with InstPtr
4601     return TypePtr::BOTTOM;
4602 
4603   //
4604   //             A-top         }
4605   //           /   |   \       }  Tops
4606   //       B-top A-any C-top   }
4607   //          | /  |  \ |      }  Any-nulls
4608   //       B-any   |   C-any   }
4609   //          |    |    |
4610   //       B-con A-con C-con   } constants; not comparable across classes
4611   //          |    |    |
4612   //       B-not   |   C-not   }
4613   //          | \  |  / |      }  not-nulls
4614   //       B-bot A-not C-bot   }
4615   //           \   |   /       }  Bottoms
4616   //             A-bot         }
4617   //
4618 
4619   case KlassPtr: {  // Meet two KlassPtr types
4620     const TypeKlassPtr *tkls = t->is_klassptr();
4621     int  off     = meet_offset(tkls->offset());
4622     PTR  ptr     = meet_ptr(tkls->ptr());
4623 
4624     // Check for easy case; klasses are equal (and perhaps not loaded!)
4625     // If we have constants, then we created oops so classes are loaded
4626     // and we can handle the constants further down.  This case handles
4627     // not-loaded classes
4628     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4629       return make( ptr, klass(), off );
4630     }
4631 
4632     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4633     ciKlass* tkls_klass = tkls->klass();
4634     ciKlass* this_klass = this->klass();
4635     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4636     assert( this_klass->is_loaded(), "This class should have been loaded.");
4637 
4638     // If 'this' type is above the centerline and is a superclass of the
4639     // other, we can treat 'this' as having the same type as the other.
4640     if ((above_centerline(this->ptr())) &&
4641         tkls_klass->is_subtype_of(this_klass)) {
4642       this_klass = tkls_klass;
4643     }
4644     // If 'tinst' type is above the centerline and is a superclass of the
4645     // other, we can treat 'tinst' as having the same type as the other.
4646     if ((above_centerline(tkls->ptr())) &&
4647         this_klass->is_subtype_of(tkls_klass)) {
4648       tkls_klass = this_klass;
4649     }
4650 
4651     // Check for classes now being equal
4652     if (tkls_klass->equals(this_klass)) {
4653       // If the klasses are equal, the constants may still differ.  Fall to
4654       // NotNull if they do (neither constant is NULL; that is a special case
4655       // handled elsewhere).
4656       if( ptr == Constant ) {
4657         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4658             this->klass()->equals(tkls->klass()));
4659         else if (above_centerline(this->ptr()));
4660         else if (above_centerline(tkls->ptr()));
4661         else
4662           ptr = NotNull;
4663       }
4664       return make( ptr, this_klass, off );
4665     } // Else classes are not equal
4666 
4667     // Since klasses are different, we require the LCA in the Java
4668     // class hierarchy - which means we have to fall to at least NotNull.
4669     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4670       ptr = NotNull;
4671     // Now we find the LCA of Java classes
4672     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4673     return   make( ptr, k, off );
4674   } // End of case KlassPtr
4675 
4676   } // End of switch
4677   return this;                  // Return the double constant
4678 }
4679 
4680 //------------------------------xdual------------------------------------------
4681 // Dual: compute field-by-field dual
4682 const Type    *TypeKlassPtr::xdual() const {
4683   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4684 }
4685 
4686 //------------------------------get_con----------------------------------------
4687 intptr_t TypeKlassPtr::get_con() const {
4688   assert( _ptr == Null || _ptr == Constant, "" );
4689   assert( _offset >= 0, "" );
4690 
4691   if (_offset != 0) {
4692     // After being ported to the compiler interface, the compiler no longer
4693     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4694     // to a handle at compile time.  This handle is embedded in the generated
4695     // code and dereferenced at the time the nmethod is made.  Until that time,
4696     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4697     // have access to the addresses!).  This does not seem to currently happen,
4698     // but this assertion here is to help prevent its occurence.
4699     tty->print_cr("Found oop constant with non-zero offset");
4700     ShouldNotReachHere();
4701   }
4702 
4703   return (intptr_t)klass()->constant_encoding();
4704 }
4705 //------------------------------dump2------------------------------------------
4706 // Dump Klass Type
4707 #ifndef PRODUCT
4708 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4709   switch( _ptr ) {
4710   case Constant:
4711     st->print("precise ");
4712   case NotNull:
4713     {
4714       const char *name = klass()->name()->as_utf8();
4715       if( name ) {
4716         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4717       } else {
4718         ShouldNotReachHere();
4719       }
4720     }
4721   case BotPTR:
4722     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4723   case TopPTR:
4724   case AnyNull:
4725     st->print(":%s", ptr_msg[_ptr]);
4726     if( _klass_is_exact ) st->print(":exact");
4727     break;
4728   }
4729 
4730   if( _offset ) {               // Dump offset, if any
4731     if( _offset == OffsetBot )      { st->print("+any"); }
4732     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4733     else                            { st->print("+%d", _offset); }
4734   }
4735 
4736   st->print(" *");
4737 }
4738 #endif
4739 
4740 
4741 
4742 //=============================================================================
4743 // Convenience common pre-built types.
4744 
4745 //------------------------------make-------------------------------------------
4746 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4747   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4748 }
4749 
4750 //------------------------------make-------------------------------------------
4751 const TypeFunc *TypeFunc::make(ciMethod* method) {
4752   Compile* C = Compile::current();
4753   const TypeFunc* tf = C->last_tf(method); // check cache
4754   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4755   const TypeTuple *domain;
4756   if (method->is_static()) {
4757     domain = TypeTuple::make_domain(NULL, method->signature());
4758   } else {
4759     domain = TypeTuple::make_domain(method->holder(), method->signature());
4760   }
4761   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4762   tf = TypeFunc::make(domain, range);
4763   C->set_last_tf(method, tf);  // fill cache
4764   return tf;
4765 }
4766 
4767 //------------------------------meet-------------------------------------------
4768 // Compute the MEET of two types.  It returns a new Type object.
4769 const Type *TypeFunc::xmeet( const Type *t ) const {
4770   // Perform a fast test for common case; meeting the same types together.
4771   if( this == t ) return this;  // Meeting same type-rep?
4772 
4773   // Current "this->_base" is Func
4774   switch (t->base()) {          // switch on original type
4775 
4776   case Bottom:                  // Ye Olde Default
4777     return t;
4778 
4779   default:                      // All else is a mistake
4780     typerr(t);
4781 
4782   case Top:
4783     break;
4784   }
4785   return this;                  // Return the double constant
4786 }
4787 
4788 //------------------------------xdual------------------------------------------
4789 // Dual: compute field-by-field dual
4790 const Type *TypeFunc::xdual() const {
4791   return this;
4792 }
4793 
4794 //------------------------------eq---------------------------------------------
4795 // Structural equality check for Type representations
4796 bool TypeFunc::eq( const Type *t ) const {
4797   const TypeFunc *a = (const TypeFunc*)t;
4798   return _domain == a->_domain &&
4799     _range == a->_range;
4800 }
4801 
4802 //------------------------------hash-------------------------------------------
4803 // Type-specific hashing function.
4804 int TypeFunc::hash(void) const {
4805   return (intptr_t)_domain + (intptr_t)_range;
4806 }
4807 
4808 //------------------------------dump2------------------------------------------
4809 // Dump Function Type
4810 #ifndef PRODUCT
4811 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4812   if( _range->_cnt <= Parms )
4813     st->print("void");
4814   else {
4815     uint i;
4816     for (i = Parms; i < _range->_cnt-1; i++) {
4817       _range->field_at(i)->dump2(d,depth,st);
4818       st->print("/");
4819     }
4820     _range->field_at(i)->dump2(d,depth,st);
4821   }
4822   st->print(" ");
4823   st->print("( ");
4824   if( !depth || d[this] ) {     // Check for recursive dump
4825     st->print("...)");
4826     return;
4827   }
4828   d.Insert((void*)this,(void*)this);    // Stop recursion
4829   if (Parms < _domain->_cnt)
4830     _domain->field_at(Parms)->dump2(d,depth-1,st);
4831   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4832     st->print(", ");
4833     _domain->field_at(i)->dump2(d,depth-1,st);
4834   }
4835   st->print(" )");
4836 }
4837 #endif
4838 
4839 //------------------------------singleton--------------------------------------
4840 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4841 // constants (Ldi nodes).  Singletons are integer, float or double constants
4842 // or a single symbol.
4843 bool TypeFunc::singleton(void) const {
4844   return false;                 // Never a singleton
4845 }
4846 
4847 bool TypeFunc::empty(void) const {
4848   return false;                 // Never empty
4849 }
4850 
4851 
4852 BasicType TypeFunc::return_type() const{
4853   if (range()->cnt() == TypeFunc::Parms) {
4854     return T_VOID;
4855   }
4856   return range()->field_at(TypeFunc::Parms)->basic_type();
4857 }