1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectS;
  58 class     TypeVectD;
  59 class     TypeVectX;
  60 class     TypeVectY;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class     TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94 
  95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  96     RawPtr,                     // Raw (non-oop) pointers
  97     OopPtr,                     // Any and all Java heap entities
  98     InstPtr,                    // Instance pointers (non-array objects)
  99     AryPtr,                     // Array pointers
 100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 101 
 102     MetadataPtr,                // Generic metadata
 103     KlassPtr,                   // Klass pointers
 104 
 105     Function,                   // Function signature
 106     Abio,                       // Abstract I/O
 107     Return_Address,             // Subroutine return address
 108     Memory,                     // Abstract store
 109     FloatTop,                   // No float value
 110     FloatCon,                   // Floating point constant
 111     FloatBot,                   // Any float value
 112     DoubleTop,                  // No double value
 113     DoubleCon,                  // Double precision constant
 114     DoubleBot,                  // Any double value
 115     Bottom,                     // Bottom of lattice
 116     lastype                     // Bogus ending type (not in lattice)
 117   };
 118 
 119   // Signal values for offsets from a base pointer
 120   enum OFFSET_SIGNALS {
 121     OffsetTop = -2000000000,    // undefined offset
 122     OffsetBot = -2000000001     // any possible offset
 123   };
 124 
 125   // Min and max WIDEN values.
 126   enum WIDEN {
 127     WidenMin = 0,
 128     WidenMax = 3
 129   };
 130 
 131 private:
 132   typedef struct {
 133     const TYPES                dual_type;
 134     const BasicType            basic_type;
 135     const char*                msg;
 136     const bool                 isa_oop;
 137     const int                  ideal_reg;
 138     const relocInfo::relocType reloc;
 139   } TypeInfo;
 140 
 141   // Dictionary of types shared among compilations.
 142   static Dict* _shared_type_dict;
 143   static TypeInfo _type_info[];
 144 
 145   static int uhash( const Type *const t );
 146   // Structural equality check.  Assumes that cmp() has already compared
 147   // the _base types and thus knows it can cast 't' appropriately.
 148   virtual bool eq( const Type *t ) const;
 149 
 150   // Top-level hash-table of types
 151   static Dict *type_dict() {
 152     return Compile::current()->type_dict();
 153   }
 154 
 155   // DUAL operation: reflect around lattice centerline.  Used instead of
 156   // join to ensure my lattice is symmetric up and down.  Dual is computed
 157   // lazily, on demand, and cached in _dual.
 158   const Type *_dual;            // Cached dual value
 159   // Table for efficient dualing of base types
 160   static const TYPES dual_type[lastype];
 161 
 162 #ifdef ASSERT
 163   // One type is interface, the other is oop
 164   virtual bool interface_vs_oop_helper(const Type *t) const;
 165 #endif
 166 
 167   const Type *meet_helper(const Type *t, bool include_speculative) const;
 168 
 169 protected:
 170   // Each class of type is also identified by its base.
 171   const TYPES _base;            // Enum of Types type
 172 
 173   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 174   // ~Type();                   // Use fast deallocation
 175   const Type *hashcons();       // Hash-cons the type
 176   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 177   const Type *join_helper(const Type *t, bool include_speculative) const {
 178     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 179   }
 180 
 181 public:
 182 
 183   inline void* operator new( size_t x ) throw() {
 184     Compile* compile = Compile::current();
 185     compile->set_type_last_size(x);
 186     void *temp = compile->type_arena()->Amalloc_D(x);
 187     compile->set_type_hwm(temp);
 188     return temp;
 189   }
 190   inline void operator delete( void* ptr ) {
 191     Compile* compile = Compile::current();
 192     compile->type_arena()->Afree(ptr,compile->type_last_size());
 193   }
 194 
 195   // Initialize the type system for a particular compilation.
 196   static void Initialize(Compile* compile);
 197 
 198   // Initialize the types shared by all compilations.
 199   static void Initialize_shared(Compile* compile);
 200 
 201   TYPES base() const {
 202     assert(_base > Bad && _base < lastype, "sanity");
 203     return _base;
 204   }
 205 
 206   // Create a new hash-consd type
 207   static const Type *make(enum TYPES);
 208   // Test for equivalence of types
 209   static int cmp( const Type *const t1, const Type *const t2 );
 210   // Test for higher or equal in lattice
 211   // Variant that drops the speculative part of the types
 212   int higher_equal(const Type *t) const {
 213     return !cmp(meet(t),t->remove_speculative());
 214   }
 215   // Variant that keeps the speculative part of the types
 216   int higher_equal_speculative(const Type *t) const {
 217     return !cmp(meet_speculative(t),t);
 218   }
 219 
 220   // MEET operation; lower in lattice.
 221   // Variant that drops the speculative part of the types
 222   const Type *meet(const Type *t) const {
 223     return meet_helper(t, false);
 224   }
 225   // Variant that keeps the speculative part of the types
 226   const Type *meet_speculative(const Type *t) const {
 227     return meet_helper(t, true);
 228   }
 229   // WIDEN: 'widens' for Ints and other range types
 230   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 231   // NARROW: complement for widen, used by pessimistic phases
 232   virtual const Type *narrow( const Type *old ) const { return this; }
 233 
 234   // DUAL operation: reflect around lattice centerline.  Used instead of
 235   // join to ensure my lattice is symmetric up and down.
 236   const Type *dual() const { return _dual; }
 237 
 238   // Compute meet dependent on base type
 239   virtual const Type *xmeet( const Type *t ) const;
 240   virtual const Type *xdual() const;    // Compute dual right now.
 241 
 242   // JOIN operation; higher in lattice.  Done by finding the dual of the
 243   // meet of the dual of the 2 inputs.
 244   // Variant that drops the speculative part of the types
 245   const Type *join(const Type *t) const {
 246     return join_helper(t, false);
 247   }
 248   // Variant that keeps the speculative part of the types
 249   const Type *join_speculative(const Type *t) const {
 250     return join_helper(t, true);
 251   }
 252 
 253   // Modified version of JOIN adapted to the needs Node::Value.
 254   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 255   // Currently, it also works around limitations involving interface types.
 256   // Variant that drops the speculative part of the types
 257   const Type *filter(const Type *kills) const {
 258     return filter_helper(kills, false);
 259   }
 260   // Variant that keeps the speculative part of the types
 261   const Type *filter_speculative(const Type *kills) const {
 262     return filter_helper(kills, true);
 263   }
 264 
 265 #ifdef ASSERT
 266   // One type is interface, the other is oop
 267   virtual bool interface_vs_oop(const Type *t) const;
 268 #endif
 269 
 270   // Returns true if this pointer points at memory which contains a
 271   // compressed oop references.
 272   bool is_ptr_to_narrowoop() const;
 273   bool is_ptr_to_narrowklass() const;
 274 
 275   bool is_ptr_to_boxing_obj() const;
 276 
 277 
 278   // Convenience access
 279   float getf() const;
 280   double getd() const;
 281 
 282   const TypeInt    *is_int() const;
 283   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 284   const TypeLong   *is_long() const;
 285   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 286   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 287   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 288   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 289   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 290   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 291   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 292   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 293   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 294   const TypeVect   *is_vect() const;             // Vector
 295   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 296   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 297   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 298   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 299   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 300   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 301   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 302   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 303   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 304   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 305   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 306   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 307   const TypeInstPtr  *is_instptr() const;        // Instance
 308   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 309   const TypeAryPtr   *is_aryptr() const;         // Array oop
 310 
 311   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 312   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 313   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 314   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 315 
 316   virtual bool      is_finite() const;           // Has a finite value
 317   virtual bool      is_nan()    const;           // Is not a number (NaN)
 318 
 319   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 320   const TypePtr* make_ptr() const;
 321 
 322   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 323   // Asserts if the underlying type is not an oopptr or narrowoop.
 324   const TypeOopPtr* make_oopptr() const;
 325 
 326   // Returns this compressed pointer or the equivalent compressed version
 327   // of this pointer type.
 328   const TypeNarrowOop* make_narrowoop() const;
 329 
 330   // Returns this compressed klass pointer or the equivalent
 331   // compressed version of this pointer type.
 332   const TypeNarrowKlass* make_narrowklass() const;
 333 
 334   // Special test for register pressure heuristic
 335   bool is_floatingpoint() const;        // True if Float or Double base type
 336 
 337   // Do you have memory, directly or through a tuple?
 338   bool has_memory( ) const;
 339 
 340   // TRUE if type is a singleton
 341   virtual bool singleton(void) const;
 342 
 343   // TRUE if type is above the lattice centerline, and is therefore vacuous
 344   virtual bool empty(void) const;
 345 
 346   // Return a hash for this type.  The hash function is public so ConNode
 347   // (constants) can hash on their constant, which is represented by a Type.
 348   virtual int hash() const;
 349 
 350   // Map ideal registers (machine types) to ideal types
 351   static const Type *mreg2type[];
 352 
 353   // Printing, statistics
 354 #ifndef PRODUCT
 355   void         dump_on(outputStream *st) const;
 356   void         dump() const {
 357     dump_on(tty);
 358   }
 359   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 360   static  void dump_stats();
 361 #endif
 362   void typerr(const Type *t) const; // Mixing types error
 363 
 364   // Create basic type
 365   static const Type* get_const_basic_type(BasicType type) {
 366     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 367     return _const_basic_type[type];
 368   }
 369 
 370   // Mapping to the array element's basic type.
 371   BasicType array_element_basic_type() const;
 372 
 373   // Create standard type for a ciType:
 374   static const Type* get_const_type(ciType* type);
 375 
 376   // Create standard zero value:
 377   static const Type* get_zero_type(BasicType type) {
 378     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 379     return _zero_type[type];
 380   }
 381 
 382   // Report if this is a zero value (not top).
 383   bool is_zero_type() const {
 384     BasicType type = basic_type();
 385     if (type == T_VOID || type >= T_CONFLICT)
 386       return false;
 387     else
 388       return (this == _zero_type[type]);
 389   }
 390 
 391   // Convenience common pre-built types.
 392   static const Type *ABIO;
 393   static const Type *BOTTOM;
 394   static const Type *CONTROL;
 395   static const Type *DOUBLE;
 396   static const Type *FLOAT;
 397   static const Type *HALF;
 398   static const Type *MEMORY;
 399   static const Type *MULTI;
 400   static const Type *RETURN_ADDRESS;
 401   static const Type *TOP;
 402 
 403   // Mapping from compiler type to VM BasicType
 404   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 405   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 406   const char* msg() const            { return _type_info[_base].msg; }
 407   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 408   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 409 
 410   // Mapping from CI type system to compiler type:
 411   static const Type* get_typeflow_type(ciType* type);
 412 
 413   static const Type* make_from_constant(ciConstant constant,
 414                                         bool require_constant = false,
 415                                         bool is_autobox_cache = false);
 416 
 417   // Speculative type. See TypeInstPtr
 418   virtual ciKlass* speculative_type() const { return NULL; }
 419   const Type* maybe_remove_speculative(bool include_speculative) const;
 420   virtual const Type* remove_speculative() const { return this; }
 421 
 422 private:
 423   // support arrays
 424   static const BasicType _basic_type[];
 425   static const Type*        _zero_type[T_CONFLICT+1];
 426   static const Type* _const_basic_type[T_CONFLICT+1];
 427 };
 428 
 429 //------------------------------TypeF------------------------------------------
 430 // Class of Float-Constant Types.
 431 class TypeF : public Type {
 432   TypeF( float f ) : Type(FloatCon), _f(f) {};
 433 public:
 434   virtual bool eq( const Type *t ) const;
 435   virtual int  hash() const;             // Type specific hashing
 436   virtual bool singleton(void) const;    // TRUE if type is a singleton
 437   virtual bool empty(void) const;        // TRUE if type is vacuous
 438 public:
 439   const float _f;               // Float constant
 440 
 441   static const TypeF *make(float f);
 442 
 443   virtual bool        is_finite() const;  // Has a finite value
 444   virtual bool        is_nan()    const;  // Is not a number (NaN)
 445 
 446   virtual const Type *xmeet( const Type *t ) const;
 447   virtual const Type *xdual() const;    // Compute dual right now.
 448   // Convenience common pre-built types.
 449   static const TypeF *ZERO; // positive zero only
 450   static const TypeF *ONE;
 451 #ifndef PRODUCT
 452   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 453 #endif
 454 };
 455 
 456 //------------------------------TypeD------------------------------------------
 457 // Class of Double-Constant Types.
 458 class TypeD : public Type {
 459   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 460 public:
 461   virtual bool eq( const Type *t ) const;
 462   virtual int  hash() const;             // Type specific hashing
 463   virtual bool singleton(void) const;    // TRUE if type is a singleton
 464   virtual bool empty(void) const;        // TRUE if type is vacuous
 465 public:
 466   const double _d;              // Double constant
 467 
 468   static const TypeD *make(double d);
 469 
 470   virtual bool        is_finite() const;  // Has a finite value
 471   virtual bool        is_nan()    const;  // Is not a number (NaN)
 472 
 473   virtual const Type *xmeet( const Type *t ) const;
 474   virtual const Type *xdual() const;    // Compute dual right now.
 475   // Convenience common pre-built types.
 476   static const TypeD *ZERO; // positive zero only
 477   static const TypeD *ONE;
 478 #ifndef PRODUCT
 479   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 480 #endif
 481 };
 482 
 483 //------------------------------TypeInt----------------------------------------
 484 // Class of integer ranges, the set of integers between a lower bound and an
 485 // upper bound, inclusive.
 486 class TypeInt : public Type {
 487   TypeInt( jint lo, jint hi, int w );
 488 protected:
 489   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 490 
 491 public:
 492   virtual bool eq( const Type *t ) const;
 493   virtual int  hash() const;             // Type specific hashing
 494   virtual bool singleton(void) const;    // TRUE if type is a singleton
 495   virtual bool empty(void) const;        // TRUE if type is vacuous
 496   const jint _lo, _hi;          // Lower bound, upper bound
 497   const short _widen;           // Limit on times we widen this sucker
 498 
 499   static const TypeInt *make(jint lo);
 500   // must always specify w
 501   static const TypeInt *make(jint lo, jint hi, int w);
 502 
 503   // Check for single integer
 504   int is_con() const { return _lo==_hi; }
 505   bool is_con(int i) const { return is_con() && _lo == i; }
 506   jint get_con() const { assert( is_con(), "" );  return _lo; }
 507 
 508   virtual bool        is_finite() const;  // Has a finite value
 509 
 510   virtual const Type *xmeet( const Type *t ) const;
 511   virtual const Type *xdual() const;    // Compute dual right now.
 512   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 513   virtual const Type *narrow( const Type *t ) const;
 514   // Do not kill _widen bits.
 515   // Convenience common pre-built types.
 516   static const TypeInt *MINUS_1;
 517   static const TypeInt *ZERO;
 518   static const TypeInt *ONE;
 519   static const TypeInt *BOOL;
 520   static const TypeInt *CC;
 521   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 522   static const TypeInt *CC_GT;  // [1]   == ONE
 523   static const TypeInt *CC_EQ;  // [0]   == ZERO
 524   static const TypeInt *CC_LE;  // [-1,0]
 525   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 526   static const TypeInt *BYTE;
 527   static const TypeInt *UBYTE;
 528   static const TypeInt *CHAR;
 529   static const TypeInt *SHORT;
 530   static const TypeInt *POS;
 531   static const TypeInt *POS1;
 532   static const TypeInt *INT;
 533   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 534 #ifndef PRODUCT
 535   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 536 #endif
 537 };
 538 
 539 
 540 //------------------------------TypeLong---------------------------------------
 541 // Class of long integer ranges, the set of integers between a lower bound and
 542 // an upper bound, inclusive.
 543 class TypeLong : public Type {
 544   TypeLong( jlong lo, jlong hi, int w );
 545 protected:
 546   // Do not kill _widen bits.
 547   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 548 public:
 549   virtual bool eq( const Type *t ) const;
 550   virtual int  hash() const;             // Type specific hashing
 551   virtual bool singleton(void) const;    // TRUE if type is a singleton
 552   virtual bool empty(void) const;        // TRUE if type is vacuous
 553 public:
 554   const jlong _lo, _hi;         // Lower bound, upper bound
 555   const short _widen;           // Limit on times we widen this sucker
 556 
 557   static const TypeLong *make(jlong lo);
 558   // must always specify w
 559   static const TypeLong *make(jlong lo, jlong hi, int w);
 560 
 561   // Check for single integer
 562   int is_con() const { return _lo==_hi; }
 563   bool is_con(int i) const { return is_con() && _lo == i; }
 564   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 565 
 566   virtual bool        is_finite() const;  // Has a finite value
 567 
 568   virtual const Type *xmeet( const Type *t ) const;
 569   virtual const Type *xdual() const;    // Compute dual right now.
 570   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 571   virtual const Type *narrow( const Type *t ) const;
 572   // Convenience common pre-built types.
 573   static const TypeLong *MINUS_1;
 574   static const TypeLong *ZERO;
 575   static const TypeLong *ONE;
 576   static const TypeLong *POS;
 577   static const TypeLong *LONG;
 578   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 579   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 580 #ifndef PRODUCT
 581   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 582 #endif
 583 };
 584 
 585 //------------------------------TypeTuple--------------------------------------
 586 // Class of Tuple Types, essentially type collections for function signatures
 587 // and class layouts.  It happens to also be a fast cache for the HotSpot
 588 // signature types.
 589 class TypeTuple : public Type {
 590   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 591 public:
 592   virtual bool eq( const Type *t ) const;
 593   virtual int  hash() const;             // Type specific hashing
 594   virtual bool singleton(void) const;    // TRUE if type is a singleton
 595   virtual bool empty(void) const;        // TRUE if type is vacuous
 596 
 597 public:
 598   const uint          _cnt;              // Count of fields
 599   const Type ** const _fields;           // Array of field types
 600 
 601   // Accessors:
 602   uint cnt() const { return _cnt; }
 603   const Type* field_at(uint i) const {
 604     assert(i < _cnt, "oob");
 605     return _fields[i];
 606   }
 607   void set_field_at(uint i, const Type* t) {
 608     assert(i < _cnt, "oob");
 609     _fields[i] = t;
 610   }
 611 
 612   static const TypeTuple *make( uint cnt, const Type **fields );
 613   static const TypeTuple *make_range(ciSignature *sig);
 614   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 615 
 616   // Subroutine call type with space allocated for argument types
 617   static const Type **fields( uint arg_cnt );
 618 
 619   virtual const Type *xmeet( const Type *t ) const;
 620   virtual const Type *xdual() const;    // Compute dual right now.
 621   // Convenience common pre-built types.
 622   static const TypeTuple *IFBOTH;
 623   static const TypeTuple *IFFALSE;
 624   static const TypeTuple *IFTRUE;
 625   static const TypeTuple *IFNEITHER;
 626   static const TypeTuple *LOOPBODY;
 627   static const TypeTuple *MEMBAR;
 628   static const TypeTuple *STORECONDITIONAL;
 629   static const TypeTuple *START_I2C;
 630   static const TypeTuple *INT_PAIR;
 631   static const TypeTuple *LONG_PAIR;
 632   static const TypeTuple *INT_CC_PAIR;
 633   static const TypeTuple *LONG_CC_PAIR;
 634 #ifndef PRODUCT
 635   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 636 #endif
 637 };
 638 
 639 //------------------------------TypeAry----------------------------------------
 640 // Class of Array Types
 641 class TypeAry : public Type {
 642   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 643       _elem(elem), _size(size), _stable(stable) {}
 644 public:
 645   virtual bool eq( const Type *t ) const;
 646   virtual int  hash() const;             // Type specific hashing
 647   virtual bool singleton(void) const;    // TRUE if type is a singleton
 648   virtual bool empty(void) const;        // TRUE if type is vacuous
 649 
 650 private:
 651   const Type *_elem;            // Element type of array
 652   const TypeInt *_size;         // Elements in array
 653   const bool _stable;           // Are elements @Stable?
 654   friend class TypeAryPtr;
 655 
 656 public:
 657   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 658 
 659   virtual const Type *xmeet( const Type *t ) const;
 660   virtual const Type *xdual() const;    // Compute dual right now.
 661   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 662   virtual const Type* remove_speculative() const;
 663 #ifdef ASSERT
 664   // One type is interface, the other is oop
 665   virtual bool interface_vs_oop(const Type *t) const;
 666 #endif
 667 #ifndef PRODUCT
 668   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 669 #endif
 670 };
 671 
 672 //------------------------------TypeVect---------------------------------------
 673 // Class of Vector Types
 674 class TypeVect : public Type {
 675   const Type*   _elem;  // Vector's element type
 676   const uint  _length;  // Elements in vector (power of 2)
 677 
 678 protected:
 679   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 680     _elem(elem), _length(length) {}
 681 
 682 public:
 683   const Type* element_type() const { return _elem; }
 684   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 685   uint length() const { return _length; }
 686   uint length_in_bytes() const {
 687    return _length * type2aelembytes(element_basic_type());
 688   }
 689 
 690   virtual bool eq(const Type *t) const;
 691   virtual int  hash() const;             // Type specific hashing
 692   virtual bool singleton(void) const;    // TRUE if type is a singleton
 693   virtual bool empty(void) const;        // TRUE if type is vacuous
 694 
 695   static const TypeVect *make(const BasicType elem_bt, uint length) {
 696     // Use bottom primitive type.
 697     return make(get_const_basic_type(elem_bt), length);
 698   }
 699   // Used directly by Replicate nodes to construct singleton vector.
 700   static const TypeVect *make(const Type* elem, uint length);
 701 
 702   virtual const Type *xmeet( const Type *t) const;
 703   virtual const Type *xdual() const;     // Compute dual right now.
 704 
 705   static const TypeVect *VECTS;
 706   static const TypeVect *VECTD;
 707   static const TypeVect *VECTX;
 708   static const TypeVect *VECTY;
 709 
 710 #ifndef PRODUCT
 711   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 712 #endif
 713 };
 714 
 715 class TypeVectS : public TypeVect {
 716   friend class TypeVect;
 717   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 718 };
 719 
 720 class TypeVectD : public TypeVect {
 721   friend class TypeVect;
 722   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 723 };
 724 
 725 class TypeVectX : public TypeVect {
 726   friend class TypeVect;
 727   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 728 };
 729 
 730 class TypeVectY : public TypeVect {
 731   friend class TypeVect;
 732   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 733 };
 734 
 735 //------------------------------TypePtr----------------------------------------
 736 // Class of machine Pointer Types: raw data, instances or arrays.
 737 // If the _base enum is AnyPtr, then this refers to all of the above.
 738 // Otherwise the _base will indicate which subset of pointers is affected,
 739 // and the class will be inherited from.
 740 class TypePtr : public Type {
 741   friend class TypeNarrowPtr;
 742 public:
 743   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 744 protected:
 745   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 746   virtual bool eq( const Type *t ) const;
 747   virtual int  hash() const;             // Type specific hashing
 748   static const PTR ptr_meet[lastPTR][lastPTR];
 749   static const PTR ptr_dual[lastPTR];
 750   static const char * const ptr_msg[lastPTR];
 751 
 752 public:
 753   const int _offset;            // Offset into oop, with TOP & BOT
 754   const PTR _ptr;               // Pointer equivalence class
 755 
 756   const int offset() const { return _offset; }
 757   const PTR ptr()    const { return _ptr; }
 758 
 759   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 760 
 761   // Return a 'ptr' version of this type
 762   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 763 
 764   virtual intptr_t get_con() const;
 765 
 766   int xadd_offset( intptr_t offset ) const;
 767   virtual const TypePtr *add_offset( intptr_t offset ) const;
 768 
 769   virtual bool singleton(void) const;    // TRUE if type is a singleton
 770   virtual bool empty(void) const;        // TRUE if type is vacuous
 771   virtual const Type *xmeet( const Type *t ) const;
 772   int meet_offset( int offset ) const;
 773   int dual_offset( ) const;
 774   virtual const Type *xdual() const;    // Compute dual right now.
 775 
 776   // meet, dual and join over pointer equivalence sets
 777   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 778   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 779 
 780   // This is textually confusing unless one recalls that
 781   // join(t) == dual()->meet(t->dual())->dual().
 782   PTR join_ptr( const PTR in_ptr ) const {
 783     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 784   }
 785 
 786   // Tests for relation to centerline of type lattice:
 787   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 788   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 789   // Convenience common pre-built types.
 790   static const TypePtr *NULL_PTR;
 791   static const TypePtr *NOTNULL;
 792   static const TypePtr *BOTTOM;
 793 #ifndef PRODUCT
 794   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 795 #endif
 796 };
 797 
 798 //------------------------------TypeRawPtr-------------------------------------
 799 // Class of raw pointers, pointers to things other than Oops.  Examples
 800 // include the stack pointer, top of heap, card-marking area, handles, etc.
 801 class TypeRawPtr : public TypePtr {
 802 protected:
 803   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 804 public:
 805   virtual bool eq( const Type *t ) const;
 806   virtual int  hash() const;     // Type specific hashing
 807 
 808   const address _bits;          // Constant value, if applicable
 809 
 810   static const TypeRawPtr *make( PTR ptr );
 811   static const TypeRawPtr *make( address bits );
 812 
 813   // Return a 'ptr' version of this type
 814   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 815 
 816   virtual intptr_t get_con() const;
 817 
 818   virtual const TypePtr *add_offset( intptr_t offset ) const;
 819 
 820   virtual const Type *xmeet( const Type *t ) const;
 821   virtual const Type *xdual() const;    // Compute dual right now.
 822   // Convenience common pre-built types.
 823   static const TypeRawPtr *BOTTOM;
 824   static const TypeRawPtr *NOTNULL;
 825 #ifndef PRODUCT
 826   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 827 #endif
 828 };
 829 
 830 //------------------------------TypeOopPtr-------------------------------------
 831 // Some kind of oop (Java pointer), either klass or instance or array.
 832 class TypeOopPtr : public TypePtr {
 833 protected:
 834   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
 835 public:
 836   virtual bool eq( const Type *t ) const;
 837   virtual int  hash() const;             // Type specific hashing
 838   virtual bool singleton(void) const;    // TRUE if type is a singleton
 839   enum {
 840    InstanceTop = -1,   // undefined instance
 841    InstanceBot = 0     // any possible instance
 842   };
 843 protected:
 844 
 845   // Oop is NULL, unless this is a constant oop.
 846   ciObject*     _const_oop;   // Constant oop
 847   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 848   ciKlass*      _klass;       // Klass object
 849   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 850   bool          _klass_is_exact;
 851   bool          _is_ptr_to_narrowoop;
 852   bool          _is_ptr_to_narrowklass;
 853   bool          _is_ptr_to_boxed_value;
 854 
 855   // If not InstanceTop or InstanceBot, indicates that this is
 856   // a particular instance of this type which is distinct.
 857   // This is the the node index of the allocation node creating this instance.
 858   int           _instance_id;
 859 
 860   // Extra type information profiling gave us. We propagate it the
 861   // same way the rest of the type info is propagated. If we want to
 862   // use it, then we have to emit a guard: this part of the type is
 863   // not something we know but something we speculate about the type.
 864   const TypeOopPtr*   _speculative;
 865 
 866   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 867 
 868   int dual_instance_id() const;
 869   int meet_instance_id(int uid) const;
 870 
 871   // utility methods to work on the speculative part of the type
 872   const TypeOopPtr* dual_speculative() const;
 873   const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
 874   bool eq_speculative(const TypeOopPtr* other) const;
 875   int hash_speculative() const;
 876   const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
 877 #ifndef PRODUCT
 878   void dump_speculative(outputStream *st) const;
 879 #endif
 880 
 881   // Do not allow interface-vs.-noninterface joins to collapse to top.
 882   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 883 
 884 public:
 885   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 886   // Respects UseUniqueSubclasses.
 887   // If the klass is final, the resulting type will be exact.
 888   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 889     return make_from_klass_common(klass, true, false);
 890   }
 891   // Same as before, but will produce an exact type, even if
 892   // the klass is not final, as long as it has exactly one implementation.
 893   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 894     return make_from_klass_common(klass, true, true);
 895   }
 896   // Same as before, but does not respects UseUniqueSubclasses.
 897   // Use this only for creating array element types.
 898   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 899     return make_from_klass_common(klass, false, false);
 900   }
 901   // Creates a singleton type given an object.
 902   // If the object cannot be rendered as a constant,
 903   // may return a non-singleton type.
 904   // If require_constant, produce a NULL if a singleton is not possible.
 905   static const TypeOopPtr* make_from_constant(ciObject* o,
 906                                               bool require_constant = false,
 907                                               bool not_null_elements = false);
 908 
 909   // Make a generic (unclassed) pointer to an oop.
 910   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative);
 911 
 912   ciObject* const_oop()    const { return _const_oop; }
 913   virtual ciKlass* klass() const { return _klass;     }
 914   bool klass_is_exact()    const { return _klass_is_exact; }
 915 
 916   // Returns true if this pointer points at memory which contains a
 917   // compressed oop references.
 918   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 919   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
 920   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
 921   bool is_known_instance()       const { return _instance_id > 0; }
 922   int  instance_id()             const { return _instance_id; }
 923   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 924   const TypeOopPtr* speculative() const { return _speculative; }
 925 
 926   virtual intptr_t get_con() const;
 927 
 928   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 929 
 930   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 931 
 932   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 933 
 934   // corresponding pointer to klass, for a given instance
 935   const TypeKlassPtr* as_klass_type() const;
 936 
 937   virtual const TypePtr *add_offset( intptr_t offset ) const;
 938   // Return same type without a speculative part
 939   virtual const Type* remove_speculative() const;
 940 
 941   virtual const Type *xmeet(const Type *t) const;
 942   virtual const Type *xdual() const;    // Compute dual right now.
 943   // the core of the computation of the meet for TypeOopPtr and for its subclasses
 944   virtual const Type *xmeet_helper(const Type *t) const;
 945 
 946   // Convenience common pre-built type.
 947   static const TypeOopPtr *BOTTOM;
 948 #ifndef PRODUCT
 949   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 950 #endif
 951 
 952   // Return the speculative type if any
 953   ciKlass* speculative_type() const {
 954     if (_speculative != NULL) {
 955       const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
 956       if (speculative->klass_is_exact()) {
 957        return speculative->klass();
 958       }
 959     }
 960     return NULL;
 961   }
 962 };
 963 
 964 //------------------------------TypeInstPtr------------------------------------
 965 // Class of Java object pointers, pointing either to non-array Java instances
 966 // or to a Klass* (including array klasses).
 967 class TypeInstPtr : public TypeOopPtr {
 968   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
 969   virtual bool eq( const Type *t ) const;
 970   virtual int  hash() const;             // Type specific hashing
 971 
 972   ciSymbol*  _name;        // class name
 973 
 974  public:
 975   ciSymbol* name()         const { return _name; }
 976 
 977   bool  is_loaded() const { return _klass->is_loaded(); }
 978 
 979   // Make a pointer to a constant oop.
 980   static const TypeInstPtr *make(ciObject* o) {
 981     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
 982   }
 983   // Make a pointer to a constant oop with offset.
 984   static const TypeInstPtr *make(ciObject* o, int offset) {
 985     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
 986   }
 987 
 988   // Make a pointer to some value of type klass.
 989   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
 990     return make(ptr, klass, false, NULL, 0, InstanceBot);
 991   }
 992 
 993   // Make a pointer to some non-polymorphic value of exactly type klass.
 994   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
 995     return make(ptr, klass, true, NULL, 0, InstanceBot);
 996   }
 997 
 998   // Make a pointer to some value of type klass with offset.
 999   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1000     return make(ptr, klass, false, NULL, offset, InstanceBot);
1001   }
1002 
1003   // Make a pointer to an oop.
1004   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
1005 
1006   /** Create constant type for a constant boxed value */
1007   const Type* get_const_boxed_value() const;
1008 
1009   // If this is a java.lang.Class constant, return the type for it or NULL.
1010   // Pass to Type::get_const_type to turn it to a type, which will usually
1011   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1012   ciType* java_mirror_type() const;
1013 
1014   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1015 
1016   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1017 
1018   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1019 
1020   virtual const TypePtr *add_offset( intptr_t offset ) const;
1021   // Return same type without a speculative part
1022   virtual const Type* remove_speculative() const;
1023 
1024   // the core of the computation of the meet of 2 types
1025   virtual const Type *xmeet_helper(const Type *t) const;
1026   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1027   virtual const Type *xdual() const;    // Compute dual right now.
1028 
1029   // Convenience common pre-built types.
1030   static const TypeInstPtr *NOTNULL;
1031   static const TypeInstPtr *BOTTOM;
1032   static const TypeInstPtr *MIRROR;
1033   static const TypeInstPtr *MARK;
1034   static const TypeInstPtr *KLASS;
1035 #ifndef PRODUCT
1036   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1037 #endif
1038 };
1039 
1040 //------------------------------TypeAryPtr-------------------------------------
1041 // Class of Java array pointers
1042 class TypeAryPtr : public TypeOopPtr {
1043   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1044               int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative)
1045     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative),
1046     _ary(ary),
1047     _is_autobox_cache(is_autobox_cache)
1048  {
1049 #ifdef ASSERT
1050     if (k != NULL) {
1051       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1052       ciKlass* ck = compute_klass(true);
1053       if (k != ck) {
1054         this->dump(); tty->cr();
1055         tty->print(" k: ");
1056         k->print(); tty->cr();
1057         tty->print("ck: ");
1058         if (ck != NULL) ck->print();
1059         else tty->print("<NULL>");
1060         tty->cr();
1061         assert(false, "unexpected TypeAryPtr::_klass");
1062       }
1063     }
1064 #endif
1065   }
1066   virtual bool eq( const Type *t ) const;
1067   virtual int hash() const;     // Type specific hashing
1068   const TypeAry *_ary;          // Array we point into
1069   const bool     _is_autobox_cache;
1070 
1071   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1072 
1073 public:
1074   // Accessors
1075   ciKlass* klass() const;
1076   const TypeAry* ary() const  { return _ary; }
1077   const Type*    elem() const { return _ary->_elem; }
1078   const TypeInt* size() const { return _ary->_size; }
1079   bool      is_stable() const { return _ary->_stable; }
1080 
1081   bool is_autobox_cache() const { return _is_autobox_cache; }
1082 
1083   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
1084   // Constant pointer to array
1085   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, bool is_autobox_cache = false);
1086 
1087   // Return a 'ptr' version of this type
1088   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1089 
1090   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1091 
1092   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1093 
1094   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1095   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1096 
1097   virtual bool empty(void) const;        // TRUE if type is vacuous
1098   virtual const TypePtr *add_offset( intptr_t offset ) const;
1099   // Return same type without a speculative part
1100   virtual const Type* remove_speculative() const;
1101 
1102   // the core of the computation of the meet of 2 types
1103   virtual const Type *xmeet_helper(const Type *t) const;
1104   virtual const Type *xdual() const;    // Compute dual right now.
1105 
1106   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1107   int stable_dimension() const;
1108 
1109   // Convenience common pre-built types.
1110   static const TypeAryPtr *RANGE;
1111   static const TypeAryPtr *OOPS;
1112   static const TypeAryPtr *NARROWOOPS;
1113   static const TypeAryPtr *BYTES;
1114   static const TypeAryPtr *SHORTS;
1115   static const TypeAryPtr *CHARS;
1116   static const TypeAryPtr *INTS;
1117   static const TypeAryPtr *LONGS;
1118   static const TypeAryPtr *FLOATS;
1119   static const TypeAryPtr *DOUBLES;
1120   // selects one of the above:
1121   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1122     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1123     return _array_body_type[elem];
1124   }
1125   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1126   // sharpen the type of an int which is used as an array size
1127 #ifdef ASSERT
1128   // One type is interface, the other is oop
1129   virtual bool interface_vs_oop(const Type *t) const;
1130 #endif
1131 #ifndef PRODUCT
1132   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1133 #endif
1134 };
1135 
1136 //------------------------------TypeMetadataPtr-------------------------------------
1137 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1138 class TypeMetadataPtr : public TypePtr {
1139 protected:
1140   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1141   // Do not allow interface-vs.-noninterface joins to collapse to top.
1142   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1143 public:
1144   virtual bool eq( const Type *t ) const;
1145   virtual int  hash() const;             // Type specific hashing
1146   virtual bool singleton(void) const;    // TRUE if type is a singleton
1147 
1148 private:
1149   ciMetadata*   _metadata;
1150 
1151 public:
1152   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1153 
1154   static const TypeMetadataPtr* make(ciMethod* m);
1155   static const TypeMetadataPtr* make(ciMethodData* m);
1156 
1157   ciMetadata* metadata() const { return _metadata; }
1158 
1159   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1160 
1161   virtual const TypePtr *add_offset( intptr_t offset ) const;
1162 
1163   virtual const Type *xmeet( const Type *t ) const;
1164   virtual const Type *xdual() const;    // Compute dual right now.
1165 
1166   virtual intptr_t get_con() const;
1167 
1168   // Convenience common pre-built types.
1169   static const TypeMetadataPtr *BOTTOM;
1170 
1171 #ifndef PRODUCT
1172   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1173 #endif
1174 };
1175 
1176 //------------------------------TypeKlassPtr-----------------------------------
1177 // Class of Java Klass pointers
1178 class TypeKlassPtr : public TypePtr {
1179   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1180 
1181 protected:
1182   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1183  public:
1184   virtual bool eq( const Type *t ) const;
1185   virtual int hash() const;             // Type specific hashing
1186   virtual bool singleton(void) const;    // TRUE if type is a singleton
1187  private:
1188 
1189   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1190 
1191   ciKlass* _klass;
1192 
1193   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1194   bool          _klass_is_exact;
1195 
1196 public:
1197   ciSymbol* name()  const { return klass()->name(); }
1198 
1199   ciKlass* klass() const { return  _klass; }
1200   bool klass_is_exact()    const { return _klass_is_exact; }
1201 
1202   bool  is_loaded() const { return klass()->is_loaded(); }
1203 
1204   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1205   // Respects UseUniqueSubclasses.
1206   // If the klass is final, the resulting type will be exact.
1207   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1208     return make_from_klass_common(klass, true, false);
1209   }
1210   // Same as before, but will produce an exact type, even if
1211   // the klass is not final, as long as it has exactly one implementation.
1212   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1213     return make_from_klass_common(klass, true, true);
1214   }
1215   // Same as before, but does not respects UseUniqueSubclasses.
1216   // Use this only for creating array element types.
1217   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1218     return make_from_klass_common(klass, false, false);
1219   }
1220 
1221   // Make a generic (unclassed) pointer to metadata.
1222   static const TypeKlassPtr* make(PTR ptr, int offset);
1223 
1224   // ptr to klass 'k'
1225   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1226   // ptr to klass 'k' with offset
1227   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1228   // ptr to klass 'k' or sub-klass
1229   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1230 
1231   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1232 
1233   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1234 
1235   // corresponding pointer to instance, for a given class
1236   const TypeOopPtr* as_instance_type() const;
1237 
1238   virtual const TypePtr *add_offset( intptr_t offset ) const;
1239   virtual const Type    *xmeet( const Type *t ) const;
1240   virtual const Type    *xdual() const;      // Compute dual right now.
1241 
1242   virtual intptr_t get_con() const;
1243 
1244   // Convenience common pre-built types.
1245   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1246   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1247 #ifndef PRODUCT
1248   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1249 #endif
1250 };
1251 
1252 class TypeNarrowPtr : public Type {
1253 protected:
1254   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1255 
1256   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1257                                                   Type(t) {
1258     assert(ptrtype->offset() == 0 ||
1259            ptrtype->offset() == OffsetBot ||
1260            ptrtype->offset() == OffsetTop, "no real offsets");
1261   }
1262 
1263   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1264   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1265   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1266   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1267   // Do not allow interface-vs.-noninterface joins to collapse to top.
1268   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1269 public:
1270   virtual bool eq( const Type *t ) const;
1271   virtual int  hash() const;             // Type specific hashing
1272   virtual bool singleton(void) const;    // TRUE if type is a singleton
1273 
1274   virtual const Type *xmeet( const Type *t ) const;
1275   virtual const Type *xdual() const;    // Compute dual right now.
1276 
1277   virtual intptr_t get_con() const;
1278 
1279   virtual bool empty(void) const;        // TRUE if type is vacuous
1280 
1281   // returns the equivalent ptr type for this compressed pointer
1282   const TypePtr *get_ptrtype() const {
1283     return _ptrtype;
1284   }
1285 
1286 #ifndef PRODUCT
1287   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1288 #endif
1289 };
1290 
1291 //------------------------------TypeNarrowOop----------------------------------
1292 // A compressed reference to some kind of Oop.  This type wraps around
1293 // a preexisting TypeOopPtr and forwards most of it's operations to
1294 // the underlying type.  It's only real purpose is to track the
1295 // oopness of the compressed oop value when we expose the conversion
1296 // between the normal and the compressed form.
1297 class TypeNarrowOop : public TypeNarrowPtr {
1298 protected:
1299   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1300   }
1301 
1302   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1303     return t->isa_narrowoop();
1304   }
1305 
1306   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1307     return t->is_narrowoop();
1308   }
1309 
1310   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1311     return new TypeNarrowOop(t);
1312   }
1313 
1314   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1315     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1316   }
1317 
1318 public:
1319 
1320   static const TypeNarrowOop *make( const TypePtr* type);
1321 
1322   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1323     return make(TypeOopPtr::make_from_constant(con, require_constant));
1324   }
1325 
1326   static const TypeNarrowOop *BOTTOM;
1327   static const TypeNarrowOop *NULL_PTR;
1328 
1329   virtual const Type* remove_speculative() const {
1330     return make(_ptrtype->remove_speculative()->is_ptr());
1331   }
1332 
1333 #ifndef PRODUCT
1334   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1335 #endif
1336 };
1337 
1338 //------------------------------TypeNarrowKlass----------------------------------
1339 // A compressed reference to klass pointer.  This type wraps around a
1340 // preexisting TypeKlassPtr and forwards most of it's operations to
1341 // the underlying type.
1342 class TypeNarrowKlass : public TypeNarrowPtr {
1343 protected:
1344   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1345   }
1346 
1347   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1348     return t->isa_narrowklass();
1349   }
1350 
1351   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1352     return t->is_narrowklass();
1353   }
1354 
1355   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1356     return new TypeNarrowKlass(t);
1357   }
1358 
1359   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1360     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1361   }
1362 
1363 public:
1364   static const TypeNarrowKlass *make( const TypePtr* type);
1365 
1366   // static const TypeNarrowKlass *BOTTOM;
1367   static const TypeNarrowKlass *NULL_PTR;
1368 
1369 #ifndef PRODUCT
1370   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1371 #endif
1372 };
1373 
1374 //------------------------------TypeFunc---------------------------------------
1375 // Class of Array Types
1376 class TypeFunc : public Type {
1377   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1378   virtual bool eq( const Type *t ) const;
1379   virtual int  hash() const;             // Type specific hashing
1380   virtual bool singleton(void) const;    // TRUE if type is a singleton
1381   virtual bool empty(void) const;        // TRUE if type is vacuous
1382 public:
1383   // Constants are shared among ADLC and VM
1384   enum { Control    = AdlcVMDeps::Control,
1385          I_O        = AdlcVMDeps::I_O,
1386          Memory     = AdlcVMDeps::Memory,
1387          FramePtr   = AdlcVMDeps::FramePtr,
1388          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1389          Parms      = AdlcVMDeps::Parms
1390   };
1391 
1392   const TypeTuple* const _domain;     // Domain of inputs
1393   const TypeTuple* const _range;      // Range of results
1394 
1395   // Accessors:
1396   const TypeTuple* domain() const { return _domain; }
1397   const TypeTuple* range()  const { return _range; }
1398 
1399   static const TypeFunc *make(ciMethod* method);
1400   static const TypeFunc *make(ciSignature signature, const Type* extra);
1401   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1402 
1403   virtual const Type *xmeet( const Type *t ) const;
1404   virtual const Type *xdual() const;    // Compute dual right now.
1405 
1406   BasicType return_type() const;
1407 
1408 #ifndef PRODUCT
1409   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1410 #endif
1411   // Convenience common pre-built types.
1412 };
1413 
1414 //------------------------------accessors--------------------------------------
1415 inline bool Type::is_ptr_to_narrowoop() const {
1416 #ifdef _LP64
1417   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1418 #else
1419   return false;
1420 #endif
1421 }
1422 
1423 inline bool Type::is_ptr_to_narrowklass() const {
1424 #ifdef _LP64
1425   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1426 #else
1427   return false;
1428 #endif
1429 }
1430 
1431 inline float Type::getf() const {
1432   assert( _base == FloatCon, "Not a FloatCon" );
1433   return ((TypeF*)this)->_f;
1434 }
1435 
1436 inline double Type::getd() const {
1437   assert( _base == DoubleCon, "Not a DoubleCon" );
1438   return ((TypeD*)this)->_d;
1439 }
1440 
1441 inline const TypeInt *Type::is_int() const {
1442   assert( _base == Int, "Not an Int" );
1443   return (TypeInt*)this;
1444 }
1445 
1446 inline const TypeInt *Type::isa_int() const {
1447   return ( _base == Int ? (TypeInt*)this : NULL);
1448 }
1449 
1450 inline const TypeLong *Type::is_long() const {
1451   assert( _base == Long, "Not a Long" );
1452   return (TypeLong*)this;
1453 }
1454 
1455 inline const TypeLong *Type::isa_long() const {
1456   return ( _base == Long ? (TypeLong*)this : NULL);
1457 }
1458 
1459 inline const TypeF *Type::isa_float() const {
1460   return ((_base == FloatTop ||
1461            _base == FloatCon ||
1462            _base == FloatBot) ? (TypeF*)this : NULL);
1463 }
1464 
1465 inline const TypeF *Type::is_float_constant() const {
1466   assert( _base == FloatCon, "Not a Float" );
1467   return (TypeF*)this;
1468 }
1469 
1470 inline const TypeF *Type::isa_float_constant() const {
1471   return ( _base == FloatCon ? (TypeF*)this : NULL);
1472 }
1473 
1474 inline const TypeD *Type::isa_double() const {
1475   return ((_base == DoubleTop ||
1476            _base == DoubleCon ||
1477            _base == DoubleBot) ? (TypeD*)this : NULL);
1478 }
1479 
1480 inline const TypeD *Type::is_double_constant() const {
1481   assert( _base == DoubleCon, "Not a Double" );
1482   return (TypeD*)this;
1483 }
1484 
1485 inline const TypeD *Type::isa_double_constant() const {
1486   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1487 }
1488 
1489 inline const TypeTuple *Type::is_tuple() const {
1490   assert( _base == Tuple, "Not a Tuple" );
1491   return (TypeTuple*)this;
1492 }
1493 
1494 inline const TypeAry *Type::is_ary() const {
1495   assert( _base == Array , "Not an Array" );
1496   return (TypeAry*)this;
1497 }
1498 
1499 inline const TypeVect *Type::is_vect() const {
1500   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
1501   return (TypeVect*)this;
1502 }
1503 
1504 inline const TypeVect *Type::isa_vect() const {
1505   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
1506 }
1507 
1508 inline const TypePtr *Type::is_ptr() const {
1509   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1510   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1511   return (TypePtr*)this;
1512 }
1513 
1514 inline const TypePtr *Type::isa_ptr() const {
1515   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1516   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1517 }
1518 
1519 inline const TypeOopPtr *Type::is_oopptr() const {
1520   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1521   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1522   return (TypeOopPtr*)this;
1523 }
1524 
1525 inline const TypeOopPtr *Type::isa_oopptr() const {
1526   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1527   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1528 }
1529 
1530 inline const TypeRawPtr *Type::isa_rawptr() const {
1531   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1532 }
1533 
1534 inline const TypeRawPtr *Type::is_rawptr() const {
1535   assert( _base == RawPtr, "Not a raw pointer" );
1536   return (TypeRawPtr*)this;
1537 }
1538 
1539 inline const TypeInstPtr *Type::isa_instptr() const {
1540   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1541 }
1542 
1543 inline const TypeInstPtr *Type::is_instptr() const {
1544   assert( _base == InstPtr, "Not an object pointer" );
1545   return (TypeInstPtr*)this;
1546 }
1547 
1548 inline const TypeAryPtr *Type::isa_aryptr() const {
1549   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1550 }
1551 
1552 inline const TypeAryPtr *Type::is_aryptr() const {
1553   assert( _base == AryPtr, "Not an array pointer" );
1554   return (TypeAryPtr*)this;
1555 }
1556 
1557 inline const TypeNarrowOop *Type::is_narrowoop() const {
1558   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1559   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1560   return (TypeNarrowOop*)this;
1561 }
1562 
1563 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1564   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1565   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1566 }
1567 
1568 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1569   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1570   return (TypeNarrowKlass*)this;
1571 }
1572 
1573 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1574   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1575 }
1576 
1577 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1578   // MetadataPtr is the first and CPCachePtr the last
1579   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1580   return (TypeMetadataPtr*)this;
1581 }
1582 
1583 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1584   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1585 }
1586 
1587 inline const TypeKlassPtr *Type::isa_klassptr() const {
1588   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1589 }
1590 
1591 inline const TypeKlassPtr *Type::is_klassptr() const {
1592   assert( _base == KlassPtr, "Not a klass pointer" );
1593   return (TypeKlassPtr*)this;
1594 }
1595 
1596 inline const TypePtr* Type::make_ptr() const {
1597   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1598     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1599      (isa_ptr() ? is_ptr() : NULL));
1600 }
1601 
1602 inline const TypeOopPtr* Type::make_oopptr() const {
1603   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1604 }
1605 
1606 inline const TypeNarrowOop* Type::make_narrowoop() const {
1607   return (_base == NarrowOop) ? is_narrowoop() :
1608                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1609 }
1610 
1611 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1612   return (_base == NarrowKlass) ? is_narrowklass() :
1613                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1614 }
1615 
1616 inline bool Type::is_floatingpoint() const {
1617   if( (_base == FloatCon)  || (_base == FloatBot) ||
1618       (_base == DoubleCon) || (_base == DoubleBot) )
1619     return true;
1620   return false;
1621 }
1622 
1623 inline bool Type::is_ptr_to_boxing_obj() const {
1624   const TypeInstPtr* tp = isa_instptr();
1625   return (tp != NULL) && (tp->offset() == 0) &&
1626          tp->klass()->is_instance_klass()  &&
1627          tp->klass()->as_instance_klass()->is_box_klass();
1628 }
1629 
1630 
1631 // ===============================================================
1632 // Things that need to be 64-bits in the 64-bit build but
1633 // 32-bits in the 32-bit build.  Done this way to get full
1634 // optimization AND strong typing.
1635 #ifdef _LP64
1636 
1637 // For type queries and asserts
1638 #define is_intptr_t  is_long
1639 #define isa_intptr_t isa_long
1640 #define find_intptr_t_type find_long_type
1641 #define find_intptr_t_con  find_long_con
1642 #define TypeX        TypeLong
1643 #define Type_X       Type::Long
1644 #define TypeX_X      TypeLong::LONG
1645 #define TypeX_ZERO   TypeLong::ZERO
1646 // For 'ideal_reg' machine registers
1647 #define Op_RegX      Op_RegL
1648 // For phase->intcon variants
1649 #define MakeConX     longcon
1650 #define ConXNode     ConLNode
1651 // For array index arithmetic
1652 #define MulXNode     MulLNode
1653 #define AndXNode     AndLNode
1654 #define OrXNode      OrLNode
1655 #define CmpXNode     CmpLNode
1656 #define SubXNode     SubLNode
1657 #define LShiftXNode  LShiftLNode
1658 // For object size computation:
1659 #define AddXNode     AddLNode
1660 #define RShiftXNode  RShiftLNode
1661 // For card marks and hashcodes
1662 #define URShiftXNode URShiftLNode
1663 // UseOptoBiasInlining
1664 #define XorXNode     XorLNode
1665 #define StoreXConditionalNode StoreLConditionalNode
1666 // Opcodes
1667 #define Op_LShiftX   Op_LShiftL
1668 #define Op_AndX      Op_AndL
1669 #define Op_AddX      Op_AddL
1670 #define Op_SubX      Op_SubL
1671 #define Op_XorX      Op_XorL
1672 #define Op_URShiftX  Op_URShiftL
1673 // conversions
1674 #define ConvI2X(x)   ConvI2L(x)
1675 #define ConvL2X(x)   (x)
1676 #define ConvX2I(x)   ConvL2I(x)
1677 #define ConvX2L(x)   (x)
1678 
1679 #else
1680 
1681 // For type queries and asserts
1682 #define is_intptr_t  is_int
1683 #define isa_intptr_t isa_int
1684 #define find_intptr_t_type find_int_type
1685 #define find_intptr_t_con  find_int_con
1686 #define TypeX        TypeInt
1687 #define Type_X       Type::Int
1688 #define TypeX_X      TypeInt::INT
1689 #define TypeX_ZERO   TypeInt::ZERO
1690 // For 'ideal_reg' machine registers
1691 #define Op_RegX      Op_RegI
1692 // For phase->intcon variants
1693 #define MakeConX     intcon
1694 #define ConXNode     ConINode
1695 // For array index arithmetic
1696 #define MulXNode     MulINode
1697 #define AndXNode     AndINode
1698 #define OrXNode      OrINode
1699 #define CmpXNode     CmpINode
1700 #define SubXNode     SubINode
1701 #define LShiftXNode  LShiftINode
1702 // For object size computation:
1703 #define AddXNode     AddINode
1704 #define RShiftXNode  RShiftINode
1705 // For card marks and hashcodes
1706 #define URShiftXNode URShiftINode
1707 // UseOptoBiasInlining
1708 #define XorXNode     XorINode
1709 #define StoreXConditionalNode StoreIConditionalNode
1710 // Opcodes
1711 #define Op_LShiftX   Op_LShiftI
1712 #define Op_AndX      Op_AndI
1713 #define Op_AddX      Op_AddI
1714 #define Op_SubX      Op_SubI
1715 #define Op_XorX      Op_XorI
1716 #define Op_URShiftX  Op_URShiftI
1717 // conversions
1718 #define ConvI2X(x)   (x)
1719 #define ConvL2X(x)   ConvL2I(x)
1720 #define ConvX2I(x)   (x)
1721 #define ConvX2L(x)   ConvI2L(x)
1722 
1723 #endif
1724 
1725 #endif // SHARE_VM_OPTO_TYPE_HPP