1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectS;
  58 class     TypeVectD;
  59 class     TypeVectX;
  60 class     TypeVectY;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class     TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94 
  95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  96     RawPtr,                     // Raw (non-oop) pointers
  97     OopPtr,                     // Any and all Java heap entities
  98     InstPtr,                    // Instance pointers (non-array objects)
  99     AryPtr,                     // Array pointers
 100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 101 
 102     MetadataPtr,                // Generic metadata
 103     KlassPtr,                   // Klass pointers
 104 
 105     Function,                   // Function signature
 106     Abio,                       // Abstract I/O
 107     Return_Address,             // Subroutine return address
 108     Memory,                     // Abstract store
 109     FloatTop,                   // No float value
 110     FloatCon,                   // Floating point constant
 111     FloatBot,                   // Any float value
 112     DoubleTop,                  // No double value
 113     DoubleCon,                  // Double precision constant
 114     DoubleBot,                  // Any double value
 115     Bottom,                     // Bottom of lattice
 116     lastype                     // Bogus ending type (not in lattice)
 117   };
 118 
 119   // Signal values for offsets from a base pointer
 120   enum OFFSET_SIGNALS {
 121     OffsetTop = -2000000000,    // undefined offset
 122     OffsetBot = -2000000001     // any possible offset
 123   };
 124 
 125   // Min and max WIDEN values.
 126   enum WIDEN {
 127     WidenMin = 0,
 128     WidenMax = 3
 129   };
 130 
 131 private:
 132   typedef struct {
 133     const TYPES                dual_type;
 134     const BasicType            basic_type;
 135     const char*                msg;
 136     const bool                 isa_oop;
 137     const int                  ideal_reg;
 138     const relocInfo::relocType reloc;
 139   } TypeInfo;
 140 
 141   // Dictionary of types shared among compilations.
 142   static Dict* _shared_type_dict;
 143   static TypeInfo _type_info[];
 144 
 145   static int uhash( const Type *const t );
 146   // Structural equality check.  Assumes that cmp() has already compared
 147   // the _base types and thus knows it can cast 't' appropriately.
 148   virtual bool eq( const Type *t ) const;
 149 
 150   // Top-level hash-table of types
 151   static Dict *type_dict() {
 152     return Compile::current()->type_dict();
 153   }
 154 
 155   // DUAL operation: reflect around lattice centerline.  Used instead of
 156   // join to ensure my lattice is symmetric up and down.  Dual is computed
 157   // lazily, on demand, and cached in _dual.
 158   const Type *_dual;            // Cached dual value
 159   // Table for efficient dualing of base types
 160   static const TYPES dual_type[lastype];
 161 
 162 #ifdef ASSERT
 163   // One type is interface, the other is oop
 164   virtual bool interface_vs_oop_helper(const Type *t) const;
 165 #endif
 166 
 167   const Type *meet_helper(const Type *t, bool include_speculative) const;
 168 
 169 protected:
 170   // Each class of type is also identified by its base.
 171   const TYPES _base;            // Enum of Types type
 172 
 173   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 174   // ~Type();                   // Use fast deallocation
 175   const Type *hashcons();       // Hash-cons the type
 176   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 177   const Type *join_helper(const Type *t, bool include_speculative) const {
 178     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 179   }
 180 
 181 public:
 182 
 183   inline void* operator new( size_t x ) throw() {
 184     Compile* compile = Compile::current();
 185     compile->set_type_last_size(x);
 186     void *temp = compile->type_arena()->Amalloc_D(x);
 187     compile->set_type_hwm(temp);
 188     return temp;
 189   }
 190   inline void operator delete( void* ptr ) {
 191     Compile* compile = Compile::current();
 192     compile->type_arena()->Afree(ptr,compile->type_last_size());
 193   }
 194 
 195   // Initialize the type system for a particular compilation.
 196   static void Initialize(Compile* compile);
 197 
 198   // Initialize the types shared by all compilations.
 199   static void Initialize_shared(Compile* compile);
 200 
 201   TYPES base() const {
 202     assert(_base > Bad && _base < lastype, "sanity");
 203     return _base;
 204   }
 205 
 206   // Create a new hash-consd type
 207   static const Type *make(enum TYPES);
 208   // Test for equivalence of types
 209   static int cmp( const Type *const t1, const Type *const t2 );
 210   // Test for higher or equal in lattice
 211   // Variant that drops the speculative part of the types
 212   int higher_equal(const Type *t) const {
 213     return !cmp(meet(t),t->remove_speculative());
 214   }
 215   // Variant that keeps the speculative part of the types
 216   int higher_equal_speculative(const Type *t) const {
 217     return !cmp(meet_speculative(t),t);
 218   }
 219 
 220   // MEET operation; lower in lattice.
 221   // Variant that drops the speculative part of the types
 222   const Type *meet(const Type *t) const {
 223     return meet_helper(t, false);
 224   }
 225   // Variant that keeps the speculative part of the types
 226   const Type *meet_speculative(const Type *t) const {
 227     return meet_helper(t, true);
 228   }
 229   // WIDEN: 'widens' for Ints and other range types
 230   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 231   // NARROW: complement for widen, used by pessimistic phases
 232   virtual const Type *narrow( const Type *old ) const { return this; }
 233 
 234   // DUAL operation: reflect around lattice centerline.  Used instead of
 235   // join to ensure my lattice is symmetric up and down.
 236   const Type *dual() const { return _dual; }
 237 
 238   // Compute meet dependent on base type
 239   virtual const Type *xmeet( const Type *t ) const;
 240   virtual const Type *xdual() const;    // Compute dual right now.
 241 
 242   // JOIN operation; higher in lattice.  Done by finding the dual of the
 243   // meet of the dual of the 2 inputs.
 244   // Variant that drops the speculative part of the types
 245   const Type *join(const Type *t) const {
 246     return join_helper(t, false);
 247   }
 248   // Variant that keeps the speculative part of the types
 249   const Type *join_speculative(const Type *t) const {
 250     return join_helper(t, true);
 251   }
 252 
 253   // Modified version of JOIN adapted to the needs Node::Value.
 254   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 255   // Currently, it also works around limitations involving interface types.
 256   // Variant that drops the speculative part of the types
 257   const Type *filter(const Type *kills) const {
 258     return filter_helper(kills, false);
 259   }
 260   // Variant that keeps the speculative part of the types
 261   const Type *filter_speculative(const Type *kills) const {
 262     return filter_helper(kills, true);
 263   }
 264 
 265 #ifdef ASSERT
 266   // One type is interface, the other is oop
 267   virtual bool interface_vs_oop(const Type *t) const;
 268 #endif
 269 
 270   // Returns true if this pointer points at memory which contains a
 271   // compressed oop references.
 272   bool is_ptr_to_narrowoop() const;
 273   bool is_ptr_to_narrowklass() const;
 274 
 275   bool is_ptr_to_boxing_obj() const;
 276 
 277 
 278   // Convenience access
 279   float getf() const;
 280   double getd() const;
 281 
 282   const TypeInt    *is_int() const;
 283   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 284   const TypeLong   *is_long() const;
 285   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 286   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 287   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 288   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 289   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 290   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 291   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 292   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 293   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 294   const TypeVect   *is_vect() const;             // Vector
 295   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 296   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 297   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 298   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 299   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 300   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 301   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 302   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 303   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 304   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 305   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 306   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 307   const TypeInstPtr  *is_instptr() const;        // Instance
 308   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 309   const TypeAryPtr   *is_aryptr() const;         // Array oop
 310 
 311   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 312   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 313   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 314   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 315 
 316   virtual bool      is_finite() const;           // Has a finite value
 317   virtual bool      is_nan()    const;           // Is not a number (NaN)
 318 
 319   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 320   const TypePtr* make_ptr() const;
 321 
 322   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 323   // Asserts if the underlying type is not an oopptr or narrowoop.
 324   const TypeOopPtr* make_oopptr() const;
 325 
 326   // Returns this compressed pointer or the equivalent compressed version
 327   // of this pointer type.
 328   const TypeNarrowOop* make_narrowoop() const;
 329 
 330   // Returns this compressed klass pointer or the equivalent
 331   // compressed version of this pointer type.
 332   const TypeNarrowKlass* make_narrowklass() const;
 333 
 334   // Special test for register pressure heuristic
 335   bool is_floatingpoint() const;        // True if Float or Double base type
 336 
 337   // Do you have memory, directly or through a tuple?
 338   bool has_memory( ) const;
 339 
 340   // TRUE if type is a singleton
 341   virtual bool singleton(void) const;
 342 
 343   // TRUE if type is above the lattice centerline, and is therefore vacuous
 344   virtual bool empty(void) const;
 345 
 346   // Return a hash for this type.  The hash function is public so ConNode
 347   // (constants) can hash on their constant, which is represented by a Type.
 348   virtual int hash() const;
 349 
 350   // Map ideal registers (machine types) to ideal types
 351   static const Type *mreg2type[];
 352 
 353   // Printing, statistics
 354 #ifndef PRODUCT
 355   void         dump_on(outputStream *st) const;
 356   void         dump() const {
 357     dump_on(tty);
 358   }
 359   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 360   static  void dump_stats();
 361 #endif
 362   void typerr(const Type *t) const; // Mixing types error
 363 
 364   // Create basic type
 365   static const Type* get_const_basic_type(BasicType type) {
 366     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 367     return _const_basic_type[type];
 368   }
 369 
 370   // Mapping to the array element's basic type.
 371   BasicType array_element_basic_type() const;
 372 
 373   // Create standard type for a ciType:
 374   static const Type* get_const_type(ciType* type);
 375 
 376   // Create standard zero value:
 377   static const Type* get_zero_type(BasicType type) {
 378     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 379     return _zero_type[type];
 380   }
 381 
 382   // Report if this is a zero value (not top).
 383   bool is_zero_type() const {
 384     BasicType type = basic_type();
 385     if (type == T_VOID || type >= T_CONFLICT)
 386       return false;
 387     else
 388       return (this == _zero_type[type]);
 389   }
 390 
 391   // Convenience common pre-built types.
 392   static const Type *ABIO;
 393   static const Type *BOTTOM;
 394   static const Type *CONTROL;
 395   static const Type *DOUBLE;
 396   static const Type *FLOAT;
 397   static const Type *HALF;
 398   static const Type *MEMORY;
 399   static const Type *MULTI;
 400   static const Type *RETURN_ADDRESS;
 401   static const Type *TOP;
 402 
 403   // Mapping from compiler type to VM BasicType
 404   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 405   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 406   const char* msg() const            { return _type_info[_base].msg; }
 407   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 408   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 409 
 410   // Mapping from CI type system to compiler type:
 411   static const Type* get_typeflow_type(ciType* type);
 412 
 413   static const Type* make_from_constant(ciConstant constant,
 414                                         bool require_constant = false,
 415                                         bool is_autobox_cache = false);
 416 
 417   // Speculative type. See TypeInstPtr
 418   virtual const TypeOopPtr* speculative() const { return NULL; }
 419   virtual ciKlass* speculative_type() const { return NULL; }
 420   const Type* maybe_remove_speculative(bool include_speculative) const;
 421   virtual const Type* remove_speculative() const { return this; }
 422 
 423 private:
 424   // support arrays
 425   static const BasicType _basic_type[];
 426   static const Type*        _zero_type[T_CONFLICT+1];
 427   static const Type* _const_basic_type[T_CONFLICT+1];
 428 };
 429 
 430 //------------------------------TypeF------------------------------------------
 431 // Class of Float-Constant Types.
 432 class TypeF : public Type {
 433   TypeF( float f ) : Type(FloatCon), _f(f) {};
 434 public:
 435   virtual bool eq( const Type *t ) const;
 436   virtual int  hash() const;             // Type specific hashing
 437   virtual bool singleton(void) const;    // TRUE if type is a singleton
 438   virtual bool empty(void) const;        // TRUE if type is vacuous
 439 public:
 440   const float _f;               // Float constant
 441 
 442   static const TypeF *make(float f);
 443 
 444   virtual bool        is_finite() const;  // Has a finite value
 445   virtual bool        is_nan()    const;  // Is not a number (NaN)
 446 
 447   virtual const Type *xmeet( const Type *t ) const;
 448   virtual const Type *xdual() const;    // Compute dual right now.
 449   // Convenience common pre-built types.
 450   static const TypeF *ZERO; // positive zero only
 451   static const TypeF *ONE;
 452 #ifndef PRODUCT
 453   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 454 #endif
 455 };
 456 
 457 //------------------------------TypeD------------------------------------------
 458 // Class of Double-Constant Types.
 459 class TypeD : public Type {
 460   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 461 public:
 462   virtual bool eq( const Type *t ) const;
 463   virtual int  hash() const;             // Type specific hashing
 464   virtual bool singleton(void) const;    // TRUE if type is a singleton
 465   virtual bool empty(void) const;        // TRUE if type is vacuous
 466 public:
 467   const double _d;              // Double constant
 468 
 469   static const TypeD *make(double d);
 470 
 471   virtual bool        is_finite() const;  // Has a finite value
 472   virtual bool        is_nan()    const;  // Is not a number (NaN)
 473 
 474   virtual const Type *xmeet( const Type *t ) const;
 475   virtual const Type *xdual() const;    // Compute dual right now.
 476   // Convenience common pre-built types.
 477   static const TypeD *ZERO; // positive zero only
 478   static const TypeD *ONE;
 479 #ifndef PRODUCT
 480   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 481 #endif
 482 };
 483 
 484 //------------------------------TypeInt----------------------------------------
 485 // Class of integer ranges, the set of integers between a lower bound and an
 486 // upper bound, inclusive.
 487 class TypeInt : public Type {
 488   TypeInt( jint lo, jint hi, int w );
 489 protected:
 490   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 491 
 492 public:
 493   virtual bool eq( const Type *t ) const;
 494   virtual int  hash() const;             // Type specific hashing
 495   virtual bool singleton(void) const;    // TRUE if type is a singleton
 496   virtual bool empty(void) const;        // TRUE if type is vacuous
 497   const jint _lo, _hi;          // Lower bound, upper bound
 498   const short _widen;           // Limit on times we widen this sucker
 499 
 500   static const TypeInt *make(jint lo);
 501   // must always specify w
 502   static const TypeInt *make(jint lo, jint hi, int w);
 503 
 504   // Check for single integer
 505   int is_con() const { return _lo==_hi; }
 506   bool is_con(int i) const { return is_con() && _lo == i; }
 507   jint get_con() const { assert( is_con(), "" );  return _lo; }
 508 
 509   virtual bool        is_finite() const;  // Has a finite value
 510 
 511   virtual const Type *xmeet( const Type *t ) const;
 512   virtual const Type *xdual() const;    // Compute dual right now.
 513   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 514   virtual const Type *narrow( const Type *t ) const;
 515   // Do not kill _widen bits.
 516   // Convenience common pre-built types.
 517   static const TypeInt *MINUS_1;
 518   static const TypeInt *ZERO;
 519   static const TypeInt *ONE;
 520   static const TypeInt *BOOL;
 521   static const TypeInt *CC;
 522   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 523   static const TypeInt *CC_GT;  // [1]   == ONE
 524   static const TypeInt *CC_EQ;  // [0]   == ZERO
 525   static const TypeInt *CC_LE;  // [-1,0]
 526   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 527   static const TypeInt *BYTE;
 528   static const TypeInt *UBYTE;
 529   static const TypeInt *CHAR;
 530   static const TypeInt *SHORT;
 531   static const TypeInt *POS;
 532   static const TypeInt *POS1;
 533   static const TypeInt *INT;
 534   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 535 #ifndef PRODUCT
 536   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 537 #endif
 538 };
 539 
 540 
 541 //------------------------------TypeLong---------------------------------------
 542 // Class of long integer ranges, the set of integers between a lower bound and
 543 // an upper bound, inclusive.
 544 class TypeLong : public Type {
 545   TypeLong( jlong lo, jlong hi, int w );
 546 protected:
 547   // Do not kill _widen bits.
 548   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 549 public:
 550   virtual bool eq( const Type *t ) const;
 551   virtual int  hash() const;             // Type specific hashing
 552   virtual bool singleton(void) const;    // TRUE if type is a singleton
 553   virtual bool empty(void) const;        // TRUE if type is vacuous
 554 public:
 555   const jlong _lo, _hi;         // Lower bound, upper bound
 556   const short _widen;           // Limit on times we widen this sucker
 557 
 558   static const TypeLong *make(jlong lo);
 559   // must always specify w
 560   static const TypeLong *make(jlong lo, jlong hi, int w);
 561 
 562   // Check for single integer
 563   int is_con() const { return _lo==_hi; }
 564   bool is_con(int i) const { return is_con() && _lo == i; }
 565   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 566 
 567   virtual bool        is_finite() const;  // Has a finite value
 568 
 569   virtual const Type *xmeet( const Type *t ) const;
 570   virtual const Type *xdual() const;    // Compute dual right now.
 571   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 572   virtual const Type *narrow( const Type *t ) const;
 573   // Convenience common pre-built types.
 574   static const TypeLong *MINUS_1;
 575   static const TypeLong *ZERO;
 576   static const TypeLong *ONE;
 577   static const TypeLong *POS;
 578   static const TypeLong *LONG;
 579   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 580   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 581 #ifndef PRODUCT
 582   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 583 #endif
 584 };
 585 
 586 //------------------------------TypeTuple--------------------------------------
 587 // Class of Tuple Types, essentially type collections for function signatures
 588 // and class layouts.  It happens to also be a fast cache for the HotSpot
 589 // signature types.
 590 class TypeTuple : public Type {
 591   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 592 public:
 593   virtual bool eq( const Type *t ) const;
 594   virtual int  hash() const;             // Type specific hashing
 595   virtual bool singleton(void) const;    // TRUE if type is a singleton
 596   virtual bool empty(void) const;        // TRUE if type is vacuous
 597 
 598 public:
 599   const uint          _cnt;              // Count of fields
 600   const Type ** const _fields;           // Array of field types
 601 
 602   // Accessors:
 603   uint cnt() const { return _cnt; }
 604   const Type* field_at(uint i) const {
 605     assert(i < _cnt, "oob");
 606     return _fields[i];
 607   }
 608   void set_field_at(uint i, const Type* t) {
 609     assert(i < _cnt, "oob");
 610     _fields[i] = t;
 611   }
 612 
 613   static const TypeTuple *make( uint cnt, const Type **fields );
 614   static const TypeTuple *make_range(ciSignature *sig);
 615   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 616 
 617   // Subroutine call type with space allocated for argument types
 618   static const Type **fields( uint arg_cnt );
 619 
 620   virtual const Type *xmeet( const Type *t ) const;
 621   virtual const Type *xdual() const;    // Compute dual right now.
 622   // Convenience common pre-built types.
 623   static const TypeTuple *IFBOTH;
 624   static const TypeTuple *IFFALSE;
 625   static const TypeTuple *IFTRUE;
 626   static const TypeTuple *IFNEITHER;
 627   static const TypeTuple *LOOPBODY;
 628   static const TypeTuple *MEMBAR;
 629   static const TypeTuple *STORECONDITIONAL;
 630   static const TypeTuple *START_I2C;
 631   static const TypeTuple *INT_PAIR;
 632   static const TypeTuple *LONG_PAIR;
 633   static const TypeTuple *INT_CC_PAIR;
 634   static const TypeTuple *LONG_CC_PAIR;
 635 #ifndef PRODUCT
 636   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 637 #endif
 638 };
 639 
 640 //------------------------------TypeAry----------------------------------------
 641 // Class of Array Types
 642 class TypeAry : public Type {
 643   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 644       _elem(elem), _size(size), _stable(stable) {}
 645 public:
 646   virtual bool eq( const Type *t ) const;
 647   virtual int  hash() const;             // Type specific hashing
 648   virtual bool singleton(void) const;    // TRUE if type is a singleton
 649   virtual bool empty(void) const;        // TRUE if type is vacuous
 650 
 651 private:
 652   const Type *_elem;            // Element type of array
 653   const TypeInt *_size;         // Elements in array
 654   const bool _stable;           // Are elements @Stable?
 655   friend class TypeAryPtr;
 656 
 657 public:
 658   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 659 
 660   virtual const Type *xmeet( const Type *t ) const;
 661   virtual const Type *xdual() const;    // Compute dual right now.
 662   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 663   virtual const Type* remove_speculative() const;
 664 #ifdef ASSERT
 665   // One type is interface, the other is oop
 666   virtual bool interface_vs_oop(const Type *t) const;
 667 #endif
 668 #ifndef PRODUCT
 669   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 670 #endif
 671 };
 672 
 673 //------------------------------TypeVect---------------------------------------
 674 // Class of Vector Types
 675 class TypeVect : public Type {
 676   const Type*   _elem;  // Vector's element type
 677   const uint  _length;  // Elements in vector (power of 2)
 678 
 679 protected:
 680   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 681     _elem(elem), _length(length) {}
 682 
 683 public:
 684   const Type* element_type() const { return _elem; }
 685   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 686   uint length() const { return _length; }
 687   uint length_in_bytes() const {
 688    return _length * type2aelembytes(element_basic_type());
 689   }
 690 
 691   virtual bool eq(const Type *t) const;
 692   virtual int  hash() const;             // Type specific hashing
 693   virtual bool singleton(void) const;    // TRUE if type is a singleton
 694   virtual bool empty(void) const;        // TRUE if type is vacuous
 695 
 696   static const TypeVect *make(const BasicType elem_bt, uint length) {
 697     // Use bottom primitive type.
 698     return make(get_const_basic_type(elem_bt), length);
 699   }
 700   // Used directly by Replicate nodes to construct singleton vector.
 701   static const TypeVect *make(const Type* elem, uint length);
 702 
 703   virtual const Type *xmeet( const Type *t) const;
 704   virtual const Type *xdual() const;     // Compute dual right now.
 705 
 706   static const TypeVect *VECTS;
 707   static const TypeVect *VECTD;
 708   static const TypeVect *VECTX;
 709   static const TypeVect *VECTY;
 710 
 711 #ifndef PRODUCT
 712   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 713 #endif
 714 };
 715 
 716 class TypeVectS : public TypeVect {
 717   friend class TypeVect;
 718   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 719 };
 720 
 721 class TypeVectD : public TypeVect {
 722   friend class TypeVect;
 723   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 724 };
 725 
 726 class TypeVectX : public TypeVect {
 727   friend class TypeVect;
 728   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 729 };
 730 
 731 class TypeVectY : public TypeVect {
 732   friend class TypeVect;
 733   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 734 };
 735 
 736 //------------------------------TypePtr----------------------------------------
 737 // Class of machine Pointer Types: raw data, instances or arrays.
 738 // If the _base enum is AnyPtr, then this refers to all of the above.
 739 // Otherwise the _base will indicate which subset of pointers is affected,
 740 // and the class will be inherited from.
 741 class TypePtr : public Type {
 742   friend class TypeNarrowPtr;
 743 public:
 744   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 745 protected:
 746   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 747   virtual bool eq( const Type *t ) const;
 748   virtual int  hash() const;             // Type specific hashing
 749   static const PTR ptr_meet[lastPTR][lastPTR];
 750   static const PTR ptr_dual[lastPTR];
 751   static const char * const ptr_msg[lastPTR];
 752 
 753 public:
 754   const int _offset;            // Offset into oop, with TOP & BOT
 755   const PTR _ptr;               // Pointer equivalence class
 756 
 757   const int offset() const { return _offset; }
 758   const PTR ptr()    const { return _ptr; }
 759 
 760   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 761 
 762   // Return a 'ptr' version of this type
 763   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 764 
 765   virtual intptr_t get_con() const;
 766 
 767   int xadd_offset( intptr_t offset ) const;
 768   virtual const TypePtr *add_offset( intptr_t offset ) const;
 769 
 770   virtual bool singleton(void) const;    // TRUE if type is a singleton
 771   virtual bool empty(void) const;        // TRUE if type is vacuous
 772   virtual const Type *xmeet( const Type *t ) const;
 773   int meet_offset( int offset ) const;
 774   int dual_offset( ) const;
 775   virtual const Type *xdual() const;    // Compute dual right now.
 776 
 777   // meet, dual and join over pointer equivalence sets
 778   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 779   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 780 
 781   // This is textually confusing unless one recalls that
 782   // join(t) == dual()->meet(t->dual())->dual().
 783   PTR join_ptr( const PTR in_ptr ) const {
 784     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 785   }
 786 
 787   // Tests for relation to centerline of type lattice:
 788   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 789   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 790   // Convenience common pre-built types.
 791   static const TypePtr *NULL_PTR;
 792   static const TypePtr *NOTNULL;
 793   static const TypePtr *BOTTOM;
 794 #ifndef PRODUCT
 795   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 796 #endif
 797 
 798   virtual int inline_depth() const {
 799     fatal("should not be used");
 800     return 0;
 801   }
 802 };
 803 
 804 //------------------------------TypeRawPtr-------------------------------------
 805 // Class of raw pointers, pointers to things other than Oops.  Examples
 806 // include the stack pointer, top of heap, card-marking area, handles, etc.
 807 class TypeRawPtr : public TypePtr {
 808 protected:
 809   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 810 public:
 811   virtual bool eq( const Type *t ) const;
 812   virtual int  hash() const;     // Type specific hashing
 813 
 814   const address _bits;          // Constant value, if applicable
 815 
 816   static const TypeRawPtr *make( PTR ptr );
 817   static const TypeRawPtr *make( address bits );
 818 
 819   // Return a 'ptr' version of this type
 820   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 821 
 822   virtual intptr_t get_con() const;
 823 
 824   virtual const TypePtr *add_offset( intptr_t offset ) const;
 825 
 826   virtual const Type *xmeet( const Type *t ) const;
 827   virtual const Type *xdual() const;    // Compute dual right now.
 828   // Convenience common pre-built types.
 829   static const TypeRawPtr *BOTTOM;
 830   static const TypeRawPtr *NOTNULL;
 831 #ifndef PRODUCT
 832   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 833 #endif
 834 };
 835 
 836 //------------------------------TypeOopPtr-------------------------------------
 837 // Some kind of oop (Java pointer), either klass or instance or array.
 838 class TypeOopPtr : public TypePtr {
 839 protected:
 840   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth);
 841 public:
 842   virtual bool eq( const Type *t ) const;
 843   virtual int  hash() const;             // Type specific hashing
 844   virtual bool singleton(void) const;    // TRUE if type is a singleton
 845   enum {
 846    InstanceTop = -1,   // undefined instance
 847    InstanceBot = 0     // any possible instance
 848   };
 849   enum {
 850     InlineDepthTop = INT_MAX,
 851     InlineDepthBottom = -InlineDepthTop
 852   };
 853 protected:
 854 
 855   // Oop is NULL, unless this is a constant oop.
 856   ciObject*     _const_oop;   // Constant oop
 857   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 858   ciKlass*      _klass;       // Klass object
 859   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 860   bool          _klass_is_exact;
 861   bool          _is_ptr_to_narrowoop;
 862   bool          _is_ptr_to_narrowklass;
 863   bool          _is_ptr_to_boxed_value;
 864 
 865   // If not InstanceTop or InstanceBot, indicates that this is
 866   // a particular instance of this type which is distinct.
 867   // This is the the node index of the allocation node creating this instance.
 868   int           _instance_id;
 869  
 870   // Extra type information profiling gave us. We propagate it the
 871   // same way the rest of the type info is propagated. If we want to
 872   // use it, then we have to emit a guard: this part of the type is
 873   // not something we know but something we speculate about the type.
 874   const TypeOopPtr*   _speculative;
 875   // For speculative types, we record at what inlining depth the
 876   // profiling point that provided the data is. We want to favor
 877   // profile data coming from outer scopes which are likely better for
 878   // the current compilation.
 879   int _inline_depth;
 880 
 881   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 882 
 883   int dual_instance_id() const;
 884   int meet_instance_id(int uid) const;
 885 
 886   // utility methods to work on the speculative part of the type
 887   const TypeOopPtr* dual_speculative() const;
 888   const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
 889   bool eq_speculative(const TypeOopPtr* other) const;
 890   int hash_speculative() const;
 891   const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
 892 #ifndef PRODUCT
 893   void dump_speculative(outputStream *st) const;
 894 #endif
 895   // utility methods to work on the inline depth of the type
 896   int dual_inline_depth() const;
 897   int meet_inline_depth(int depth) const;
 898 #ifndef PRODUCT
 899   void dump_inline_depth(outputStream *st) const;
 900 #endif
 901 
 902   // Do not allow interface-vs.-noninterface joins to collapse to top.
 903   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 904 
 905 public:
 906   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 907   // Respects UseUniqueSubclasses.
 908   // If the klass is final, the resulting type will be exact.
 909   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 910     return make_from_klass_common(klass, true, false);
 911   }
 912   // Same as before, but will produce an exact type, even if
 913   // the klass is not final, as long as it has exactly one implementation.
 914   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 915     return make_from_klass_common(klass, true, true);
 916   }
 917   // Same as before, but does not respects UseUniqueSubclasses.
 918   // Use this only for creating array element types.
 919   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 920     return make_from_klass_common(klass, false, false);
 921   }
 922   // Creates a singleton type given an object.
 923   // If the object cannot be rendered as a constant,
 924   // may return a non-singleton type.
 925   // If require_constant, produce a NULL if a singleton is not possible.
 926   static const TypeOopPtr* make_from_constant(ciObject* o,
 927                                               bool require_constant = false,
 928                                               bool not_null_elements = false);
 929 
 930   // Make a generic (unclassed) pointer to an oop.
 931   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
 932 
 933   ciObject* const_oop()    const { return _const_oop; }
 934   virtual ciKlass* klass() const { return _klass;     }
 935   bool klass_is_exact()    const { return _klass_is_exact; }
 936 
 937   // Returns true if this pointer points at memory which contains a
 938   // compressed oop references.
 939   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 940   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
 941   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
 942   bool is_known_instance()       const { return _instance_id > 0; }
 943   int  instance_id()             const { return _instance_id; }
 944   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 945   virtual const TypeOopPtr* speculative() const { return _speculative; }
 946 
 947   virtual intptr_t get_con() const;
 948 
 949   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 950 
 951   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 952 
 953   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 954 
 955   // corresponding pointer to klass, for a given instance
 956   const TypeKlassPtr* as_klass_type() const;
 957 
 958   virtual const TypePtr *add_offset( intptr_t offset ) const;
 959   // Return same type without a speculative part
 960   virtual const Type* remove_speculative() const;
 961 
 962   virtual const Type *xmeet(const Type *t) const;
 963   virtual const Type *xdual() const;    // Compute dual right now.
 964   // the core of the computation of the meet for TypeOopPtr and for its subclasses
 965   virtual const Type *xmeet_helper(const Type *t) const;
 966 
 967   // Convenience common pre-built type.
 968   static const TypeOopPtr *BOTTOM;
 969 #ifndef PRODUCT
 970   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 971 #endif
 972 
 973   // Return the speculative type if any
 974   ciKlass* speculative_type() const {
 975     if (_speculative != NULL) {
 976       const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
 977       if (speculative->klass_is_exact()) {
 978         return speculative->klass();
 979       }
 980     }
 981     return NULL;
 982   }
 983   virtual const TypeOopPtr* with_inline_depth(int depth) const;
 984   virtual int inline_depth() const {
 985     return _inline_depth;
 986   }
 987 };
 988 
 989 //------------------------------TypeInstPtr------------------------------------
 990 // Class of Java object pointers, pointing either to non-array Java instances
 991 // or to a Klass* (including array klasses).
 992 class TypeInstPtr : public TypeOopPtr {
 993   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth);
 994   virtual bool eq( const Type *t ) const;
 995   virtual int  hash() const;             // Type specific hashing
 996 
 997   ciSymbol*  _name;        // class name
 998 
 999  public:
1000   ciSymbol* name()         const { return _name; }
1001 
1002   bool  is_loaded() const { return _klass->is_loaded(); }
1003 
1004   // Make a pointer to a constant oop.
1005   static const TypeInstPtr *make(ciObject* o) {
1006     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
1007   }
1008   // Make a pointer to a constant oop with offset.
1009   static const TypeInstPtr *make(ciObject* o, int offset) {
1010     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1011   }
1012 
1013   // Make a pointer to some value of type klass.
1014   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1015     return make(ptr, klass, false, NULL, 0, InstanceBot);
1016   }
1017 
1018   // Make a pointer to some non-polymorphic value of exactly type klass.
1019   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1020     return make(ptr, klass, true, NULL, 0, InstanceBot);
1021   }
1022 
1023   // Make a pointer to some value of type klass with offset.
1024   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1025     return make(ptr, klass, false, NULL, offset, InstanceBot);
1026   }
1027 
1028   // Make a pointer to an oop.
1029   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
1030 
1031   /** Create constant type for a constant boxed value */
1032   const Type* get_const_boxed_value() const;
1033 
1034   // If this is a java.lang.Class constant, return the type for it or NULL.
1035   // Pass to Type::get_const_type to turn it to a type, which will usually
1036   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1037   ciType* java_mirror_type() const;
1038 
1039   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1040 
1041   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1042 
1043   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1044 
1045   virtual const TypePtr *add_offset( intptr_t offset ) const;
1046   // Return same type without a speculative part
1047   virtual const Type* remove_speculative() const;
1048   virtual const TypeOopPtr* with_inline_depth(int depth) const;
1049 
1050   // the core of the computation of the meet of 2 types
1051   virtual const Type *xmeet_helper(const Type *t) const;
1052   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1053   virtual const Type *xdual() const;    // Compute dual right now.
1054 
1055   // Convenience common pre-built types.
1056   static const TypeInstPtr *NOTNULL;
1057   static const TypeInstPtr *BOTTOM;
1058   static const TypeInstPtr *MIRROR;
1059   static const TypeInstPtr *MARK;
1060   static const TypeInstPtr *KLASS;
1061 #ifndef PRODUCT
1062   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1063 #endif
1064 };
1065 
1066 //------------------------------TypeAryPtr-------------------------------------
1067 // Class of Java array pointers
1068 class TypeAryPtr : public TypeOopPtr {
1069   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1070               int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative, int inline_depth)
1071     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
1072     _ary(ary),
1073     _is_autobox_cache(is_autobox_cache)
1074  {
1075 #ifdef ASSERT
1076     if (k != NULL) {
1077       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1078       ciKlass* ck = compute_klass(true);
1079       if (k != ck) {
1080         this->dump(); tty->cr();
1081         tty->print(" k: ");
1082         k->print(); tty->cr();
1083         tty->print("ck: ");
1084         if (ck != NULL) ck->print();
1085         else tty->print("<NULL>");
1086         tty->cr();
1087         assert(false, "unexpected TypeAryPtr::_klass");
1088       }
1089     }
1090 #endif
1091   }
1092   virtual bool eq( const Type *t ) const;
1093   virtual int hash() const;     // Type specific hashing
1094   const TypeAry *_ary;          // Array we point into
1095   const bool     _is_autobox_cache;
1096 
1097   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1098 
1099 public:
1100   // Accessors
1101   ciKlass* klass() const;
1102   const TypeAry* ary() const  { return _ary; }
1103   const Type*    elem() const { return _ary->_elem; }
1104   const TypeInt* size() const { return _ary->_size; }
1105   bool      is_stable() const { return _ary->_stable; }
1106 
1107   bool is_autobox_cache() const { return _is_autobox_cache; }
1108 
1109   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
1110   // Constant pointer to array
1111   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom, bool is_autobox_cache= false);
1112 
1113   // Return a 'ptr' version of this type
1114   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1115 
1116   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1117 
1118   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1119 
1120   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1121   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1122 
1123   virtual bool empty(void) const;        // TRUE if type is vacuous
1124   virtual const TypePtr *add_offset( intptr_t offset ) const;
1125   // Return same type without a speculative part
1126   virtual const Type* remove_speculative() const;
1127   virtual const TypeOopPtr* with_inline_depth(int depth) const;
1128 
1129   // the core of the computation of the meet of 2 types
1130   virtual const Type *xmeet_helper(const Type *t) const;
1131   virtual const Type *xdual() const;    // Compute dual right now.
1132 
1133   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1134   int stable_dimension() const;
1135 
1136   // Convenience common pre-built types.
1137   static const TypeAryPtr *RANGE;
1138   static const TypeAryPtr *OOPS;
1139   static const TypeAryPtr *NARROWOOPS;
1140   static const TypeAryPtr *BYTES;
1141   static const TypeAryPtr *SHORTS;
1142   static const TypeAryPtr *CHARS;
1143   static const TypeAryPtr *INTS;
1144   static const TypeAryPtr *LONGS;
1145   static const TypeAryPtr *FLOATS;
1146   static const TypeAryPtr *DOUBLES;
1147   // selects one of the above:
1148   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1149     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1150     return _array_body_type[elem];
1151   }
1152   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1153   // sharpen the type of an int which is used as an array size
1154 #ifdef ASSERT
1155   // One type is interface, the other is oop
1156   virtual bool interface_vs_oop(const Type *t) const;
1157 #endif
1158 #ifndef PRODUCT
1159   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1160 #endif
1161 };
1162 
1163 //------------------------------TypeMetadataPtr-------------------------------------
1164 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1165 class TypeMetadataPtr : public TypePtr {
1166 protected:
1167   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1168   // Do not allow interface-vs.-noninterface joins to collapse to top.
1169   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1170 public:
1171   virtual bool eq( const Type *t ) const;
1172   virtual int  hash() const;             // Type specific hashing
1173   virtual bool singleton(void) const;    // TRUE if type is a singleton
1174 
1175 private:
1176   ciMetadata*   _metadata;
1177 
1178 public:
1179   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1180 
1181   static const TypeMetadataPtr* make(ciMethod* m);
1182   static const TypeMetadataPtr* make(ciMethodData* m);
1183 
1184   ciMetadata* metadata() const { return _metadata; }
1185 
1186   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1187 
1188   virtual const TypePtr *add_offset( intptr_t offset ) const;
1189 
1190   virtual const Type *xmeet( const Type *t ) const;
1191   virtual const Type *xdual() const;    // Compute dual right now.
1192 
1193   virtual intptr_t get_con() const;
1194 
1195   // Convenience common pre-built types.
1196   static const TypeMetadataPtr *BOTTOM;
1197 
1198 #ifndef PRODUCT
1199   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1200 #endif
1201 };
1202 
1203 //------------------------------TypeKlassPtr-----------------------------------
1204 // Class of Java Klass pointers
1205 class TypeKlassPtr : public TypePtr {
1206   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1207 
1208 protected:
1209   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1210  public:
1211   virtual bool eq( const Type *t ) const;
1212   virtual int hash() const;             // Type specific hashing
1213   virtual bool singleton(void) const;    // TRUE if type is a singleton
1214  private:
1215 
1216   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1217 
1218   ciKlass* _klass;
1219 
1220   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1221   bool          _klass_is_exact;
1222 
1223 public:
1224   ciSymbol* name()  const { return klass()->name(); }
1225 
1226   ciKlass* klass() const { return  _klass; }
1227   bool klass_is_exact()    const { return _klass_is_exact; }
1228 
1229   bool  is_loaded() const { return klass()->is_loaded(); }
1230 
1231   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1232   // Respects UseUniqueSubclasses.
1233   // If the klass is final, the resulting type will be exact.
1234   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1235     return make_from_klass_common(klass, true, false);
1236   }
1237   // Same as before, but will produce an exact type, even if
1238   // the klass is not final, as long as it has exactly one implementation.
1239   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1240     return make_from_klass_common(klass, true, true);
1241   }
1242   // Same as before, but does not respects UseUniqueSubclasses.
1243   // Use this only for creating array element types.
1244   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1245     return make_from_klass_common(klass, false, false);
1246   }
1247 
1248   // Make a generic (unclassed) pointer to metadata.
1249   static const TypeKlassPtr* make(PTR ptr, int offset);
1250 
1251   // ptr to klass 'k'
1252   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1253   // ptr to klass 'k' with offset
1254   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1255   // ptr to klass 'k' or sub-klass
1256   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1257 
1258   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1259 
1260   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1261 
1262   // corresponding pointer to instance, for a given class
1263   const TypeOopPtr* as_instance_type() const;
1264 
1265   virtual const TypePtr *add_offset( intptr_t offset ) const;
1266   virtual const Type    *xmeet( const Type *t ) const;
1267   virtual const Type    *xdual() const;      // Compute dual right now.
1268 
1269   virtual intptr_t get_con() const;
1270 
1271   // Convenience common pre-built types.
1272   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1273   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1274 #ifndef PRODUCT
1275   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1276 #endif
1277 };
1278 
1279 class TypeNarrowPtr : public Type {
1280 protected:
1281   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1282 
1283   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1284                                                   Type(t) {
1285     assert(ptrtype->offset() == 0 ||
1286            ptrtype->offset() == OffsetBot ||
1287            ptrtype->offset() == OffsetTop, "no real offsets");
1288   }
1289 
1290   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1291   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1292   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1293   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1294   // Do not allow interface-vs.-noninterface joins to collapse to top.
1295   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1296 public:
1297   virtual bool eq( const Type *t ) const;
1298   virtual int  hash() const;             // Type specific hashing
1299   virtual bool singleton(void) const;    // TRUE if type is a singleton
1300 
1301   virtual const Type *xmeet( const Type *t ) const;
1302   virtual const Type *xdual() const;    // Compute dual right now.
1303 
1304   virtual intptr_t get_con() const;
1305 
1306   virtual bool empty(void) const;        // TRUE if type is vacuous
1307 
1308   // returns the equivalent ptr type for this compressed pointer
1309   const TypePtr *get_ptrtype() const {
1310     return _ptrtype;
1311   }
1312 
1313 #ifndef PRODUCT
1314   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1315 #endif
1316 };
1317 
1318 //------------------------------TypeNarrowOop----------------------------------
1319 // A compressed reference to some kind of Oop.  This type wraps around
1320 // a preexisting TypeOopPtr and forwards most of it's operations to
1321 // the underlying type.  It's only real purpose is to track the
1322 // oopness of the compressed oop value when we expose the conversion
1323 // between the normal and the compressed form.
1324 class TypeNarrowOop : public TypeNarrowPtr {
1325 protected:
1326   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1327   }
1328 
1329   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1330     return t->isa_narrowoop();
1331   }
1332 
1333   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1334     return t->is_narrowoop();
1335   }
1336 
1337   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1338     return new TypeNarrowOop(t);
1339   }
1340 
1341   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1342     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1343   }
1344 
1345 public:
1346 
1347   static const TypeNarrowOop *make( const TypePtr* type);
1348 
1349   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1350     return make(TypeOopPtr::make_from_constant(con, require_constant));
1351   }
1352 
1353   static const TypeNarrowOop *BOTTOM;
1354   static const TypeNarrowOop *NULL_PTR;
1355 
1356   virtual const Type* remove_speculative() const {
1357     return make(_ptrtype->remove_speculative()->is_ptr());
1358   }
1359 
1360 #ifndef PRODUCT
1361   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1362 #endif
1363 };
1364 
1365 //------------------------------TypeNarrowKlass----------------------------------
1366 // A compressed reference to klass pointer.  This type wraps around a
1367 // preexisting TypeKlassPtr and forwards most of it's operations to
1368 // the underlying type.
1369 class TypeNarrowKlass : public TypeNarrowPtr {
1370 protected:
1371   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1372   }
1373 
1374   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1375     return t->isa_narrowklass();
1376   }
1377 
1378   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1379     return t->is_narrowklass();
1380   }
1381 
1382   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1383     return new TypeNarrowKlass(t);
1384   }
1385 
1386   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1387     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1388   }
1389 
1390 public:
1391   static const TypeNarrowKlass *make( const TypePtr* type);
1392 
1393   // static const TypeNarrowKlass *BOTTOM;
1394   static const TypeNarrowKlass *NULL_PTR;
1395 
1396 #ifndef PRODUCT
1397   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1398 #endif
1399 };
1400 
1401 //------------------------------TypeFunc---------------------------------------
1402 // Class of Array Types
1403 class TypeFunc : public Type {
1404   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1405   virtual bool eq( const Type *t ) const;
1406   virtual int  hash() const;             // Type specific hashing
1407   virtual bool singleton(void) const;    // TRUE if type is a singleton
1408   virtual bool empty(void) const;        // TRUE if type is vacuous
1409 public:
1410   // Constants are shared among ADLC and VM
1411   enum { Control    = AdlcVMDeps::Control,
1412          I_O        = AdlcVMDeps::I_O,
1413          Memory     = AdlcVMDeps::Memory,
1414          FramePtr   = AdlcVMDeps::FramePtr,
1415          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1416          Parms      = AdlcVMDeps::Parms
1417   };
1418 
1419   const TypeTuple* const _domain;     // Domain of inputs
1420   const TypeTuple* const _range;      // Range of results
1421 
1422   // Accessors:
1423   const TypeTuple* domain() const { return _domain; }
1424   const TypeTuple* range()  const { return _range; }
1425 
1426   static const TypeFunc *make(ciMethod* method);
1427   static const TypeFunc *make(ciSignature signature, const Type* extra);
1428   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1429 
1430   virtual const Type *xmeet( const Type *t ) const;
1431   virtual const Type *xdual() const;    // Compute dual right now.
1432 
1433   BasicType return_type() const;
1434 
1435 #ifndef PRODUCT
1436   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1437 #endif
1438   // Convenience common pre-built types.
1439 };
1440 
1441 //------------------------------accessors--------------------------------------
1442 inline bool Type::is_ptr_to_narrowoop() const {
1443 #ifdef _LP64
1444   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1445 #else
1446   return false;
1447 #endif
1448 }
1449 
1450 inline bool Type::is_ptr_to_narrowklass() const {
1451 #ifdef _LP64
1452   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1453 #else
1454   return false;
1455 #endif
1456 }
1457 
1458 inline float Type::getf() const {
1459   assert( _base == FloatCon, "Not a FloatCon" );
1460   return ((TypeF*)this)->_f;
1461 }
1462 
1463 inline double Type::getd() const {
1464   assert( _base == DoubleCon, "Not a DoubleCon" );
1465   return ((TypeD*)this)->_d;
1466 }
1467 
1468 inline const TypeInt *Type::is_int() const {
1469   assert( _base == Int, "Not an Int" );
1470   return (TypeInt*)this;
1471 }
1472 
1473 inline const TypeInt *Type::isa_int() const {
1474   return ( _base == Int ? (TypeInt*)this : NULL);
1475 }
1476 
1477 inline const TypeLong *Type::is_long() const {
1478   assert( _base == Long, "Not a Long" );
1479   return (TypeLong*)this;
1480 }
1481 
1482 inline const TypeLong *Type::isa_long() const {
1483   return ( _base == Long ? (TypeLong*)this : NULL);
1484 }
1485 
1486 inline const TypeF *Type::isa_float() const {
1487   return ((_base == FloatTop ||
1488            _base == FloatCon ||
1489            _base == FloatBot) ? (TypeF*)this : NULL);
1490 }
1491 
1492 inline const TypeF *Type::is_float_constant() const {
1493   assert( _base == FloatCon, "Not a Float" );
1494   return (TypeF*)this;
1495 }
1496 
1497 inline const TypeF *Type::isa_float_constant() const {
1498   return ( _base == FloatCon ? (TypeF*)this : NULL);
1499 }
1500 
1501 inline const TypeD *Type::isa_double() const {
1502   return ((_base == DoubleTop ||
1503            _base == DoubleCon ||
1504            _base == DoubleBot) ? (TypeD*)this : NULL);
1505 }
1506 
1507 inline const TypeD *Type::is_double_constant() const {
1508   assert( _base == DoubleCon, "Not a Double" );
1509   return (TypeD*)this;
1510 }
1511 
1512 inline const TypeD *Type::isa_double_constant() const {
1513   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1514 }
1515 
1516 inline const TypeTuple *Type::is_tuple() const {
1517   assert( _base == Tuple, "Not a Tuple" );
1518   return (TypeTuple*)this;
1519 }
1520 
1521 inline const TypeAry *Type::is_ary() const {
1522   assert( _base == Array , "Not an Array" );
1523   return (TypeAry*)this;
1524 }
1525 
1526 inline const TypeVect *Type::is_vect() const {
1527   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
1528   return (TypeVect*)this;
1529 }
1530 
1531 inline const TypeVect *Type::isa_vect() const {
1532   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
1533 }
1534 
1535 inline const TypePtr *Type::is_ptr() const {
1536   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1537   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1538   return (TypePtr*)this;
1539 }
1540 
1541 inline const TypePtr *Type::isa_ptr() const {
1542   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1543   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1544 }
1545 
1546 inline const TypeOopPtr *Type::is_oopptr() const {
1547   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1548   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1549   return (TypeOopPtr*)this;
1550 }
1551 
1552 inline const TypeOopPtr *Type::isa_oopptr() const {
1553   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1554   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1555 }
1556 
1557 inline const TypeRawPtr *Type::isa_rawptr() const {
1558   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1559 }
1560 
1561 inline const TypeRawPtr *Type::is_rawptr() const {
1562   assert( _base == RawPtr, "Not a raw pointer" );
1563   return (TypeRawPtr*)this;
1564 }
1565 
1566 inline const TypeInstPtr *Type::isa_instptr() const {
1567   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1568 }
1569 
1570 inline const TypeInstPtr *Type::is_instptr() const {
1571   assert( _base == InstPtr, "Not an object pointer" );
1572   return (TypeInstPtr*)this;
1573 }
1574 
1575 inline const TypeAryPtr *Type::isa_aryptr() const {
1576   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1577 }
1578 
1579 inline const TypeAryPtr *Type::is_aryptr() const {
1580   assert( _base == AryPtr, "Not an array pointer" );
1581   return (TypeAryPtr*)this;
1582 }
1583 
1584 inline const TypeNarrowOop *Type::is_narrowoop() const {
1585   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1586   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1587   return (TypeNarrowOop*)this;
1588 }
1589 
1590 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1591   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1592   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1593 }
1594 
1595 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1596   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1597   return (TypeNarrowKlass*)this;
1598 }
1599 
1600 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1601   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1602 }
1603 
1604 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1605   // MetadataPtr is the first and CPCachePtr the last
1606   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1607   return (TypeMetadataPtr*)this;
1608 }
1609 
1610 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1611   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1612 }
1613 
1614 inline const TypeKlassPtr *Type::isa_klassptr() const {
1615   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1616 }
1617 
1618 inline const TypeKlassPtr *Type::is_klassptr() const {
1619   assert( _base == KlassPtr, "Not a klass pointer" );
1620   return (TypeKlassPtr*)this;
1621 }
1622 
1623 inline const TypePtr* Type::make_ptr() const {
1624   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1625     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1626      (isa_ptr() ? is_ptr() : NULL));
1627 }
1628 
1629 inline const TypeOopPtr* Type::make_oopptr() const {
1630   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1631 }
1632 
1633 inline const TypeNarrowOop* Type::make_narrowoop() const {
1634   return (_base == NarrowOop) ? is_narrowoop() :
1635                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1636 }
1637 
1638 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1639   return (_base == NarrowKlass) ? is_narrowklass() :
1640                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1641 }
1642 
1643 inline bool Type::is_floatingpoint() const {
1644   if( (_base == FloatCon)  || (_base == FloatBot) ||
1645       (_base == DoubleCon) || (_base == DoubleBot) )
1646     return true;
1647   return false;
1648 }
1649 
1650 inline bool Type::is_ptr_to_boxing_obj() const {
1651   const TypeInstPtr* tp = isa_instptr();
1652   return (tp != NULL) && (tp->offset() == 0) &&
1653          tp->klass()->is_instance_klass()  &&
1654          tp->klass()->as_instance_klass()->is_box_klass();
1655 }
1656 
1657 
1658 // ===============================================================
1659 // Things that need to be 64-bits in the 64-bit build but
1660 // 32-bits in the 32-bit build.  Done this way to get full
1661 // optimization AND strong typing.
1662 #ifdef _LP64
1663 
1664 // For type queries and asserts
1665 #define is_intptr_t  is_long
1666 #define isa_intptr_t isa_long
1667 #define find_intptr_t_type find_long_type
1668 #define find_intptr_t_con  find_long_con
1669 #define TypeX        TypeLong
1670 #define Type_X       Type::Long
1671 #define TypeX_X      TypeLong::LONG
1672 #define TypeX_ZERO   TypeLong::ZERO
1673 // For 'ideal_reg' machine registers
1674 #define Op_RegX      Op_RegL
1675 // For phase->intcon variants
1676 #define MakeConX     longcon
1677 #define ConXNode     ConLNode
1678 // For array index arithmetic
1679 #define MulXNode     MulLNode
1680 #define AndXNode     AndLNode
1681 #define OrXNode      OrLNode
1682 #define CmpXNode     CmpLNode
1683 #define SubXNode     SubLNode
1684 #define LShiftXNode  LShiftLNode
1685 // For object size computation:
1686 #define AddXNode     AddLNode
1687 #define RShiftXNode  RShiftLNode
1688 // For card marks and hashcodes
1689 #define URShiftXNode URShiftLNode
1690 // UseOptoBiasInlining
1691 #define XorXNode     XorLNode
1692 #define StoreXConditionalNode StoreLConditionalNode
1693 // Opcodes
1694 #define Op_LShiftX   Op_LShiftL
1695 #define Op_AndX      Op_AndL
1696 #define Op_AddX      Op_AddL
1697 #define Op_SubX      Op_SubL
1698 #define Op_XorX      Op_XorL
1699 #define Op_URShiftX  Op_URShiftL
1700 // conversions
1701 #define ConvI2X(x)   ConvI2L(x)
1702 #define ConvL2X(x)   (x)
1703 #define ConvX2I(x)   ConvL2I(x)
1704 #define ConvX2L(x)   (x)
1705 
1706 #else
1707 
1708 // For type queries and asserts
1709 #define is_intptr_t  is_int
1710 #define isa_intptr_t isa_int
1711 #define find_intptr_t_type find_int_type
1712 #define find_intptr_t_con  find_int_con
1713 #define TypeX        TypeInt
1714 #define Type_X       Type::Int
1715 #define TypeX_X      TypeInt::INT
1716 #define TypeX_ZERO   TypeInt::ZERO
1717 // For 'ideal_reg' machine registers
1718 #define Op_RegX      Op_RegI
1719 // For phase->intcon variants
1720 #define MakeConX     intcon
1721 #define ConXNode     ConINode
1722 // For array index arithmetic
1723 #define MulXNode     MulINode
1724 #define AndXNode     AndINode
1725 #define OrXNode      OrINode
1726 #define CmpXNode     CmpINode
1727 #define SubXNode     SubINode
1728 #define LShiftXNode  LShiftINode
1729 // For object size computation:
1730 #define AddXNode     AddINode
1731 #define RShiftXNode  RShiftINode
1732 // For card marks and hashcodes
1733 #define URShiftXNode URShiftINode
1734 // UseOptoBiasInlining
1735 #define XorXNode     XorINode
1736 #define StoreXConditionalNode StoreIConditionalNode
1737 // Opcodes
1738 #define Op_LShiftX   Op_LShiftI
1739 #define Op_AndX      Op_AndI
1740 #define Op_AddX      Op_AddI
1741 #define Op_SubX      Op_SubI
1742 #define Op_XorX      Op_XorI
1743 #define Op_URShiftX  Op_URShiftI
1744 // conversions
1745 #define ConvI2X(x)   (x)
1746 #define ConvL2X(x)   ConvL2I(x)
1747 #define ConvX2I(x)   (x)
1748 #define ConvX2L(x)   ConvI2L(x)
1749 
1750 #endif
1751 
1752 #endif // SHARE_VM_OPTO_TYPE_HPP