1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "memory/barrierSet.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/graphKit.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 //----------------------------GraphKit-----------------------------------------
  44 // Main utility constructor.
  45 GraphKit::GraphKit(JVMState* jvms)
  46   : Phase(Phase::Parser),
  47     _env(C->env()),
  48     _gvn(*C->initial_gvn())
  49 {
  50   _exceptions = jvms->map()->next_exception();
  51   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  52   set_jvms(jvms);
  53 }
  54 
  55 // Private constructor for parser.
  56 GraphKit::GraphKit()
  57   : Phase(Phase::Parser),
  58     _env(C->env()),
  59     _gvn(*C->initial_gvn())
  60 {
  61   _exceptions = NULL;
  62   set_map(NULL);
  63   debug_only(_sp = -99);
  64   debug_only(set_bci(-99));
  65 }
  66 
  67 
  68 
  69 //---------------------------clean_stack---------------------------------------
  70 // Clear away rubbish from the stack area of the JVM state.
  71 // This destroys any arguments that may be waiting on the stack.
  72 void GraphKit::clean_stack(int from_sp) {
  73   SafePointNode* map      = this->map();
  74   JVMState*      jvms     = this->jvms();
  75   int            stk_size = jvms->stk_size();
  76   int            stkoff   = jvms->stkoff();
  77   Node*          top      = this->top();
  78   for (int i = from_sp; i < stk_size; i++) {
  79     if (map->in(stkoff + i) != top) {
  80       map->set_req(stkoff + i, top);
  81     }
  82   }
  83 }
  84 
  85 
  86 //--------------------------------sync_jvms-----------------------------------
  87 // Make sure our current jvms agrees with our parse state.
  88 JVMState* GraphKit::sync_jvms() const {
  89   JVMState* jvms = this->jvms();
  90   jvms->set_bci(bci());       // Record the new bci in the JVMState
  91   jvms->set_sp(sp());         // Record the new sp in the JVMState
  92   assert(jvms_in_sync(), "jvms is now in sync");
  93   return jvms;
  94 }
  95 
  96 //--------------------------------sync_jvms_for_reexecute---------------------
  97 // Make sure our current jvms agrees with our parse state.  This version
  98 // uses the reexecute_sp for reexecuting bytecodes.
  99 JVMState* GraphKit::sync_jvms_for_reexecute() {
 100   JVMState* jvms = this->jvms();
 101   jvms->set_bci(bci());          // Record the new bci in the JVMState
 102   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 103   return jvms;
 104 }
 105 
 106 #ifdef ASSERT
 107 bool GraphKit::jvms_in_sync() const {
 108   Parse* parse = is_Parse();
 109   if (parse == NULL) {
 110     if (bci() !=      jvms()->bci())          return false;
 111     if (sp()  != (int)jvms()->sp())           return false;
 112     return true;
 113   }
 114   if (jvms()->method() != parse->method())    return false;
 115   if (jvms()->bci()    != parse->bci())       return false;
 116   int jvms_sp = jvms()->sp();
 117   if (jvms_sp          != parse->sp())        return false;
 118   int jvms_depth = jvms()->depth();
 119   if (jvms_depth       != parse->depth())     return false;
 120   return true;
 121 }
 122 
 123 // Local helper checks for special internal merge points
 124 // used to accumulate and merge exception states.
 125 // They are marked by the region's in(0) edge being the map itself.
 126 // Such merge points must never "escape" into the parser at large,
 127 // until they have been handed to gvn.transform.
 128 static bool is_hidden_merge(Node* reg) {
 129   if (reg == NULL)  return false;
 130   if (reg->is_Phi()) {
 131     reg = reg->in(0);
 132     if (reg == NULL)  return false;
 133   }
 134   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 135 }
 136 
 137 void GraphKit::verify_map() const {
 138   if (map() == NULL)  return;  // null map is OK
 139   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 140   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 141   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 142 }
 143 
 144 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 145   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 146   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 147 }
 148 #endif
 149 
 150 //---------------------------stop_and_kill_map---------------------------------
 151 // Set _map to NULL, signalling a stop to further bytecode execution.
 152 // First smash the current map's control to a constant, to mark it dead.
 153 void GraphKit::stop_and_kill_map() {
 154   SafePointNode* dead_map = stop();
 155   if (dead_map != NULL) {
 156     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 157     assert(dead_map->is_killed(), "must be so marked");
 158   }
 159 }
 160 
 161 
 162 //--------------------------------stopped--------------------------------------
 163 // Tell if _map is NULL, or control is top.
 164 bool GraphKit::stopped() {
 165   if (map() == NULL)           return true;
 166   else if (control() == top()) return true;
 167   else                         return false;
 168 }
 169 
 170 
 171 //-----------------------------has_ex_handler----------------------------------
 172 // Tell if this method or any caller method has exception handlers.
 173 bool GraphKit::has_ex_handler() {
 174   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 175     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 176       return true;
 177     }
 178   }
 179   return false;
 180 }
 181 
 182 //------------------------------save_ex_oop------------------------------------
 183 // Save an exception without blowing stack contents or other JVM state.
 184 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 185   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 186   ex_map->add_req(ex_oop);
 187   debug_only(verify_exception_state(ex_map));
 188 }
 189 
 190 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 191   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 192   Node* ex_oop = ex_map->in(ex_map->req()-1);
 193   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 194   return ex_oop;
 195 }
 196 
 197 //-----------------------------saved_ex_oop------------------------------------
 198 // Recover a saved exception from its map.
 199 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 200   return common_saved_ex_oop(ex_map, false);
 201 }
 202 
 203 //--------------------------clear_saved_ex_oop---------------------------------
 204 // Erase a previously saved exception from its map.
 205 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 206   return common_saved_ex_oop(ex_map, true);
 207 }
 208 
 209 #ifdef ASSERT
 210 //---------------------------has_saved_ex_oop----------------------------------
 211 // Erase a previously saved exception from its map.
 212 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 213   return ex_map->req() == ex_map->jvms()->endoff()+1;
 214 }
 215 #endif
 216 
 217 //-------------------------make_exception_state--------------------------------
 218 // Turn the current JVM state into an exception state, appending the ex_oop.
 219 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 220   sync_jvms();
 221   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 222   set_saved_ex_oop(ex_map, ex_oop);
 223   return ex_map;
 224 }
 225 
 226 
 227 //--------------------------add_exception_state--------------------------------
 228 // Add an exception to my list of exceptions.
 229 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 230   if (ex_map == NULL || ex_map->control() == top()) {
 231     return;
 232   }
 233 #ifdef ASSERT
 234   verify_exception_state(ex_map);
 235   if (has_exceptions()) {
 236     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 237   }
 238 #endif
 239 
 240   // If there is already an exception of exactly this type, merge with it.
 241   // In particular, null-checks and other low-level exceptions common up here.
 242   Node*       ex_oop  = saved_ex_oop(ex_map);
 243   const Type* ex_type = _gvn.type(ex_oop);
 244   if (ex_oop == top()) {
 245     // No action needed.
 246     return;
 247   }
 248   assert(ex_type->isa_instptr(), "exception must be an instance");
 249   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 250     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 251     // We check sp also because call bytecodes can generate exceptions
 252     // both before and after arguments are popped!
 253     if (ex_type2 == ex_type
 254         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 255       combine_exception_states(ex_map, e2);
 256       return;
 257     }
 258   }
 259 
 260   // No pre-existing exception of the same type.  Chain it on the list.
 261   push_exception_state(ex_map);
 262 }
 263 
 264 //-----------------------add_exception_states_from-----------------------------
 265 void GraphKit::add_exception_states_from(JVMState* jvms) {
 266   SafePointNode* ex_map = jvms->map()->next_exception();
 267   if (ex_map != NULL) {
 268     jvms->map()->set_next_exception(NULL);
 269     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 270       next_map = ex_map->next_exception();
 271       ex_map->set_next_exception(NULL);
 272       add_exception_state(ex_map);
 273     }
 274   }
 275 }
 276 
 277 //-----------------------transfer_exceptions_into_jvms-------------------------
 278 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 279   if (map() == NULL) {
 280     // We need a JVMS to carry the exceptions, but the map has gone away.
 281     // Create a scratch JVMS, cloned from any of the exception states...
 282     if (has_exceptions()) {
 283       _map = _exceptions;
 284       _map = clone_map();
 285       _map->set_next_exception(NULL);
 286       clear_saved_ex_oop(_map);
 287       debug_only(verify_map());
 288     } else {
 289       // ...or created from scratch
 290       JVMState* jvms = new (C) JVMState(_method, NULL);
 291       jvms->set_bci(_bci);
 292       jvms->set_sp(_sp);
 293       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
 294       set_jvms(jvms);
 295       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 296       set_all_memory(top());
 297       while (map()->req() < jvms->endoff())  map()->add_req(top());
 298     }
 299     // (This is a kludge, in case you didn't notice.)
 300     set_control(top());
 301   }
 302   JVMState* jvms = sync_jvms();
 303   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 304   jvms->map()->set_next_exception(_exceptions);
 305   _exceptions = NULL;   // done with this set of exceptions
 306   return jvms;
 307 }
 308 
 309 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 310   assert(is_hidden_merge(dstphi), "must be a special merge node");
 311   assert(is_hidden_merge(srcphi), "must be a special merge node");
 312   uint limit = srcphi->req();
 313   for (uint i = PhiNode::Input; i < limit; i++) {
 314     dstphi->add_req(srcphi->in(i));
 315   }
 316 }
 317 static inline void add_one_req(Node* dstphi, Node* src) {
 318   assert(is_hidden_merge(dstphi), "must be a special merge node");
 319   assert(!is_hidden_merge(src), "must not be a special merge node");
 320   dstphi->add_req(src);
 321 }
 322 
 323 //-----------------------combine_exception_states------------------------------
 324 // This helper function combines exception states by building phis on a
 325 // specially marked state-merging region.  These regions and phis are
 326 // untransformed, and can build up gradually.  The region is marked by
 327 // having a control input of its exception map, rather than NULL.  Such
 328 // regions do not appear except in this function, and in use_exception_state.
 329 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 330   if (failing())  return;  // dying anyway...
 331   JVMState* ex_jvms = ex_map->_jvms;
 332   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 333   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 334   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 335   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 336   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 337   assert(ex_map->req() == phi_map->req(), "matching maps");
 338   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 339   Node*         hidden_merge_mark = root();
 340   Node*         region  = phi_map->control();
 341   MergeMemNode* phi_mem = phi_map->merged_memory();
 342   MergeMemNode* ex_mem  = ex_map->merged_memory();
 343   if (region->in(0) != hidden_merge_mark) {
 344     // The control input is not (yet) a specially-marked region in phi_map.
 345     // Make it so, and build some phis.
 346     region = new (C) RegionNode(2);
 347     _gvn.set_type(region, Type::CONTROL);
 348     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 349     region->init_req(1, phi_map->control());
 350     phi_map->set_control(region);
 351     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 352     record_for_igvn(io_phi);
 353     _gvn.set_type(io_phi, Type::ABIO);
 354     phi_map->set_i_o(io_phi);
 355     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 356       Node* m = mms.memory();
 357       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 358       record_for_igvn(m_phi);
 359       _gvn.set_type(m_phi, Type::MEMORY);
 360       mms.set_memory(m_phi);
 361     }
 362   }
 363 
 364   // Either or both of phi_map and ex_map might already be converted into phis.
 365   Node* ex_control = ex_map->control();
 366   // if there is special marking on ex_map also, we add multiple edges from src
 367   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 368   // how wide was the destination phi_map, originally?
 369   uint orig_width = region->req();
 370 
 371   if (add_multiple) {
 372     add_n_reqs(region, ex_control);
 373     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 374   } else {
 375     // ex_map has no merges, so we just add single edges everywhere
 376     add_one_req(region, ex_control);
 377     add_one_req(phi_map->i_o(), ex_map->i_o());
 378   }
 379   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 380     if (mms.is_empty()) {
 381       // get a copy of the base memory, and patch some inputs into it
 382       const TypePtr* adr_type = mms.adr_type(C);
 383       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 384       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 385       mms.set_memory(phi);
 386       // Prepare to append interesting stuff onto the newly sliced phi:
 387       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 388     }
 389     // Append stuff from ex_map:
 390     if (add_multiple) {
 391       add_n_reqs(mms.memory(), mms.memory2());
 392     } else {
 393       add_one_req(mms.memory(), mms.memory2());
 394     }
 395   }
 396   uint limit = ex_map->req();
 397   for (uint i = TypeFunc::Parms; i < limit; i++) {
 398     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 399     if (i == tos)  i = ex_jvms->monoff();
 400     Node* src = ex_map->in(i);
 401     Node* dst = phi_map->in(i);
 402     if (src != dst) {
 403       PhiNode* phi;
 404       if (dst->in(0) != region) {
 405         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 406         record_for_igvn(phi);
 407         _gvn.set_type(phi, phi->type());
 408         phi_map->set_req(i, dst);
 409         // Prepare to append interesting stuff onto the new phi:
 410         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 411       } else {
 412         assert(dst->is_Phi(), "nobody else uses a hidden region");
 413         phi = dst->as_Phi();
 414       }
 415       if (add_multiple && src->in(0) == ex_control) {
 416         // Both are phis.
 417         add_n_reqs(dst, src);
 418       } else {
 419         while (dst->req() < region->req())  add_one_req(dst, src);
 420       }
 421       const Type* srctype = _gvn.type(src);
 422       if (phi->type() != srctype) {
 423         const Type* dsttype = phi->type()->meet_speculative(srctype);
 424         if (phi->type() != dsttype) {
 425           phi->set_type(dsttype);
 426           _gvn.set_type(phi, dsttype);
 427         }
 428       }
 429     }
 430   }
 431 }
 432 
 433 //--------------------------use_exception_state--------------------------------
 434 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 435   if (failing()) { stop(); return top(); }
 436   Node* region = phi_map->control();
 437   Node* hidden_merge_mark = root();
 438   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 439   Node* ex_oop = clear_saved_ex_oop(phi_map);
 440   if (region->in(0) == hidden_merge_mark) {
 441     // Special marking for internal ex-states.  Process the phis now.
 442     region->set_req(0, region);  // now it's an ordinary region
 443     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 444     // Note: Setting the jvms also sets the bci and sp.
 445     set_control(_gvn.transform(region));
 446     uint tos = jvms()->stkoff() + sp();
 447     for (uint i = 1; i < tos; i++) {
 448       Node* x = phi_map->in(i);
 449       if (x->in(0) == region) {
 450         assert(x->is_Phi(), "expected a special phi");
 451         phi_map->set_req(i, _gvn.transform(x));
 452       }
 453     }
 454     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 455       Node* x = mms.memory();
 456       if (x->in(0) == region) {
 457         assert(x->is_Phi(), "nobody else uses a hidden region");
 458         mms.set_memory(_gvn.transform(x));
 459       }
 460     }
 461     if (ex_oop->in(0) == region) {
 462       assert(ex_oop->is_Phi(), "expected a special phi");
 463       ex_oop = _gvn.transform(ex_oop);
 464     }
 465   } else {
 466     set_jvms(phi_map->jvms());
 467   }
 468 
 469   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 470   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 471   return ex_oop;
 472 }
 473 
 474 //---------------------------------java_bc-------------------------------------
 475 Bytecodes::Code GraphKit::java_bc() const {
 476   ciMethod* method = this->method();
 477   int       bci    = this->bci();
 478   if (method != NULL && bci != InvocationEntryBci)
 479     return method->java_code_at_bci(bci);
 480   else
 481     return Bytecodes::_illegal;
 482 }
 483 
 484 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 485                                                           bool must_throw) {
 486     // if the exception capability is set, then we will generate code
 487     // to check the JavaThread.should_post_on_exceptions flag to see
 488     // if we actually need to report exception events (for this
 489     // thread).  If we don't need to report exception events, we will
 490     // take the normal fast path provided by add_exception_events.  If
 491     // exception event reporting is enabled for this thread, we will
 492     // take the uncommon_trap in the BuildCutout below.
 493 
 494     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 495     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
 496     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 497     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 498 
 499     // Test the should_post_on_exceptions_flag vs. 0
 500     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
 501     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 502 
 503     // Branch to slow_path if should_post_on_exceptions_flag was true
 504     { BuildCutout unless(this, tst, PROB_MAX);
 505       // Do not try anything fancy if we're notifying the VM on every throw.
 506       // Cf. case Bytecodes::_athrow in parse2.cpp.
 507       uncommon_trap(reason, Deoptimization::Action_none,
 508                     (ciKlass*)NULL, (char*)NULL, must_throw);
 509     }
 510 
 511 }
 512 
 513 //------------------------------builtin_throw----------------------------------
 514 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 515   bool must_throw = true;
 516 
 517   if (env()->jvmti_can_post_on_exceptions()) {
 518     // check if we must post exception events, take uncommon trap if so
 519     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 520     // here if should_post_on_exceptions is false
 521     // continue on with the normal codegen
 522   }
 523 
 524   // If this particular condition has not yet happened at this
 525   // bytecode, then use the uncommon trap mechanism, and allow for
 526   // a future recompilation if several traps occur here.
 527   // If the throw is hot, try to use a more complicated inline mechanism
 528   // which keeps execution inside the compiled code.
 529   bool treat_throw_as_hot = false;
 530   ciMethodData* md = method()->method_data();
 531 
 532   if (ProfileTraps) {
 533     if (too_many_traps(reason)) {
 534       treat_throw_as_hot = true;
 535     }
 536     // (If there is no MDO at all, assume it is early in
 537     // execution, and that any deopts are part of the
 538     // startup transient, and don't need to be remembered.)
 539 
 540     // Also, if there is a local exception handler, treat all throws
 541     // as hot if there has been at least one in this method.
 542     if (C->trap_count(reason) != 0
 543         && method()->method_data()->trap_count(reason) != 0
 544         && has_ex_handler()) {
 545         treat_throw_as_hot = true;
 546     }
 547   }
 548 
 549   // If this throw happens frequently, an uncommon trap might cause
 550   // a performance pothole.  If there is a local exception handler,
 551   // and if this particular bytecode appears to be deoptimizing often,
 552   // let us handle the throw inline, with a preconstructed instance.
 553   // Note:   If the deopt count has blown up, the uncommon trap
 554   // runtime is going to flush this nmethod, not matter what.
 555   if (treat_throw_as_hot
 556       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 557     // If the throw is local, we use a pre-existing instance and
 558     // punt on the backtrace.  This would lead to a missing backtrace
 559     // (a repeat of 4292742) if the backtrace object is ever asked
 560     // for its backtrace.
 561     // Fixing this remaining case of 4292742 requires some flavor of
 562     // escape analysis.  Leave that for the future.
 563     ciInstance* ex_obj = NULL;
 564     switch (reason) {
 565     case Deoptimization::Reason_null_check:
 566       ex_obj = env()->NullPointerException_instance();
 567       break;
 568     case Deoptimization::Reason_div0_check:
 569       ex_obj = env()->ArithmeticException_instance();
 570       break;
 571     case Deoptimization::Reason_range_check:
 572       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 573       break;
 574     case Deoptimization::Reason_class_check:
 575       if (java_bc() == Bytecodes::_aastore) {
 576         ex_obj = env()->ArrayStoreException_instance();
 577       } else {
 578         ex_obj = env()->ClassCastException_instance();
 579       }
 580       break;
 581     }
 582     if (failing()) { stop(); return; }  // exception allocation might fail
 583     if (ex_obj != NULL) {
 584       // Cheat with a preallocated exception object.
 585       if (C->log() != NULL)
 586         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 587                        Deoptimization::trap_reason_name(reason));
 588       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 589       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 590 
 591       // Clear the detail message of the preallocated exception object.
 592       // Weblogic sometimes mutates the detail message of exceptions
 593       // using reflection.
 594       int offset = java_lang_Throwable::get_detailMessage_offset();
 595       const TypePtr* adr_typ = ex_con->add_offset(offset);
 596 
 597       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 598       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 599       // Conservatively release stores of object references.
 600       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 601 
 602       add_exception_state(make_exception_state(ex_node));
 603       return;
 604     }
 605   }
 606 
 607   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 608   // It won't be much cheaper than bailing to the interp., since we'll
 609   // have to pass up all the debug-info, and the runtime will have to
 610   // create the stack trace.
 611 
 612   // Usual case:  Bail to interpreter.
 613   // Reserve the right to recompile if we haven't seen anything yet.
 614 
 615   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 616   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 617   if (treat_throw_as_hot
 618       && (method()->method_data()->trap_recompiled_at(bci(), m)
 619           || C->too_many_traps(reason))) {
 620     // We cannot afford to take more traps here.  Suffer in the interpreter.
 621     if (C->log() != NULL)
 622       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 623                      Deoptimization::trap_reason_name(reason),
 624                      C->trap_count(reason));
 625     action = Deoptimization::Action_none;
 626   }
 627 
 628   // "must_throw" prunes the JVM state to include only the stack, if there
 629   // are no local exception handlers.  This should cut down on register
 630   // allocation time and code size, by drastically reducing the number
 631   // of in-edges on the call to the uncommon trap.
 632 
 633   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 634 }
 635 
 636 
 637 //----------------------------PreserveJVMState---------------------------------
 638 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 639   debug_only(kit->verify_map());
 640   _kit    = kit;
 641   _map    = kit->map();   // preserve the map
 642   _sp     = kit->sp();
 643   kit->set_map(clone_map ? kit->clone_map() : NULL);
 644   Compile::current()->inc_preserve_jvm_state();
 645 #ifdef ASSERT
 646   _bci    = kit->bci();
 647   Parse* parser = kit->is_Parse();
 648   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 649   _block  = block;
 650 #endif
 651 }
 652 PreserveJVMState::~PreserveJVMState() {
 653   GraphKit* kit = _kit;
 654 #ifdef ASSERT
 655   assert(kit->bci() == _bci, "bci must not shift");
 656   Parse* parser = kit->is_Parse();
 657   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 658   assert(block == _block,    "block must not shift");
 659 #endif
 660   kit->set_map(_map);
 661   kit->set_sp(_sp);
 662   Compile::current()->dec_preserve_jvm_state();
 663 }
 664 
 665 
 666 //-----------------------------BuildCutout-------------------------------------
 667 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 668   : PreserveJVMState(kit)
 669 {
 670   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 671   SafePointNode* outer_map = _map;   // preserved map is caller's
 672   SafePointNode* inner_map = kit->map();
 673   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 674   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
 675   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
 676 }
 677 BuildCutout::~BuildCutout() {
 678   GraphKit* kit = _kit;
 679   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 680 }
 681 
 682 //---------------------------PreserveReexecuteState----------------------------
 683 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 684   assert(!kit->stopped(), "must call stopped() before");
 685   _kit    =    kit;
 686   _sp     =    kit->sp();
 687   _reexecute = kit->jvms()->_reexecute;
 688 }
 689 PreserveReexecuteState::~PreserveReexecuteState() {
 690   if (_kit->stopped()) return;
 691   _kit->jvms()->_reexecute = _reexecute;
 692   _kit->set_sp(_sp);
 693 }
 694 
 695 //------------------------------clone_map--------------------------------------
 696 // Implementation of PreserveJVMState
 697 //
 698 // Only clone_map(...) here. If this function is only used in the
 699 // PreserveJVMState class we may want to get rid of this extra
 700 // function eventually and do it all there.
 701 
 702 SafePointNode* GraphKit::clone_map() {
 703   if (map() == NULL)  return NULL;
 704 
 705   // Clone the memory edge first
 706   Node* mem = MergeMemNode::make(C, map()->memory());
 707   gvn().set_type_bottom(mem);
 708 
 709   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 710   JVMState* jvms = this->jvms();
 711   JVMState* clonejvms = jvms->clone_shallow(C);
 712   clonemap->set_memory(mem);
 713   clonemap->set_jvms(clonejvms);
 714   clonejvms->set_map(clonemap);
 715   record_for_igvn(clonemap);
 716   gvn().set_type_bottom(clonemap);
 717   return clonemap;
 718 }
 719 
 720 
 721 //-----------------------------set_map_clone-----------------------------------
 722 void GraphKit::set_map_clone(SafePointNode* m) {
 723   _map = m;
 724   _map = clone_map();
 725   _map->set_next_exception(NULL);
 726   debug_only(verify_map());
 727 }
 728 
 729 
 730 //----------------------------kill_dead_locals---------------------------------
 731 // Detect any locals which are known to be dead, and force them to top.
 732 void GraphKit::kill_dead_locals() {
 733   // Consult the liveness information for the locals.  If any
 734   // of them are unused, then they can be replaced by top().  This
 735   // should help register allocation time and cut down on the size
 736   // of the deoptimization information.
 737 
 738   // This call is made from many of the bytecode handling
 739   // subroutines called from the Big Switch in do_one_bytecode.
 740   // Every bytecode which might include a slow path is responsible
 741   // for killing its dead locals.  The more consistent we
 742   // are about killing deads, the fewer useless phis will be
 743   // constructed for them at various merge points.
 744 
 745   // bci can be -1 (InvocationEntryBci).  We return the entry
 746   // liveness for the method.
 747 
 748   if (method() == NULL || method()->code_size() == 0) {
 749     // We are building a graph for a call to a native method.
 750     // All locals are live.
 751     return;
 752   }
 753 
 754   ResourceMark rm;
 755 
 756   // Consult the liveness information for the locals.  If any
 757   // of them are unused, then they can be replaced by top().  This
 758   // should help register allocation time and cut down on the size
 759   // of the deoptimization information.
 760   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 761 
 762   int len = (int)live_locals.size();
 763   assert(len <= jvms()->loc_size(), "too many live locals");
 764   for (int local = 0; local < len; local++) {
 765     if (!live_locals.at(local)) {
 766       set_local(local, top());
 767     }
 768   }
 769 }
 770 
 771 #ifdef ASSERT
 772 //-------------------------dead_locals_are_killed------------------------------
 773 // Return true if all dead locals are set to top in the map.
 774 // Used to assert "clean" debug info at various points.
 775 bool GraphKit::dead_locals_are_killed() {
 776   if (method() == NULL || method()->code_size() == 0) {
 777     // No locals need to be dead, so all is as it should be.
 778     return true;
 779   }
 780 
 781   // Make sure somebody called kill_dead_locals upstream.
 782   ResourceMark rm;
 783   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 784     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 785     SafePointNode* map = jvms->map();
 786     ciMethod* method = jvms->method();
 787     int       bci    = jvms->bci();
 788     if (jvms == this->jvms()) {
 789       bci = this->bci();  // it might not yet be synched
 790     }
 791     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 792     int len = (int)live_locals.size();
 793     if (!live_locals.is_valid() || len == 0)
 794       // This method is trivial, or is poisoned by a breakpoint.
 795       return true;
 796     assert(len == jvms->loc_size(), "live map consistent with locals map");
 797     for (int local = 0; local < len; local++) {
 798       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 799         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 800           tty->print_cr("Zombie local %d: ", local);
 801           jvms->dump();
 802         }
 803         return false;
 804       }
 805     }
 806   }
 807   return true;
 808 }
 809 
 810 #endif //ASSERT
 811 
 812 // Helper function for enforcing certain bytecodes to reexecute if
 813 // deoptimization happens
 814 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 815   ciMethod* cur_method = jvms->method();
 816   int       cur_bci   = jvms->bci();
 817   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 818     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 819     return Interpreter::bytecode_should_reexecute(code) ||
 820            is_anewarray && code == Bytecodes::_multianewarray;
 821     // Reexecute _multianewarray bytecode which was replaced with
 822     // sequence of [a]newarray. See Parse::do_multianewarray().
 823     //
 824     // Note: interpreter should not have it set since this optimization
 825     // is limited by dimensions and guarded by flag so in some cases
 826     // multianewarray() runtime calls will be generated and
 827     // the bytecode should not be reexecutes (stack will not be reset).
 828   } else
 829     return false;
 830 }
 831 
 832 // Helper function for adding JVMState and debug information to node
 833 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 834   // Add the safepoint edges to the call (or other safepoint).
 835 
 836   // Make sure dead locals are set to top.  This
 837   // should help register allocation time and cut down on the size
 838   // of the deoptimization information.
 839   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 840 
 841   // Walk the inline list to fill in the correct set of JVMState's
 842   // Also fill in the associated edges for each JVMState.
 843 
 844   // If the bytecode needs to be reexecuted we need to put
 845   // the arguments back on the stack.
 846   const bool should_reexecute = jvms()->should_reexecute();
 847   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 848 
 849   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 850   // undefined if the bci is different.  This is normal for Parse but it
 851   // should not happen for LibraryCallKit because only one bci is processed.
 852   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 853          "in LibraryCallKit the reexecute bit should not change");
 854 
 855   // If we are guaranteed to throw, we can prune everything but the
 856   // input to the current bytecode.
 857   bool can_prune_locals = false;
 858   uint stack_slots_not_pruned = 0;
 859   int inputs = 0, depth = 0;
 860   if (must_throw) {
 861     assert(method() == youngest_jvms->method(), "sanity");
 862     if (compute_stack_effects(inputs, depth)) {
 863       can_prune_locals = true;
 864       stack_slots_not_pruned = inputs;
 865     }
 866   }
 867 
 868   if (env()->should_retain_local_variables()) {
 869     // At any safepoint, this method can get breakpointed, which would
 870     // then require an immediate deoptimization.
 871     can_prune_locals = false;  // do not prune locals
 872     stack_slots_not_pruned = 0;
 873   }
 874 
 875   // do not scribble on the input jvms
 876   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 877   call->set_jvms(out_jvms); // Start jvms list for call node
 878 
 879   // For a known set of bytecodes, the interpreter should reexecute them if
 880   // deoptimization happens. We set the reexecute state for them here
 881   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 882       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 883     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 884   }
 885 
 886   // Presize the call:
 887   DEBUG_ONLY(uint non_debug_edges = call->req());
 888   call->add_req_batch(top(), youngest_jvms->debug_depth());
 889   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 890 
 891   // Set up edges so that the call looks like this:
 892   //  Call [state:] ctl io mem fptr retadr
 893   //       [parms:] parm0 ... parmN
 894   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 895   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 896   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 897   // Note that caller debug info precedes callee debug info.
 898 
 899   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 900   uint debug_ptr = call->req();
 901 
 902   // Loop over the map input edges associated with jvms, add them
 903   // to the call node, & reset all offsets to match call node array.
 904   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 905     uint debug_end   = debug_ptr;
 906     uint debug_start = debug_ptr - in_jvms->debug_size();
 907     debug_ptr = debug_start;  // back up the ptr
 908 
 909     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 910     uint j, k, l;
 911     SafePointNode* in_map = in_jvms->map();
 912     out_jvms->set_map(call);
 913 
 914     if (can_prune_locals) {
 915       assert(in_jvms->method() == out_jvms->method(), "sanity");
 916       // If the current throw can reach an exception handler in this JVMS,
 917       // then we must keep everything live that can reach that handler.
 918       // As a quick and dirty approximation, we look for any handlers at all.
 919       if (in_jvms->method()->has_exception_handlers()) {
 920         can_prune_locals = false;
 921       }
 922     }
 923 
 924     // Add the Locals
 925     k = in_jvms->locoff();
 926     l = in_jvms->loc_size();
 927     out_jvms->set_locoff(p);
 928     if (!can_prune_locals) {
 929       for (j = 0; j < l; j++)
 930         call->set_req(p++, in_map->in(k+j));
 931     } else {
 932       p += l;  // already set to top above by add_req_batch
 933     }
 934 
 935     // Add the Expression Stack
 936     k = in_jvms->stkoff();
 937     l = in_jvms->sp();
 938     out_jvms->set_stkoff(p);
 939     if (!can_prune_locals) {
 940       for (j = 0; j < l; j++)
 941         call->set_req(p++, in_map->in(k+j));
 942     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 943       // Divide stack into {S0,...,S1}, where S0 is set to top.
 944       uint s1 = stack_slots_not_pruned;
 945       stack_slots_not_pruned = 0;  // for next iteration
 946       if (s1 > l)  s1 = l;
 947       uint s0 = l - s1;
 948       p += s0;  // skip the tops preinstalled by add_req_batch
 949       for (j = s0; j < l; j++)
 950         call->set_req(p++, in_map->in(k+j));
 951     } else {
 952       p += l;  // already set to top above by add_req_batch
 953     }
 954 
 955     // Add the Monitors
 956     k = in_jvms->monoff();
 957     l = in_jvms->mon_size();
 958     out_jvms->set_monoff(p);
 959     for (j = 0; j < l; j++)
 960       call->set_req(p++, in_map->in(k+j));
 961 
 962     // Copy any scalar object fields.
 963     k = in_jvms->scloff();
 964     l = in_jvms->scl_size();
 965     out_jvms->set_scloff(p);
 966     for (j = 0; j < l; j++)
 967       call->set_req(p++, in_map->in(k+j));
 968 
 969     // Finish the new jvms.
 970     out_jvms->set_endoff(p);
 971 
 972     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 973     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 974     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 975     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 976     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 977     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 978 
 979     // Update the two tail pointers in parallel.
 980     out_jvms = out_jvms->caller();
 981     in_jvms  = in_jvms->caller();
 982   }
 983 
 984   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 985 
 986   // Test the correctness of JVMState::debug_xxx accessors:
 987   assert(call->jvms()->debug_start() == non_debug_edges, "");
 988   assert(call->jvms()->debug_end()   == call->req(), "");
 989   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 990 }
 991 
 992 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 993   Bytecodes::Code code = java_bc();
 994   if (code == Bytecodes::_wide) {
 995     code = method()->java_code_at_bci(bci() + 1);
 996   }
 997 
 998   BasicType rtype = T_ILLEGAL;
 999   int       rsize = 0;
1000 
1001   if (code != Bytecodes::_illegal) {
1002     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1003     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1004     if (rtype < T_CONFLICT)
1005       rsize = type2size[rtype];
1006   }
1007 
1008   switch (code) {
1009   case Bytecodes::_illegal:
1010     return false;
1011 
1012   case Bytecodes::_ldc:
1013   case Bytecodes::_ldc_w:
1014   case Bytecodes::_ldc2_w:
1015     inputs = 0;
1016     break;
1017 
1018   case Bytecodes::_dup:         inputs = 1;  break;
1019   case Bytecodes::_dup_x1:      inputs = 2;  break;
1020   case Bytecodes::_dup_x2:      inputs = 3;  break;
1021   case Bytecodes::_dup2:        inputs = 2;  break;
1022   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1023   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1024   case Bytecodes::_swap:        inputs = 2;  break;
1025   case Bytecodes::_arraylength: inputs = 1;  break;
1026 
1027   case Bytecodes::_getstatic:
1028   case Bytecodes::_putstatic:
1029   case Bytecodes::_getfield:
1030   case Bytecodes::_putfield:
1031     {
1032       bool ignored_will_link;
1033       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1034       int      size  = field->type()->size();
1035       bool is_get = (depth >= 0), is_static = (depth & 1);
1036       inputs = (is_static ? 0 : 1);
1037       if (is_get) {
1038         depth = size - inputs;
1039       } else {
1040         inputs += size;        // putxxx pops the value from the stack
1041         depth = - inputs;
1042       }
1043     }
1044     break;
1045 
1046   case Bytecodes::_invokevirtual:
1047   case Bytecodes::_invokespecial:
1048   case Bytecodes::_invokestatic:
1049   case Bytecodes::_invokedynamic:
1050   case Bytecodes::_invokeinterface:
1051     {
1052       bool ignored_will_link;
1053       ciSignature* declared_signature = NULL;
1054       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1055       assert(declared_signature != NULL, "cannot be null");
1056       inputs   = declared_signature->arg_size_for_bc(code);
1057       int size = declared_signature->return_type()->size();
1058       depth = size - inputs;
1059     }
1060     break;
1061 
1062   case Bytecodes::_multianewarray:
1063     {
1064       ciBytecodeStream iter(method());
1065       iter.reset_to_bci(bci());
1066       iter.next();
1067       inputs = iter.get_dimensions();
1068       assert(rsize == 1, "");
1069       depth = rsize - inputs;
1070     }
1071     break;
1072 
1073   case Bytecodes::_ireturn:
1074   case Bytecodes::_lreturn:
1075   case Bytecodes::_freturn:
1076   case Bytecodes::_dreturn:
1077   case Bytecodes::_areturn:
1078     assert(rsize = -depth, "");
1079     inputs = rsize;
1080     break;
1081 
1082   case Bytecodes::_jsr:
1083   case Bytecodes::_jsr_w:
1084     inputs = 0;
1085     depth  = 1;                  // S.B. depth=1, not zero
1086     break;
1087 
1088   default:
1089     // bytecode produces a typed result
1090     inputs = rsize - depth;
1091     assert(inputs >= 0, "");
1092     break;
1093   }
1094 
1095 #ifdef ASSERT
1096   // spot check
1097   int outputs = depth + inputs;
1098   assert(outputs >= 0, "sanity");
1099   switch (code) {
1100   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1101   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1102   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1103   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1104   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1105   }
1106 #endif //ASSERT
1107 
1108   return true;
1109 }
1110 
1111 
1112 
1113 //------------------------------basic_plus_adr---------------------------------
1114 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1115   // short-circuit a common case
1116   if (offset == intcon(0))  return ptr;
1117   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
1118 }
1119 
1120 Node* GraphKit::ConvI2L(Node* offset) {
1121   // short-circuit a common case
1122   jint offset_con = find_int_con(offset, Type::OffsetBot);
1123   if (offset_con != Type::OffsetBot) {
1124     return longcon((jlong) offset_con);
1125   }
1126   return _gvn.transform( new (C) ConvI2LNode(offset));
1127 }
1128 
1129 Node* GraphKit::ConvI2UL(Node* offset) {
1130   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1131   if (offset_con != (juint) Type::OffsetBot) {
1132     return longcon((julong) offset_con);
1133   }
1134   Node* conv = _gvn.transform( new (C) ConvI2LNode(offset));
1135   Node* mask = _gvn.transform( ConLNode::make(C, (julong) max_juint) );
1136   return _gvn.transform( new (C) AndLNode(conv, mask) );
1137 }
1138 
1139 Node* GraphKit::ConvL2I(Node* offset) {
1140   // short-circuit a common case
1141   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1142   if (offset_con != (jlong)Type::OffsetBot) {
1143     return intcon((int) offset_con);
1144   }
1145   return _gvn.transform( new (C) ConvL2INode(offset));
1146 }
1147 
1148 //-------------------------load_object_klass-----------------------------------
1149 Node* GraphKit::load_object_klass(Node* obj) {
1150   // Special-case a fresh allocation to avoid building nodes:
1151   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1152   if (akls != NULL)  return akls;
1153   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1154   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1155 }
1156 
1157 //-------------------------load_array_length-----------------------------------
1158 Node* GraphKit::load_array_length(Node* array) {
1159   // Special-case a fresh allocation to avoid building nodes:
1160   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1161   Node *alen;
1162   if (alloc == NULL) {
1163     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1164     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1165   } else {
1166     alen = alloc->Ideal_length();
1167     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1168     if (ccast != alen) {
1169       alen = _gvn.transform(ccast);
1170     }
1171   }
1172   return alen;
1173 }
1174 
1175 //------------------------------do_null_check----------------------------------
1176 // Helper function to do a NULL pointer check.  Returned value is
1177 // the incoming address with NULL casted away.  You are allowed to use the
1178 // not-null value only if you are control dependent on the test.
1179 extern int explicit_null_checks_inserted,
1180            explicit_null_checks_elided;
1181 Node* GraphKit::null_check_common(Node* value, BasicType type,
1182                                   // optional arguments for variations:
1183                                   bool assert_null,
1184                                   Node* *null_control,
1185                                   bool speculative) {
1186   assert(!assert_null || null_control == NULL, "not both at once");
1187   if (stopped())  return top();
1188   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1189     // For some performance testing, we may wish to suppress null checking.
1190     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1191     return value;
1192   }
1193   explicit_null_checks_inserted++;
1194 
1195   // Construct NULL check
1196   Node *chk = NULL;
1197   switch(type) {
1198     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1199     case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
1200     case T_ARRAY  : // fall through
1201       type = T_OBJECT;  // simplify further tests
1202     case T_OBJECT : {
1203       const Type *t = _gvn.type( value );
1204 
1205       const TypeOopPtr* tp = t->isa_oopptr();
1206       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1207           // Only for do_null_check, not any of its siblings:
1208           && !assert_null && null_control == NULL) {
1209         // Usually, any field access or invocation on an unloaded oop type
1210         // will simply fail to link, since the statically linked class is
1211         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1212         // the static class is loaded but the sharper oop type is not.
1213         // Rather than checking for this obscure case in lots of places,
1214         // we simply observe that a null check on an unloaded class
1215         // will always be followed by a nonsense operation, so we
1216         // can just issue the uncommon trap here.
1217         // Our access to the unloaded class will only be correct
1218         // after it has been loaded and initialized, which requires
1219         // a trip through the interpreter.
1220 #ifndef PRODUCT
1221         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1222 #endif
1223         uncommon_trap(Deoptimization::Reason_unloaded,
1224                       Deoptimization::Action_reinterpret,
1225                       tp->klass(), "!loaded");
1226         return top();
1227       }
1228 
1229       if (assert_null) {
1230         // See if the type is contained in NULL_PTR.
1231         // If so, then the value is already null.
1232         if (t->higher_equal(TypePtr::NULL_PTR)) {
1233           explicit_null_checks_elided++;
1234           return value;           // Elided null assert quickly!
1235         }
1236       } else {
1237         // See if mixing in the NULL pointer changes type.
1238         // If so, then the NULL pointer was not allowed in the original
1239         // type.  In other words, "value" was not-null.
1240         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1241           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1242           explicit_null_checks_elided++;
1243           return value;           // Elided null check quickly!
1244         }
1245       }
1246       chk = new (C) CmpPNode( value, null() );
1247       break;
1248     }
1249 
1250     default:
1251       fatal(err_msg_res("unexpected type: %s", type2name(type)));
1252   }
1253   assert(chk != NULL, "sanity check");
1254   chk = _gvn.transform(chk);
1255 
1256   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1257   BoolNode *btst = new (C) BoolNode( chk, btest);
1258   Node   *tst = _gvn.transform( btst );
1259 
1260   //-----------
1261   // if peephole optimizations occurred, a prior test existed.
1262   // If a prior test existed, maybe it dominates as we can avoid this test.
1263   if (tst != btst && type == T_OBJECT) {
1264     // At this point we want to scan up the CFG to see if we can
1265     // find an identical test (and so avoid this test altogether).
1266     Node *cfg = control();
1267     int depth = 0;
1268     while( depth < 16 ) {       // Limit search depth for speed
1269       if( cfg->Opcode() == Op_IfTrue &&
1270           cfg->in(0)->in(1) == tst ) {
1271         // Found prior test.  Use "cast_not_null" to construct an identical
1272         // CastPP (and hence hash to) as already exists for the prior test.
1273         // Return that casted value.
1274         if (assert_null) {
1275           replace_in_map(value, null());
1276           return null();  // do not issue the redundant test
1277         }
1278         Node *oldcontrol = control();
1279         set_control(cfg);
1280         Node *res = cast_not_null(value);
1281         set_control(oldcontrol);
1282         explicit_null_checks_elided++;
1283         return res;
1284       }
1285       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1286       if (cfg == NULL)  break;  // Quit at region nodes
1287       depth++;
1288     }
1289   }
1290 
1291   //-----------
1292   // Branch to failure if null
1293   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1294   Deoptimization::DeoptReason reason;
1295   if (assert_null) {
1296     reason = Deoptimization::Reason_null_assert;
1297   } else if (type == T_OBJECT) {
1298     reason = Deoptimization::reason_null_check(speculative);
1299   } else {
1300     reason = Deoptimization::Reason_div0_check;
1301   }
1302   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1303   // ciMethodData::has_trap_at will return a conservative -1 if any
1304   // must-be-null assertion has failed.  This could cause performance
1305   // problems for a method after its first do_null_assert failure.
1306   // Consider using 'Reason_class_check' instead?
1307 
1308   // To cause an implicit null check, we set the not-null probability
1309   // to the maximum (PROB_MAX).  For an explicit check the probability
1310   // is set to a smaller value.
1311   if (null_control != NULL || too_many_traps(reason)) {
1312     // probability is less likely
1313     ok_prob =  PROB_LIKELY_MAG(3);
1314   } else if (!assert_null &&
1315              (ImplicitNullCheckThreshold > 0) &&
1316              method() != NULL &&
1317              (method()->method_data()->trap_count(reason)
1318               >= (uint)ImplicitNullCheckThreshold)) {
1319     ok_prob =  PROB_LIKELY_MAG(3);
1320   }
1321 
1322   if (null_control != NULL) {
1323     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1324     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
1325     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
1326     if (null_true == top())
1327       explicit_null_checks_elided++;
1328     (*null_control) = null_true;
1329   } else {
1330     BuildCutout unless(this, tst, ok_prob);
1331     // Check for optimizer eliding test at parse time
1332     if (stopped()) {
1333       // Failure not possible; do not bother making uncommon trap.
1334       explicit_null_checks_elided++;
1335     } else if (assert_null) {
1336       uncommon_trap(reason,
1337                     Deoptimization::Action_make_not_entrant,
1338                     NULL, "assert_null");
1339     } else {
1340       replace_in_map(value, zerocon(type));
1341       builtin_throw(reason);
1342     }
1343   }
1344 
1345   // Must throw exception, fall-thru not possible?
1346   if (stopped()) {
1347     return top();               // No result
1348   }
1349 
1350   if (assert_null) {
1351     // Cast obj to null on this path.
1352     replace_in_map(value, zerocon(type));
1353     return zerocon(type);
1354   }
1355 
1356   // Cast obj to not-null on this path, if there is no null_control.
1357   // (If there is a null_control, a non-null value may come back to haunt us.)
1358   if (type == T_OBJECT) {
1359     Node* cast = cast_not_null(value, false);
1360     if (null_control == NULL || (*null_control) == top())
1361       replace_in_map(value, cast);
1362     value = cast;
1363   }
1364 
1365   return value;
1366 }
1367 
1368 
1369 //------------------------------cast_not_null----------------------------------
1370 // Cast obj to not-null on this path
1371 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1372   const Type *t = _gvn.type(obj);
1373   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1374   // Object is already not-null?
1375   if( t == t_not_null ) return obj;
1376 
1377   Node *cast = new (C) CastPPNode(obj,t_not_null);
1378   cast->init_req(0, control());
1379   cast = _gvn.transform( cast );
1380 
1381   // Scan for instances of 'obj' in the current JVM mapping.
1382   // These instances are known to be not-null after the test.
1383   if (do_replace_in_map)
1384     replace_in_map(obj, cast);
1385 
1386   return cast;                  // Return casted value
1387 }
1388 
1389 
1390 //--------------------------replace_in_map-------------------------------------
1391 void GraphKit::replace_in_map(Node* old, Node* neww) {
1392   if (old == neww) {
1393     return;
1394   }
1395 
1396   map()->replace_edge(old, neww);
1397 
1398   // Note: This operation potentially replaces any edge
1399   // on the map.  This includes locals, stack, and monitors
1400   // of the current (innermost) JVM state.
1401 
1402   if (!ReplaceInParentMaps) {
1403     return;
1404   }
1405 
1406   // PreserveJVMState doesn't do a deep copy so we can't modify
1407   // parents
1408   if (Compile::current()->has_preserve_jvm_state()) {
1409     return;
1410   }
1411 
1412   Parse* parser = is_Parse();
1413   bool progress = true;
1414   Node* ctrl = map()->in(0);
1415   // Follow the chain of parsers and see whether the update can be
1416   // done in the map of callers. We can do the replace for a caller if
1417   // the current control post dominates the control of a caller.
1418   while (parser != NULL && parser->caller() != NULL && progress) {
1419     progress = false;
1420     Node* parent_map = parser->caller()->map();
1421     assert(parser->exits().map()->jvms()->depth() == parser->caller()->depth(), "map mismatch");
1422 
1423     Node* parent_ctrl = parent_map->in(0);
1424 
1425     while (parent_ctrl->is_Region()) {
1426       Node* n = parent_ctrl->as_Region()->is_copy();
1427       if (n == NULL) {
1428         break;
1429       }
1430       parent_ctrl = n;
1431     }
1432 
1433     for (;;) {
1434       if (ctrl == parent_ctrl) {
1435         // update the map of the exits which is the one that will be
1436         // used when compilation resume after inlining
1437         parser->exits().map()->replace_edge(old, neww);
1438         progress = true;
1439         break;
1440       }
1441       if (ctrl->is_Proj() && ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
1442         ctrl = ctrl->in(0)->in(0);
1443       } else if (ctrl->is_Region()) {
1444         Node* n = ctrl->as_Region()->is_copy();
1445         if (n == NULL) {
1446           break;
1447         }
1448         ctrl = n;
1449       } else {
1450         break;
1451       }
1452     }
1453 
1454     parser = parser->parent_parser();
1455   }
1456 }
1457 
1458 
1459 //=============================================================================
1460 //--------------------------------memory---------------------------------------
1461 Node* GraphKit::memory(uint alias_idx) {
1462   MergeMemNode* mem = merged_memory();
1463   Node* p = mem->memory_at(alias_idx);
1464   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1465   return p;
1466 }
1467 
1468 //-----------------------------reset_memory------------------------------------
1469 Node* GraphKit::reset_memory() {
1470   Node* mem = map()->memory();
1471   // do not use this node for any more parsing!
1472   debug_only( map()->set_memory((Node*)NULL) );
1473   return _gvn.transform( mem );
1474 }
1475 
1476 //------------------------------set_all_memory---------------------------------
1477 void GraphKit::set_all_memory(Node* newmem) {
1478   Node* mergemem = MergeMemNode::make(C, newmem);
1479   gvn().set_type_bottom(mergemem);
1480   map()->set_memory(mergemem);
1481 }
1482 
1483 //------------------------------set_all_memory_call----------------------------
1484 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1485   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1486   set_all_memory(newmem);
1487 }
1488 
1489 //=============================================================================
1490 //
1491 // parser factory methods for MemNodes
1492 //
1493 // These are layered on top of the factory methods in LoadNode and StoreNode,
1494 // and integrate with the parser's memory state and _gvn engine.
1495 //
1496 
1497 // factory methods in "int adr_idx"
1498 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1499                           int adr_idx,
1500                           MemNode::MemOrd mo, bool require_atomic_access) {
1501   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1502   const TypePtr* adr_type = NULL; // debug-mode-only argument
1503   debug_only(adr_type = C->get_adr_type(adr_idx));
1504   Node* mem = memory(adr_idx);
1505   Node* ld;
1506   if (require_atomic_access && bt == T_LONG) {
1507     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo);
1508   } else {
1509     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo);
1510   }
1511   ld = _gvn.transform(ld);
1512   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1513     // Improve graph before escape analysis and boxing elimination.
1514     record_for_igvn(ld);
1515   }
1516   return ld;
1517 }
1518 
1519 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1520                                 int adr_idx,
1521                                 MemNode::MemOrd mo,
1522                                 bool require_atomic_access) {
1523   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1524   const TypePtr* adr_type = NULL;
1525   debug_only(adr_type = C->get_adr_type(adr_idx));
1526   Node *mem = memory(adr_idx);
1527   Node* st;
1528   if (require_atomic_access && bt == T_LONG) {
1529     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
1530   } else {
1531     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1532   }
1533   st = _gvn.transform(st);
1534   set_memory(st, adr_idx);
1535   // Back-to-back stores can only remove intermediate store with DU info
1536   // so push on worklist for optimizer.
1537   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1538     record_for_igvn(st);
1539 
1540   return st;
1541 }
1542 
1543 
1544 void GraphKit::pre_barrier(bool do_load,
1545                            Node* ctl,
1546                            Node* obj,
1547                            Node* adr,
1548                            uint  adr_idx,
1549                            Node* val,
1550                            const TypeOopPtr* val_type,
1551                            Node* pre_val,
1552                            BasicType bt) {
1553 
1554   BarrierSet* bs = Universe::heap()->barrier_set();
1555   set_control(ctl);
1556   switch (bs->kind()) {
1557     case BarrierSet::G1SATBCT:
1558     case BarrierSet::G1SATBCTLogging:
1559       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1560       break;
1561 
1562     case BarrierSet::CardTableModRef:
1563     case BarrierSet::CardTableExtension:
1564     case BarrierSet::ModRef:
1565       break;
1566 
1567     case BarrierSet::Other:
1568     default      :
1569       ShouldNotReachHere();
1570 
1571   }
1572 }
1573 
1574 bool GraphKit::can_move_pre_barrier() const {
1575   BarrierSet* bs = Universe::heap()->barrier_set();
1576   switch (bs->kind()) {
1577     case BarrierSet::G1SATBCT:
1578     case BarrierSet::G1SATBCTLogging:
1579       return true; // Can move it if no safepoint
1580 
1581     case BarrierSet::CardTableModRef:
1582     case BarrierSet::CardTableExtension:
1583     case BarrierSet::ModRef:
1584       return true; // There is no pre-barrier
1585 
1586     case BarrierSet::Other:
1587     default      :
1588       ShouldNotReachHere();
1589   }
1590   return false;
1591 }
1592 
1593 void GraphKit::post_barrier(Node* ctl,
1594                             Node* store,
1595                             Node* obj,
1596                             Node* adr,
1597                             uint  adr_idx,
1598                             Node* val,
1599                             BasicType bt,
1600                             bool use_precise) {
1601   BarrierSet* bs = Universe::heap()->barrier_set();
1602   set_control(ctl);
1603   switch (bs->kind()) {
1604     case BarrierSet::G1SATBCT:
1605     case BarrierSet::G1SATBCTLogging:
1606       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1607       break;
1608 
1609     case BarrierSet::CardTableModRef:
1610     case BarrierSet::CardTableExtension:
1611       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1612       break;
1613 
1614     case BarrierSet::ModRef:
1615       break;
1616 
1617     case BarrierSet::Other:
1618     default      :
1619       ShouldNotReachHere();
1620 
1621   }
1622 }
1623 
1624 Node* GraphKit::store_oop(Node* ctl,
1625                           Node* obj,
1626                           Node* adr,
1627                           const TypePtr* adr_type,
1628                           Node* val,
1629                           const TypeOopPtr* val_type,
1630                           BasicType bt,
1631                           bool use_precise,
1632                           MemNode::MemOrd mo) {
1633   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1634   // could be delayed during Parse (for example, in adjust_map_after_if()).
1635   // Execute transformation here to avoid barrier generation in such case.
1636   if (_gvn.type(val) == TypePtr::NULL_PTR)
1637     val = _gvn.makecon(TypePtr::NULL_PTR);
1638 
1639   set_control(ctl);
1640   if (stopped()) return top(); // Dead path ?
1641 
1642   assert(bt == T_OBJECT, "sanity");
1643   assert(val != NULL, "not dead path");
1644   uint adr_idx = C->get_alias_index(adr_type);
1645   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1646 
1647   pre_barrier(true /* do_load */,
1648               control(), obj, adr, adr_idx, val, val_type,
1649               NULL /* pre_val */,
1650               bt);
1651 
1652   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo);
1653   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1654   return store;
1655 }
1656 
1657 // Could be an array or object we don't know at compile time (unsafe ref.)
1658 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1659                              Node* obj,   // containing obj
1660                              Node* adr,  // actual adress to store val at
1661                              const TypePtr* adr_type,
1662                              Node* val,
1663                              BasicType bt,
1664                              MemNode::MemOrd mo) {
1665   Compile::AliasType* at = C->alias_type(adr_type);
1666   const TypeOopPtr* val_type = NULL;
1667   if (adr_type->isa_instptr()) {
1668     if (at->field() != NULL) {
1669       // known field.  This code is a copy of the do_put_xxx logic.
1670       ciField* field = at->field();
1671       if (!field->type()->is_loaded()) {
1672         val_type = TypeInstPtr::BOTTOM;
1673       } else {
1674         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1675       }
1676     }
1677   } else if (adr_type->isa_aryptr()) {
1678     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1679   }
1680   if (val_type == NULL) {
1681     val_type = TypeInstPtr::BOTTOM;
1682   }
1683   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo);
1684 }
1685 
1686 
1687 //-------------------------array_element_address-------------------------
1688 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1689                                       const TypeInt* sizetype) {
1690   uint shift  = exact_log2(type2aelembytes(elembt));
1691   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1692 
1693   // short-circuit a common case (saves lots of confusing waste motion)
1694   jint idx_con = find_int_con(idx, -1);
1695   if (idx_con >= 0) {
1696     intptr_t offset = header + ((intptr_t)idx_con << shift);
1697     return basic_plus_adr(ary, offset);
1698   }
1699 
1700   // must be correct type for alignment purposes
1701   Node* base  = basic_plus_adr(ary, header);
1702 #ifdef _LP64
1703   // The scaled index operand to AddP must be a clean 64-bit value.
1704   // Java allows a 32-bit int to be incremented to a negative
1705   // value, which appears in a 64-bit register as a large
1706   // positive number.  Using that large positive number as an
1707   // operand in pointer arithmetic has bad consequences.
1708   // On the other hand, 32-bit overflow is rare, and the possibility
1709   // can often be excluded, if we annotate the ConvI2L node with
1710   // a type assertion that its value is known to be a small positive
1711   // number.  (The prior range check has ensured this.)
1712   // This assertion is used by ConvI2LNode::Ideal.
1713   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1714   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1715   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1716   idx = _gvn.transform( new (C) ConvI2LNode(idx, lidxtype) );
1717 #endif
1718   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
1719   return basic_plus_adr(ary, base, scale);
1720 }
1721 
1722 //-------------------------load_array_element-------------------------
1723 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1724   const Type* elemtype = arytype->elem();
1725   BasicType elembt = elemtype->array_element_basic_type();
1726   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1727   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1728   return ld;
1729 }
1730 
1731 //-------------------------set_arguments_for_java_call-------------------------
1732 // Arguments (pre-popped from the stack) are taken from the JVMS.
1733 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1734   // Add the call arguments:
1735   uint nargs = call->method()->arg_size();
1736   for (uint i = 0; i < nargs; i++) {
1737     Node* arg = argument(i);
1738     call->init_req(i + TypeFunc::Parms, arg);
1739   }
1740 }
1741 
1742 //---------------------------set_edges_for_java_call---------------------------
1743 // Connect a newly created call into the current JVMS.
1744 // A return value node (if any) is returned from set_edges_for_java_call.
1745 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1746 
1747   // Add the predefined inputs:
1748   call->init_req( TypeFunc::Control, control() );
1749   call->init_req( TypeFunc::I_O    , i_o() );
1750   call->init_req( TypeFunc::Memory , reset_memory() );
1751   call->init_req( TypeFunc::FramePtr, frameptr() );
1752   call->init_req( TypeFunc::ReturnAdr, top() );
1753 
1754   add_safepoint_edges(call, must_throw);
1755 
1756   Node* xcall = _gvn.transform(call);
1757 
1758   if (xcall == top()) {
1759     set_control(top());
1760     return;
1761   }
1762   assert(xcall == call, "call identity is stable");
1763 
1764   // Re-use the current map to produce the result.
1765 
1766   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
1767   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1768   set_all_memory_call(xcall, separate_io_proj);
1769 
1770   //return xcall;   // no need, caller already has it
1771 }
1772 
1773 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1774   if (stopped())  return top();  // maybe the call folded up?
1775 
1776   // Capture the return value, if any.
1777   Node* ret;
1778   if (call->method() == NULL ||
1779       call->method()->return_type()->basic_type() == T_VOID)
1780         ret = top();
1781   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1782 
1783   // Note:  Since any out-of-line call can produce an exception,
1784   // we always insert an I_O projection from the call into the result.
1785 
1786   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1787 
1788   if (separate_io_proj) {
1789     // The caller requested separate projections be used by the fall
1790     // through and exceptional paths, so replace the projections for
1791     // the fall through path.
1792     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
1793     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
1794   }
1795   return ret;
1796 }
1797 
1798 //--------------------set_predefined_input_for_runtime_call--------------------
1799 // Reading and setting the memory state is way conservative here.
1800 // The real problem is that I am not doing real Type analysis on memory,
1801 // so I cannot distinguish card mark stores from other stores.  Across a GC
1802 // point the Store Barrier and the card mark memory has to agree.  I cannot
1803 // have a card mark store and its barrier split across the GC point from
1804 // either above or below.  Here I get that to happen by reading ALL of memory.
1805 // A better answer would be to separate out card marks from other memory.
1806 // For now, return the input memory state, so that it can be reused
1807 // after the call, if this call has restricted memory effects.
1808 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1809   // Set fixed predefined input arguments
1810   Node* memory = reset_memory();
1811   call->init_req( TypeFunc::Control,   control()  );
1812   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1813   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1814   call->init_req( TypeFunc::FramePtr,  frameptr() );
1815   call->init_req( TypeFunc::ReturnAdr, top()      );
1816   return memory;
1817 }
1818 
1819 //-------------------set_predefined_output_for_runtime_call--------------------
1820 // Set control and memory (not i_o) from the call.
1821 // If keep_mem is not NULL, use it for the output state,
1822 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1823 // If hook_mem is NULL, this call produces no memory effects at all.
1824 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1825 // then only that memory slice is taken from the call.
1826 // In the last case, we must put an appropriate memory barrier before
1827 // the call, so as to create the correct anti-dependencies on loads
1828 // preceding the call.
1829 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1830                                                       Node* keep_mem,
1831                                                       const TypePtr* hook_mem) {
1832   // no i/o
1833   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
1834   if (keep_mem) {
1835     // First clone the existing memory state
1836     set_all_memory(keep_mem);
1837     if (hook_mem != NULL) {
1838       // Make memory for the call
1839       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
1840       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1841       // We also use hook_mem to extract specific effects from arraycopy stubs.
1842       set_memory(mem, hook_mem);
1843     }
1844     // ...else the call has NO memory effects.
1845 
1846     // Make sure the call advertises its memory effects precisely.
1847     // This lets us build accurate anti-dependences in gcm.cpp.
1848     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1849            "call node must be constructed correctly");
1850   } else {
1851     assert(hook_mem == NULL, "");
1852     // This is not a "slow path" call; all memory comes from the call.
1853     set_all_memory_call(call);
1854   }
1855 }
1856 
1857 
1858 // Replace the call with the current state of the kit.
1859 void GraphKit::replace_call(CallNode* call, Node* result) {
1860   JVMState* ejvms = NULL;
1861   if (has_exceptions()) {
1862     ejvms = transfer_exceptions_into_jvms();
1863   }
1864 
1865   SafePointNode* final_state = stop();
1866 
1867   // Find all the needed outputs of this call
1868   CallProjections callprojs;
1869   call->extract_projections(&callprojs, true);
1870 
1871   Node* init_mem = call->in(TypeFunc::Memory);
1872   Node* final_mem = final_state->in(TypeFunc::Memory);
1873   Node* final_ctl = final_state->in(TypeFunc::Control);
1874   Node* final_io = final_state->in(TypeFunc::I_O);
1875 
1876   // Replace all the old call edges with the edges from the inlining result
1877   if (callprojs.fallthrough_catchproj != NULL) {
1878     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1879   }
1880   if (callprojs.fallthrough_memproj != NULL) {
1881     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1882   }
1883   if (callprojs.fallthrough_ioproj != NULL) {
1884     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1885   }
1886 
1887   // Replace the result with the new result if it exists and is used
1888   if (callprojs.resproj != NULL && result != NULL) {
1889     C->gvn_replace_by(callprojs.resproj, result);
1890   }
1891 
1892   if (ejvms == NULL) {
1893     // No exception edges to simply kill off those paths
1894     if (callprojs.catchall_catchproj != NULL) {
1895       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1896     }
1897     if (callprojs.catchall_memproj != NULL) {
1898       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1899     }
1900     if (callprojs.catchall_ioproj != NULL) {
1901       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1902     }
1903     // Replace the old exception object with top
1904     if (callprojs.exobj != NULL) {
1905       C->gvn_replace_by(callprojs.exobj, C->top());
1906     }
1907   } else {
1908     GraphKit ekit(ejvms);
1909 
1910     // Load my combined exception state into the kit, with all phis transformed:
1911     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1912 
1913     Node* ex_oop = ekit.use_exception_state(ex_map);
1914     if (callprojs.catchall_catchproj != NULL) {
1915       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1916     }
1917     if (callprojs.catchall_memproj != NULL) {
1918       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1919     }
1920     if (callprojs.catchall_ioproj != NULL) {
1921       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1922     }
1923 
1924     // Replace the old exception object with the newly created one
1925     if (callprojs.exobj != NULL) {
1926       C->gvn_replace_by(callprojs.exobj, ex_oop);
1927     }
1928   }
1929 
1930   // Disconnect the call from the graph
1931   call->disconnect_inputs(NULL, C);
1932   C->gvn_replace_by(call, C->top());
1933 
1934   // Clean up any MergeMems that feed other MergeMems since the
1935   // optimizer doesn't like that.
1936   if (final_mem->is_MergeMem()) {
1937     Node_List wl;
1938     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1939       Node* m = i.get();
1940       if (m->is_MergeMem() && !wl.contains(m)) {
1941         wl.push(m);
1942       }
1943     }
1944     while (wl.size()  > 0) {
1945       _gvn.transform(wl.pop());
1946     }
1947   }
1948 }
1949 
1950 
1951 //------------------------------increment_counter------------------------------
1952 // for statistics: increment a VM counter by 1
1953 
1954 void GraphKit::increment_counter(address counter_addr) {
1955   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1956   increment_counter(adr1);
1957 }
1958 
1959 void GraphKit::increment_counter(Node* counter_addr) {
1960   int adr_type = Compile::AliasIdxRaw;
1961   Node* ctrl = control();
1962   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1963   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
1964   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1965 }
1966 
1967 
1968 //------------------------------uncommon_trap----------------------------------
1969 // Bail out to the interpreter in mid-method.  Implemented by calling the
1970 // uncommon_trap blob.  This helper function inserts a runtime call with the
1971 // right debug info.
1972 void GraphKit::uncommon_trap(int trap_request,
1973                              ciKlass* klass, const char* comment,
1974                              bool must_throw,
1975                              bool keep_exact_action) {
1976   if (failing())  stop();
1977   if (stopped())  return; // trap reachable?
1978 
1979   // Note:  If ProfileTraps is true, and if a deopt. actually
1980   // occurs here, the runtime will make sure an MDO exists.  There is
1981   // no need to call method()->ensure_method_data() at this point.
1982 
1983   // Set the stack pointer to the right value for reexecution:
1984   set_sp(reexecute_sp());
1985 
1986 #ifdef ASSERT
1987   if (!must_throw) {
1988     // Make sure the stack has at least enough depth to execute
1989     // the current bytecode.
1990     int inputs, ignored_depth;
1991     if (compute_stack_effects(inputs, ignored_depth)) {
1992       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1993              Bytecodes::name(java_bc()), sp(), inputs));
1994     }
1995   }
1996 #endif
1997 
1998   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1999   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2000 
2001   switch (action) {
2002   case Deoptimization::Action_maybe_recompile:
2003   case Deoptimization::Action_reinterpret:
2004     // Temporary fix for 6529811 to allow virtual calls to be sure they
2005     // get the chance to go from mono->bi->mega
2006     if (!keep_exact_action &&
2007         Deoptimization::trap_request_index(trap_request) < 0 &&
2008         too_many_recompiles(reason)) {
2009       // This BCI is causing too many recompilations.
2010       action = Deoptimization::Action_none;
2011       trap_request = Deoptimization::make_trap_request(reason, action);
2012     } else {
2013       C->set_trap_can_recompile(true);
2014     }
2015     break;
2016   case Deoptimization::Action_make_not_entrant:
2017     C->set_trap_can_recompile(true);
2018     break;
2019 #ifdef ASSERT
2020   case Deoptimization::Action_none:
2021   case Deoptimization::Action_make_not_compilable:
2022     break;
2023   default:
2024     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
2025     break;
2026 #endif
2027   }
2028 
2029   if (TraceOptoParse) {
2030     char buf[100];
2031     tty->print_cr("Uncommon trap %s at bci:%d",
2032                   Deoptimization::format_trap_request(buf, sizeof(buf),
2033                                                       trap_request), bci());
2034   }
2035 
2036   CompileLog* log = C->log();
2037   if (log != NULL) {
2038     int kid = (klass == NULL)? -1: log->identify(klass);
2039     log->begin_elem("uncommon_trap bci='%d'", bci());
2040     char buf[100];
2041     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2042                                                           trap_request));
2043     if (kid >= 0)         log->print(" klass='%d'", kid);
2044     if (comment != NULL)  log->print(" comment='%s'", comment);
2045     log->end_elem();
2046   }
2047 
2048   // Make sure any guarding test views this path as very unlikely
2049   Node *i0 = control()->in(0);
2050   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2051     IfNode *iff = i0->as_If();
2052     float f = iff->_prob;   // Get prob
2053     if (control()->Opcode() == Op_IfTrue) {
2054       if (f > PROB_UNLIKELY_MAG(4))
2055         iff->_prob = PROB_MIN;
2056     } else {
2057       if (f < PROB_LIKELY_MAG(4))
2058         iff->_prob = PROB_MAX;
2059     }
2060   }
2061 
2062   // Clear out dead values from the debug info.
2063   kill_dead_locals();
2064 
2065   // Now insert the uncommon trap subroutine call
2066   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2067   const TypePtr* no_memory_effects = NULL;
2068   // Pass the index of the class to be loaded
2069   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2070                                  (must_throw ? RC_MUST_THROW : 0),
2071                                  OptoRuntime::uncommon_trap_Type(),
2072                                  call_addr, "uncommon_trap", no_memory_effects,
2073                                  intcon(trap_request));
2074   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2075          "must extract request correctly from the graph");
2076   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2077 
2078   call->set_req(TypeFunc::ReturnAdr, returnadr());
2079   // The debug info is the only real input to this call.
2080 
2081   // Halt-and-catch fire here.  The above call should never return!
2082   HaltNode* halt = new(C) HaltNode(control(), frameptr());
2083   _gvn.set_type_bottom(halt);
2084   root()->add_req(halt);
2085 
2086   stop_and_kill_map();
2087 }
2088 
2089 
2090 //--------------------------just_allocated_object------------------------------
2091 // Report the object that was just allocated.
2092 // It must be the case that there are no intervening safepoints.
2093 // We use this to determine if an object is so "fresh" that
2094 // it does not require card marks.
2095 Node* GraphKit::just_allocated_object(Node* current_control) {
2096   if (C->recent_alloc_ctl() == current_control)
2097     return C->recent_alloc_obj();
2098   return NULL;
2099 }
2100 
2101 
2102 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2103   // (Note:  TypeFunc::make has a cache that makes this fast.)
2104   const TypeFunc* tf    = TypeFunc::make(dest_method);
2105   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2106   for (int j = 0; j < nargs; j++) {
2107     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2108     if( targ->basic_type() == T_DOUBLE ) {
2109       // If any parameters are doubles, they must be rounded before
2110       // the call, dstore_rounding does gvn.transform
2111       Node *arg = argument(j);
2112       arg = dstore_rounding(arg);
2113       set_argument(j, arg);
2114     }
2115   }
2116 }
2117 
2118 /**
2119  * Record profiling data exact_kls for Node n with the type system so
2120  * that it can propagate it (speculation)
2121  *
2122  * @param n          node that the type applies to
2123  * @param exact_kls  type from profiling
2124  * @param maybe_null did profiling see null?
2125  *
2126  * @return           node with improved type
2127  */
2128 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, bool maybe_null) {
2129   const Type* current_type = _gvn.type(n);
2130   assert(UseTypeSpeculation, "type speculation must be on");
2131 
2132   const TypePtr* speculative = current_type->speculative();
2133 
2134   // Should the klass from the profile be recorded in the speculative type?
2135   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2136     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2137     const TypeOopPtr* xtype = tklass->as_instance_type();
2138     assert(xtype->klass_is_exact(), "Should be exact");
2139     // Any reason to believe n is not null (from this profiling or a previous one)?
2140     const TypePtr* ptr = (maybe_null && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2141     // record the new speculative type's depth
2142     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2143     speculative = speculative->with_inline_depth(jvms()->depth());
2144   } else if (current_type->would_improve_ptr(maybe_null)) {
2145     // Profiling report that null was never seen so we can change the
2146     // speculative type to non null ptr.
2147     assert(!maybe_null, "nothing to improve");
2148     if (speculative == NULL) {
2149       speculative = TypePtr::NOTNULL;
2150     } else {
2151       const TypePtr* ptr = TypePtr::NOTNULL;
2152       speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2153     }
2154   }
2155 
2156   if (speculative != current_type->speculative()) {
2157     // Build a type with a speculative type (what we think we know
2158     // about the type but will need a guard when we use it)
2159     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2160     // We're changing the type, we need a new CheckCast node to carry
2161     // the new type. The new type depends on the control: what
2162     // profiling tells us is only valid from here as far as we can
2163     // tell.
2164     Node* cast = new(C) CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2165     cast = _gvn.transform(cast);
2166     replace_in_map(n, cast);
2167     n = cast;
2168   }
2169 
2170   return n;
2171 }
2172 
2173 /**
2174  * Record profiling data from receiver profiling at an invoke with the
2175  * type system so that it can propagate it (speculation)
2176  *
2177  * @param n  receiver node
2178  *
2179  * @return   node with improved type
2180  */
2181 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2182   if (!UseTypeSpeculation) {
2183     return n;
2184   }
2185   ciKlass* exact_kls = profile_has_unique_klass();
2186   bool maybe_null = true;
2187   if (java_bc() == Bytecodes::_checkcast ||
2188       java_bc() == Bytecodes::_instanceof ||
2189       java_bc() == Bytecodes::_aastore) {
2190     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2191     bool maybe_null = data == NULL ? true : data->as_BitData()->null_seen();
2192   }
2193   return record_profile_for_speculation(n, exact_kls, maybe_null);
2194   return n;
2195 }
2196 
2197 /**
2198  * Record profiling data from argument profiling at an invoke with the
2199  * type system so that it can propagate it (speculation)
2200  *
2201  * @param dest_method  target method for the call
2202  * @param bc           what invoke bytecode is this?
2203  */
2204 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2205   if (!UseTypeSpeculation) {
2206     return;
2207   }
2208   const TypeFunc* tf    = TypeFunc::make(dest_method);
2209   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2210   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2211   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2212     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2213     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2214       bool maybe_null = true;
2215       ciKlass* better_type = NULL;
2216       if (method()->argument_profiled_type(bci(), i, better_type, maybe_null)) {
2217         record_profile_for_speculation(argument(j), better_type, maybe_null);
2218       }
2219       i++;
2220     }
2221   }
2222 }
2223 
2224 /**
2225  * Record profiling data from parameter profiling at an invoke with
2226  * the type system so that it can propagate it (speculation)
2227  */
2228 void GraphKit::record_profiled_parameters_for_speculation() {
2229   if (!UseTypeSpeculation) {
2230     return;
2231   }
2232   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2233     if (_gvn.type(local(i))->isa_oopptr()) {
2234       bool maybe_null = true;
2235       ciKlass* better_type = NULL;
2236       if (method()->parameter_profiled_type(j, better_type, maybe_null)) {
2237         record_profile_for_speculation(local(i), better_type, maybe_null);
2238       }
2239       j++;
2240     }
2241   }
2242 }
2243 
2244 /**
2245  * Record profiling data from return value profiling at an invoke with
2246  * the type system so that it can propagate it (speculation)
2247  */
2248 void GraphKit::record_profiled_return_for_speculation() {
2249   if (!UseTypeSpeculation) {
2250     return;
2251   }
2252   bool maybe_null = true;
2253   ciKlass* better_type = NULL;
2254   if (method()->return_profiled_type(bci(), better_type, maybe_null)) {
2255     // If profiling reports a single type for the return value,
2256     // feed it to the type system so it can propagate it as a
2257     // speculative type
2258     record_profile_for_speculation(stack(sp()-1), better_type, maybe_null);
2259   }
2260 }
2261 
2262 void GraphKit::round_double_result(ciMethod* dest_method) {
2263   // A non-strict method may return a double value which has an extended
2264   // exponent, but this must not be visible in a caller which is 'strict'
2265   // If a strict caller invokes a non-strict callee, round a double result
2266 
2267   BasicType result_type = dest_method->return_type()->basic_type();
2268   assert( method() != NULL, "must have caller context");
2269   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2270     // Destination method's return value is on top of stack
2271     // dstore_rounding() does gvn.transform
2272     Node *result = pop_pair();
2273     result = dstore_rounding(result);
2274     push_pair(result);
2275   }
2276 }
2277 
2278 // rounding for strict float precision conformance
2279 Node* GraphKit::precision_rounding(Node* n) {
2280   return UseStrictFP && _method->flags().is_strict()
2281     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2282     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
2283     : n;
2284 }
2285 
2286 // rounding for strict double precision conformance
2287 Node* GraphKit::dprecision_rounding(Node *n) {
2288   return UseStrictFP && _method->flags().is_strict()
2289     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2290     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2291     : n;
2292 }
2293 
2294 // rounding for non-strict double stores
2295 Node* GraphKit::dstore_rounding(Node* n) {
2296   return Matcher::strict_fp_requires_explicit_rounding
2297     && UseSSE <= 1
2298     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2299     : n;
2300 }
2301 
2302 //=============================================================================
2303 // Generate a fast path/slow path idiom.  Graph looks like:
2304 // [foo] indicates that 'foo' is a parameter
2305 //
2306 //              [in]     NULL
2307 //                 \    /
2308 //                  CmpP
2309 //                  Bool ne
2310 //                   If
2311 //                  /  \
2312 //              True    False-<2>
2313 //              / |
2314 //             /  cast_not_null
2315 //           Load  |    |   ^
2316 //        [fast_test]   |   |
2317 // gvn to   opt_test    |   |
2318 //          /    \      |  <1>
2319 //      True     False  |
2320 //        |         \\  |
2321 //   [slow_call]     \[fast_result]
2322 //    Ctl   Val       \      \
2323 //     |               \      \
2324 //    Catch       <1>   \      \
2325 //   /    \        ^     \      \
2326 //  Ex    No_Ex    |      \      \
2327 //  |       \   \  |       \ <2>  \
2328 //  ...      \  [slow_res] |  |    \   [null_result]
2329 //            \         \--+--+---  |  |
2330 //             \           | /    \ | /
2331 //              --------Region     Phi
2332 //
2333 //=============================================================================
2334 // Code is structured as a series of driver functions all called 'do_XXX' that
2335 // call a set of helper functions.  Helper functions first, then drivers.
2336 
2337 //------------------------------null_check_oop---------------------------------
2338 // Null check oop.  Set null-path control into Region in slot 3.
2339 // Make a cast-not-nullness use the other not-null control.  Return cast.
2340 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2341                                bool never_see_null,
2342                                bool safe_for_replace,
2343                                bool speculative) {
2344   // Initial NULL check taken path
2345   (*null_control) = top();
2346   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2347 
2348   // Generate uncommon_trap:
2349   if (never_see_null && (*null_control) != top()) {
2350     // If we see an unexpected null at a check-cast we record it and force a
2351     // recompile; the offending check-cast will be compiled to handle NULLs.
2352     // If we see more than one offending BCI, then all checkcasts in the
2353     // method will be compiled to handle NULLs.
2354     PreserveJVMState pjvms(this);
2355     set_control(*null_control);
2356     replace_in_map(value, null());
2357     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2358     uncommon_trap(reason,
2359                   Deoptimization::Action_make_not_entrant);
2360     (*null_control) = top();    // NULL path is dead
2361   }
2362   if ((*null_control) == top() && safe_for_replace) {
2363     replace_in_map(value, cast);
2364   }
2365 
2366   // Cast away null-ness on the result
2367   return cast;
2368 }
2369 
2370 //------------------------------opt_iff----------------------------------------
2371 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2372 // Return slow-path control.
2373 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2374   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2375 
2376   // Fast path taken; set region slot 2
2377   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
2378   region->init_req(2,fast_taken); // Capture fast-control
2379 
2380   // Fast path not-taken, i.e. slow path
2381   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
2382   return slow_taken;
2383 }
2384 
2385 //-----------------------------make_runtime_call-------------------------------
2386 Node* GraphKit::make_runtime_call(int flags,
2387                                   const TypeFunc* call_type, address call_addr,
2388                                   const char* call_name,
2389                                   const TypePtr* adr_type,
2390                                   // The following parms are all optional.
2391                                   // The first NULL ends the list.
2392                                   Node* parm0, Node* parm1,
2393                                   Node* parm2, Node* parm3,
2394                                   Node* parm4, Node* parm5,
2395                                   Node* parm6, Node* parm7) {
2396   // Slow-path call
2397   bool is_leaf = !(flags & RC_NO_LEAF);
2398   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2399   if (call_name == NULL) {
2400     assert(!is_leaf, "must supply name for leaf");
2401     call_name = OptoRuntime::stub_name(call_addr);
2402   }
2403   CallNode* call;
2404   if (!is_leaf) {
2405     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
2406                                            bci(), adr_type);
2407   } else if (flags & RC_NO_FP) {
2408     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2409   } else {
2410     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
2411   }
2412 
2413   // The following is similar to set_edges_for_java_call,
2414   // except that the memory effects of the call are restricted to AliasIdxRaw.
2415 
2416   // Slow path call has no side-effects, uses few values
2417   bool wide_in  = !(flags & RC_NARROW_MEM);
2418   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2419 
2420   Node* prev_mem = NULL;
2421   if (wide_in) {
2422     prev_mem = set_predefined_input_for_runtime_call(call);
2423   } else {
2424     assert(!wide_out, "narrow in => narrow out");
2425     Node* narrow_mem = memory(adr_type);
2426     prev_mem = reset_memory();
2427     map()->set_memory(narrow_mem);
2428     set_predefined_input_for_runtime_call(call);
2429   }
2430 
2431   // Hook each parm in order.  Stop looking at the first NULL.
2432   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2433   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2434   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2435   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2436   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2437   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2438   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2439   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2440     /* close each nested if ===> */  } } } } } } } }
2441   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2442 
2443   if (!is_leaf) {
2444     // Non-leaves can block and take safepoints:
2445     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2446   }
2447   // Non-leaves can throw exceptions:
2448   if (has_io) {
2449     call->set_req(TypeFunc::I_O, i_o());
2450   }
2451 
2452   if (flags & RC_UNCOMMON) {
2453     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2454     // (An "if" probability corresponds roughly to an unconditional count.
2455     // Sort of.)
2456     call->set_cnt(PROB_UNLIKELY_MAG(4));
2457   }
2458 
2459   Node* c = _gvn.transform(call);
2460   assert(c == call, "cannot disappear");
2461 
2462   if (wide_out) {
2463     // Slow path call has full side-effects.
2464     set_predefined_output_for_runtime_call(call);
2465   } else {
2466     // Slow path call has few side-effects, and/or sets few values.
2467     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2468   }
2469 
2470   if (has_io) {
2471     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
2472   }
2473   return call;
2474 
2475 }
2476 
2477 //------------------------------merge_memory-----------------------------------
2478 // Merge memory from one path into the current memory state.
2479 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2480   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2481     Node* old_slice = mms.force_memory();
2482     Node* new_slice = mms.memory2();
2483     if (old_slice != new_slice) {
2484       PhiNode* phi;
2485       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2486         phi = new_slice->as_Phi();
2487         #ifdef ASSERT
2488         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2489           old_slice = old_slice->in(new_path);
2490         // Caller is responsible for ensuring that any pre-existing
2491         // phis are already aware of old memory.
2492         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2493         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2494         #endif
2495         mms.set_memory(phi);
2496       } else {
2497         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2498         _gvn.set_type(phi, Type::MEMORY);
2499         phi->set_req(new_path, new_slice);
2500         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2501       }
2502     }
2503   }
2504 }
2505 
2506 //------------------------------make_slow_call_ex------------------------------
2507 // Make the exception handler hookups for the slow call
2508 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2509   if (stopped())  return;
2510 
2511   // Make a catch node with just two handlers:  fall-through and catch-all
2512   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2513   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
2514   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2515   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2516 
2517   { PreserveJVMState pjvms(this);
2518     set_control(excp);
2519     set_i_o(i_o);
2520 
2521     if (excp != top()) {
2522       // Create an exception state also.
2523       // Use an exact type if the caller has specified a specific exception.
2524       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2525       Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
2526       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2527     }
2528   }
2529 
2530   // Get the no-exception control from the CatchNode.
2531   set_control(norm);
2532 }
2533 
2534 
2535 //-------------------------------gen_subtype_check-----------------------------
2536 // Generate a subtyping check.  Takes as input the subtype and supertype.
2537 // Returns 2 values: sets the default control() to the true path and returns
2538 // the false path.  Only reads invariant memory; sets no (visible) memory.
2539 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2540 // but that's not exposed to the optimizer.  This call also doesn't take in an
2541 // Object; if you wish to check an Object you need to load the Object's class
2542 // prior to coming here.
2543 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2544   // Fast check for identical types, perhaps identical constants.
2545   // The types can even be identical non-constants, in cases
2546   // involving Array.newInstance, Object.clone, etc.
2547   if (subklass == superklass)
2548     return top();             // false path is dead; no test needed.
2549 
2550   if (_gvn.type(superklass)->singleton()) {
2551     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2552     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2553 
2554     // In the common case of an exact superklass, try to fold up the
2555     // test before generating code.  You may ask, why not just generate
2556     // the code and then let it fold up?  The answer is that the generated
2557     // code will necessarily include null checks, which do not always
2558     // completely fold away.  If they are also needless, then they turn
2559     // into a performance loss.  Example:
2560     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2561     // Here, the type of 'fa' is often exact, so the store check
2562     // of fa[1]=x will fold up, without testing the nullness of x.
2563     switch (static_subtype_check(superk, subk)) {
2564     case SSC_always_false:
2565       {
2566         Node* always_fail = control();
2567         set_control(top());
2568         return always_fail;
2569       }
2570     case SSC_always_true:
2571       return top();
2572     case SSC_easy_test:
2573       {
2574         // Just do a direct pointer compare and be done.
2575         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
2576         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2577         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2578         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
2579         return       _gvn.transform( new(C) IfFalseNode(iff) );
2580       }
2581     case SSC_full_test:
2582       break;
2583     default:
2584       ShouldNotReachHere();
2585     }
2586   }
2587 
2588   // %%% Possible further optimization:  Even if the superklass is not exact,
2589   // if the subklass is the unique subtype of the superklass, the check
2590   // will always succeed.  We could leave a dependency behind to ensure this.
2591 
2592   // First load the super-klass's check-offset
2593   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
2594   Node *chk_off = _gvn.transform(new (C) LoadINode(NULL, memory(p1), p1, _gvn.type(p1)->is_ptr(),
2595                                                    TypeInt::INT, MemNode::unordered));
2596   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2597   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2598 
2599   // Load from the sub-klass's super-class display list, or a 1-word cache of
2600   // the secondary superclass list, or a failing value with a sentinel offset
2601   // if the super-klass is an interface or exceptionally deep in the Java
2602   // hierarchy and we have to scan the secondary superclass list the hard way.
2603   // Worst-case type is a little odd: NULL is allowed as a result (usually
2604   // klass loads can never produce a NULL).
2605   Node *chk_off_X = ConvI2X(chk_off);
2606   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
2607   // For some types like interfaces the following loadKlass is from a 1-word
2608   // cache which is mutable so can't use immutable memory.  Other
2609   // types load from the super-class display table which is immutable.
2610   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2611   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2612 
2613   // Compile speed common case: ARE a subtype and we canNOT fail
2614   if( superklass == nkls )
2615     return top();             // false path is dead; no test needed.
2616 
2617   // See if we get an immediate positive hit.  Happens roughly 83% of the
2618   // time.  Test to see if the value loaded just previously from the subklass
2619   // is exactly the superklass.
2620   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
2621   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
2622   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2623   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
2624   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
2625 
2626   // Compile speed common case: Check for being deterministic right now.  If
2627   // chk_off is a constant and not equal to cacheoff then we are NOT a
2628   // subklass.  In this case we need exactly the 1 test above and we can
2629   // return those results immediately.
2630   if (!might_be_cache) {
2631     Node* not_subtype_ctrl = control();
2632     set_control(iftrue1); // We need exactly the 1 test above
2633     return not_subtype_ctrl;
2634   }
2635 
2636   // Gather the various success & failures here
2637   RegionNode *r_ok_subtype = new (C) RegionNode(4);
2638   record_for_igvn(r_ok_subtype);
2639   RegionNode *r_not_subtype = new (C) RegionNode(3);
2640   record_for_igvn(r_not_subtype);
2641 
2642   r_ok_subtype->init_req(1, iftrue1);
2643 
2644   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2645   // is roughly 63% of the remaining cases).  Test to see if the loaded
2646   // check-offset points into the subklass display list or the 1-element
2647   // cache.  If it points to the display (and NOT the cache) and the display
2648   // missed then it's not a subtype.
2649   Node *cacheoff = _gvn.intcon(cacheoff_con);
2650   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
2651   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
2652   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2653   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
2654   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
2655 
2656   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2657   // No performance impact (too rare) but allows sharing of secondary arrays
2658   // which has some footprint reduction.
2659   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
2660   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
2661   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2662   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
2663   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
2664 
2665   // -- Roads not taken here: --
2666   // We could also have chosen to perform the self-check at the beginning
2667   // of this code sequence, as the assembler does.  This would not pay off
2668   // the same way, since the optimizer, unlike the assembler, can perform
2669   // static type analysis to fold away many successful self-checks.
2670   // Non-foldable self checks work better here in second position, because
2671   // the initial primary superclass check subsumes a self-check for most
2672   // types.  An exception would be a secondary type like array-of-interface,
2673   // which does not appear in its own primary supertype display.
2674   // Finally, we could have chosen to move the self-check into the
2675   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2676   // dependent manner.  But it is worthwhile to have the check here,
2677   // where it can be perhaps be optimized.  The cost in code space is
2678   // small (register compare, branch).
2679 
2680   // Now do a linear scan of the secondary super-klass array.  Again, no real
2681   // performance impact (too rare) but it's gotta be done.
2682   // Since the code is rarely used, there is no penalty for moving it
2683   // out of line, and it can only improve I-cache density.
2684   // The decision to inline or out-of-line this final check is platform
2685   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2686   Node* psc = _gvn.transform(
2687     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
2688 
2689   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
2690   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
2691   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2692   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
2693   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
2694 
2695   // Return false path; set default control to true path.
2696   set_control( _gvn.transform(r_ok_subtype) );
2697   return _gvn.transform(r_not_subtype);
2698 }
2699 
2700 //----------------------------static_subtype_check-----------------------------
2701 // Shortcut important common cases when superklass is exact:
2702 // (0) superklass is java.lang.Object (can occur in reflective code)
2703 // (1) subklass is already limited to a subtype of superklass => always ok
2704 // (2) subklass does not overlap with superklass => always fail
2705 // (3) superklass has NO subtypes and we can check with a simple compare.
2706 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2707   if (StressReflectiveCode) {
2708     return SSC_full_test;       // Let caller generate the general case.
2709   }
2710 
2711   if (superk == env()->Object_klass()) {
2712     return SSC_always_true;     // (0) this test cannot fail
2713   }
2714 
2715   ciType* superelem = superk;
2716   if (superelem->is_array_klass())
2717     superelem = superelem->as_array_klass()->base_element_type();
2718 
2719   if (!subk->is_interface()) {  // cannot trust static interface types yet
2720     if (subk->is_subtype_of(superk)) {
2721       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2722     }
2723     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2724         !superk->is_subtype_of(subk)) {
2725       return SSC_always_false;
2726     }
2727   }
2728 
2729   // If casting to an instance klass, it must have no subtypes
2730   if (superk->is_interface()) {
2731     // Cannot trust interfaces yet.
2732     // %%% S.B. superk->nof_implementors() == 1
2733   } else if (superelem->is_instance_klass()) {
2734     ciInstanceKlass* ik = superelem->as_instance_klass();
2735     if (!ik->has_subklass() && !ik->is_interface()) {
2736       if (!ik->is_final()) {
2737         // Add a dependency if there is a chance of a later subclass.
2738         C->dependencies()->assert_leaf_type(ik);
2739       }
2740       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2741     }
2742   } else {
2743     // A primitive array type has no subtypes.
2744     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2745   }
2746 
2747   return SSC_full_test;
2748 }
2749 
2750 // Profile-driven exact type check:
2751 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2752                                     float prob,
2753                                     Node* *casted_receiver) {
2754   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2755   Node* recv_klass = load_object_klass(receiver);
2756   Node* want_klass = makecon(tklass);
2757   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
2758   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2759   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2760   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
2761   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
2762 
2763   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2764   assert(recv_xtype->klass_is_exact(), "");
2765 
2766   // Subsume downstream occurrences of receiver with a cast to
2767   // recv_xtype, since now we know what the type will be.
2768   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
2769   (*casted_receiver) = _gvn.transform(cast);
2770   // (User must make the replace_in_map call.)
2771 
2772   return fail;
2773 }
2774 
2775 
2776 //------------------------------seems_never_null-------------------------------
2777 // Use null_seen information if it is available from the profile.
2778 // If we see an unexpected null at a type check we record it and force a
2779 // recompile; the offending check will be recompiled to handle NULLs.
2780 // If we see several offending BCIs, then all checks in the
2781 // method will be recompiled.
2782 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2783   speculating = !_gvn.type(obj)->speculative_maybe_null();
2784   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2785   if (UncommonNullCast               // Cutout for this technique
2786       && obj != null()               // And not the -Xcomp stupid case?
2787       && !too_many_traps(reason)
2788       ) {
2789     if (speculating) {
2790       return true;
2791     }
2792     if (data == NULL)
2793       // Edge case:  no mature data.  Be optimistic here.
2794       return true;
2795     // If the profile has not seen a null, assume it won't happen.
2796     assert(java_bc() == Bytecodes::_checkcast ||
2797            java_bc() == Bytecodes::_instanceof ||
2798            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2799     return !data->as_BitData()->null_seen();
2800   }
2801   speculating = false;
2802   return false;
2803 }
2804 
2805 //------------------------maybe_cast_profiled_receiver-------------------------
2806 // If the profile has seen exactly one type, narrow to exactly that type.
2807 // Subsequent type checks will always fold up.
2808 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2809                                              ciKlass* require_klass,
2810                                              ciKlass* spec_klass,
2811                                              bool safe_for_replace) {
2812   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2813 
2814   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2815 
2816   // Make sure we haven't already deoptimized from this tactic.
2817   if (too_many_traps(reason))
2818     return NULL;
2819 
2820   // (No, this isn't a call, but it's enough like a virtual call
2821   // to use the same ciMethod accessor to get the profile info...)
2822   // If we have a speculative type use it instead of profiling (which
2823   // may not help us)
2824   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2825   if (exact_kls != NULL) {// no cast failures here
2826     if (require_klass == NULL ||
2827         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
2828       // If we narrow the type to match what the type profile sees or
2829       // the speculative type, we can then remove the rest of the
2830       // cast.
2831       // This is a win, even if the exact_kls is very specific,
2832       // because downstream operations, such as method calls,
2833       // will often benefit from the sharper type.
2834       Node* exact_obj = not_null_obj; // will get updated in place...
2835       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2836                                             &exact_obj);
2837       { PreserveJVMState pjvms(this);
2838         set_control(slow_ctl);
2839         uncommon_trap(reason,
2840                       Deoptimization::Action_maybe_recompile);
2841       }
2842       if (safe_for_replace) {
2843         replace_in_map(not_null_obj, exact_obj);
2844       }
2845       return exact_obj;
2846     }
2847     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
2848   }
2849 
2850   return NULL;
2851 }
2852 
2853 /**
2854  * Cast obj to type and emit guard unless we had too many traps here
2855  * already
2856  *
2857  * @param obj       node being casted
2858  * @param type      type to cast the node to
2859  * @param not_null  true if we know node cannot be null
2860  */
2861 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2862                                         ciKlass* type,
2863                                         bool not_null) {
2864   // type == NULL if profiling tells us this object is always null
2865   if (type != NULL) {
2866     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2867     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2868     if (!too_many_traps(null_reason) &&
2869         !too_many_traps(class_reason)) {
2870       Node* not_null_obj = NULL;
2871       // not_null is true if we know the object is not null and
2872       // there's no need for a null check
2873       if (!not_null) {
2874         Node* null_ctl = top();
2875         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2876         assert(null_ctl->is_top(), "no null control here");
2877       } else {
2878         not_null_obj = obj;
2879       }
2880 
2881       Node* exact_obj = not_null_obj;
2882       ciKlass* exact_kls = type;
2883       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2884                                             &exact_obj);
2885       {
2886         PreserveJVMState pjvms(this);
2887         set_control(slow_ctl);
2888         uncommon_trap(class_reason,
2889                       Deoptimization::Action_maybe_recompile);
2890       }
2891       replace_in_map(not_null_obj, exact_obj);
2892       obj = exact_obj;
2893     }
2894   } else {
2895     if (!too_many_traps(Deoptimization::Reason_null_assert)) {
2896       Node* exact_obj = null_assert(obj);
2897       replace_in_map(obj, exact_obj);
2898       obj = exact_obj;
2899     }
2900   }
2901   return obj;
2902 }
2903 
2904 //-------------------------------gen_instanceof--------------------------------
2905 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2906 // and the reflective instance-of call.
2907 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2908   kill_dead_locals();           // Benefit all the uncommon traps
2909   assert( !stopped(), "dead parse path should be checked in callers" );
2910   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2911          "must check for not-null not-dead klass in callers");
2912 
2913   // Make the merge point
2914   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2915   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
2916   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
2917   C->set_has_split_ifs(true); // Has chance for split-if optimization
2918 
2919   ciProfileData* data = NULL;
2920   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2921     data = method()->method_data()->bci_to_data(bci());
2922   }
2923   bool speculative_not_null = false;
2924   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2925                          && seems_never_null(obj, data, speculative_not_null));
2926 
2927   // Null check; get casted pointer; set region slot 3
2928   Node* null_ctl = top();
2929   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2930 
2931   // If not_null_obj is dead, only null-path is taken
2932   if (stopped()) {              // Doing instance-of on a NULL?
2933     set_control(null_ctl);
2934     return intcon(0);
2935   }
2936   region->init_req(_null_path, null_ctl);
2937   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2938   if (null_ctl == top()) {
2939     // Do this eagerly, so that pattern matches like is_diamond_phi
2940     // will work even during parsing.
2941     assert(_null_path == PATH_LIMIT-1, "delete last");
2942     region->del_req(_null_path);
2943     phi   ->del_req(_null_path);
2944   }
2945 
2946   // Do we know the type check always succeed?
2947   bool known_statically = false;
2948   if (_gvn.type(superklass)->singleton()) {
2949     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2950     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2951     if (subk != NULL && subk->is_loaded()) {
2952       int static_res = static_subtype_check(superk, subk);
2953       known_statically = (static_res == SSC_always_true || static_res == SSC_always_false);
2954     }
2955   }
2956 
2957   if (known_statically && UseTypeSpeculation) {
2958     // If we know the type check always succeeds then we don't use the
2959     // profiling data at this bytecode. Don't lose it, feed it to the
2960     // type system as a speculative type.
2961     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2962   } else {
2963     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2964     // We may not have profiling here or it may not help us. If we
2965     // have a speculative type use it to perform an exact cast.
2966     ciKlass* spec_obj_type = obj_type->speculative_type();
2967     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2968       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2969       if (stopped()) {            // Profile disagrees with this path.
2970         set_control(null_ctl);    // Null is the only remaining possibility.
2971         return intcon(0);
2972       }
2973       if (cast_obj != NULL) {
2974         not_null_obj = cast_obj;
2975       }
2976     }
2977   }
2978 
2979   // Load the object's klass
2980   Node* obj_klass = load_object_klass(not_null_obj);
2981 
2982   // Generate the subtype check
2983   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2984 
2985   // Plug in the success path to the general merge in slot 1.
2986   region->init_req(_obj_path, control());
2987   phi   ->init_req(_obj_path, intcon(1));
2988 
2989   // Plug in the failing path to the general merge in slot 2.
2990   region->init_req(_fail_path, not_subtype_ctrl);
2991   phi   ->init_req(_fail_path, intcon(0));
2992 
2993   // Return final merged results
2994   set_control( _gvn.transform(region) );
2995   record_for_igvn(region);
2996   return _gvn.transform(phi);
2997 }
2998 
2999 //-------------------------------gen_checkcast---------------------------------
3000 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3001 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3002 // uncommon-trap paths work.  Adjust stack after this call.
3003 // If failure_control is supplied and not null, it is filled in with
3004 // the control edge for the cast failure.  Otherwise, an appropriate
3005 // uncommon trap or exception is thrown.
3006 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3007                               Node* *failure_control) {
3008   kill_dead_locals();           // Benefit all the uncommon traps
3009   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3010   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
3011 
3012   // Fast cutout:  Check the case that the cast is vacuously true.
3013   // This detects the common cases where the test will short-circuit
3014   // away completely.  We do this before we perform the null check,
3015   // because if the test is going to turn into zero code, we don't
3016   // want a residual null check left around.  (Causes a slowdown,
3017   // for example, in some objArray manipulations, such as a[i]=a[j].)
3018   if (tk->singleton()) {
3019     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3020     if (objtp != NULL && objtp->klass() != NULL) {
3021       switch (static_subtype_check(tk->klass(), objtp->klass())) {
3022       case SSC_always_true:
3023         // If we know the type check always succeed then we don't use
3024         // the profiling data at this bytecode. Don't lose it, feed it
3025         // to the type system as a speculative type.
3026         return record_profiled_receiver_for_speculation(obj);
3027       case SSC_always_false:
3028         // It needs a null check because a null will *pass* the cast check.
3029         // A non-null value will always produce an exception.
3030         return null_assert(obj);
3031       }
3032     }
3033   }
3034 
3035   ciProfileData* data = NULL;
3036   bool safe_for_replace = false;
3037   if (failure_control == NULL) {        // use MDO in regular case only
3038     assert(java_bc() == Bytecodes::_aastore ||
3039            java_bc() == Bytecodes::_checkcast,
3040            "interpreter profiles type checks only for these BCs");
3041     data = method()->method_data()->bci_to_data(bci());
3042     safe_for_replace = true;
3043   }
3044 
3045   // Make the merge point
3046   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3047   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3048   Node*       phi    = new (C) PhiNode(region, toop);
3049   C->set_has_split_ifs(true); // Has chance for split-if optimization
3050 
3051   // Use null-cast information if it is available
3052   bool speculative_not_null = false;
3053   bool never_see_null = ((failure_control == NULL)  // regular case only
3054                          && seems_never_null(obj, data, speculative_not_null));
3055 
3056   // Null check; get casted pointer; set region slot 3
3057   Node* null_ctl = top();
3058   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3059 
3060   // If not_null_obj is dead, only null-path is taken
3061   if (stopped()) {              // Doing instance-of on a NULL?
3062     set_control(null_ctl);
3063     return null();
3064   }
3065   region->init_req(_null_path, null_ctl);
3066   phi   ->init_req(_null_path, null());  // Set null path value
3067   if (null_ctl == top()) {
3068     // Do this eagerly, so that pattern matches like is_diamond_phi
3069     // will work even during parsing.
3070     assert(_null_path == PATH_LIMIT-1, "delete last");
3071     region->del_req(_null_path);
3072     phi   ->del_req(_null_path);
3073   }
3074 
3075   Node* cast_obj = NULL;
3076   if (tk->klass_is_exact()) {
3077     // The following optimization tries to statically cast the speculative type of the object
3078     // (for example obtained during profiling) to the type of the superklass and then do a
3079     // dynamic check that the type of the object is what we expect. To work correctly
3080     // for checkcast and aastore the type of superklass should be exact.
3081     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3082     // We may not have profiling here or it may not help us. If we have
3083     // a speculative type use it to perform an exact cast.
3084     ciKlass* spec_obj_type = obj_type->speculative_type();
3085     if (spec_obj_type != NULL ||
3086         (data != NULL &&
3087          // Counter has never been decremented (due to cast failure).
3088          // ...This is a reasonable thing to expect.  It is true of
3089          // all casts inserted by javac to implement generic types.
3090          data->as_CounterData()->count() >= 0)) {
3091       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3092       if (cast_obj != NULL) {
3093         if (failure_control != NULL) // failure is now impossible
3094           (*failure_control) = top();
3095         // adjust the type of the phi to the exact klass:
3096         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3097       }
3098     }
3099   }
3100 
3101   if (cast_obj == NULL) {
3102     // Load the object's klass
3103     Node* obj_klass = load_object_klass(not_null_obj);
3104 
3105     // Generate the subtype check
3106     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3107 
3108     // Plug in success path into the merge
3109     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
3110                                                          not_null_obj, toop));
3111     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3112     if (failure_control == NULL) {
3113       if (not_subtype_ctrl != top()) { // If failure is possible
3114         PreserveJVMState pjvms(this);
3115         set_control(not_subtype_ctrl);
3116         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3117       }
3118     } else {
3119       (*failure_control) = not_subtype_ctrl;
3120     }
3121   }
3122 
3123   region->init_req(_obj_path, control());
3124   phi   ->init_req(_obj_path, cast_obj);
3125 
3126   // A merge of NULL or Casted-NotNull obj
3127   Node* res = _gvn.transform(phi);
3128 
3129   // Note I do NOT always 'replace_in_map(obj,result)' here.
3130   //  if( tk->klass()->can_be_primary_super()  )
3131     // This means that if I successfully store an Object into an array-of-String
3132     // I 'forget' that the Object is really now known to be a String.  I have to
3133     // do this because we don't have true union types for interfaces - if I store
3134     // a Baz into an array-of-Interface and then tell the optimizer it's an
3135     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3136     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3137   //  replace_in_map( obj, res );
3138 
3139   // Return final merged results
3140   set_control( _gvn.transform(region) );
3141   record_for_igvn(region);
3142   return res;
3143 }
3144 
3145 //------------------------------next_monitor-----------------------------------
3146 // What number should be given to the next monitor?
3147 int GraphKit::next_monitor() {
3148   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3149   int next = current + C->sync_stack_slots();
3150   // Keep the toplevel high water mark current:
3151   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3152   return current;
3153 }
3154 
3155 //------------------------------insert_mem_bar---------------------------------
3156 // Memory barrier to avoid floating things around
3157 // The membar serves as a pinch point between both control and all memory slices.
3158 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3159   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3160   mb->init_req(TypeFunc::Control, control());
3161   mb->init_req(TypeFunc::Memory,  reset_memory());
3162   Node* membar = _gvn.transform(mb);
3163   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3164   set_all_memory_call(membar);
3165   return membar;
3166 }
3167 
3168 //-------------------------insert_mem_bar_volatile----------------------------
3169 // Memory barrier to avoid floating things around
3170 // The membar serves as a pinch point between both control and memory(alias_idx).
3171 // If you want to make a pinch point on all memory slices, do not use this
3172 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3173 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3174   // When Parse::do_put_xxx updates a volatile field, it appends a series
3175   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3176   // The first membar is on the same memory slice as the field store opcode.
3177   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3178   // All the other membars (for other volatile slices, including AliasIdxBot,
3179   // which stands for all unknown volatile slices) are control-dependent
3180   // on the first membar.  This prevents later volatile loads or stores
3181   // from sliding up past the just-emitted store.
3182 
3183   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3184   mb->set_req(TypeFunc::Control,control());
3185   if (alias_idx == Compile::AliasIdxBot) {
3186     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3187   } else {
3188     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3189     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3190   }
3191   Node* membar = _gvn.transform(mb);
3192   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3193   if (alias_idx == Compile::AliasIdxBot) {
3194     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
3195   } else {
3196     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
3197   }
3198   return membar;
3199 }
3200 
3201 //------------------------------shared_lock------------------------------------
3202 // Emit locking code.
3203 FastLockNode* GraphKit::shared_lock(Node* obj) {
3204   // bci is either a monitorenter bc or InvocationEntryBci
3205   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3206   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3207 
3208   if( !GenerateSynchronizationCode )
3209     return NULL;                // Not locking things?
3210   if (stopped())                // Dead monitor?
3211     return NULL;
3212 
3213   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3214 
3215   // Box the stack location
3216   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
3217   Node* mem = reset_memory();
3218 
3219   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
3220   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3221     // Create the counters for this fast lock.
3222     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3223   }
3224 
3225   // Create the rtm counters for this fast lock if needed.
3226   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3227 
3228   // Add monitor to debug info for the slow path.  If we block inside the
3229   // slow path and de-opt, we need the monitor hanging around
3230   map()->push_monitor( flock );
3231 
3232   const TypeFunc *tf = LockNode::lock_type();
3233   LockNode *lock = new (C) LockNode(C, tf);
3234 
3235   lock->init_req( TypeFunc::Control, control() );
3236   lock->init_req( TypeFunc::Memory , mem );
3237   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3238   lock->init_req( TypeFunc::FramePtr, frameptr() );
3239   lock->init_req( TypeFunc::ReturnAdr, top() );
3240 
3241   lock->init_req(TypeFunc::Parms + 0, obj);
3242   lock->init_req(TypeFunc::Parms + 1, box);
3243   lock->init_req(TypeFunc::Parms + 2, flock);
3244   add_safepoint_edges(lock);
3245 
3246   lock = _gvn.transform( lock )->as_Lock();
3247 
3248   // lock has no side-effects, sets few values
3249   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3250 
3251   insert_mem_bar(Op_MemBarAcquireLock);
3252 
3253   // Add this to the worklist so that the lock can be eliminated
3254   record_for_igvn(lock);
3255 
3256 #ifndef PRODUCT
3257   if (PrintLockStatistics) {
3258     // Update the counter for this lock.  Don't bother using an atomic
3259     // operation since we don't require absolute accuracy.
3260     lock->create_lock_counter(map()->jvms());
3261     increment_counter(lock->counter()->addr());
3262   }
3263 #endif
3264 
3265   return flock;
3266 }
3267 
3268 
3269 //------------------------------shared_unlock----------------------------------
3270 // Emit unlocking code.
3271 void GraphKit::shared_unlock(Node* box, Node* obj) {
3272   // bci is either a monitorenter bc or InvocationEntryBci
3273   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3274   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3275 
3276   if( !GenerateSynchronizationCode )
3277     return;
3278   if (stopped()) {               // Dead monitor?
3279     map()->pop_monitor();        // Kill monitor from debug info
3280     return;
3281   }
3282 
3283   // Memory barrier to avoid floating things down past the locked region
3284   insert_mem_bar(Op_MemBarReleaseLock);
3285 
3286   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3287   UnlockNode *unlock = new (C) UnlockNode(C, tf);
3288   uint raw_idx = Compile::AliasIdxRaw;
3289   unlock->init_req( TypeFunc::Control, control() );
3290   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3291   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3292   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3293   unlock->init_req( TypeFunc::ReturnAdr, top() );
3294 
3295   unlock->init_req(TypeFunc::Parms + 0, obj);
3296   unlock->init_req(TypeFunc::Parms + 1, box);
3297   unlock = _gvn.transform(unlock)->as_Unlock();
3298 
3299   Node* mem = reset_memory();
3300 
3301   // unlock has no side-effects, sets few values
3302   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3303 
3304   // Kill monitor from debug info
3305   map()->pop_monitor( );
3306 }
3307 
3308 //-------------------------------get_layout_helper-----------------------------
3309 // If the given klass is a constant or known to be an array,
3310 // fetch the constant layout helper value into constant_value
3311 // and return (Node*)NULL.  Otherwise, load the non-constant
3312 // layout helper value, and return the node which represents it.
3313 // This two-faced routine is useful because allocation sites
3314 // almost always feature constant types.
3315 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3316   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3317   if (!StressReflectiveCode && inst_klass != NULL) {
3318     ciKlass* klass = inst_klass->klass();
3319     bool    xklass = inst_klass->klass_is_exact();
3320     if (xklass || klass->is_array_klass()) {
3321       jint lhelper = klass->layout_helper();
3322       if (lhelper != Klass::_lh_neutral_value) {
3323         constant_value = lhelper;
3324         return (Node*) NULL;
3325       }
3326     }
3327   }
3328   constant_value = Klass::_lh_neutral_value;  // put in a known value
3329   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3330   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3331 }
3332 
3333 // We just put in an allocate/initialize with a big raw-memory effect.
3334 // Hook selected additional alias categories on the initialization.
3335 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3336                                 MergeMemNode* init_in_merge,
3337                                 Node* init_out_raw) {
3338   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3339   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3340 
3341   Node* prevmem = kit.memory(alias_idx);
3342   init_in_merge->set_memory_at(alias_idx, prevmem);
3343   kit.set_memory(init_out_raw, alias_idx);
3344 }
3345 
3346 //---------------------------set_output_for_allocation-------------------------
3347 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3348                                           const TypeOopPtr* oop_type) {
3349   int rawidx = Compile::AliasIdxRaw;
3350   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3351   add_safepoint_edges(alloc);
3352   Node* allocx = _gvn.transform(alloc);
3353   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
3354   // create memory projection for i_o
3355   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3356   make_slow_call_ex(allocx, env()->Throwable_klass(), true);
3357 
3358   // create a memory projection as for the normal control path
3359   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
3360   set_memory(malloc, rawidx);
3361 
3362   // a normal slow-call doesn't change i_o, but an allocation does
3363   // we create a separate i_o projection for the normal control path
3364   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
3365   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
3366 
3367   // put in an initialization barrier
3368   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3369                                                  rawoop)->as_Initialize();
3370   assert(alloc->initialization() == init,  "2-way macro link must work");
3371   assert(init ->allocation()     == alloc, "2-way macro link must work");
3372   {
3373     // Extract memory strands which may participate in the new object's
3374     // initialization, and source them from the new InitializeNode.
3375     // This will allow us to observe initializations when they occur,
3376     // and link them properly (as a group) to the InitializeNode.
3377     assert(init->in(InitializeNode::Memory) == malloc, "");
3378     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
3379     init->set_req(InitializeNode::Memory, minit_in);
3380     record_for_igvn(minit_in); // fold it up later, if possible
3381     Node* minit_out = memory(rawidx);
3382     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3383     if (oop_type->isa_aryptr()) {
3384       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3385       int            elemidx  = C->get_alias_index(telemref);
3386       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3387     } else if (oop_type->isa_instptr()) {
3388       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3389       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3390         ciField* field = ik->nonstatic_field_at(i);
3391         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3392           continue;  // do not bother to track really large numbers of fields
3393         // Find (or create) the alias category for this field:
3394         int fieldidx = C->alias_type(field)->index();
3395         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3396       }
3397     }
3398   }
3399 
3400   // Cast raw oop to the real thing...
3401   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
3402   javaoop = _gvn.transform(javaoop);
3403   C->set_recent_alloc(control(), javaoop);
3404   assert(just_allocated_object(control()) == javaoop, "just allocated");
3405 
3406 #ifdef ASSERT
3407   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3408     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3409            "Ideal_allocation works");
3410     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3411            "Ideal_allocation works");
3412     if (alloc->is_AllocateArray()) {
3413       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3414              "Ideal_allocation works");
3415       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3416              "Ideal_allocation works");
3417     } else {
3418       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3419     }
3420   }
3421 #endif //ASSERT
3422 
3423   return javaoop;
3424 }
3425 
3426 //---------------------------new_instance--------------------------------------
3427 // This routine takes a klass_node which may be constant (for a static type)
3428 // or may be non-constant (for reflective code).  It will work equally well
3429 // for either, and the graph will fold nicely if the optimizer later reduces
3430 // the type to a constant.
3431 // The optional arguments are for specialized use by intrinsics:
3432 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3433 //  - If 'return_size_val', report the the total object size to the caller.
3434 Node* GraphKit::new_instance(Node* klass_node,
3435                              Node* extra_slow_test,
3436                              Node* *return_size_val) {
3437   // Compute size in doublewords
3438   // The size is always an integral number of doublewords, represented
3439   // as a positive bytewise size stored in the klass's layout_helper.
3440   // The layout_helper also encodes (in a low bit) the need for a slow path.
3441   jint  layout_con = Klass::_lh_neutral_value;
3442   Node* layout_val = get_layout_helper(klass_node, layout_con);
3443   int   layout_is_con = (layout_val == NULL);
3444 
3445   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3446   // Generate the initial go-slow test.  It's either ALWAYS (return a
3447   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3448   // case) a computed value derived from the layout_helper.
3449   Node* initial_slow_test = NULL;
3450   if (layout_is_con) {
3451     assert(!StressReflectiveCode, "stress mode does not use these paths");
3452     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3453     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3454 
3455   } else {   // reflective case
3456     // This reflective path is used by Unsafe.allocateInstance.
3457     // (It may be stress-tested by specifying StressReflectiveCode.)
3458     // Basically, we want to get into the VM is there's an illegal argument.
3459     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3460     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
3461     if (extra_slow_test != intcon(0)) {
3462       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
3463     }
3464     // (Macro-expander will further convert this to a Bool, if necessary.)
3465   }
3466 
3467   // Find the size in bytes.  This is easy; it's the layout_helper.
3468   // The size value must be valid even if the slow path is taken.
3469   Node* size = NULL;
3470   if (layout_is_con) {
3471     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3472   } else {   // reflective case
3473     // This reflective path is used by clone and Unsafe.allocateInstance.
3474     size = ConvI2X(layout_val);
3475 
3476     // Clear the low bits to extract layout_helper_size_in_bytes:
3477     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3478     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3479     size = _gvn.transform( new (C) AndXNode(size, mask) );
3480   }
3481   if (return_size_val != NULL) {
3482     (*return_size_val) = size;
3483   }
3484 
3485   // This is a precise notnull oop of the klass.
3486   // (Actually, it need not be precise if this is a reflective allocation.)
3487   // It's what we cast the result to.
3488   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3489   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3490   const TypeOopPtr* oop_type = tklass->as_instance_type();
3491 
3492   // Now generate allocation code
3493 
3494   // The entire memory state is needed for slow path of the allocation
3495   // since GC and deoptimization can happened.
3496   Node *mem = reset_memory();
3497   set_all_memory(mem); // Create new memory state
3498 
3499   AllocateNode* alloc
3500     = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3501                            control(), mem, i_o(),
3502                            size, klass_node,
3503                            initial_slow_test);
3504 
3505   return set_output_for_allocation(alloc, oop_type);
3506 }
3507 
3508 //-------------------------------new_array-------------------------------------
3509 // helper for both newarray and anewarray
3510 // The 'length' parameter is (obviously) the length of the array.
3511 // See comments on new_instance for the meaning of the other arguments.
3512 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3513                           Node* length,         // number of array elements
3514                           int   nargs,          // number of arguments to push back for uncommon trap
3515                           Node* *return_size_val) {
3516   jint  layout_con = Klass::_lh_neutral_value;
3517   Node* layout_val = get_layout_helper(klass_node, layout_con);
3518   int   layout_is_con = (layout_val == NULL);
3519 
3520   if (!layout_is_con && !StressReflectiveCode &&
3521       !too_many_traps(Deoptimization::Reason_class_check)) {
3522     // This is a reflective array creation site.
3523     // Optimistically assume that it is a subtype of Object[],
3524     // so that we can fold up all the address arithmetic.
3525     layout_con = Klass::array_layout_helper(T_OBJECT);
3526     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
3527     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
3528     { BuildCutout unless(this, bol_lh, PROB_MAX);
3529       inc_sp(nargs);
3530       uncommon_trap(Deoptimization::Reason_class_check,
3531                     Deoptimization::Action_maybe_recompile);
3532     }
3533     layout_val = NULL;
3534     layout_is_con = true;
3535   }
3536 
3537   // Generate the initial go-slow test.  Make sure we do not overflow
3538   // if length is huge (near 2Gig) or negative!  We do not need
3539   // exact double-words here, just a close approximation of needed
3540   // double-words.  We can't add any offset or rounding bits, lest we
3541   // take a size -1 of bytes and make it positive.  Use an unsigned
3542   // compare, so negative sizes look hugely positive.
3543   int fast_size_limit = FastAllocateSizeLimit;
3544   if (layout_is_con) {
3545     assert(!StressReflectiveCode, "stress mode does not use these paths");
3546     // Increase the size limit if we have exact knowledge of array type.
3547     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3548     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3549   }
3550 
3551   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
3552   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3553   if (initial_slow_test->is_Bool()) {
3554     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3555     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3556   }
3557 
3558   // --- Size Computation ---
3559   // array_size = round_to_heap(array_header + (length << elem_shift));
3560   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3561   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3562   // The rounding mask is strength-reduced, if possible.
3563   int round_mask = MinObjAlignmentInBytes - 1;
3564   Node* header_size = NULL;
3565   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3566   // (T_BYTE has the weakest alignment and size restrictions...)
3567   if (layout_is_con) {
3568     int       hsize  = Klass::layout_helper_header_size(layout_con);
3569     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3570     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3571     if ((round_mask & ~right_n_bits(eshift)) == 0)
3572       round_mask = 0;  // strength-reduce it if it goes away completely
3573     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3574     assert(header_size_min <= hsize, "generic minimum is smallest");
3575     header_size_min = hsize;
3576     header_size = intcon(hsize + round_mask);
3577   } else {
3578     Node* hss   = intcon(Klass::_lh_header_size_shift);
3579     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3580     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
3581     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
3582     Node* mask  = intcon(round_mask);
3583     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
3584   }
3585 
3586   Node* elem_shift = NULL;
3587   if (layout_is_con) {
3588     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3589     if (eshift != 0)
3590       elem_shift = intcon(eshift);
3591   } else {
3592     // There is no need to mask or shift this value.
3593     // The semantics of LShiftINode include an implicit mask to 0x1F.
3594     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3595     elem_shift = layout_val;
3596   }
3597 
3598   // Transition to native address size for all offset calculations:
3599   Node* lengthx = ConvI2X(length);
3600   Node* headerx = ConvI2X(header_size);
3601 #ifdef _LP64
3602   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3603     if (tllen != NULL && tllen->_lo < 0) {
3604       // Add a manual constraint to a positive range.  Cf. array_element_address.
3605       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3606       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3607       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3608       lengthx = _gvn.transform( new (C) ConvI2LNode(length, tlcon));
3609     }
3610   }
3611 #endif
3612 
3613   // Combine header size (plus rounding) and body size.  Then round down.
3614   // This computation cannot overflow, because it is used only in two
3615   // places, one where the length is sharply limited, and the other
3616   // after a successful allocation.
3617   Node* abody = lengthx;
3618   if (elem_shift != NULL)
3619     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
3620   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
3621   if (round_mask != 0) {
3622     Node* mask = MakeConX(~round_mask);
3623     size       = _gvn.transform( new(C) AndXNode(size, mask) );
3624   }
3625   // else if round_mask == 0, the size computation is self-rounding
3626 
3627   if (return_size_val != NULL) {
3628     // This is the size
3629     (*return_size_val) = size;
3630   }
3631 
3632   // Now generate allocation code
3633 
3634   // The entire memory state is needed for slow path of the allocation
3635   // since GC and deoptimization can happened.
3636   Node *mem = reset_memory();
3637   set_all_memory(mem); // Create new memory state
3638 
3639   // Create the AllocateArrayNode and its result projections
3640   AllocateArrayNode* alloc
3641     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3642                                 control(), mem, i_o(),
3643                                 size, klass_node,
3644                                 initial_slow_test,
3645                                 length);
3646 
3647   // Cast to correct type.  Note that the klass_node may be constant or not,
3648   // and in the latter case the actual array type will be inexact also.
3649   // (This happens via a non-constant argument to inline_native_newArray.)
3650   // In any case, the value of klass_node provides the desired array type.
3651   const TypeInt* length_type = _gvn.find_int_type(length);
3652   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3653   if (ary_type->isa_aryptr() && length_type != NULL) {
3654     // Try to get a better type than POS for the size
3655     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3656   }
3657 
3658   Node* javaoop = set_output_for_allocation(alloc, ary_type);
3659 
3660   // Cast length on remaining path to be as narrow as possible
3661   if (map()->find_edge(length) >= 0) {
3662     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3663     if (ccast != length) {
3664       _gvn.set_type_bottom(ccast);
3665       record_for_igvn(ccast);
3666       replace_in_map(length, ccast);
3667     }
3668   }
3669 
3670   return javaoop;
3671 }
3672 
3673 // The following "Ideal_foo" functions are placed here because they recognize
3674 // the graph shapes created by the functions immediately above.
3675 
3676 //---------------------------Ideal_allocation----------------------------------
3677 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3678 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3679   if (ptr == NULL) {     // reduce dumb test in callers
3680     return NULL;
3681   }
3682   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3683     ptr = ptr->in(1);
3684     if (ptr == NULL) return NULL;
3685   }
3686   // Return NULL for allocations with several casts:
3687   //   j.l.reflect.Array.newInstance(jobject, jint)
3688   //   Object.clone()
3689   // to keep more precise type from last cast.
3690   if (ptr->is_Proj()) {
3691     Node* allo = ptr->in(0);
3692     if (allo != NULL && allo->is_Allocate()) {
3693       return allo->as_Allocate();
3694     }
3695   }
3696   // Report failure to match.
3697   return NULL;
3698 }
3699 
3700 // Fancy version which also strips off an offset (and reports it to caller).
3701 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3702                                              intptr_t& offset) {
3703   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3704   if (base == NULL)  return NULL;
3705   return Ideal_allocation(base, phase);
3706 }
3707 
3708 // Trace Initialize <- Proj[Parm] <- Allocate
3709 AllocateNode* InitializeNode::allocation() {
3710   Node* rawoop = in(InitializeNode::RawAddress);
3711   if (rawoop->is_Proj()) {
3712     Node* alloc = rawoop->in(0);
3713     if (alloc->is_Allocate()) {
3714       return alloc->as_Allocate();
3715     }
3716   }
3717   return NULL;
3718 }
3719 
3720 // Trace Allocate -> Proj[Parm] -> Initialize
3721 InitializeNode* AllocateNode::initialization() {
3722   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3723   if (rawoop == NULL)  return NULL;
3724   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3725     Node* init = rawoop->fast_out(i);
3726     if (init->is_Initialize()) {
3727       assert(init->as_Initialize()->allocation() == this, "2-way link");
3728       return init->as_Initialize();
3729     }
3730   }
3731   return NULL;
3732 }
3733 
3734 //----------------------------- loop predicates ---------------------------
3735 
3736 //------------------------------add_predicate_impl----------------------------
3737 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3738   // Too many traps seen?
3739   if (too_many_traps(reason)) {
3740 #ifdef ASSERT
3741     if (TraceLoopPredicate) {
3742       int tc = C->trap_count(reason);
3743       tty->print("too many traps=%s tcount=%d in ",
3744                     Deoptimization::trap_reason_name(reason), tc);
3745       method()->print(); // which method has too many predicate traps
3746       tty->cr();
3747     }
3748 #endif
3749     // We cannot afford to take more traps here,
3750     // do not generate predicate.
3751     return;
3752   }
3753 
3754   Node *cont    = _gvn.intcon(1);
3755   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
3756   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
3757   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3758   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
3759   C->add_predicate_opaq(opq);
3760   {
3761     PreserveJVMState pjvms(this);
3762     set_control(iffalse);
3763     inc_sp(nargs);
3764     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3765   }
3766   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
3767   set_control(iftrue);
3768 }
3769 
3770 //------------------------------add_predicate---------------------------------
3771 void GraphKit::add_predicate(int nargs) {
3772   if (UseLoopPredicate) {
3773     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3774   }
3775   // loop's limit check predicate should be near the loop.
3776   if (LoopLimitCheck) {
3777     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3778   }
3779 }
3780 
3781 //----------------------------- store barriers ----------------------------
3782 #define __ ideal.
3783 
3784 void GraphKit::sync_kit(IdealKit& ideal) {
3785   set_all_memory(__ merged_memory());
3786   set_i_o(__ i_o());
3787   set_control(__ ctrl());
3788 }
3789 
3790 void GraphKit::final_sync(IdealKit& ideal) {
3791   // Final sync IdealKit and graphKit.
3792   sync_kit(ideal);
3793 }
3794 
3795 // vanilla/CMS post barrier
3796 // Insert a write-barrier store.  This is to let generational GC work; we have
3797 // to flag all oop-stores before the next GC point.
3798 void GraphKit::write_barrier_post(Node* oop_store,
3799                                   Node* obj,
3800                                   Node* adr,
3801                                   uint  adr_idx,
3802                                   Node* val,
3803                                   bool use_precise) {
3804   // No store check needed if we're storing a NULL or an old object
3805   // (latter case is probably a string constant). The concurrent
3806   // mark sweep garbage collector, however, needs to have all nonNull
3807   // oop updates flagged via card-marks.
3808   if (val != NULL && val->is_Con()) {
3809     // must be either an oop or NULL
3810     const Type* t = val->bottom_type();
3811     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3812       // stores of null never (?) need barriers
3813       return;
3814   }
3815 
3816   if (use_ReduceInitialCardMarks()
3817       && obj == just_allocated_object(control())) {
3818     // We can skip marks on a freshly-allocated object in Eden.
3819     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3820     // That routine informs GC to take appropriate compensating steps,
3821     // upon a slow-path allocation, so as to make this card-mark
3822     // elision safe.
3823     return;
3824   }
3825 
3826   if (!use_precise) {
3827     // All card marks for a (non-array) instance are in one place:
3828     adr = obj;
3829   }
3830   // (Else it's an array (or unknown), and we want more precise card marks.)
3831   assert(adr != NULL, "");
3832 
3833   IdealKit ideal(this, true);
3834 
3835   // Convert the pointer to an int prior to doing math on it
3836   Node* cast = __ CastPX(__ ctrl(), adr);
3837 
3838   // Divide by card size
3839   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3840          "Only one we handle so far.");
3841   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3842 
3843   // Combine card table base and card offset
3844   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3845 
3846   // Get the alias_index for raw card-mark memory
3847   int adr_type = Compile::AliasIdxRaw;
3848   Node*   zero = __ ConI(0); // Dirty card value
3849   BasicType bt = T_BYTE;
3850 
3851   if (UseCondCardMark) {
3852     // The classic GC reference write barrier is typically implemented
3853     // as a store into the global card mark table.  Unfortunately
3854     // unconditional stores can result in false sharing and excessive
3855     // coherence traffic as well as false transactional aborts.
3856     // UseCondCardMark enables MP "polite" conditional card mark
3857     // stores.  In theory we could relax the load from ctrl() to
3858     // no_ctrl, but that doesn't buy much latitude.
3859     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3860     __ if_then(card_val, BoolTest::ne, zero);
3861   }
3862 
3863   // Smash zero into card
3864   if( !UseConcMarkSweepGC ) {
3865     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::release);
3866   } else {
3867     // Specialized path for CM store barrier
3868     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3869   }
3870 
3871   if (UseCondCardMark) {
3872     __ end_if();
3873   }
3874 
3875   // Final sync IdealKit and GraphKit.
3876   final_sync(ideal);
3877 }
3878 
3879 // G1 pre/post barriers
3880 void GraphKit::g1_write_barrier_pre(bool do_load,
3881                                     Node* obj,
3882                                     Node* adr,
3883                                     uint alias_idx,
3884                                     Node* val,
3885                                     const TypeOopPtr* val_type,
3886                                     Node* pre_val,
3887                                     BasicType bt) {
3888 
3889   // Some sanity checks
3890   // Note: val is unused in this routine.
3891 
3892   if (do_load) {
3893     // We need to generate the load of the previous value
3894     assert(obj != NULL, "must have a base");
3895     assert(adr != NULL, "where are loading from?");
3896     assert(pre_val == NULL, "loaded already?");
3897     assert(val_type != NULL, "need a type");
3898   } else {
3899     // In this case both val_type and alias_idx are unused.
3900     assert(pre_val != NULL, "must be loaded already");
3901     // Nothing to be done if pre_val is null.
3902     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
3903     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3904   }
3905   assert(bt == T_OBJECT, "or we shouldn't be here");
3906 
3907   IdealKit ideal(this, true);
3908 
3909   Node* tls = __ thread(); // ThreadLocalStorage
3910 
3911   Node* no_ctrl = NULL;
3912   Node* no_base = __ top();
3913   Node* zero  = __ ConI(0);
3914   Node* zeroX = __ ConX(0);
3915 
3916   float likely  = PROB_LIKELY(0.999);
3917   float unlikely  = PROB_UNLIKELY(0.999);
3918 
3919   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3920   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3921 
3922   // Offsets into the thread
3923   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3924                                           PtrQueue::byte_offset_of_active());
3925   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3926                                           PtrQueue::byte_offset_of_index());
3927   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3928                                           PtrQueue::byte_offset_of_buf());
3929 
3930   // Now the actual pointers into the thread
3931   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3932   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3933   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3934 
3935   // Now some of the values
3936   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3937 
3938   // if (!marking)
3939   __ if_then(marking, BoolTest::ne, zero, unlikely); {
3940     BasicType index_bt = TypeX_X->basic_type();
3941     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
3942     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
3943 
3944     if (do_load) {
3945       // load original value
3946       // alias_idx correct??
3947       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
3948     }
3949 
3950     // if (pre_val != NULL)
3951     __ if_then(pre_val, BoolTest::ne, null()); {
3952       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3953 
3954       // is the queue for this thread full?
3955       __ if_then(index, BoolTest::ne, zeroX, likely); {
3956 
3957         // decrement the index
3958         Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3959 
3960         // Now get the buffer location we will log the previous value into and store it
3961         Node *log_addr = __ AddP(no_base, buffer, next_index);
3962         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
3963         // update the index
3964         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
3965 
3966       } __ else_(); {
3967 
3968         // logging buffer is full, call the runtime
3969         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3970         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
3971       } __ end_if();  // (!index)
3972     } __ end_if();  // (pre_val != NULL)
3973   } __ end_if();  // (!marking)
3974 
3975   // Final sync IdealKit and GraphKit.
3976   final_sync(ideal);
3977 }
3978 
3979 //
3980 // Update the card table and add card address to the queue
3981 //
3982 void GraphKit::g1_mark_card(IdealKit& ideal,
3983                             Node* card_adr,
3984                             Node* oop_store,
3985                             uint oop_alias_idx,
3986                             Node* index,
3987                             Node* index_adr,
3988                             Node* buffer,
3989                             const TypeFunc* tf) {
3990 
3991   Node* zero  = __ ConI(0);
3992   Node* zeroX = __ ConX(0);
3993   Node* no_base = __ top();
3994   BasicType card_bt = T_BYTE;
3995   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3996   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3997 
3998   //  Now do the queue work
3999   __ if_then(index, BoolTest::ne, zeroX); {
4000 
4001     Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
4002     Node* log_addr = __ AddP(no_base, buffer, next_index);
4003 
4004     // Order, see storeCM.
4005     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
4006     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
4007 
4008   } __ else_(); {
4009     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4010   } __ end_if();
4011 
4012 }
4013 
4014 void GraphKit::g1_write_barrier_post(Node* oop_store,
4015                                      Node* obj,
4016                                      Node* adr,
4017                                      uint alias_idx,
4018                                      Node* val,
4019                                      BasicType bt,
4020                                      bool use_precise) {
4021   // If we are writing a NULL then we need no post barrier
4022 
4023   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4024     // Must be NULL
4025     const Type* t = val->bottom_type();
4026     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4027     // No post barrier if writing NULLx
4028     return;
4029   }
4030 
4031   if (!use_precise) {
4032     // All card marks for a (non-array) instance are in one place:
4033     adr = obj;
4034   }
4035   // (Else it's an array (or unknown), and we want more precise card marks.)
4036   assert(adr != NULL, "");
4037 
4038   IdealKit ideal(this, true);
4039 
4040   Node* tls = __ thread(); // ThreadLocalStorage
4041 
4042   Node* no_base = __ top();
4043   float likely  = PROB_LIKELY(0.999);
4044   float unlikely  = PROB_UNLIKELY(0.999);
4045   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
4046   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
4047   Node* zeroX = __ ConX(0);
4048 
4049   // Get the alias_index for raw card-mark memory
4050   const TypePtr* card_type = TypeRawPtr::BOTTOM;
4051 
4052   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4053 
4054   // Offsets into the thread
4055   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
4056                                      PtrQueue::byte_offset_of_index());
4057   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
4058                                      PtrQueue::byte_offset_of_buf());
4059 
4060   // Pointers into the thread
4061 
4062   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4063   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4064 
4065   // Now some values
4066   // Use ctrl to avoid hoisting these values past a safepoint, which could
4067   // potentially reset these fields in the JavaThread.
4068   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4069   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4070 
4071   // Convert the store obj pointer to an int prior to doing math on it
4072   // Must use ctrl to prevent "integerized oop" existing across safepoint
4073   Node* cast =  __ CastPX(__ ctrl(), adr);
4074 
4075   // Divide pointer by card size
4076   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4077 
4078   // Combine card table base and card offset
4079   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4080 
4081   // If we know the value being stored does it cross regions?
4082 
4083   if (val != NULL) {
4084     // Does the store cause us to cross regions?
4085 
4086     // Should be able to do an unsigned compare of region_size instead of
4087     // and extra shift. Do we have an unsigned compare??
4088     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4089     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4090 
4091     // if (xor_res == 0) same region so skip
4092     __ if_then(xor_res, BoolTest::ne, zeroX); {
4093 
4094       // No barrier if we are storing a NULL
4095       __ if_then(val, BoolTest::ne, null(), unlikely); {
4096 
4097         // Ok must mark the card if not already dirty
4098 
4099         // load the original value of the card
4100         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4101 
4102         __ if_then(card_val, BoolTest::ne, young_card); {
4103           sync_kit(ideal);
4104           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4105           insert_mem_bar(Op_MemBarVolatile, oop_store);
4106           __ sync_kit(this);
4107 
4108           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4109           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4110             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4111           } __ end_if();
4112         } __ end_if();
4113       } __ end_if();
4114     } __ end_if();
4115   } else {
4116     // Object.clone() instrinsic uses this path.
4117     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4118   }
4119 
4120   // Final sync IdealKit and GraphKit.
4121   final_sync(ideal);
4122 }
4123 #undef __
4124 
4125 
4126 
4127 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
4128   if (java_lang_String::has_offset_field()) {
4129     int offset_offset = java_lang_String::offset_offset_in_bytes();
4130     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4131                                                        false, NULL, 0);
4132     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4133     int offset_field_idx = C->get_alias_index(offset_field_type);
4134     return make_load(ctrl,
4135                      basic_plus_adr(str, str, offset_offset),
4136                      TypeInt::INT, T_INT, offset_field_idx, MemNode::unordered);
4137   } else {
4138     return intcon(0);
4139   }
4140 }
4141 
4142 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4143   if (java_lang_String::has_count_field()) {
4144     int count_offset = java_lang_String::count_offset_in_bytes();
4145     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4146                                                        false, NULL, 0);
4147     const TypePtr* count_field_type = string_type->add_offset(count_offset);
4148     int count_field_idx = C->get_alias_index(count_field_type);
4149     return make_load(ctrl,
4150                      basic_plus_adr(str, str, count_offset),
4151                      TypeInt::INT, T_INT, count_field_idx, MemNode::unordered);
4152   } else {
4153     return load_array_length(load_String_value(ctrl, str));
4154   }
4155 }
4156 
4157 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4158   int value_offset = java_lang_String::value_offset_in_bytes();
4159   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4160                                                      false, NULL, 0);
4161   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4162   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
4163                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
4164                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
4165   int value_field_idx = C->get_alias_index(value_field_type);
4166   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4167                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4168   // String.value field is known to be @Stable.
4169   if (UseImplicitStableValues) {
4170     load = cast_array_to_stable(load, value_type);
4171   }
4172   return load;
4173 }
4174 
4175 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
4176   int offset_offset = java_lang_String::offset_offset_in_bytes();
4177   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4178                                                      false, NULL, 0);
4179   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4180   int offset_field_idx = C->get_alias_index(offset_field_type);
4181   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
4182                   value, T_INT, offset_field_idx, MemNode::unordered);
4183 }
4184 
4185 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4186   int value_offset = java_lang_String::value_offset_in_bytes();
4187   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4188                                                      false, NULL, 0);
4189   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4190 
4191   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4192       value, TypeAryPtr::CHARS, T_OBJECT, MemNode::unordered);
4193 }
4194 
4195 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
4196   int count_offset = java_lang_String::count_offset_in_bytes();
4197   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4198                                                      false, NULL, 0);
4199   const TypePtr* count_field_type = string_type->add_offset(count_offset);
4200   int count_field_idx = C->get_alias_index(count_field_type);
4201   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
4202                   value, T_INT, count_field_idx, MemNode::unordered);
4203 }
4204 
4205 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4206   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4207   // assumption of CCP analysis.
4208   return _gvn.transform(new(C) CastPPNode(ary, ary_type->cast_to_stable(true)));
4209 }